Please use this identifier to cite or link to this item: https://hdl.handle.net/10216/105618
Author(s): A. Afonso
P. J. Oliveira
F. T. Pinho
M. A. Alves
Title: The log-conformation tensor approach in the finite-volume method framework
Issue Date: 2009
Abstract: The log-conformation formulation, proposed by Fattal and Kupferman [J. Non-Newt. Fluid Mech. 123 (2004) 281], has helped to provide further insights into the High-Weissenberg Number Problem. In this work, we investigate the performance of the log-conformation formulation in the Finite Volume Method (FVM) framework for creeping flows of viscoelastic fluids in steady and unsteady flows around a confined cylinder. The Oldroyd-B and Phan-Thien-Tanner (PTT) constitutive equations were used to assess the effect of different theological behaviour on the flow patterns and solution stability. The calculation of the polymer stress contribution is carried out with both the standard technique and with the log-conformation methodology. For all test cases, up to the critical conditions when both methods converge to a steady solution, the use of the log-conformation technique provides solutions with similar accuracy as the standard approach. In terms of stability the log-conformation formulation is found to be significantly more robust, and Solutions could be obtained at higher Deborah number flows.
Subject: Engenharia mecânica, Engenharia mecânica
Mechanical engineering, Mechanical engineering
Scientific areas: Ciências da engenharia e tecnologias::Engenharia mecânica
Engineering and technology::Mechanical engineering
URI: https://repositorio-aberto.up.pt/handle/10216/105618
Document Type: Artigo em Revista Científica Internacional
Rights: restrictedAccess
Appears in Collections:FEUP - Artigo em Revista Científica Internacional

Files in This Item:
File Description SizeFormat 
60957.pdf
  Restricted Access
1.57 MBAdobe PDF    Request a copy from the Author(s)


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.