Please use this identifier to cite or link to this item: https://hdl.handle.net/10216/89667
Author(s): Simão dos Santos da Rocha Felgueiras
Title: Cotton Wool Spots in Eye Fundus Scope
Issue Date: 2016-07-14
Abstract: Diabetes mellitus is a disease with significant impact in public health. It is a complex disorder of carbohydrate, fat and protein metabolism that is a result of a deficiency, or complete lack of insulin secretion by the Beta cells of pancreas, or resistance to Insulin. There are 3 types of diabetes, namely type 1 where the patient is insulin-dependent, type 2 where the patient is non insulin-dependent and gestational diabetes that appears during the pregnancy phase.Retinopathy is a diabetes complication that can result in blindness. If detected in an early stage, it can be treated by laser surgery. However its early detection is frequently missed, since it progresses without symptoms until irreversible vision loss occurs.So if we can detect/find cotton wool spots in eye fundus scope by using image recognition, automatic annotation, decision-support systems for risk assessment, conjugate with a mobile app acquiring eye fundus images, we might detect early and treat avoiding patient blindness risk.This project aims to develop a smartphone-based on low computational-cost algorithms, which can be highly efficient in the lower quality images of the smartphone camera, that can be used as a decision-support system. This system may also be extended to other eye diseases, as an useful tool for eye health screening in developing countries and enhance the proximity of screening programs to the population.The main expected contribution is to develop a good decision-support system, considering cotton wool spots, together with red dots, instead of the actual system in use in Portugal which only considers red dots. The number of Diabetic Retinopathy cases worldwide justifies the development of an automated decision-support system for quick and cost effective screening of Diabetic Retinopathy.
Description: Diabetes mellitus é uma doença com um impacto significativo na saúde pública. Trata-se de uma alteração do metabolismo de hidratos de carbono, gorduras e proteínas que são resultado de uma deficiência ou ausência total de secreção/resistência à insulina por parte das células beta do pâncreas. Existem 3 tipos de diabetes, o denominado tipo 1 em que o doente é dependente de insulina, o tipo 2 em que o doente é dependente de insulina e a diabetes gestacional que aparece durante a fase de gravidez. A retinopatia diabética é uma complicação que pode resultar em cegueira. Se for detetada numa fase inicial, pode ser tratada por cirurgia a laser. No entanto, é dificil deteta-la numa fase inicial, uma vez que progride sem sintomas até ocorrer perda de visão de forma irreversível. Assim, se podermos detetar / encontrar exudados algodonosos no fundo de olho utilizando reconhecimento de imagem, anotação automática, sistemas de apoio à decisão de avaliação do risco, conjugados com uma aplicação móvel que permita a aquisição de imagens de fundo de olho, poderemos detetar mais cedo e tratar, evitando o risco cegueira do paciente. Este projeto tem como objetivo desenvolver uma aplicação smartphone baseada em algoritmos de baixo custo, que podem ser altamente eficientes nas imagens de baixa qualidade provenientes da câmara de um smartphone, que pode ser usada como um sistema de apoio à decisão. Este sistema também pode ser extendido a outras doenças oculares, como uma ferramenta útil para o rastreio de saúde ocular nos países em desenvolvimento, reforçar a proximidade dos programas de rastreio para a população. Os principais objetivos são desenvolver sistema fiável de apoio à decisão, considerando exudados algodonosos, juntamente com pontos vermelhos, em vez do sistema actualmente em uso em Portugal, que considera apenas os pontos vermelhos. O número casos Retinopatia Diabética em todo o mundo justifica o desenvolvimento de um sistema de suporte à decisão automatizado para triagem rápida e de baixo custo da Retinopatia Diabética.Diabetes mellitus é uma doença com um impacto significativo na saúde pública. Trata-se de uma alteração do metabolismo de hidratos de carbono, gorduras e proteínas que são resultado de uma deficiência ou ausência total de secreção/resistência à insulina por parte das células beta do pâncreas. Existem 3 tipos de diabetes, o denominado tipo 1 em que o doente é dependente de insulina, o tipo 2 em que o doente é dependente de insulina e a diabetes gestacional que aparece durante a fase de gravidez. A retinopatia diabética é uma complicação que pode resultar em cegueira. Se for detetada numa fase inicial, pode ser tratada por cirurgia a laser. No entanto, é dificil deteta-la numa fase inicial, uma vez que progride sem sintomas até ocorrer perda de visão de forma irreversível. Assim, se podermos detetar / encontrar exudados algodonosos no fundo de olho utilizando reconhecimento de imagem, anotação automática, sistemas de apoio à decisão de avaliação do risco, conjugados com uma aplicação móvel que permita a aquisição de imagens de fundo de olho, poderemos detetar mais cedo e tratar, evitando o risco cegueira do paciente. Este projeto tem como objetivo desenvolver uma aplicação smartphone baseada em algoritmos de baixo custo, que podem ser altamente eficientes nas imagens de baixa qualidade provenientes da câmara de um smartphone, que pode ser usada como um sistema de apoio à decisão. Este sistema também pode ser extendido a outras doenças oculares, como uma ferramenta útil para o rastreio de saúde ocular nos países em desenvolvimento, reforçar a proximidade dos programas de rastreio para a população. Os principais objetivos são desenvolver sistema fiável de apoio à decisão, considerando exudados algodonosos, juntamente com pontos vermelhos, em vez do sistema actualmente em uso em Portugal, que considera apenas os pontos vermelhos. O número casos Retinopatia Diabética em todo o mundo justifica o desenvolvimento de um sistema de suporte à decisão automatizado para triagem rápida e de baixo custo da Retinopatia Diabética.
Subject: Engenharia electrotécnica, electrónica e informática
Electrical engineering, Electronic engineering, Information engineering
Scientific areas: Ciências da engenharia e tecnologias::Engenharia electrotécnica, electrónica e informática
Engineering and technology::Electrical engineering, Electronic engineering, Information engineering
TID identifier: 201320762
URI: https://hdl.handle.net/10216/89667
Document Type: Dissertação
Rights: openAccess
Appears in Collections:FEUP - Dissertação

Files in This Item:
File Description SizeFormat 
139163.pdfCotton Wool Spots in Eye Fundus Scope13.01 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.