Please use this identifier to cite or link to this item: https://hdl.handle.net/10216/109354
Author(s): Ines Cruz
Esmeralda Sousa Dias, ME
Title: REDUCTION OF CLUSTER ITERATION MAPS
Issue Date: 2014
Abstract: We study iteration maps of difference equations arising from mutation periodic quivers of arbitrary period. Combining tools from cluster algebra theory and presymplectic geometry, we show that these cluster iteration maps can be reduced to symplectic maps on a lower dimensional submanifold, provided the matrix representing the quiver is singular. The reduced iteration map is explicitly computed for several periodic quivers using either the presymplectic reduction or a Poisson reduction via log-canonical Poisson structures.
Subject: Matemática
Mathematics
Scientific areas: Ciências exactas e naturais::Matemática
Natural sciences::Mathematics
URI: https://repositorio-aberto.up.pt/handle/10216/109354
Document Type: Artigo em Revista Científica Internacional
Rights: openAccess
Appears in Collections:FCUP - Artigo em Revista Científica Internacional

Files in This Item:
File Description SizeFormat 
99639.pdfCruzSousaDiasJGM536.51 kBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.