Please use this identifier to cite or link to this item: https://hdl.handle.net/10216/90838
Author(s): André Oliveira
Oscar García-Prada
Title: Maximal Higgs bundles for adjoint forms via Cayley correspondence
Issue Date: 2017
Abstract: For a fixed compact Riemann surface X, of genus at least 2, we count the number of connected components of the moduli space of maximal Higgs bundles over X for the hermitian groups PSp(2n, R), PSO*(2n), PSO0(2, n) and E-6(-14). Hence the same result follows for the number of connected components of the moduli space of maximal representations of pi X-1 in these groups. We use the Cayley correspondence proved in Biquard et al. (Higgs bundles, the Toledo invariant and the Cayley correspondence. Preprint, 2015. arXiv: 1511.07751) as our main tool.
URI: https://repositorio-aberto.up.pt/handle/10216/90838
Document Type: Artigo em Revista Científica Internacional
Rights: openAccess
Appears in Collections:FCUP - Artigo em Revista Científica Internacional

Files in This Item:
File Description SizeFormat 
174704.pdfMaximal Higgs bundles for adjoint forms via Cayley correspondence300.26 kBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.