Please use this identifier to cite or link to this item:
Author(s): A. S. Iwashita
J. P. Papa
A. N. Souza
A. X. Falcão
R. A. Lotufo
V. M. Oliveira
Victor Hugo C. de Albuquerque
João Manuel R. S. Tavares
Title: A path- and label-cost propagation approach to speedup the training of the optimum-path forest classifier
Issue Date: 2014
Abstract: In general, pattern recognition techniques require a high computational burden for learning the discriminating functions that are responsible to separate samples from distinct classes. As such, there are several studies that make effort to employ machine learning algorithms in the context of "big data" classification problems. The research on this area ranges from Graphics Processing Units-based implementations to mathematical optimizations, being the main drawback of the former approaches to be dependent on the graphic video card. Here, we propose an architecture-independent optimization approach for the optimum-path forest (OPF) classifier, that is designed using a theoretical formulation that relates the minimum spanning tree with the minimum spanning forest generated by the OPF over the training dataset. The experiments have shown that the approach proposed can be faster than the traditional one in five public datasets, being also as accurate as the original OPF.
Subject: Ciências Tecnológicas, Ciências da engenharia e tecnologias
Technological sciences, Engineering and technology
Scientific areas: Ciências da engenharia e tecnologias
Engineering and technology
Document Type: Artigo em Revista Científica Internacional
Rights: restrictedAccess
Appears in Collections:FEUP - Artigo em Revista Científica Internacional

Files in This Item:
File Description SizeFormat 
  Restricted Access
Paper590.73 kBAdobe PDF    Request a copy from the Author(s)

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.