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Abstract 

Nonalcoholic steatohepatitis (NASH) is a liver pathology associated with steatosis, 

inflammation, and impaired liver function. NASH arises from nonalcoholic fatty liver 

disease (NAFLD) possibly as a consequence of oxidative stress caused by over-

nutrition. The human HFE protein plays a crucial role in systemic iron homeostasis and 

individuals homozygous for certain Hfe gene mutations develop Hereditary 

Hemochromatosis (HH). As steatosis is commonly observed in HH patients, and current 

evidence suggests a link between iron and NAFLD, we investigated the potential 

contribution of Hfe mutations to the development of hepatic steatosis, inflammation and 

fibrosis in young Hfe-/- mice (at 8 weeks of age) on a C57BL/6 background fed high-fat 

(HFD) or normal diet (ND) for 4, 8 or 12 weeks. As iron deposits have repeatedly been 

observed both in parenchymal and reticuloendothelial liver cells of NAFLD patients, we 

additionally challenged wt and Hfe-/- mice of the same age with 8 weeks of HFD or ND 

and bimonthly intraperitoneal injections of iron dextran complex, for 8 weeks. Mice were 

assessed for liver injury, hepatic iron deposition and inflammation and pro-fibrogenic 

parameters. Loss of Hfe alone and loss of Hfe coupled with iron administration in HFD-

fed mice were not sufficient to trigger the development of NASH. Another potential 

aggravating factor in NAFLD is the insufficient production of antioxidant defense 

mechanisms in response to hepatic steatosis. We tested the contribution of NRF2, a 

central regulator of antioxidative response elements-mediated gene expression, in the 

progression of NAFLD/NASH. Moreover, as the control of hepatic lipidogenesis by NRF2 

appears to be age-dependent, we challenged young (8 weeks old) and middle-aged (52 

weeks old) wt and Nrf2-/- mice with standard diet (SD) or HFD for 12 weeks to evaluate 

the development of hepatic steatosis, inflammation and fibrosis. We determined that 

aging promoted obesity, glucose intolerance, steatosis and steatohepatitis upon HFD 

feeding. Middle-aged wt mice and Nrf2-/- mice fed HFD displayed signs of hepatocyte 

ballooning and injury, as well as increased inflammatory and fibrotic markers. 

Importantly, we demonstrate that Nrf2 deletion leads to rapid progression of nutritional 

steatohepatitis in both young and middle-aged mice on HFD. Since iron overload-related 

disorders have a late onset in HFE-HH patients, we also investigated the development 

of these features in middle aged Hfe-/- mice. Whilst young Hfe-/- mice did not develop 

NASH in response to HFD, middle-aged animals the same genotype developed liver 

tumors.  

 

Keywords: Hfe, Iron, NAFLD, NASH, Nrf2, Western-type diet, aging. 
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Resumo 

A esteatohepatite não-alcoólica (NASH) é uma patologia do fígado associada a 

esteatose, inflamação e função hepática comprometida. A NASH surge da doença não-

alcoólica do fígado gordo (NAFLD) como consequência de stress oxidativo provocado 

por sobrenutrição. A proteína humana HFE desempenha um papel crucial na 

homeostasia do ferro sistémico e indivíduos homozigóticos para certas mutações 

genéticas no gene Hfe desenvolvem Hemocromatose Hereditária (HH). Uma vez que a 

esteatose é comum em doentes de HH e que evidências recentes sugerem uma ligação 

entre o ferro e a NAFLD, investigámos a potencial contribuição de mutações no gene 

Hfe para o desenvolvimento de esteatose, inflamação e fibrose em murganhos Hfe-/- 

com fundo genético C57BL/6 às 8 semanas de idade, quando alimentados com um dieta 

rica em gordura e sacarose (HFD) ou uma dieta normal (ND) durante 4, 8 e 12 semanas. 

Como têm sido documentados depósitos de ferro parenquimatosos e mesenquimatosos 

em doentes de NAFLD, administrámos ferro dextrano, em conjunto com 8 semanas de 

HFD, a murganhos wt e Hfe-/- com a mesma idade. Foram avaliados parâmetros como 

lesão e deposição de ferro hepáticos e inflamação e fibrose. A ausência do gene Hfe, 

assim como a ausência de Hfe em conjunto com a administração de ferro a murganhos 

alimentados com HFD não foram suficientes para despoletar NASH. Outro fator 

potencialmente agravante da NAFLD é a insuficiência de mecanismos antioxidantes de 

resposta à esteatose. Assim, testámos a contribuição do fator de transcrição NRF2 no 

desenvolvimento de NASH. Adicionalmente, como a regulação da lipidogénese hepática 

pelo NRF2 aparenta ser dependente da idade, alimentámos murganhos wt e Nrf2-/- 

novos (8 semanas de idade) e de meia-idade (52 semanas) com HFD e dieta standard 

(SD) durante 12 semanas para avaliar o desenvolvimentos de NASH. Apurámos que o 

envelhecimento em murganhos wt alimentados com HFD levou ao desenvolvimento de 

obesidade, intolerância à glicose, esteatose e NASH. Adicionalmente, em murganhos 

wt e Nrf2-/-de meia-idade foram observados hepatócitos em balão, lesão hepática, 

inflamação e fibrose. Demonstrámos também que a falta de Nrf2 propicia a NASH em 

murganhos novos e de meia-idade. Uma vez que a sobrecarga de ferro hepático leva a 

uma manifestação tardia da sintomatologia em doentes HH, investigámos ainda o 

desenvolvimento de NASH em murganhos Hfe-/- de meia-idade alimentados com HFD 

ou SD. Apesar de os murganhos novos não terem desenvolvido NASH, a HFD 

promoveu o desenvolvimento de tumores hepáticos em animais de meia-idade.  

 

Palavras-chave: Dieta tipo ocidental, Ferro, Hfe, NAFLD, NASH, Nrf2, envelhecimento.
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Introduction 

 

1. Anatomy and physiology of the liver 

The liver, a versatile organ and the largest gland in the human body, plays an important 

role in a variety of critical functions, including the detoxification of the systemic and portal 

blood, and the production and secretion of blood and bile components. The liver is also 

involved in protein, steroid, and fat metabolism, as well as vitamin, iron, and sugar 

storage. The classical structural unit of the liver is the hepatic lobule, which encompasses 

the portal triads consisting of the hepatic artery, bile duct, and portal vein. The liver 

receives its supply of hydrophilic nutrients through the portal vein and delivers 

metabolized products to the other organs through the central vein. The hepatic artery, 

located in the vicinity of the portal vein, supplies the liver with blood enriched in oxygen 

(Katz et al., 1977). Parenchymal cells or hepatocytes that radiate from the central vein 

to the perimeter of the lobule define the basic functional unit of the liver, known as the 

acinus. The liver acinus is demarcated into three discrete zones, based upon oxygen 

supply: zone 1 is the periportal region that encircles the portal tracts where the 

oxygenated blood from hepatic arteries enters; zone 2 is the midlobular region; and zone 

3 is the pericentral region around the central veins where oxygenation is poor (Figure 1) 

(Jungermann and Kietzmann, 1996; LeCluyse et al., 2012; Rappaport, 1977). 

