Please use this identifier to cite or link to this item:
Author(s): Danilo Samuel Jodas
Aledir Silveira Pereira
João Manuel R. S. Tavares
Title: A review of computational methods applied for identification and quantification of atherosclerotic plaques in images
Issue Date: 2016
Abstract: Evaluation of the composition of atherosclerotic plaques in images is an important task to determine their pathophysiology. Visual analysis is still as the most basic and often approach to determine the morphology of the atherosclerotic plaques. In addition, computer-aided methods have also been developed for identification of features such as echogenicity, texture and surface in such plaques. In this article, a review of the most important methodologies that have been developed to identify the main components of atherosclerotic plaques in images is presented. Hence, computational algorithms that take into consideration the analysis of the plaques echogenicity, image processing techniques, clustering algorithms and supervised classification used for segmentation, i.e. identification, of the atherosclerotic plaque components in ultrasound, computerized tomography and magnetic resonance images are introduced. The main contribution of this paper is to provide a categorization of the most important studies related to the segmentation of atherosclerotic plaques and its components in images acquired by the most used imaging modalities. In addition, the effectiveness and drawbacks of each methodology as well as future researches concerning the segmentation and classification of the atherosclerotic lesions are also discussed.
Subject: Ciências Tecnológicas, Ciências da engenharia e tecnologias
Technological sciences, Engineering and technology
Scientific areas: Ciências da engenharia e tecnologias
Engineering and technology
Document Type: Artigo em Revista Científica Internacional
Rights: openAccess
Appears in Collections:FEUP - Artigo em Revista Científica Internacional

Files in This Item:
File Description SizeFormat 
107812.pdfPaper291.47 kBAdobe PDFView/Open

This item is licensed under a Creative Commons License Creative Commons