Please use this identifier to cite or link to this item: https://hdl.handle.net/10216/114879
Author(s): Leite-Martins, LR
Mahú, MI
Costa, AL
Mendes, A
Lopes, E
Mendonça, DM
Niza-Ribeiro, JJ
de Matos, AJ
da Costa, PM
Title: Prevalence of antimicrobial resistance in enteric Escherichia coli from domestic pets and assessment of associated risk markers using a generalized linear mixed model
Issue Date: 2014
Abstract: Antimicrobial resistance (AMR) is a growing global public health problem, which is caused by the use of antimicrobials in both human and animal medical practice. The objectives of the present cross-sectional study were as follows: (1) to determine the prevalence of resistance in Escherichia coli isolated from the feces of pets from the Porto region of Portugal against 19 antimicrobial agents and (2) to assess the individual, clinical and environmental characteristics associated with each pet as risk markers for the AMR of the E. coli isolates. From September 2009 to May 2012, rectal swabs were collected from pets selected using a systematic random procedure from the ordinary population of animals attending the Veterinary Hospital of Porto University. A total of 78 dogs and 22 cats were sampled with the objective of isolating E. coli. The animals’ owners, who allowed the collection of fecal samples from their pets, answered a questionnaire to collect information about the markers that could influence the AMR of the enteric E. coli. Chromocult tryptone bile X-glucuronide agar was used for E. coli isolation, and the disk diffusion method was used to determine the antimicrobial susceptibility. The data were analyzed using a multilevel, univariable and multivariable generalized linear mixed model (GLMM). Several (49.7%) of the 396 isolates obtained in this study were multidrug-resistant. The E. coli isolates exhibited resistance to the antimicrobial agent's ampicillin (51.3%), cephalothin (46.7%), tetracycline (45.2%) and streptomycin (43.4%). Previous quinolone treatment was the main risk marker for the presence of AMR for 12 (ampicillin, cephalothin, ceftazidime, cefotaxime, nalidixic acid, ciprofloxacin, gentamicin, tetracycline, streptomycin, chloramphenicol, trimethoprim–sulfamethoxazole and aztreonam) of the 15 antimicrobials assessed. Coprophagic habits were also positively associated with an increased risk of AMR for six drugs, ampicillin, amoxicillin–clavulanic acid, cephamycin, ciprofloxacin, streptomycin, and trimethoprim–sulfamethoxazole. In summary, pets with a record of one or more previous quinolone treatments and exhibiting coprophagic habits were at an increased risk of harboring multidrug-resistant E. coli strains in their feces compared to pets without these characteristics. AMR is a serious global problem, and assessing the risk markers for the presence of drug-resistant bacteria in pets, a very close source of resistance determinants to humans, is essential for the implementation of safe handling procedures for companion animals and for the prudent selection of antimicrobial compounds in veterinary practice.
Subject: Antimicrobial resistance
Escherichia coli
Domestic pets
URI: http://hdl.handle.net/10216/114879
Source: Prev Vet Med, vol. 117(1), p. 28-39
Document Type: Artigo em Revista Científica Internacional
Rights: openAccess
Appears in Collections:ISPUP - Artigo em Revista Científica Internacional

Files in This Item:
File Description SizeFormat 
LeiteMartinsLRMahuMI2014.pdf649.91 kBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.