 
Figure 1. Structural and functional zonation of the liver. (A) Discrete zones of the liver between the portal vein (PV) and 

central vein (CV) illustrating the differences in cell size, phenotype and gradients in oxygen tension and metabolism. (B) 

Histological zones of the human liver. Adapted from (LeCluyse et al., 2012). 

 

2. Hepatic lipid metabolism 

The liver plays a key role in the processing of lipids, which includes the synthesis and 

degradation of fatty acids (FA), and the regulation of blood glucose and cholesterol 

levels. Hepatocytes convert the excess dietary glucose into FA, in an insulin-dependent 

process involving acetyl-CoA precursors entitled lipogenesis. FA can be stored as 

triglycerides (TG) in lipid droplets or used in the generation of phospholipids (Huang J, 
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2011; Serviddio et al., 2013). Under normal conditions, TG, along with cholesterol and 

phospholipids, are assembled into very low density lipoprotein (VLDL) particles that can 

be secreted into the bloodstream for storage in other tissues in the form of lipid droplets, 

thus preventing TG accumulation in hepatocytes (Huang J, 2011; Stein and Shapiro, 

1960). On the other hand, when the available glucose cannot meet energy demands, 

hepatocytes break down TG and cholesterol stored in lipid droplets through a lysosomal 

degradative pathway designated lipophagy. The breakdown of TG supplies free fatty 

acids (FFA) required to sustain rates of mitochondrial β-oxidation for the generation of 

ATP (Liu and Czaja, 2013). FA degradation also occurs in peroxisomes (β-oxidation) and 

in the endoplasmic reticulum (ER) (ω-oxidation).  

When FA input exceeds the capacity of β-oxidation, fat begins to accumulate in 

hepatocytes (hepatosteatosis), which is a hallmark of both alcoholic (AFLD) and non-

alcoholic fatty liver disease (NAFLD) (Zambo et al., 2013). Hepatic steatosis increases 

FFA β-oxidation, resulting in increased rates of electron leakage from the mitochondrial 

respiratory chain (Seifert et al., 2010), higher free radical formation, and increased 

hydrogen peroxide production in the peroxisomes. 

 

3. NAFLD: prevalence and etiology 

The increase in obesity and diabetes has become an alarming public health trend in the 

industrialized world (Boudreau et al., 2009; Ford et al., 2002). Obesity is associated with 

altered physiological functions in the organism and the development of an array of other 

health risk factors that increase the propensity of cardiovascular disease or type 2 

diabetes. These risk factors include abdominal obesity, atherogenic dyslipidemia, 

hypertension and insulin resistance and have been termed the metabolic syndrome 

(Alberti et al., 2006). NAFLD is the hepatic manifestation of the metabolic syndrome and 

is fast becoming one of the most common causes of chronic liver disease worldwide 

(Byrne and Targher, 2015). In western countries, NAFLD is estimated to affect 20-30% 

of the general population and up to 90% of the severely obese population (Fabbrini and 

Magkos, 2015). It starts with the relatively benign accumulation of TG in hepatocytes 

(steatosis) and hepatic lipid accumulation is a risk factor for disease development. In 30-

40% of NAFLD patients, steatosis can progress to the more severe non-alcoholic 

steatohepatitis (NASH), which is associated with inflammation, fibrosis, impaired liver 

function (cirrhosis) and hepatocellular carcinoma (HCC) (Dietrich and Hellerbrand, 

2014). Development of hepatic fibrosis occurs in 40-50% of people with NASH (Ekstedt 

et al., 2006).  
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The pathological mechanisms leading to the transition from lipid deposition to necro-

inflammation and cytotoxicity remain unclear, but a “two-hit” theory is widely accepted 

(Day and James, 1998). The first hit relates to ‘simple’ hepatocellular lipid accumulation 

without evidence of hepatocellular injury (Enomoto et al., 2015). This lipid accumulation 

results from increased inflow of FFA derived from insulin resistant adipose tissue, 

increased hepatic de novo lipogenesis and impaired TG export from hepatocytes. The 

second hit is associated with a hepatic response to counter the steatotic state, promoting 

lipid peroxidation by β- and ω-oxidation and evidencing hepatocellular injury (e.g., 

ballooning degeneration). Lipid oxidation increases the production of reactive oxygen 

species (ROS) in the liver, resulting in mitochondrial dysfunction, up-regulation of 

proinflammatory adipocytokines, Kupffer cell (KC) triggering and activation of quiescent 

hepatic stellate cells (HSCs). Once activated, HSCs begin to proliferate, increasing the 

production of collagen and stimulating the progression of liver fibrosis (Elpek, 2014) 

(Figure 2). Fibrosis is a hepatic response to repeated and chronic liver injury, such as 

the one caused by NASH. Myofibroblasts are cells responsible for deposition of 

extracellular matrix (ECM) and are usually absent from the healthy liver, accumulating in 

response to hepatic cell injury, and serving as the main cell effector of fibrogenesis 

(Koyama and Brenner, 2015). Alpha-smooth muscle actin (α-SMA) is a commonly 

employed marker of hepatic stellate cell differentiation into myofibroblast (Nagamoto et 

al., 2000).  

Although the role of HSC activation is still uncertain in the progression of NAFLD, 

many studies have reported the activation of HSCs in NASH (Kaji et al., 2011). Another 

factor associated with NASH-related fibrogenesis is insulin resistance, as insulin 

promotes HSC activation and insulin sensitizers are able to attenuate hepatic fibrosis in 

NAFLD (Elpek, 2014). In addition to directly inducing cellular destruction by membrane 

lipoperoxidation, ROS can act as secondary messengers in the regulation of pro-

inflammatory and pro-fibrogenic genes such as α-SMA and cytokines such as tumor 

necrosis factor alpha (TNF-α) and interleukin-6 (IL-6) (Angulo, 2002).  

Even though obesity is strongly correlated with NAFLD, recent studies suggest that 

body fat mass alone is not sufficient to trigger the pathogenesis of NAFLD, but adipose 

tissue dysfunction might be. It is still not known whether NAFLD is the cause or the 

consequence of insulin resistance, but there is mounting evidence that hepatic lipid 

accumulation is capable of causing hepatic/peripheral insulin resistance and hepatic 

inflammation, by the production of lipid products derived from long chain fatty acids 

(LCFA) such as di-a-cylglycerols (DAG) and tri-acylglycerols (TAG) and intermediate 

products such as ceramides and di-palmitoyl phosphatic acid (Di-P PA). The increased 
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production of these lipid products causes ‘resistance’ in the hepatic insulin signaling 

pathway, promoting hepatic inflammation and liver disease (Byrne and Targher, 2015; 

Fabbrini and Magkos, 2015) (Figure 2). 

