Please use this identifier to cite or link to this item: https://hdl.handle.net/10216/99576
Author(s): Patrick S. Bárcia
José A. C. Silva
Alírio E. Rodrigues
Title: Separation of branched hexane isomers on zeolite BETA
Issue Date: 2007
Abstract: An experimental study of the single, binary, ternary and quaternary fixed bed adsorption of hexane isomers onto zeolite BETA was performed covering the temperature range between 423 K and 523 K and partial pressures up to 0.3 bar. Adsorption equilibrium isotherms were collected from breakthrough experiments. Based on an analysis of sorption events at the molecular level, a Tri-Site Langmuir model (TSL) was developed to interpret the equilibrium data with good accuracy. At the partial pressures studied, it was found that the degree of branching was related to the affinity; the sorption hierarchy was most favourable towards the linear isomer and least favourable towards the di-branched ones. A mathematical model based on a linear driving force (LDF) was developed and used to test the experimental data. It was found that the model predicted the behaviour of the fixed bed experiments with good accuracy. Zeolite BETA demonstrated significant selectivity between branched C-6 isomers (especially at low coverage), thereby suggesting a means of solving this difficult separation problem.
Description: An experimental study of the single, binary, ternary and quaternary fixed bed adsorption of hexane isomers onto zeolite BETA was performed covering the temperature range between 423 K and 523 K and partial pressures up to 0.3 bar. Adsorption equilibrium isotherms were collected from breakthrough experiments. Based on an analysis of sorption events at the molecular level, a Tri-Site Langmuir model (TSL) was developed to interpret the equilibrium data with good accuracy. At the partial pressures studied, it was found that the degree of branching was related to the affinity; the sorption hierarchy was most favourable towards the linear isomer and least favourable towards the di-branched ones. A mathematical model based on a linear driving force (LDF) was developed and used to test the experimental data. It was found that the model predicted the behaviour of the fixed bed experiments with good accuracy. Zeolite BETA demonstrated significant selectivity between branched C6 isomers (especially at low coverage), thereby suggesting a means of solving this difficult separation problem.
Subject: Engenharia química, Engenharia química
Chemical engineering, Chemical engineering
Scientific areas: Ciências da engenharia e tecnologias::Engenharia química
Engineering and technology::Chemical engineering
URI: https://hdl.handle.net/10216/99576
Document Type: Artigo em Revista Científica Internacional
Rights: restrictedAccess
Appears in Collections:FEUP - Artigo em Revista Científica Internacional

Files in This Item:
File Description SizeFormat 
56656.pdf
  Restricted Access
943.69 kBAdobe PDF    Request a copy from the Author(s)


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.