Please use this identifier to cite or link to this item: https://hdl.handle.net/10216/90515
Full metadata record
DC FieldValueLanguage
dc.creatorMaria Pires de Carvalho
dc.creatorFagner B. Rodrigues
dc.creatorPaulo Varandas
dc.date.accessioned2019-09-18T23:14:56Z-
dc.date.available2019-09-18T23:14:56Z-
dc.date.issued2017-01-09
dc.identifier.issn0022-4715
dc.identifier.othersigarra:169885
dc.identifier.urihttps://hdl.handle.net/10216/90515-
dc.description.abstractWe consider semigroups of Ruelle-expanding maps, parameterized by random walks on the free semigroup, with the aim of examining their complexity and exploring the relation between intrinsic properties of the semigroup action and the thermodynamic formalism of the associated skew-product. In particular, we clarify the connection between the topological entropy of the semigroup action and the growth rate of the periodic points, establish the main properties of the dynamical zeta function of the semigroup action and relate these notions to recent research on annealed and quenched thermodynamic formalism. Meanwhile, we examine how the choice of the random walk in the semigroup unsettles the ergodic properties of the action.
dc.language.isoeng
dc.rightsopenAccess
dc.subjectMatemática
dc.subjectMathematics
dc.titleSemigroup Actions of Expanding Maps
dc.typeArtigo em Revista Científica Internacional
dc.contributor.uportoFaculdade de Ciências
dc.identifier.doi10.1007/s10955-016-1697-3
dc.identifier.authenticusP-00M-ECP
Appears in Collections:FCUP - Artigo em Revista Científica Internacional

Files in This Item:
File Description SizeFormat 
169885.pdf213.42 kBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.