 

 
Figure 2. Development of progressive liver disease in NAFLD. Hepatic lipid accumulation begins to appear (steatosis) 

due to increased levels of FFA derived from insulin resistant adipose tissue, increased hepatic de novo lipogenesis or 

impaired lipid export from hepatocytes. However, as lipid peroxidation ensues, the liver tries to overcome its steatotic 

status, leading to oxidative stress, inflammation and Kupffer and hepatic stellate cells activation. HSCs then begin to 

proliferate, increasing collagen production and stimulating the progression of fibrosis, cirrhosis and HCC (Byrne and 

Targher, 2015). 

 

4. Iron chemistry  

Iron (Fe) is an essential element for nearly every form of life, serving both as an electron 

donor and receiver. Iron can be incorporated into multiple proteins, either in the form of 

organic cofactors, such as heme, or inorganic cofactors, such as iron sulfur clusters (ISC) 

(Evstatiev and Gasche, 2012). Iron-containing proteins carry or store oxygen (e.g. 

hemoglobin, myoglobin), catalyze metabolic and signaling-related redox reactions and 

transport or store iron (e.g. transferrin, lactoferrin, ferritin) (Ganz, 2013). These proteins 

also take part in transcription factors and repressors, enzymes of intermediate 

metabolism and DNA synthesis and repair (Evstatiev and Gasche, 2012).  

Most reactions involving iron-containing proteins show iron switching between the 

ferrous (Fe2+) and ferric (Fe3+) state (Evstatiev and Gasche, 2012), highlighting the 

biological importance of iron as a transition metal. Free iron can generate ROS, 

particularly through “Fenton-type” reactions. The Fenton reaction (1) represents the most 

important reaction of hydrogen peroxide (H2O2) or lipid peroxides with free or poorly 

liganded ferrous iron, generating a highly reactive and damaging hydroxyl radical (OH•). 



FCUP 
Searching for a mouse model of NASH: the contribution of liver iron, aging and transcription factor Nrf2 

5 
 

 
Superoxide (O2

-) can also react with ferric iron (2), and this combination results in the 

Haber-Weiss reaction (3) (Kehrer, 2000; Kell, 2009; Umbreit, 2008). 

 

Fe2+ + H2O2 → Fe3+ + OH- + •OH (1) 

Fe3+ + O2
- → Fe2+ + O2 (2) 

O2
- + H2O2 → O2 + OH• + OH- (3) 

 

Free iron is therefore extremely toxic to cells and other biological structures, 

promoting oxidation of proteins, peroxidation of lipids and modification of nucleic acids 

(Evstatiev and Gasche, 2012; Papanikolaou and Pantopoulos, 2005), events that can 

eventually lead to cellular damage. To overcome this potential toxicity, organisms have 

developed mechanisms of iron homeostasis involving tight control of iron uptake, storage 

and export and its intracellular distribution (Hentze et al., 2004), thus regulating tissue 

iron levels.  

 

5. Iron metabolism 

5.1 Body iron distribution 

The average human male adult contains about 3-5 g of iron, of which about two thirds is 

kept within hemoglobin of developing erythroid precursors and mature red blood cells. 

The remaining body iron can mainly be found in reticuloendothelial macrophages (~ 600 

mg), stored in hepatocytes (~ 1000 mg) within ferritin and its degradation product, 

hemosiderin (Gkouvatsos et al., 2012) and in muscles, primarily in myoglobin 

(Papanikolaou and Pantopoulos, 2005) (Figure 3). Men and non-menstruating women 

absorb daily 1-2 mg of iron from the diet, in order to compensate for iron losses derived 

from sloughing of enterocytes and minor bleeding (Ganz, 2012). These amounts are, 

however, insufficient to cover iron needs, as the majority of iron within blood plasma is 

directed to the bone marrow for erythropoiesis which, by itself, requires a daily supply of 

at least 20-25 mg of iron. Iron requirements are then fulfilled by the recycling of iron by 

reticuloendothelial macrophages. Splenic and hepatic macrophages recover the 

hemoglobin from senescent erythrocytes and supply iron to erythrocyte precursors for 

hemoglobin synthesis (Evstatiev and Gasche, 2012; Ganz, 2012; Papanikolaou and 

Pantopoulos, 2005). 
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Figure 3. Iron distribution within the body. Transferrin-bound iron is represented in blue and iron in erythrocytes in red. 

Adapted from (Ganz, 2013). 

 

5.2 Iron uptake 

Dietary iron is absorbed in the brush border of duodenal enterocytes in two distinct forms: 

non-heme or inorganic iron, mainly found in cereals and vegetables, or heme-bound iron, 

mainly sourced from hemoproteins, hemoglobin and myoglobin in meat (Evstatiev and 

Gasche, 2012; Lane et al., 2015a; Silva and Faustino, 2015). 

Inorganic dietary iron mostly exists in its insoluble oxidized ferric form within the 

intestinal lumen. For it to cross the enterocytes apical membrane, ferric iron undergoes 

reduction by the low pH of the stomach coupled with ascorbic acid (Sharp, 2010). 

Duodenal cytochrome b (DCYTB), a brush border ferriductase, and Six transmembrane 

epithelial antigen of the prostate 2 (STEAP2) (McKie et al., 2001) facilitate iron reduction 

(Silva and Faustino, 2015), which allows ferrous iron to be transported across the apical 

enterocyte membrane by proton-coupled Divalent metal transporter 1 (DMT1) (Ganz, 

2013; Mackenzie and Garrick, 2005; Papanikolaou and Pantopoulos, 2005). Ferrous iron 

thus enters the “labile iron pool” (LIP), presumably binding to low molecular weight 

chelators and remaining available for metabolic purposes (Evstatiev and Gasche, 2012) 

(Figure 4).  

 

5.3 Cellular iron storage 

When iron demands are low, iron can be stored within ferritin, a ubiquitous and highly 

conserved iron storage protein. Ferritin polymers (H and L ferritin) form a structure that 

accommodates up to 4500 iron ions to be stored within it. Moreover, ferritin also allows 

the mobilization of iron when demands increase by pathways that are yet unknown 

(Andrews and Schmidt, 2007; Harrison and Arosio, 1996; Theil, 2003). Ferritin is down-
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regulated when there is iron deficiency, rendering iron available to meet demands. 

Conversely, ferritin is up-regulated in the presence of iron overload disorders, in order to 

protect cells from toxicity (Hentze et al., 2004). Hepatocytes and reticuloendothelial cells, 

such as macrophages and monocytes, are the main iron storage cell types in the human 

body (Yun and Vincelette, 2015). 

