Please use this identifier to cite or link to this item: https://hdl.handle.net/10216/121255
Full metadata record
DC FieldValueLanguage
dc.creatorDiogo Henrique Marques Cruz
dc.date.accessioned2019-07-23T23:09:03Z-
dc.date.available2019-07-23T23:09:03Z-
dc.date.issued2019-07-12
dc.date.submitted2019-07-23
dc.identifier.othersigarra:343528
dc.identifier.urihttps://hdl.handle.net/10216/121255-
dc.language.isoeng
dc.rightsrestrictedAccess
dc.subjectEngenharia electrotécnica, electrónica e informática
dc.subjectElectrical engineering, Electronic engineering, Information engineering
dc.titleDeep Reinforcement Learning in Strategic Multi-Agent Games: the case of No-Press Diplomacy
dc.typeDissertação
dc.contributor.uportoFaculdade de Engenharia
dc.subject.fosCiências da engenharia e tecnologias::Engenharia electrotécnica, electrónica e informática
dc.subject.fosEngineering and technology::Electrical engineering, Electronic engineering, Information engineering
thesis.degree.disciplineMestrado Integrado em Engenharia Informática e Computação
thesis.degree.grantorFaculdade de Engenharia
thesis.degree.grantorUniversidade do Porto
thesis.degree.level1
Appears in Collections:FEUP - Dissertação

Files in This Item:
File Description SizeFormat 
343528.2.pdf
  Restricted Access
Reinforcement Learning in Multi-Agent Games: OpenAI Gym Diplomacy Environment461.83 kBAdobe PDF    Request a copy from the Author(s)
343528.1.pdfDeep Reinforcement Learning in Strategic Multi-Agent Games: the case of No-Press Diplomacy6.99 MBAdobe PDFThumbnail
View/Open
343528.tex
  Restricted Access
tex file of Abstract3.88 kBTeX    Request a copy from the Author(s)


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.