Please use this identifier to cite or link to this item: https://hdl.handle.net/10216/109203
Author(s): azevedo, j.
Schreier, M.
Tilley, S. D.
Stefik, M.
Graetzel, M.
Title: Ruthenium Oxide Hydrogen Evolution Catalysis on Composite Cuprous Oxide Water-Splitting Photocathodes
Issue Date: 2014
Abstract: Photocathodes based on cuprous oxide (Cu2O) are promising materials for large scale and widespread solar fuel generation due to the abundance of copper, suitable bandgap, and favorable band alignments for reducing water and carbon dioxide. A protective overlayer is required to stabilize the Cu2O in aqueous media under illumination, and the interface between this overlayer and the catalyst nanoparticles was previously identified as a key source of instability. Here, the properties of the protective titanium dioxide overlayer ofcomposite cuprous oxide photocathodes are further investigated, as well as an oxide-based hydrogen evolution catalyst, ruthenium oxide (RuO2). The RuO2-catalyzed photoelectrodes exhibit much improved stability versus platinum nanoparticles, with 94% stability after 8 h of light-chopping chronoamperometry. Faradaic efficiencies of approximate to 100% are obtained as determined by measurement of the evolved hydrogen gas. The sustained photocurrents of close to 5 mA cm(-2) obtained with this electrode during the chronoamperometry measurement (at 0 V vs. the reversible hydrogen electrode, pH 5, and simulated 1 sun illumination) would correspond to greater than 6% solar-to-hydrogen conversion efficiency in a tandem photoelectrochemical cell, where the bias is provided by a photovoltaic device such as a dye-sensitized solar cell.
URI: https://repositorio-aberto.up.pt/handle/10216/109203
Document Type: Artigo em Revista Científica Internacional
Rights: restrictedAccess
Appears in Collections:FEUP - Artigo em Revista Científica Internacional

Files in This Item:
File Description SizeFormat 
185749.pdf
  Restricted Access
PDF final2.68 MBAdobe PDF    Request a copy from the Author(s)


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.