Please use this identifier to cite or link to this item:
Author(s): Slezakova, K.
Pereira, M.C.
Morais, S.
Title: Ultrafine particles: Levels in ambient air during outdoor sport activities
Issue Date: 2020-03
Abstract: onducting aerobic activity on regular basis is recognised as one of the steps to maintain healthier lifestyle. The positive outcomes though can be outweighed if conducted in polluted atmosphere. Furthermore, the specific inhalation during exercising, which results in bypass of nasal filtration systems and deeper penetration into the respiratory system, might result in higher risks especially to pollutants such as ultrafine particles (UFP), which aerodynamic particle diameter are <100 nm. Thus, this work aims to evaluate UFP levels at sites used for conducting physical sport activities outdoors and to estimate the respective inhalation doses considering various scenarios and different physical activities. Monitoring of UFP was conducted during three weeks (May-June 2015) at four different sites (S1-S4) regularly used to conduct physical exercising. The results showed that UFP highly varied (medians 5.1-20.0 × 103 # cm−3) across the four sites, with the highest UFP obtained when exercising next to trafficked streets whereas S3 and S4 (a garden and city park) exhibited 2-4 times lower UFP. In view of the obtained UFP concentrations, the estimated inhalation doses ranged 1.73 × 108-3.81 × 108 # kg−1 when conducting moderately intense sport activities and 1.93 × 108-5.95 × 108 # kg−1 for highly intense ones. Highly intense activities (i.e. running) led to twice higher UFP exposure; children and youths (5-17 yrs old) experienced 203-267% higher doses. Considering the age- and gender- differences, estimated UFP doses of males were 1.1-2.8 times higher than of females. Finally, UFP inhalation doses estimated for walking (commuting to work and/or schools) were 1.6-7.5 times lower than when conducting sport activities. Thus to protect public health and to promote healthy and physically active lifestyle, strategies to minimize the negative impacts of air pollution should be developed and implemented. (c) 2019 Elsevier Ltd.
Subject: Ciências do ambiente
Environmental science
Related Information: info:eu-repo/grantAgreement/FCT - Fundação para a Ciência e Tecnologia/Programa de Financiamento Plurianual de Unidades de I&D/UID/EQU/00511/2019 /Projeto Estratégico do LEPABE - Laboratório de Engenharia de Processos, Ambiente, Biotecnologia e Energia/LEPABE
Document Type: Artigo em Revista Científica Internacional
Rights: restrictedAccess
Appears in Collections:FEUP - Artigo em Revista Científica Internacional

Files in This Item:
File Description SizeFormat 
  Restricted Access
2.1 MBAdobe PDF    Request a copy from the Author(s)

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.