Please use this identifier to cite or link to this item: http://hdl.handle.net/10216/104037
Author(s): Joana Moreira
Rita Fulgêncio
Patrícia Alves
Idalina Machado
Ingmar Bialuch
Luís Melo
Manuel Simões
Filipe Mergulhão
Title: Evaluation of SICAN performance for biofouling mitigation in the food industry
Issue Date: 2016
Abstract: Biological fouling in food industry leads to an increase in maintenance costs, decreases operational efficiencies and promotes food contamination leading to economic losses and the dissemination of foodborne pathogens. In order to maintain production efficiency and hygienic standards, cleaning in place (CIP) procedures are required. However, the existence of critical zones shielded from the main flow carrying the CIP disinfectants requires new strategies for reducing biofilm buildup and/or easy to clean surfaces. In this work, a Diamond-Like Carbon (DLC) coating modified by incorporation of silicon (a-C:H:Si or SICAN), was evaluated regarding bacterial adhesion, biofilm formation and cleanability. Assays included the natural flora present in industrial water (from a salad washing line) and Escherichia coli, one of the most persistent foodborne microorganisms. Results show that bacterial adhesion and biofilm formation on SICAN and stainless steel were similar, thus surface modification was not able to prevent biological fouling development. However, it was verified that after performing a cleaning protocol with chlorine, reduction of bacterial counts was much higher in SICAN (about 3.3 Log reduction) when compared to stainless steel (1.7 Log reduction). Although full biofilm recovery was observed on both surfaces 18 h after treatment, an operational window was identified for which processes with cleaning intervals of about 6 h could potentially use SICAN surfaces on critical areas (such as dead zones, crevices, corners, joints) and therefore operate at a much higher hygienic level than the one attained with stainless steel.
Subject: Ciências Tecnológicas, Ciências da engenharia e tecnologias
Technological sciences, Engineering and technology
URI: http://hdl.handle.net/10216/104037
Related Information: info:eu-repo/grantAgreement/Autoriadade de Gestão do Programa Operacional Regional do Norte/Programas Integrados de IC&DT/NORTE-07-0124-FEDER-000025/(Bio) Chemical Engineering: Multi-Scale Approaches for Sustainable Environment and Health/LEPAE/CEFT - RL2
info:eu-repo/grantAgreement/FCT - Fundação para a Ciência e Tecnologia/Projetos Estratégicos/UID/EQU/00511/2013 - POCI-01-0145-FEDER-006939/Laboratório de Engenharia de Processos, Ambiente, Biotecnologia e Energia/LEPABE
Document Type: Artigo em Revista Científica Internacional
Rights: restrictedAccess
Appears in Collections:FEUP - Artigo em Revista Científica Internacional

Files in This Item:
File Description SizeFormat 
105839.pdfArtigo original publicado540.8 kBAdobe PDF    Request a copy
105839.1.pdfPost-Print version919.41 kBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.