Please use this identifier to cite or link to this item:
Author(s): Klára Slezáková
Joana Madureira
Carla Costa
Maria do Carmo Pereira
João Paulo Teixeira
Title: Assessment of indoor air exposure among newborns and their mothers: Levels and sources of PM10, PM2.5 and ultrafine particles at 65 home environments
Issue Date: 2020-09
Abstract: Significant efforts have been directed towards addressing the adverse health effects of atmospheric particles, emphasizing the relevance of indoor exposure. Homes represent an indoor environment where human spend the majority of their time. Thus, the objective of this work was to concurrently assess different matrix of indoor particles considering both mass (PM10, PM2.5) and number (N20-1000) concentrations in indoor and outdoor air of homes (n = 65). Real-time measurements (PM10, PM2.5, UFP) were conducted simultaneously during 48 h in dwellings situated in Oporto, Portugal. In 75% of homes, indoor PM2.5 (mean = 53 μg m−3) exceeded limit of 25 μg m−3, for PM10 (mean = 57 μg m−3) 41% of homes demonstrated average levels higher than 50 μg m−3, thus indicating potential risks. Indoor PM10 was mostly (82-99%) composed of PM2.5, both PM were highly correlated (|rs|>0.9655), thus suggesting the similar origin. Indoor PM originated from infiltrations of outdoor emissions; ∼70% of homes exhibited indoor to outdoor (I/O) ratio < 1. On the contrary, UFP indoors (mean = 13.3 × 103 # cm−3) were higher than outdoors (mean = 10.0 × 103 # cm−3). Indoor UFP spatially varied as follows: kitchens > living rooms > bedrooms. UFP indoors were poorly correlated (|rs| = 0.456) with outdoor concentrations, I/O ratios showed that indoor UFP predominantly originated from indoor emission sources (combustions). Therefore, in order to reduce exposure to UFP and protect public health, the primary concerns should be focused on controlling emissions from indoor sources. (c) 2020 Elsevier Ltd
Subject: Ciências Médicas, Ciências do ambiente
Medical sciences, Environmental science
Related Information: info:eu-repo/grantAgreement/FCT - Fundação para a Ciência e Tecnologia/Programa de Financiamento Plurianual de Unidades de I&D/UID/EQU/00511/2019 /Projeto Estratégico do LEPABE - Laboratório de Engenharia de Processos, Ambiente, Biotecnologia e Energia/LEPABE
Document Type: Artigo em Revista Científica Internacional
Rights: restrictedAccess
Appears in Collections:FEUP - Artigo em Revista Científica Internacional
FMUP - Artigo em Revista Científica Internacional

Files in This Item:
File Description SizeFormat 
  Restricted Access
1.96 MBAdobe PDF    Request a copy from the Author(s)

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.