Please use this identifier to cite or link to this item: https://hdl.handle.net/10216/117820
Full metadata record
DC FieldValueLanguage
dc.creatorArmando Araújo
dc.creatorAgostinho Rocha
dc.creatorAdriano Carvalho
dc.creatorJoão Sepúlveda
dc.date.accessioned2020-01-11T00:07:06Z-
dc.date.available2020-01-11T00:07:06Z-
dc.date.issued2018-10-05
dc.identifier.issn1996-1073
dc.identifier.othersigarra:304263
dc.identifier.urihttps://hdl.handle.net/10216/117820-
dc.description.abstractEfficient use of energy is currently a very important issue. As conventional energy resources are limited, improving energy efficiency is, nowadays, present in any government policy. Railway systems consume a huge amount of energy, during normal operation, some routes working near maximum energy capacity. Therefore, maximizing energy efficiency in railway systems has, recently, received attention from railway operators, leading to research for new solutions that are able to reduce energy consumption without timetable constraints. In line with these goals, this paper proposes a Simulated Annealing optimization algorithm that minimizes train traction energy, constrained to existing timetable. For computational effort minimization, re-annealing is not used, the maximum number of iterations is one hundred, and generation of cruising and braking velocities is carefully made. A Matlab implementation of the Simulated Annealing optimization algorithm determines the best solution for the optimal speed profile between stations. It uses a dynamic model of the train for energy consumption calculations. Searching for optimal speed profile, as well as scheduling constraints, also uses line shape and velocity limits. As results are obtained in seconds, this new algorithm can be used as a real-time driver advisory system for energy saving and railway capacity increase. For now, a standalone version, with line data previously loaded, was developed. Comparison between algorithm results and real data, acquired in a railway line, proves its success. An implementation of the developed work as a connected driver advisory system, enabling scheduling and speed constraint updates in real time, is currently under development.
dc.language.isoeng
dc.rightsopenAccess
dc.titleA New Approach for Real Time Train Energy Efficiency Optimization
dc.typeArtigo em Revista Científica Internacional
dc.contributor.uportoFaculdade de Engenharia
dc.identifier.doi10.3390/en11102660
Appears in Collections:FEUP - Artigo em Revista Científica Internacional

Files in This Item:
File Description SizeFormat 
304263.pdf1.05 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.