Please use this identifier to cite or link to this item: https://hdl.handle.net/10216/112433
Author(s): Gothen, PB
Nozad, A
Title: Quiver bundles and wall crossing for chains
Issue Date: 2019
Abstract: Holomorphic chains on a Riemann surface arise naturally as fixed points of the natural C-action on the moduli space of Higgs bundles. In this paper we associate a new quiver bundle to the Hom-complex of two chains, and prove that stability of the chains implies stability of this new quiver bundle. Our approach uses the Hitchin-Kobayashi correspondence for quiver bundles. Moreover, we use our result to give a new proof of a key lemma on chains (due to alvarez-Consul-Garcia-Prada-Schmitt), which has been important in the study of Higgs bundle moduli; this proof relies on stability and thus avoids the direct use of the chain vortex equations.
URI: https://hdl.handle.net/10216/112433
Document Type: Artigo em Revista Científica Internacional
Rights: openAccess
Appears in Collections:FCUP - Artigo em Revista Científica Internacional

Files in This Item:
File Description SizeFormat 
270846.pdfVersão final do autor170.43 kBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.