Please use this identifier to cite or link to this item: https://hdl.handle.net/10216/105798
Author(s): Francisca C. Moreira
Sergi Garcia-Segura
Rui A.R. Boaventura
Enric Brillas
Vítor J. P. Vilar
Title: Degradation of the antibiotic trimethoprim by electrochemical advanced oxidation processes using a carbon-PTFE air-diffusion cathode and a boron-doped diamond or platinum anode
Issue Date: 2014
Abstract: The degradation of 20.0 mg L-1 of trimethoprim (TMP), an antibiotic commonly detected in wastewaters, in an aqueous solution with 7.0 g L-1 Na2SO4 was accomplished by electrochemical advanced oxidation processes (EA0Ps) such as anodic oxidation with electrogenerated H2O2 (AO-H2O2), electro-Fenton (EF), photoelectro-Fenton (PEF) and solar photoelectro-Fenton (SPEF), as well as by the classical Fenton and photo-Fenton processes. All experiments were performed in a novel 2.2 L lab-scale flow plant equipped with compound parabolic collectors (CPCs) and an electrochemical filter-press cell with a BDD or Pt anode and a carbon-PTFE air-diffusion cathode to electrogenerate H2O2. The effect of initial Fe2+ concentration, current density and pH on the PEF method with the BOO anode (PEF-BDD) was firstly assessed by means of TMP and dissolved organic carbon (DOC) decays, aiming to establish a treatment process using minimal iron concentration, adequate current density/H2O2 production and maximal pH. This treatment was efficiently performed using a low Fe2+ dose of 2.0 mg L-1, a low current density of 5 mA cm(-2) and pH of 3.5 without iron precipitation. The relative oxidation ability of EA0Ps using the BDD/air-diffusion cell increased in the order: AO-H2O2 < EF< PEF < SPEF. The EF-BDD and PEF-BDD processes were more effective than the comparable Fenton and photo-Fenton ones. The PEF-BDD process exhibited slightly faster TMP degradation than the PEF-Pt one, whereas in SPEF the influence of the anode was almost negligible. After ca. 37 kJ L-1 UV energy, 77 and 73% mineralization with 30 and 26% current efficiency and 1.2 and 0.9 kWh m(-3) energy cost were obtained, respectively. It was found a slow and partial TMP mineralization mainly linked to the formation of a high content of hardly oxidizable N-derivatives, containing the major part of N. Up to 18 aromatic products and 19 hydroxylated derivatives were detected by LC-MS during TMP degradation by PEF-Pt. An additional SPEF-Pt experiment using a real wastewater matrix spiked with TMP attained slower TMP and DOC decays.
Subject: Tecnologia ambiental, Engenharia do ambiente
Environmental technology, Environmental engineering
Scientific areas: Ciências da engenharia e tecnologias::Engenharia do ambiente
Engineering and technology::Environmental engineering
URI: https://hdl.handle.net/10216/105798
Related Information: info:eu-repo/grantAgreement/FCT - Fundação para a Ciência e Tecnologia/Projetos Estratégicos/PEst-C/EQB/LA0020/2013/PROJECTO ESTRATÉGICO - LA 20 - 2013-2014/LA 20
Document Type: Artigo em Revista Científica Internacional
Rights: restrictedAccess
Appears in Collections:FEUP - Artigo em Revista Científica Internacional

Files in This Item:
File Description SizeFormat 
93936.1.docx
  Restricted Access
Supplementary Material280.1 kBMicrosoft Word XML    Request a copy from the Author(s)
93936.pdf
  Restricted Access
Article1.59 MBAdobe PDF    Request a copy from the Author(s)


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.