Please use this identifier to cite or link to this item:
Author(s): Rui Ferreira
Daniela Falcão
V. B. Oliveira
A.M.F.R. Pinto
Title: Numerical simulations of two-phase flow in proton exchange membrane fuel cells using the volume of fluid method - A review
Issue Date: 2015
Abstract: Water management in proton exchange membrane (PEM) fuel cells, i.e., balance between membrane drying and liquid water flooding, is a major aspect in the operation of these devices. Flooding results in gas liquid two-phase flow that causes high pressure drops, flow maldistribution and poor cell performances. Limitations related to the experimental techniques dedicated to investigate the dynamics of liquid water in a PEM fuel cell have motivated researchers to conduct computational modeling and simulation to better understand the two-phase flow and its implications. Among different mathematical models employed, the volume of fluid (VOF) method is the most popular approach. This paper reviews the VOF numerical simulations of two-phase flow in PEM fuel cells. The focus of the study, numerical details, and main outcomes of each research work are discussed during this review. Moreover, recommendations for future simulations as well as challenges of applying the VOF method to PEM fuel cells are presented.
Subject: Ciências da engenharia e tecnologias
Engineering and technology
Document Type: Artigo em Revista Científica Internacional
Rights: restrictedAccess
Appears in Collections:FEUP - Artigo em Revista Científica Internacional

Files in This Item:
File Description SizeFormat 
180586.pdfArtigo Original Publicado832.6 kBAdobe PDF    Request a copy

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.