Please use this identifier to cite or link to this item: https://hdl.handle.net/10216/86741
Author(s): Oliveira, AG
Title: REPRESENTATIONS OF SURFACE GROUPS IN THE PROJECTIVE GENERAL LINEAR GROUP
Issue Date: 2011
Abstract: Given a closed, oriented surface X of genus g >= 2, and a semisimple Lie group G, let R-G be the moduli space of reductive representations of pi(1) X in G. We determine the number of connected components of R-PGL(n,R- R), for n >= 4 even. In order to have a first division of connected components, we first classify real projective bundles over such a surface. Then we achieve our goal, using holomorphic methods through the theory of Higgs bundles over compact Riemann surfaces. We also show that the complement of the Hitchin component in R-SL(3,R-R) is homotopically equivalent to R-SO(3).
Subject: Matemática
Mathematics
Scientific areas: Ciências exactas e naturais::Matemática
Natural sciences::Mathematics
URI: https://repositorio-aberto.up.pt/handle/10216/86741
Document Type: Artigo em Revista Científica Internacional
Rights: openAccess
Appears in Collections:FCUP - Artigo em Revista Científica Internacional

Files in This Item:
File Description SizeFormat 
158106.pdfAuthor's final version477.47 kBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.