 

Figure 4. Uptake of heme and non-heme iron by duodenal enterocytes. Inorganic ferrous iron enters the enterocyte via 

DMT1 after reduction by DCYTB. Heme-bound iron enters the cytosol via putative heme transporters HCP-1. Once in the 

cytoplasm, iron can either be stored within ferritin, an iron storage protein, released into plasma by FPN1 or enter the LIP 

and becoming available for metabolic purposes (Evstatiev and Gasche, 2012). 

 

5.4 Cellular iron export 

When iron demands are high, intracellular iron is transferred across enterocytes, 

macrophages and hepatocytes to the circulation by a single protein, Ferroportin 1 (FPN1; 

also known as SLC40A1, IREG1 and MTP1), the single iron exporter identified in 

mammals to date (Abboud and Haile, 2000; Donovan et al., 2000; McKie et al., 2000). 

FPN1 is expressed in all sites involved in iron transfer to plasma, which includes the 

basolateral membrane of enterocytes, the membranes of macrophages, the sinusoidal 

surfaces of hepatocytes and the basal surface of the placental syncytiotrophoblast facing 

the fetal circulation (Ganz, 2013). FPN1 exports ferrous iron by mechanisms that have 

not yet been reported, but ferric iron is required for binding to transferrin, a protein 

capable or binding iron tightly but reversibly in the interstitial fluids. Iron efflux must then 

be coupled to oxidation. In the case of enterocytes, hephaestin (HEPH), a membrane 

anchored, multicopper ferroxidase oxidizes ferrous to ferric iron (Gulec et al., 2014) for 
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it to bind to transferrin. In what concerns hepatocytes and macrophages, ferrous iron 

oxidation is performed by ceruloplasmin (CP) (Andrews, 2000). 

 

5.5 Cellular iron uptake 

5.5.1 Transferrin-mediated mechanisms 

Iron absorbed from the diet is distributed throughout the body bound to plasma transferrin 

(Tf), a monomeric protein capable of biding tightly but reversibly two atoms of ferric iron 

(Gkouvatsos et al., 2012). Iron chelation by Tf aims to facilitate iron transport and its 

cellular uptake and preserve ferric iron in a soluble form, and thus in a redox inert state, 

preventing the formation of toxic free radicals (Rochette et al., 2015). Under normal 

conditions, Tf carries nearly all serum iron and delivers it to erythroid progenitor cells and 

other fast dividing cell populations for uptake via the transferrin receptor-1 (TfR1) (Cheng 

et al., 2004).  

TfR1 is expressed at low levels in most tissues and resides in the outer cell 

membrane of cells presenting high iron demands (e.g. intestinal epithelial cells, placental 

syncytiotrophoblasts and neoplasic cells), binding one Tf molecule at each of its 

subunits. When holo-transferrin (holo-Tf, diferric transferrin) binds to TfR1, this complex 

undergoes endocytosis via clathrin-coated pits. Acidification of the endosome via proton 

pump ATPase facilitates a conformational change in Tf, resulting in the release of ferric 

iron. When iron is released, apo-transferrin (apo-Tf, iron free transferrin) and TfR1 return 

to the cell surface. Apo-Tf is recycled back to the bloodstream and becomes available to 

recapture iron. Iron is then reduced by an endosomal ferrireductase (e.g., STEAP3 

(Ohgami et al., 2005) or by a recently discovered mechanism involving cellular ascorbate 

(Lane et al., 2015b) and transported out of the endosome by DMT1 (Daniels et al., 2006; 

Gkouvatsos et al., 2012; Hentze et al., 2004) or Zinc transporter Zrt-Irt-like protein 14 

(ZIP14) (Jenkitkasemwong et al., 2012) (Figure 5). 

Transferrin receptor 2 (TfR2) (Kawabata et al., 1999) is an iron-binding protein that 

is highly homologous to TfR1 but whose expression is largely restricted to hepatocytes 

(Daniels et al., 2006) and, to a lower extent, to erythroid cells, spleen, lung and muscle 

(Evstatiev and Gasche, 2012). TfR2 binds iron-loaded Tf with a 25-fold lower affinity 

compared to its homolog TfR1. Although TfR2 expression is not regulated by intracellular 

iron levels (Kawabata et al., 2000), mutations in this protein cause Hereditary 

Hemochromatosis (HH), indicating its crucial role in systemic iron homeostasis 

(Gkouvatsos et al., 2012).  
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Figure 5. Cellular uptake of transferrin-bound iron. Holo-Tf binds to TfR1 and the Tf/TfR1 complex is endocytosed. A drop 

in pH releases ferric iron from Tf. Ferric iron is oxidized by STEAP3 to ferrous iron and it is transported to the cytosol via 

DMT1. TfR1 and Apo-Tf are recycled back to the cell surface and circulation, respectively (Gkouvatsos et al., 2012).  

 

Under normal physiological conditions, approximately 30% of plasma Tf-binding sites 

are saturated. Tf saturation <15% indicates iron deficiency, while >45% are consistent 

with iron overload (Hentze et al., 2010). However, in disorders of severe iron overload, 

such as HH, Tf saturation exceeds 60%. Under these conditions, non-transferrin bound 

iron (NTBI) increases dramatically and starts to accumulate in the circulation and in 

tissue parenchymal cells, eventually leading to organ damage. The main site for NTBI 

accumulation is the liver, even though there is also some deposition in the heart and 

pancreas (Ganz, 2013; Gkouvatsos et al., 2012). 

 

5.5.2 Transferrin independent mechanisms 

Even though Tf is the main source of iron for all tissues, specific cell types assimilate 

iron through independent routes. This is the case of liver and spleen macrophages that, 

despite having a Tf/TfR1 dependent route, mainly obtain iron from phagocyting 

senescent erythrocytes, an essential process for maintaining body iron homeostasis. 

Phagocytosed erythrocytes are broken up in lysosomes and iron is released via Heme 

oxygenase 1 (HO-1), entering the LIP. Iron from the labile pool is either used for 

metabolic purposes, stored within ferritin or exported into the circulation via FPN1 and 

becoming bound to Tf after oxidation by CP (Evstatiev and Gasche, 2012). Macrophages 

are also able to scavenge hemoglobin via signal-inducing macrophage protein CD163, 

a receptor that scavenges hemoglobin by mediating endocytosis of haptoglobin-

hemoglobin complexes (Kristiansen et al., 2001). HO-1 and its homologues HO-2 and 

HO-3 (Ryter and Tyrrell, 2000) performs the metabolic degradation of heme into bile 

pigments (i.e., biliverdin and bilirubin), iron and carbon monoxide (Papanikolaou and 

Pantopoulos, 2005; Ryter et al., 2006) (Figure 6).  
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Figure 6. Macrophage iron uptake. Macrophages primarily obtain iron through the endocytosis of old red blood cells. In 

the cytoplasm, erythrocytes are broken up in lysosomes by HO-1 and iron enters the LIP, becomes stored in ferroportin 

or is exported via FPN1 and bounds to Tf. (Evstatiev and Gasche, 2012). 

