Please use this identifier to cite or link to this item:
Author(s): Paulo Ribeirinha
Abdollahzadeh M.
J. M. Sousa
Boaventura, M.
Adélio Mendes
Title: Modelling of a high-temperature polymer electrolyte membrane fuel cell integrated with a methanol steam reformer cell
Issue Date: 2017
Abstract: A 3-dimensional non-isothermal simulator comprising a high temperature polymer electrolyte membrane fuel cell (HT-PEMFC) and a methanol steam-reforming cell (MSR-C) was developed in Fluent (Ansys). The simulator takes into account most of the significant physical processes, including the electrochemical reactions and carbon monoxide poisoning effect on the electro-catalytic activity of the FC; it also considers the methanol steam reforming (MSR), water gas shift (WGS) and methanol decomposition (MD) reactions in the MSR-C. The developed model for the integrated MSR-C/HT-PEMFC unit was simulated between 443 K and 473 K and validated with experimental results reported in the literature, showing always a very good agreement. The thermal sustainability of the MSR-C/HT-PEMFC unit was assessed, and the role of the thermal insulation and air intake (cathode) stoichiometry in the thermal equilibrium of the device were analysed. A novel integrated MSR-C/HT-PEM stack with ten cells was proposed and simulated, showing a performance above the reported in the literature for similar devices. The results indicated that the proposed stack operates at currents between 4.5 A (0.1 A cm2) and 54 A (1.2 A cm2) without any external heat source. To minimize the degradation of the components the stack should adapt the operating temperature to the current density. © 2017 Elsevier Ltd
Related Information: info:eu-repo/grantAgreement/Comissão de Coordenação e Desenvolvimento Regional do Norte/P2020|Norte2020-Projetos Integrados ICDT/NORTE-01-0145-FEDER-000005/LEPABE-2-ECO-INNOVATION/LEPABE-2-ECO-INNOVATION
info:eu-repo/grantAgreement/FCT - Fundação para a Ciência e Tecnologia/Projetos Estratégicos/UID/EQU/00511/2013 - POCI-01-0145-FEDER-006939/Laboratório de Engenharia de Processos, Ambiente, Biotecnologia e Energia/LEPABE
info:eu-repo/grantAgreement/COMISSÃO EUROPEIA/7.º Programa-Quadro de IDT/303476/Integrated low temperature methanol steam reforming and high temperature polymer electrolyte membrane fuel cell/BeingEnergy
Document Type: Artigo em Revista Científica Internacional
Rights: restrictedAccess
Appears in Collections:FEUP - Artigo em Revista Científica Internacional

Files in This Item:
File Description SizeFormat 
  Restricted Access
2.75 MBAdobe PDF    Request a copy from the Author(s)

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.