Please use this identifier to cite or link to this item:
Author(s): Manuela Aguiar
Dias, APS
Ruan, H
Title: Synchrony and Elementary Operations on Coupled Cell Networks
Issue Date: 2016
Abstract: Given a finite graph (network), let every node (cell) represent an individual dynamics given by a system of ordinary differential equations, and every arrow (edge) encode the dynamical influence of the tail node on the head node. We have then defined a coupled cell system that is associated with the given network structure. Subspaces that are defined by equalities of cell coordinates and left invariant under every coupled cell system respecting the network structure are called synchrony subspaces. They are completely determined by the network structure and form a complete lattice under set inclusions. We analyze the transition of the lattice of synchrony subspaces of a network that is caused by structural changes in the network topology, such as deletion and addition of cells or edges, and rewirings of edges. We give sufficient, and in some cases both sufficient and necessary, conditions under which lattice elements persist or disappear.
Document Type: Artigo em Revista Científica Internacional
Rights: openAccess
Appears in Collections:FCUP - Artigo em Revista Científica Internacional
FEP - Artigo em Revista Científica Internacional

Files in This Item:
File Description SizeFormat 
130061.pdf204.64 kBAdobe PDFThumbnail

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.