Please use this identifier to cite or link to this item: https://hdl.handle.net/10216/83700
Author(s): R. M. A. Silva
M. G. C. Resende
P. M. Pardalos
J. F. Gonçalves
Title: Biased random-key genetic algorithm for bound-constrained global optimization
Issue Date: 2012
Abstract: Global optimization seeks a minimum or maximum of a multimodal function over a discrete orcontinuous domain. In this paper, we propose a biased random-key genetic algorithm for findingapproximate solutions for continuous global optimization problems subject to box constraints. Experimentalresults illustrate its effectiveness on the robot kinematics problem, a challenging problemaccording to [7].
Subject: Estudos de gestão, Economia e gestão
Management studies, Economics and Business
Scientific areas: Ciências sociais::Economia e gestão
Social sciences::Economics and Business
URI: https://repositorio-aberto.up.pt/handle/10216/83700
Source: GOW 2012: Proceedings of Global Optimization Workshop
Document Type: Artigo em Livro de Atas de Conferência Internacional
Rights: openAccess
License: https://creativecommons.org/licenses/by-nc/4.0/
Appears in Collections:FEP - Artigo em Livro de Atas de Conferência Internacional

Files in This Item:
File Description SizeFormat 
51592.pdf87.35 kBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons