Please use this identifier to cite or link to this item: https://hdl.handle.net/10216/103636
Author(s): azevedo, j.
Steier, L.
Dias, P.
Stefik, M.
Sousa, CT
araujo, j. p.
Adélio Mendes
Graetzel, M.
Tilley, S. D.
Title: On the stability enhancement of cuprous oxide water splitting photocathodes by low temperature steam annealing
Issue Date: 2014
Abstract: Given the intermittent nature of solar radiation, the large-scale use of solar energy requires an efficient energy storage solution. So far, the only practical way to store such large amounts of energy is in the form of a chemical energy carrier, i.e., a fuel. Photoelectrochemical (PEC) cells offer the ability to convert solar energy directly into chemical energy in the form of hydrogen. Cuprous oxide (Cu2O) is being investigated for photoelectrochemical solar water splitting since it has a band gap of 2.0 eV with favorable energy band positions for water cleavage; it is abundant and environmentally friendly. A major challenge with Cu2O is its limited chemical stability in aqueous environments. We present a simple and low-cost treatment to create a highly stable photocathode configuration for H-2 production, consisting of steam treatment of the multilayer structures. The role of this treatment was investigated and the optimized electrodes have shown photocurrents over -5 mA cm(-2) with 90% stability over more than 50 h of light chopping (biased at 0 V-RHE in pH 5 electrolyte).
URI: https://repositorio-aberto.up.pt/handle/10216/103636
Related Information: info:eu-repo/grantAgreement/FCT - Fundação para a Ciência e Tecnologia/Projectos de I&DT em Todos os Domínios Científicos/PTDC/EQU-EQU/107990/2008/Células fotoelectroquímicas para produção de hidrogénio a partir de energia solar/H2Solar
Document Type: Artigo em Revista Científica Internacional
Rights: restrictedAccess
Appears in Collections:FCUP - Artigo em Revista Científica Internacional
FEUP - Artigo em Revista Científica Internacional
REIT - Artigo em Revista Científica Internacional

Files in This Item:
File Description SizeFormat 
185714.pdf
  Restricted Access
Artigo original publicado1.04 MBAdobe PDF    Request a copy from the Author(s)
185714.1.pdfPost-Print version1.03 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.