Please use this identifier to cite or link to this item: https://repositorio-aberto.up.pt/handle/10216/94559
Author(s): Aliuska M Helguera
Rodriguez Borges, JE
Olga Caamano
Xerardo Garcia Mera
Maykel P Perez Gonzalez
Natalia N D S Cordeiro
Title: Design, Synthesis, and Evaluation of Antineoplastic Activity of Novel Carbocyclic Nucleosides
Issue Date: 2010
Abstract: Cancer is the leading cause of death among men and women under age 85. Every year, millions of individuals are diagnosed with cancer. But finding new drugs is a complex, expensive, and very time-consuming task. Over the past decade, the cancer research community has begun to address the in silico modeling approaches, such as Quantitative Structure-Activity Relationships (QSAR), as an important alternative tool for targeting potential anticancer drugs. With the compilation of a large dataset of nucleosides synthesized in our laboratories, or elsewhere, and tested in a single cytotoxic assay under the same experimental conditions, we recognized a unique opportunity to attempt to build predictive QSAR models. Early efforts with 2D classification models built from part of this dataset were very encouraging. Here we report a further detailed evaluation of classification models to flag potential anticancer activities derived from a variety of 3D molecular representations. A quantitative 3D-model model that discriminates anticancer compounds from the inactive ones was attained, which allowed the correct classification of 82% of compounds in such a large and diverse dataset, with only 5% of false inactives and 11% of false actives. The model developed here was then used to select and design a new series of nucleosides, by classifying beforehand them as active/inactive anticancer compounds. From the compounds so designed, 22 were synthesized and evaluated for their inhibitory effects on the proliferation of murine leukemia cells (L1210/0), of which 86% were well-classified as active or inactive, and only two were false actives, corroborating the good predictive ability of the present discriminant model. The results of this study thus provide a valuable tool for the design of novel potent anticancer nucleoside analogues.
Subject: Matemática
Mathematics
Scientific areas: Ciências exactas e naturais::Matemática
Natural sciences::Mathematics
URI: http://hdl.handle.net/10216/94559
Document Type: Artigo em Revista Científica Internacional
Rights: restrictedAccess
Appears in Collections:FCUP - Artigo em Revista Científica Internacional

Files in This Item:
File Description SizeFormat 
48926.pdf
  Restricted Access
1.07 MBAdobe PDF    Request a copy from the Author(s)


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.