 

6. Systemic iron homeostasis 

6.1 Hepcidin: the iron regulatory hormone 

Hepcidin (HAMP) is a 25-amino-acid protein mainly produced by hepatocytes (Andrews 

and Schmidt, 2007). Hepcidin was first identified as an antimicrobial peptide (Park et al., 

2001) but its main function was subsequently discovered to be the regulation of body 

iron homeostasis, as hepcidin knockout mice exhibit massive iron overload (Nicolas et 

al., 2001). Hepcidin exerts its biological function by post-translationally controlling the 

concentration of FPN1 and promoting its phosphorylation, internalization and lysosomal 

degradation (Nemeth et al., 2004). When hepcidin levels rise, due to, for example, 

inflammation or infection, iron absorbed in the gut cannot enter the circulation, remaining 

stored within enterocytes and being, eventually, lost by intestinal sloughing. Another 

consequence of increased hepcidin levels is the degradation of FPN1 in storage sites, 

such as hepatocytes and macrophages, resulting in low iron levels in circulation and 

impending iron overload (Evstatiev and Gasche, 2012). On the other hand, hepcidin 

levels drop when there is increased erythropoietic demand for iron, hypoxia and iron 

deficiency (Nicolas et al., 2002). Hepcidin levels are also low in conditions such as HH, 

in which increased dietary iron absorption leads to excessive iron stores (Bridle et al., 

2003).  
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6.2 Transcriptional control of hepcidin 

Iron feedback regulates hepcidin expression, so that both the toxicity associated with 

iron overload and the physiological consequences underlying its deficiency can be 

avoided (Silva and Faustino, 2015). A pathway involved in hepcidin expression by iron 

levels is the hemojuvelin (HJV)-bone morphogenetic protein (BMP) axis. HJV, a 

membrane protein, regulates hepcidin hepatic expression and acts as a BMP co-

receptor, activating hepcidin transcription through the BMP-SMAD cascade. The BMP 

pathway, besides regulating iron in the liver, is involved in other processes such as 

embryonic morphogenesis, bone development, and remodeling and tissue repair (Ganz 

and Nemeth, 2012). When BMPs, particularly, BMP6, which, in mice, is activated by 

increased iron levels (Andriopoulos et al., 2009; Meynard et al., 2009), bind to BMP 

receptors type I and type II, the BMP-HJV signaling pathway is activated. The activated 

receptors phosphorylate receptor-associated SMAD proteins (R-SMADs) that, together 

with SMAD4, translocate to the hepatocyte nucleus, binding to BMP responsive elements 

(BMPREs) located in the hepcidin promoter region and inducing its transcription 

(Evstatiev and Gasche, 2012; Ganz, 2013; Silva and Faustino, 2015). 

Hepcidin expression can also be controlled by the cell surface Human 

hemochromatosis protein (HFE) and TfR2. Under basal conditions, HFE is usually 

expressed on the cell surface of hepatocytes and binds to TfR1, a process inversely 

correlated with transferrin saturation (Muckenthaler, 2014). However, when serum holo-

transferrin-iron levels increase, HFE is displaced from TfR1 and binds to TfR2. The holo-

Tf-TfR2-HFE complex triggers the MAPK/ERK signaling pathway, thus leading to 

increased hepcidin transcription (Goswami and Andrews, 2006; Silva and Faustino, 

2015).  

It has recently been shown that HFE, TfR2 and HJV form, along with the BMP/SMAD 

pathway, a multimeric complex on the hepatocyte cell membrane (D'Alessio et al., 2012). 

HFE binds to the BMP type I receptor Alk3, stabilizing it by diminishing its 

polyubiquitination and degradation through the proteasome (Wu et al., 2014). Alk3, along 

with Alk2, are two essential BMP type I receptors responsible for aiding hepcidin 

expression (Steinbicker et al., 2011). However, in patients with HH associated with 

mutations in the HFE gene, the HJV-BMP signaling pathway is impaired, as HFE cell-

surface expression becomes compromised (Muckenthaler, 2014). Since mutant HFE 

cannot translocate to the cell surface, Alk3 mRNA levels are reduced in patients with HH 

and, as a consequence, hepcidin transcription is compromised. As a result, HH patients 

develop symptoms of severe iron overload (Wu et al., 2014) (Figure 7).  
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Figure 7. Cell surface interaction between HFE, TfR2, HJV, BMP receptors and BMP ligands (BMP6). HFE binds to Alk3, 

preventing its stabilization and proteasomal degradation, thus increasing its cell surface expression and the activation of 

the BMP/SMAD pathway and hepcidin transcription (Muckenthaler, 2014). 

 

7. Hereditary Hemochromatosis 

Hereditary Hemochromatosis (HH) is an autosomal recessive disorder characterized by 

deficient hepcidin expression. Decreased HAMP levels result in uncontrolled dietary iron 

absorption and, as a consequence, increased serum transferrin saturation and ferritin 

levels and NTBI appearance. Eventually, in males between 40 and 50 years of age and 

post-menopausal women, as body iron levels escalate, excessive iron begins to 

accumulate mainly in the liver, but also in pancreas, pituitary, heart, joints and skin. If left 

untreated, HH may cause clinical complications such as arthritis, hypogonadotrophic 

hypogonadism, diabetes mellitus, liver fibrosis, cirrhosis, hepatocellular carcinoma and 

heart failure (Papanikolaou and Pantopoulos, 2005).  

The main mechanism affected in HH is the iron sensing-hepcidin axis. Depending on 

which genes might be affected, HH can be classified into four types: (i) HFE related HH, 

(ii) juvenile hemochromatosis (JH), (iii) TfR2-associated hemochromatosis and (iv) 

ferroportin disease (Silva and Faustino, 2015). The most common type of HH is 

attributable to a mutation in the HFE gene, a major histocompatibility complex (MHC) 

class I type molecule (Feder et al., 1996). The majority of HH patients is homozygous for 

a HFE gene C282Y polymorphism or, occasionally, compound heterozygote for a 

C282Y/H63D mutation. In the C282Y mutation, the cysteine-tyrosine substitution 

interrupts the formation of a disulfide bond essential for HFE to bind beta 2-microglubulin 

(β2M), a component of MHC class I molecules (Feder et al., 1996), thus disabling HFE 

stabilization, transport and cell-surface expression and its interaction with TfR1 and 

TfR2. HFE related mutations depict a high prevalence (5:1000 individuals of northern 

