Please use this identifier to cite or link to this item:
Author(s): Fernandes T.
Fernandes I.
Andrade C.A.P.
Cordeiro N.
Title: Changes in fatty acid biosynthesis in marine microalgae as a response to medium nutrient availability
Publisher: Elsevier
Issue Date: 2016
Abstract: To maximize and enhance the fatty acid (FA) profiles of microalgae, it is crucial to understand the metabolic pathways that lead to high levels of the desired product. Nannochloropsis gaditana, Rhodomonas marina, and Isochrysis sp. were cultivated in media with various nutrient concentrations, and the biomass was analyzed for protein and fatty acid contents. The long chain polyunsaturated fatty acid (LC-PUFA) and protein contents were maximized in media with high nutrient concentrations. Under these conditions, the reduction in the (SFA + MUFA)/PUFA ratio (by as much as 83%) indicated that R. marina and N. gaditana shifted preference towards PUFA synthesis. The ∑ω3/∑ω6 ratio indicated that R. marina preferentially synthesized ω3 FA towards high nutrient concentrations (depicted by an eightfold increase) in contrast to Isochrysis sp. (which yielded a 35% reduction). In addition, the limitations of LC-PUFA biosynthesis at the level of its precursors (e.g. C18:2ω6, C18:3ω3, C18:4ω3) and further conversion to LC-PUFA as nutrients were increased, suggesting that external variations induced changes in the sets of enzymes that maintain the desaturation and elongation pathways of FA. The present study provides novel insights into the regulation of LC-PUFA biosynthesis and facilitates the modeling of microalgal FA patterns depending on the field of application. © 2016 Elsevier
Source: Algal Research, vol. 18, p. 314-320
Document Type: Artigo em Revista Científica Internacional
Rights: restrictedAccess
Appears in Collections:CIIMAR - Artigo em Revista Científica Internacional

Files in This Item:
File Description SizeFormat 
Fernandes T_2_2016.pdf
  Restricted Access
597.92 kBAdobe PDF    Request a copy

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.