Please use this identifier to cite or link to this item: https://hdl.handle.net/10216/103236
Author(s): Ana Rita Lopes
Anthony S. Danko
Célia M. Manaia
Olga C. Nunes
Title: Molinate biodegradation in soils: natural attenuation versus bioaugmentation
Issue Date: 2013
Abstract: The aims of the present study were to assess the potential of natural attenuation or bioaugmentation to reduce soil molinate contamination in paddy field soils and the impact of these bioremediation strategies on the composition of soil indigenous microbiota. A molinate mineralizing culture (mixed culture DC) was used as inoculum in the bioaugmentation assays. Significantly higher removal of molinate was observed in bioaugmentation than in natural attenuation microcosms (63 and 39 %, respectively) after 42 days of incubation at 22 A degrees C. In the bioaugmentation assays, the impact of Gulosibacter molinativorax ON4(T) on molinate depletion was observed since the gene encoding the enzyme responsible for the initial molinate breakdown (harboured by that actinobacterium) was only detected in inoculated microcosms. Nevertheless, the exogenous mixed culture DC did not overgrow as the heterotrophic counts of the bioaugmentation microcosms were not significantly different from those of natural attenuation and controls. Moreover, the actinobacterial clone libraries generated from the bioaugmentation microcosms did not include any 16S rRNA gene sequences with significant similarity to that of G. molinativorax ON4(T). The multivariate analysis of the 16S rRNA DGGE patterns of the soil microcosm suggested that the activity of mixed culture DC did not affect the soil bacterial community structure since the DGGE patterns of the bioaugmentation microcosms clustered with those of natural attenuation and controls. Although both bioremediation approaches removed molinate without indigenous microbiota perturbation, the results suggested that bioaugmentation with mixed culture DC was more effective to treat soils contaminated with molinate.
Subject: Ciências Naturais, Ciências biológicas
Natural sciences, Biological sciences
Scientific areas: Ciências exactas e naturais::Ciências biológicas
Natural sciences::Biological sciences
URI: https://hdl.handle.net/10216/103236
Related Information: info:eu-repo/grantAgreement/FCT - Fundação para a Ciência e a Tecnologia/Projectos de I&DT em Todos os Domínios Científicos/POCI/AMB/59836/2004/Biorremediação de solos e águas contaminadas com pesticidas/POCI/AMB/59836/2004
info:eu-repo/grantAgreement/FCT - Fundação para a Ciência e a Tecnologia/Projectos de I&DT em Todos os Domínios Científicos/PTDC/AMB/66653/2006/Caracterização de uma nova via metabólica: mineralização do herbicida molinato/PTDC/AMB/66653/2006
info:eu-repo/grantAgreement/FCT - Fundação para a Ciência e a Tecnologia/Projetos Estratégicos/PEst-C/EQB/UI0511/2013/PROJECTO ESTRATÉGICO - UI 511 - 2013-2014/UI0511
Document Type: Artigo em Revista Científica Internacional
Rights: restrictedAccess
Appears in Collections:FEUP - Artigo em Revista Científica Internacional

Files in This Item:
File Description SizeFormat 
64651.pdf
  Restricted Access
Artigo original publicado702.52 kBAdobe PDF    Request a copy from the Author(s)


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.