European descent) (Pietrangelo, 2006); however, as the clinical penetrance of HH is, in 

fact, much lower (Beutler et al., 2002), other modifying factors, such as alcohol or 
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additional genetic variations might be involved in HH manifestations, making HFE-

related HH the mildest form of the disease (Arezes and Nemeth, 2015). Mutations in 

TfR2 (HH-type III) result in a phenotype similar to HFE-related HH, as individuals present 

elevated transferrin and ferritin saturation levels. The other forms of HH present much 

more severe clinical symptoms than type I and III HH, as well as early-onset organ 

disease. Juvenile hemochromatosis (JH) (HH-type II) is caused by mutations either in 

the HJV (type IIA) or HAMP (type IIB) genes. JH is much more uncommon than the adult 

forms but it leads to much more severe iron accumulation. Finally, HH-type IV results 

from autosomal dominant mutations in the SLC40A1 gene and the outcome can either 

be the gain or loss of function in FPN1 (Batts, 2007; Pietrangelo, 2010; Silva and 

Faustino, 2015). Currently, the standard treatment for all types of HH is iron reduction 

therapy (phlebotomy) and treatment should begin when ferritin levels exceed normal 

values. However, frequency of treatment or therapeutic endpoints vary between patients 

and disease severity (Pietrangelo, 2010). 

 

8. Iron imbalance in NAFLD 

Excessive hepatic iron accumulation is frequently observed in NAFLD patients and may 

be a potential aggravating factor in the development of NASH. The combination of 

steatosis and cellular iron loading, together with the increased levels of free fatty acids, 

can result in increased oxidative stress, which would enhance the progression from 

steatosis to NASH (O'Brien and Powell, 2012). This is supported by evidence that 

phlebotomy has beneficial effects towards NAFLD disease progression and insulin 

resistance-related hepatic iron accumulation. Likewise, obesity-related steatosis is a risk 

factor for liver injury in HFE-related HH (Powell et al., 2005). However, the role of iron in 

initiating liver fibrosis is not clear. Most of the evidence comes from animal studies where 

iron overload enhanced the fibrotic response to acute treatments with hepatic toxicants. 

For example, the hemochromatotic hemojuvelin knockout (Sebastiani et al., 2011) and 

mice fed iron-rich (carbonyl iron) diet (Arezzini et al., 2003) are more susceptible to the 

hepatotoxin carbon tetrachloride-induced liver fibrosis. It is also not clear why iron 

accumulates in some NAFLD patients, and the association between HFE mutations and 

NAFLD remains controversial (Hernaez et al., 2011; Valenti et al., 2010). 

 

9. Nrf2: an important hepatoprotectant  

The liver is the main organ responsible for the biotransformation and subsequent 

detoxification of xenobiotics. These events expose the organ to ROS (Serviddio et al., 

2013) and electrophiles (Levonen et al., 2014) which, in turn, are increasingly implicated 
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in the pathogenesis of NAFLD and other chronic liver diseases. In hepatocytes, the major 

sites of ROS production are the mitochondria and the cytochrome P450 system. 

Electrophiles are produced by oxidation and nitration of unsaturated FA, resulting in the 

production of a series of reactive species (Levonen et al., 2014). Hepatocytes are 

equipped with multiple defense systems mainly composed of cytoprotective enzymes 

that ensure protection against the toxic effects of endogenous and exogenous oxidants 

and electrophiles to which they are exposed (Dinkova-Kostova et al., 2005). Importantly, 

many of these cytoprotective enzymes are encoded by genes containing antioxidant 

response elements (AREs) in their promoter regions. The ARE region is a cis-acting 

enhancer sequence that mediates transcriptional activation of genes encoding 

antioxidant and electrophile conjugating enzymes, ubiquitin/proteasomes, chaperone 

and heat-shock proteins in response to changes in the cellular redox status (Zhang et 

al., 2010). Transcription factor nuclear factor-erythroid 2-related factor 2 (NFE2l2/NRF2) 

is a basic leucine zipper redox-sensitive transcription factor that regulates transcriptional 

induction of ARE-containing genes (Holmstrom et al., 2013; Kensler et al., 2007; Lee et 

al., 2003). Under homeostatic conditions, NRF2 is sequestered in the cytosol by the actin 

binding protein Kelch-like ECH associating protein 1 (KEAP1) that targets NRF2 for 

polyubiquitination and degradation, resulting in a short protein half-life (Itoh et al., 1997) 

(Figure 8A). During exposure to electrophiles or oxidative stress, KEAP1 becomes 

oxidized at critical cysteine residues and the NRF2/KEAP1 interaction is disrupted. As a 

result, NRF2 escapes KEAP1 control, which leads to decreased NRF2 proteasomal 

degradation and translocation of newly synthesized NRF2 into the nucleus. Once in the 

nucleus, NRF2 dimerizes with small musculo-aponeurotic fibrosarcoma proteins (MAFs) 

and promotes the expression of ARE-containing genes (Kansanen et al., 2012; Kensler 

et al., 2007; Suzuki et al., 2013) (Figure 8B). The binding to and regulation of NRF2 by 

KEAP1 are explained by a “hinge and latch” model (Tong et al., 2006), as described in 

Figure 8. 

Besides activating antioxidant and detoxification genes in response to electrophilic 

or oxidative stress, there is increasing evidence that NRF2 participates in hepatic fatty 

acid metabolism. Studies employing young adult C57BL/6 mice on a control diet have 

demonstrated that NRF2 represses the expression of key enzymes involved in FA 

synthesis with concomitant reduction in hepatic lipid levels (Tanaka et al., 2012; Yates 

et al., 2009). This is in contrast with studies employing older mice of the same genetic 

background, where NRF2 had little or no effect on hepatic fatty acid metabolism (Tanaka 

et al., 2008; Zhang et al., 2012). Likewise, young C57BL/6 mice fed a high-fat diet (HFD) 

display a mechanism of hepatic lipogenesis that is negatively regulated by NRF2 (Shin 
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et al., 2009; Tanaka et al., 2008). Once again, studies using older mice either failed to 

detect an effect (Zhang et al., 2012) or identified NRF2 as an activator of genes involved 

in lipid synthesis and uptake (Huang et al., 2010). 

 

 

Figure 8. Activation of the KEAP1-NRF2-ARE pathway by oxidants and/or electrophiles. (A) Under homeostatic 

conditions, NRF2 is mainly localized in the cytoplasm through an interaction with KEAP1 and the actin cytoskeleton. 

KEAP1 is a five domain protein consisting of an N-terminal Broad complex, Tramtrack and Bric-à-brac (BTB) domain, an 

intervening region with cysteine (Cys) residues, a C-terminal Kelch domain with double glycine repeats (DGR) and the C-

terminal domain. KEAP1 homodimerizes at the BTB domain, which is also a binding site for Cullin 3 (CUL3). The KEAP1 

homodimer binds to NRF2 through the ETGE and DLG motifs of NRF2, each binding to a DGR domain in KEAP1. 

