Please use this identifier to cite or link to this item: https://hdl.handle.net/10216/109911
Full metadata record
DC FieldValueLanguage
dc.creatorMaria Pires de Carvalho
dc.creatorFagner B. Rodrigues
dc.creatorPaulo Varandas
dc.date.accessioned2019-09-18T23:13:35Z-
dc.date.available2019-09-18T23:13:35Z-
dc.date.issued2018
dc.identifier.issn0951-7715
dc.identifier.othersigarra:239905
dc.identifier.urihttps://hdl.handle.net/10216/109911-
dc.description.abstractWe consider finitely generated free semigroup actions on a compact metric space and obtain quantitative information on Poincare recurrence, average first return time and hitting frequency for the random orbits induced by the semigroup action. Besides, we relate the recurrence to balls with the rates of expansion of the semigroup generators and the topological entropy of the semigroup action. Finally, we establish a partial variational principle and prove an ergodic optimization for this kind of dynamical action.
dc.language.isoeng
dc.rightsopenAccess
dc.subjectMatemática
dc.subjectMathematics
dc.titleQuantitative recurrence for free semigroup actions
dc.typeArtigo em Revista Científica Internacional
dc.contributor.uportoFaculdade de Ciências
dc.identifier.doi10.1088/1361-6544/aa999f
dc.identifier.authenticusP-00N-KMQ
Appears in Collections:FCUP - Artigo em Revista Científica Internacional

Files in This Item:
File Description SizeFormat 
239905.pdf192.41 kBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.