Please use this identifier to cite or link to this item: https://hdl.handle.net/10216/53558
Author(s): Maffini, Stefano
Maia, Ana R R
Manning, Amity L
Maliga, Zoltan
Pereira, AL
Junqueira, Magno
Shevchenko, Andrej
Hyman, Anthony
Yates, John R
Galjart, Niels
Compton, Duane A
Maiato, H
Title: Motor-Independent Targeting of CLASPs to Kinetochores by CENP-E Promotes Microtubule Turnover and Poleward Flux
Alternative title: CENP-E targeting of CLASPs to kinetochores
Issue Date: 2009
Abstract: Efficient chromosome segregation during mitosis relies on the coordinated activity of molecular motors with proteins that regulate kinetochore attachments to dynamic spindle microtubules [1]. CLASPs are conserved kinetochore- and microtubule-associated proteins encoded by two paralogue genes, clasp1 and clasp2, and have been previously implicated in the regulation of kinetochore-microtubule dynamics [2-4]. However, it remains unknown how CLASPs work in concert with other proteins to form a functional kinetochore-microtubule interface. Here we have identified mitotic interactors of human CLASP1 using a proteomic approach. Among these, the microtubule plus-end directed motor CENP-E [5] was found to form a complex with CLASP1 that co-localizes to multiple structures of the mitotic apparatus in human cells. We found that CENP-E recruits both CLASP1 and CLASP2 to kinetochores independent of its motor activity or the presence of microtubules. Depletion of CLASPs or CENP-E by RNAi in human cells causes a significant and comparable reduction of kinetochore-microtubule poleward flux and turnover rates, as well as rescues spindle bipolarity in Kif2a-depleted cells. We conclude that CENP-E integrates two critical functions that are important for accurate chromosome movement and spindle architecture: one relying directly on its motor activity and the other involving the targeting of key microtubule regulators to kinetochores.
Subject: Flux
Kinetochores
Microtubule Turnover
Mitosis
Mitotic Spindle
URI: http://hdl.handle.net/10216/53558
Catalogue Link: http://dx.doi.org/10.1016/j.cub.2009.07.059
Source: Current Biology, vol.19(18), 1566-1572,
Document Type: Artigo em Revista Científica Internacional
Rights: openAccess
Appears in Collections:I3S - Artigo em Revista Científica Internacional



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.