Please use this identifier to cite or link to this item:
Author(s): Pissarra, J
Marcal, A.R.S.
Martins, A.L.R.
Title: Modified DBSCAN Algorithm for Microscopic Image Analysis of Wood
Issue Date: 2019-09-22
Abstract: The analysis of the intern anatomy of wood samples for species identification is a complex task that only experts can perform accurately. Since there are not many experts in the world and their training can last decades, there is great interest in developing automatic processes to extract high-level information from microscopic wood images. The purpose of this work was to develop algorithms that could provide meaningful information for the classification process. The work focuses on hardwoods, which have a very diverse anatomy including many different features. The ray width is one of such features, with high diagnostic value, which is visible on the tangential section. A modified distance function for the DBSCAN algorithm was developed to identify clusters that represent rays, in order to count the number of cells in width. To test both the segmentation and the modified DBSCAN algorithms, 20 images were manually segmented, obtaining an average Jaccard index of 0.66 for the segmentation and an average index M=0.78 for the clustering task. The final ray count had an accuracy of 0.91. (c) 2019, Springer Nature Switzerland AG.
Source: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Document Type: Artigo em Livro de Atas de Conferência Internacional
Rights: openAccess
Appears in Collections:FCUP - Artigo em Livro de Atas de Conferência Internacional

Files in This Item:
File Description SizeFormat 
355006.pdf4.28 MBAdobe PDFThumbnail

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.