Please use this identifier to cite or link to this item: https://hdl.handle.net/10216/35060
Author(s): Maiato, H
Sampaio, P
Lemos, Catarina L
Findlay, John
Mar, Carmena
Earnshaw, William C
Sunkel, CE
Title: MAST/Orbit has a role in microtubule-kinetochore attachment and is essential for chromosome alignment and maintenance of spindle bipolarity
Issue Date: 2002
Abstract: Multiple asters (MAST)/Orbit is a member of a new family of nonmotor microtubule-associated proteins that has been previously shown to be required for the organization of the mitotic spindle. Here we provide evidence that MAST/Orbit is required for functional kinetochore attachment, chromosome congression, and the maintenance of spindle bipolarity. In vivo analysis of Drosophila mast mutant embryos undergoing early mitotic divisions revealed that chromosomes are unable to reach a stable metaphase alignment and that bipolar spindles collapse as centrosomes move progressively closer toward the cell center and eventually organize into a monopolar configuration. Similarly, soon after depletion of MAST/Orbit in Drosophila S2 cells by double-stranded RNA interference, cells are unable to form a metaphase plate and instead assemble monopolar spindles with chromosomes localized close to the center of the aster. In these cells, kinetochores either fail to achieve end-on attachment or are associated with short microtubules. Remarkably, when microtubule dynamics is suppressed in MAST-depleted cells, chromosomes localize at the periphery of the monopolar aster associated with the plus ends of well-defined microtubule bundles. Furthermore, in these cells, dynein and ZW10 accumulate at kinetochores and fail to transfer to microtubules. However, loss of MAST/Orbit does not affect the kinetochore localization of D-CLIP-190. Together, these results strongly support the conclusion that MAST/Orbit is required for microtubules to form functional attachments to kinetochores and to maintain spindle bipolarity.
Subject: Mast
Microtubules
Kinetochores
Spindle
Drosophila
URI: http://hdl.handle.net/10216/35060
Catalogue Link: http://dx.doi.org/10.1083/jcb.200201101
Source: The Journal of Cell Biology, vol.157(5), p.749-760
Document Type: Artigo em Revista Científica Internacional
Rights: openAccess
Appears in Collections:I3S - Artigo em Revista Científica Internacional



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.