According to the proposed hinge and latch model (Tong et al., 2006), ETGE is a high-affinity motif (‘hinge’) whereas DLG 

is a low-affinity one (‘latch’). KEAP1 functions as an adaptor protein in the CUL3-based E3 ligase complex, which results 

in the polyubiquitination (Ub) of the lysine residues situated between the DLG and ETGE motifs, and subsequent 

proteasomic degradation of NRF2. (B) Under stressed conditions, the modification of critical cysteine residues of KEAP1 

destabilizes its binding to the DLG motif of NRF2, which blocks ubiquitination/proteasomal degradation and allows NRF2 

to escape KEAP1 control and translocate into the nucleus. In the nucleus, NRF2 heterodimerizes with small MAF proteins 

and promotes the expression of ARE-containing genes. 

 

In summary, NRF2 appears to protect the liver of mice against steatosis by inhibiting 

lipogenesis and promoting fatty acid oxidation, but the effect is controversial and the 

regulation of hepatic lipidogenesis by NRF2 appears to be age-dependent. This might 

be related with a decrease in NRF2 expression with age, leading to progressive hepatic 

accumulation of lipids and/or the attenuation of antioxidant defenses (Collins et al., 2009; 

Gupte et al., 2013). With age, there is a substantial reduction in glutathione (GSH) levels 

and in the expression and activity of glutamate cysteine ligase, the rate-controlling 

enzyme in GSH synthesis. This is accompanied by lower levels of NRF2 protein and a 

reduction in NRF2/ARE binding (Suh et al., 2004), as well as increased markers of 
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protein and lipid oxidation (Shih and Yen, 2007). Conversely, the liver of aged NRF2-null 

mice shows lower free radical reducing activity (Hirayama et al., 2003) and GSH 

synthesis. Aging has also been reported to increase the prevalence of the metabolic 

syndrome and of NAFLD in the human population, and to enhance the progression to 

NASH and fibrosis (Sheedfar et al., 2013). The reason why aging organisms gradually 

lose the ability to activate NRF2 is currently not understood (Hayes and Dinkova-

Kostova, 2014), but a decline in NRF2 signaling is presumed to contribute to the age-

related hepatic oxidative stress.  

 

Aims 

Several genetic and nutritional animal models have been reported to display a number 

of the metabolic abnormalities present in NASH, such as obesity, insulin resistance, 

dyslipidemia, and altered adipokine profile. However, an animal model of human NASH 

should also display steatosis, intralobullar inflammation, hepatocellular ballooning, 

perisinusoidal fibrosis, and susceptibility to hepatocellular carcinoma. The extrapolation 

of NAFLD/NASH animal models to the human disease is thus currently limited by the 

lack of reproducibility of important clinical and morphological features.  

As a result of hepatic steatosis, hepatocytes become vulnerable to oxidative stress, 

which is presently accepted as one of the main drives for the progression from simple 

steatosis to steatosis associated with necroinflammatory activity and fibrosis in NAFLD 

patients. Hepatic iron overload is a candidate pathogenic cofactor in the progression of 

NAFLD to NASH and fibrosis. Non-hemochromatotic patients with NAFLD often present 

mild hepatic iron overload, which predisposes to liver injury. It is then possible to 

speculate that iron deposits found in some NAFLD/NASH patients may contribute to 

NASH development. In the first set of experiments, we aimed to determine whether 

excessive hepatic iron deposition, as seen in HFE-related HH, is an aggravating factor 

in the progression from hepatic steatosis to non-alcoholic steatohepatitis and fibrosis. 

For that purpose, we studied the development of hepatic steatosis, inflammation and 

fibrosis in Hfe-/- mice (at 8 weeks of age) fed high-fat or normal diet for 4, 8 or 12 weeks. 

Whilst the Hfe-/- mouse is a model of parenchymal iron deposition, iron deposits have 

repeatedly been observed both in parenchymal and reticuloendothelial liver cells of 

NAFLD patients. It is possible that iron-loaded hepatic macrophages would become 

activated and promote lobular inflammation and fibrosis. To address this hypothesis, 

separate groups of WT and Hfe-/- mice were given four 1 mg doses of iron-dextran 

complex (intraperitoneally) every 2 weeks, for the 8 week period of feeding control or 
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high-fat diet. This treatment is supposed to deliver iron to the reticuloendothelial hepatic 

cells. 

Another potential aggravating factor in NAFLD is the insufficient production of 

antioxidant defense mechanisms in response to hepatic steatosis. Transcription factor 

NRF2 is a central regulator of antioxidative response elements-mediated gene 

expression. NRF2 is activated by oxidative or electrophilic stress and is highly expressed 

in detoxification organs, especially the liver. Thus, NRF2 may serve as a major regulator 

of several cellular defense pathways by which hepatic cells combat oxidative stress in 

the progression from NAFLD to NASH. In the second set of experiments, we aimed to 

test the contribution of NRF2 to the progression from NAFLD to NASH. As the control of 

hepatic lipidogenesis by NRF2 appears to be age-dependent, we have studied the effect 

of feeding control or high-fat diet to young (8 weeks of age) and middle aged (12 months 

of age) animals for a period of 12 weeks. In particular, we have evaluated the 

development of hepatic steatosis, inflammation and fibrosis, as well as other features of 

the metabolic syndrome in wt and Nrf2-/- mice. Since iron overload-related disorders have 

a late onset in HFE-HH patients, we have also investigated the development of these 

features in middle aged Hfe-/- mice fed a high-fat diet or standard diet by comparison with 

young animals. We expect this set of experiments to provide new insights into the 

mechanisms contributing to the development of NAFLD/NASH. By taking into account 

factors like age, the cellular antioxidant response, and iron deposition, we hope to 

contribute to the establishment of a better animal model of human NASH. 
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Material and Methods 

 

1. Animals and experimental design 

Wild-type (wt), Hfe knock-out (Hfe-/-) (Zhou et al., 1998) and Nrf2 knock-out (Nrf2-/-) (Itoh 

et al., 1997) mice (Mus musculus) on a C57BL/6J background were bred at the Instituto 

de Biologia Molecular e Celular (IBMC) animal facility. Animals received humane care in 

compliance with the recommendations of the European Convention for the Protection of 

Vertebrate Animals used for Experimental and Other Scientific Purposes (ETS 123), the 

86/609/EEC Directive and the Portuguese law (DL 129/92). Animal experimental 

protocols were approved by the competent national authority Direção Geral de 

Alimentação e Veterinária (DGAV) and by the IBMC’s ethical committee. Experimental 

procedures did not inflict severe stress on animals and humane end-points related 

particularly with body weight changes were established. These consisted in providing 

soft food at the bottom of the cage and fluid therapy when a weight loss greater than 10 

percent was detected within a few days. When a weight loss greater than 20 percent was 

determined, mice were immediately sacrificed.  

