Please use this identifier to cite or link to this item: https://hdl.handle.net/10216/95579
Author(s): W. de Melo
A. A. Pinto
Title: Rigidity of $C^2$ infinitely renormalizable unimodal maps.
Issue Date: 1999
Abstract: Given C^2 infinitely renormalizable unimodal maps f and g with a quadratic critical point and the same bounded combinatorial type, we prove that they are C^{1+α} conjugate along the closure of the corresponding forward orbits of the critical points, for some α>0.
Description: Given C^2 infinitely renormalizable unimodal maps f and g with a quadratic critical point and the same bounded combinatorial type, we prove that they are C^{1+α} conjugate along the closure of the corresponding forward orbits of the critical points, for some α>0.
Subject: Matemática
Mathematics
Scientific areas: Ciências exactas e naturais::Matemática
Natural sciences::Mathematics
URI: https://repositorio-aberto.up.pt/handle/10216/95579
Document Type: Artigo em Revista Científica Internacional
Rights: restrictedAccess
Appears in Collections:FCUP - Artigo em Revista Científica Internacional

Files in This Item:
File Description SizeFormat 
48971.pdf
  Restricted Access
122.36 kBAdobe PDF    Request a copy from the Author(s)


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.