Please use this identifier to cite or link to this item: https://hdl.handle.net/10216/117010
Author(s): Rui S. Ribeiro
Raquel O. Rodrigues
Adrián M.T. Silva
Pedro B. Tavares
Ana M.C. Carvalho
José L. Figueiredo
Joaquim L. Faria
Helder T. Gomes
Title: Hybrid magnetic graphitic nanocomposites towards catalytic wet peroxide oxidation of the liquid effluent from a mechanical biological treatment plant for municipal solid waste
Issue Date: 2017
Abstract: Magnetite, nickel and cobalt ferrites were prepared and encapsulated within graphitic shells, resulting in three hybrid magnetic graphitic nanocomposites. Screening experiments with a 4-nitrophenol aqueous model system (5 g L-1) allowed to select the best performing catalyst, which was object of additional studies with the liquid effluent resulting from a mechanical biological treatment plant for municipal solid waste. Due to its high content in bicarbonates (14350 mg L-1) and chlorides (2833 mg L-1), controlling the initial pH was a crucial step to maximize the performance of the catalytic wet peroxide oxidation (CWPO) treatment. The catalyst load was 0.5 g L-1, a very low dosage when compared to the high chemical oxygen demand (COD) of the effluent - 9206 mg L-1. At the optimum operating pH (i.e., pH = 6), ca. 95% of the aromaticity was converted and ca. 55% of COD and total organic carbon (TOC) of the liquid effluent was removed. The biodegradability of the liquid effluent was enhanced during the treatment by CWPO, as reflected by the 2-fold increase of the five-day biochemical oxygen demand (BOD5) to COD ratio (BOD5/COD), namely from 0.21 (indicating non-biodegradability) to 0.42 (suggesting biodegradability of the treated wastewater). In addition, the treated water revealed no toxicity against selected bacteria. Lastly, a magnetic separation system was designed for in-situ catalyst recovery after the CWPO reaction stage. The high catalyst stability was demonstrated through five reaction/separation sequential experiments in the same vessel with consecutive catalyst reuse.
URI: https://hdl.handle.net/10216/117010
Document Type: Artigo em Revista Científica Internacional
Rights: restrictedAccess
Appears in Collections:FEUP - Artigo em Revista Científica Internacional

Files in This Item:
File Description SizeFormat 
299023.1.pdfPreprint1.32 MBAdobe PDFThumbnail
View/Open
299023.pdf
  Restricted Access
2.16 MBAdobe PDF    Request a copy from the Author(s)


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.