Please use this identifier to cite or link to this item: https://hdl.handle.net/10216/127087
Author(s): Tiago Alexandre Castro Guimarães
Title: Load forecast on a Micro Grid level through Machine Learning algorithms
Issue Date: 2020-04-02
Abstract: Micro Grids constitute a growing sector of the energetic industry, representing a paradigm shift from the central power generation plans to a more distributed generation. The capacity to work isolated from the main electric grid make the MG resilient system, capable of conducting flexible operations while providing services that make the network more competitive. Additionally, Micro Grids supply clean and efficient low-cost energy, enhance the flexible assets coordination and improve the operation and stability of the of the local electric grid, through the capability of providing a dynamic response to the energetic resources. For that, it is required an intelligent coordination which balances all the available technologies. With this, rises the need to integrate accurate and robust load and production forecasting models into the MG management platform, thus allowing a more precise coordination of the flexible resource according to the emerging demand needs.For these reasons, the HALOFMI methodology was developed, which focus on the creation of a precise 24-hour load forecast model. This methodology includes firstly, a hybrid multi-level approach for the creation and selection of features. Then, these inputs are fed to a Neural Network (Multi-Layer Perceptron) with hyper-parameters tuning. In a second phase, two ways of data operation are compared and assessed, which results in the viability of the network operating with a reduced number of training days without compromising the model's performance. Such process is attained through a sliding window application.Furthermore, the developed methodology is applied in two case studies, both with 15-minute timesteps: the first one is composed by aggregated load profiles of Standard Low Voltage clients, including production and self-consumption units. This case study presents regular and very smooth load profile curves. The second case study concerns a touristic island and represents an irregular load curve with high granularity with abrupt variations.From the attained results, it is evaluated the impact of integrating a recursive intelligent feature selection routine, followed by an assessment on the sliding window application and at last, a comparison on the errors coming from different estimators for the model, through several well-defined performance metrics.
Description: As Micro Redes constituem um sector em crescimento da indústria energética, representando uma mudança de paradigma, desde as remotas centrais de geração até à produção mais localizada e distribuída. A capacidade de isolamento das principais redes elétricas e atuar de forma independente tornam as Micro Redes em sistemas resilientes, capazes de conduzir operações flexíveis em paralelo com a prestação de serviços que tornam a rede mais competitiva. Como tal, as Micro Redes fornecem energia limpa eficiente de baixo custo, aprimoram a coordenação dos ativos e melhoram a operação e estabilidade da rede regional de eletricidade, através da capacidade de resposta dinâmica aos recursos energéticos. Para isso, necessitam de uma coordenação de gestão inteligente que equilibre todas as tecnologias ao seu dispor. Daqui surge a necessidade de recorrer a modelos de previsão de carga e de produção robustos e de confiança, que interligam a alocação dos recursos da rede perante as necessidades emergentes.Sendo assim, foi desenvolvida a metodologia HALOFMI, que tem como principal objetivo a criação de um modelo de previsão de carga para 24 horas. A metodologia desenvolvida é constituída, numa primeira fase, por uma abordagem híbrida de multinível para a criação e escolha de atributos, que alimenta uma rede neuronal (Multi-Layer Perceptron) sujeita a um ajuste de híper-parâmetros. Posto isto, numa segunda fase são testados dois modos de aplicação e gestão de dados para a Micro Rede.A metodologia desenvolvida é aplicada em dois casos de estudo: o primeiro é composto por perfis de carga agregados correspondentes a dados de clientes em Baixa Tensão Normal e de Unidades de Produção e Autoconsumo (UPAC). Este caso de estudo apresenta-se como um perfil de carga elétrica regular e com contornos muito suaves. O segundo caso de estudo diz respeito a uma ilha turística e representa um perfil irregular de carga, com variações bruscas e difíceis de prever e apresenta um desafio maior em termos de previsão a 24-horasA partir dos resultados obtidos, é avaliado o impacto da integração de uma seleção recursiva inteligente de atributos, seguido por uma viabilização do processo de redução da dimensão de dados para o operador da Micro Rede, e por fim uma comparação de estimadores usados no modelo de previsão, atrav�\xA9s de medidores de erros na performance do algoritmo.
Subject: Engenharia electrotécnica, electrónica e informática
Electrical engineering, Electronic engineering, Information engineering
Scientific areas: Ciências da engenharia e tecnologias::Engenharia electrotécnica, electrónica e informática
Engineering and technology::Electrical engineering, Electronic engineering, Information engineering
URI: https://hdl.handle.net/10216/127087
Document Type: Dissertação
Rights: openAccess
Appears in Collections:FEUP - Dissertação

Files in This Item:
File Description SizeFormat 
397006.pdfPrevisão de consumo de eletricidade de uma microrede utilizando técnicas de Machine Learning4.05 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.