Utilize este identificador para referenciar este registo: https://hdl.handle.net/10216/92963
Autor(es): Raúl Ramos-Pollán
Miguel Ángel Guevara-López
Eugénio Oliveira
Título: A Software Framework for Building Biomedical Machine Learning Classifiers through Grid Computing Resources
Data de publicação: 2012
Resumo: This paper describes the BiomedTK software framework, created to perform massive explorations of machine learning classifiers configurations for biomedical data analysis over distributed Grid computing resources. BiomedTK integrates ROC analysis throughout the complete classifier construction process and enables explorations of large parameter sweeps for training third party classifiers such as artificial neural networks and support vector machines, offering the capability to harness the vast amount of computing power serviced by Grid infrastructures. In addition, it includes classifiers modified by the authors for ROC optimization and functionality to build ensemble classifiers and manipulate datasets (import/export, extract and transform data, etc.). BiomedTK was experimentally validated by training thousands of classifier configurations for representative biomedical UCI datasets reaching in little time classification levels comparable to those reported in existing literature. The comprehensive method herewith presented represents an improvement to biomedical data analysis in both methodology and potential reach of machine learning based experimentation.
Assunto: Informática, Ciências da saúde
Informatics, Health sciences
Áreas do conhecimento: Ciências médicas e da saúde::Ciências da saúde
Medical and Health sciences::Health sciences
URI: https://repositorio-aberto.up.pt/handle/10216/92963
Tipo de Documento: Artigo em Revista Científica Internacional
Condições de Acesso: restrictedAccess
Aparece nas coleções:FEUP - Artigo em Revista Científica Internacional

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
58502.pdf
  Restricted Access
Journal of Medical Systems (on-line)1.44 MBAdobe PDF    Request a copy from the Author(s)


Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.