The first set of experiments was designed to investigate the role of iron on hepatic 

damage development in an Hfe-/- mice model fed high-fat diet at different time points. To 

do that, female Hfe-/- mice (n=29) at 8 weeks of age were fed ad libitum with a Western-

type high-fat, high sucrose diet (HFD) (ssniff EF R/M acc. TD88137 mod.) (n=14) or a 

Control diet (ND) (ssniff EF R/M CD88137 control) (n=15) for 4 (n=9), 8 (n=10) and 12 

(n=10) weeks. Both diets included 200 mg/kg of iron. The ND was completely 

cholesterol-free and nutrient contents, except the fat content (energy), fat source (fatty 

acid composition), sugar and starch contents, were identical to the HFD. The high-fat 

diet had 500-600 mg/kg of cholesterol and its fat content was derived from butter fat. Diet 

composition is depicted in Annex I - Table 1.  

In NAFLD patients, iron loading is often reported not only in parenchymal but also in 

reticuloendothelial liver cells. To evaluate whether iron-loaded hepatic macrophages 

become activated in response to excessive iron and promote lobular inflammation and 

fibrosis, wt (n=10) and Hfe-/- mice (n=14) (8 weeks-old), fed either HFD or ND, received 

intraperitoneal injections of iron-dextran complex (FeDx) (Sigma-Aldrich, Germany, 

D8517; 100 mg iron/ml). A total of 4 mg of iron dextran was administered, divided into 

four 1 mg doses every 2 weeks, for 8 weeks. Another group of female wt (n=10) and Hfe-

/- mice (n=10) at 8 weeks of age were fed ad libitum with the previously described HFD 

ND for 8 weeks.  
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A separate set of experiments was conducted to study the role of age-related hepatic 

oxidative stress on the development of steatosis and steatohepatitis in two animal 

models (Hfe and Nrf2 knock-out mice). Female wt (n=13), Hfe-/- (n=9) and Nrf2-/- (n=9) 

mice at 8 weeks of age and wt (n=12), Hfe-/- (n=10) and Nrf2-/- (n=13) mice at 

approximately 54 weeks of age were fed either a standard (SD) (2.6% fat and 3.9 kcal/g; 

4RF21, Mucedola, Italy) or a custom pelletted Western-type diet (HFD) (21.2 % fat, 33.2 

% sucrose and 5.2 kcal/g; ssniff EF R/M acc. TD88137 mod.) (Annex I - Table 1) for a 

period of 12 weeks. 

At the end of the experiments, mice were fasted for 6 h and blood was collected by 

retro-orbital bleeding under anesthesia with isofluorane (B. Braun Medical, Portugal). 

Animals were then euthanized using a lethal dosage of isofluorane and cervical 

dislocation for organ collection. Liver and visceral fat (perigonadal, perirenal and 

retroperitoneal) were dissected, weighted and fragments were either snap frozen in liquid 

nitrogen or 10% (v/v) formalin-fixed.  

 

2. Body weight and food and energy intake 

Mice were housed according to their genetic background and body weight and food 

intake were determined weekly for the duration of experiments. Pre-weighted food was 

placed in the food hoppers and measured on a weekly basis for each cage. Food intake 

was estimated by subtracting the weight of the remaining food from the initially supplied 

dose, and expressed as grams consumed per animal and per day. Energy intake was 

calculated on the basis of 4.398 kcal/g for the ssniff ND, 3.952kcal/g for the Mucedola 

SD and 5.258 kcal/g for the ssniff HFD.  

 

3. Serum biochemistry 

After sitting at room temperature (RT) for at least 30 min, blood was centrifuged at 

10,000 × g for 10 min and serum was collected and stored at -20° C. Serum alanine 

aminotransferase (ALT) activity, serum glucose, cholesterol, triglyceride, iron 

concentration, and the total iron binding capacity (TIBC) were measured in a Cobas 

C8000 analyzer (Roche Diagnostics, Germany) at the Centro Hospitalar do Porto 

Corelab. Transferrin saturation was calculated by dividing the serum iron concentration 

by the TIBC. 

 

4. Glucose tolerance test 

Glucose tolerance tests were performed on mice that received high-fat diet for 12 weeks. 

Animals were fasted for 6 h and baseline blood glucose levels were determined with an 
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Accu-chek Aviva glucometer and test strips (Roche Diagnostics, Germany). For each 

animal, a small drop of blood was obtained by tail clipping and placed on a test strip of 

the glucose meter to determine the blood glucose levels at starvation. A single dose of 

glucose [20% (w/v) prepared in NaCl 0.9% (v/v) solution] was then administered 

intraperitoneally to each mouse at 2 mg glucose per gram of body weight. Blood glucose 

levels were also determined at 30, 60, 90 and 120 min after glucose administration by 

removing the clot from the first tail incision and applying pressure to obtain a blood drop. 

 

5. Liver non-heme iron quantification 

Non-heme iron content was measured using the bathophenanthroline method (Torrance 

and Bothwell, 1980). Tissue samples averaging 100 mg were placed in iron-free Teflon 

vessels and dried in a microwave oven (MDS 2000, CEM) for 2 h. Dry tissue weights 

were determined and samples were digested in 1 ml of an acidic mixture [36.5 % (v/v) 

hydrochloric acid and 0.1 g/ml trichloroacetic acid] at 65° C, for 20 h. After digestion, the 

supernatant was collected and a chromogen reagent [5 volumes of deionized water, 5 

volumes of saturated sodium acetate, and 1 volume of 0.1% (w/v) bathophenanthroline 

sulfonate/1% (v/v) thioglycolic acid] was added to the samples to react with iron and 

obtain a colored product that was measured spectrophotometrically at 535 nm (µQuant, 

Bio Tek, Germany). Results were expressed as micrograms of iron per gram of dry tissue 

weight and as the total amount of iron in the liver. 

 

6. Liver triglyceride quantification 

A liver section (100 mg of tissue) was washed in cold sodium phosphate buffer (PBS) 

and homogenized in 1 ml of 5% (v/v) Nonidet P-40 substitute (NP-40), using a 

mechanical homogenizer. Samples were slowly heated to 80°C - 100°C in a dry bath for 

2-5 min or until NP-40 became cloudy. Samples were cooled down to RT and the heating 

step was repeated to solubilize all triglycerides. Samples were then centrifuged for 2 min 

at top speed, to remove any insoluble material, and diluted 10-fold with deionized and 

distilled water (ddH2O). The triglyceride content was determined with a Wako 

Triglyceride E-test kit (Wako Pure Chemical Industries, Japan), according to the 

manufacturer’s instructions, and values were normalized to liver weight.  

 

7. Thiobarbituric acid-reactive substances (TBARS) assay 

Liver samples were homogenized in a homogenizing solution [0.85 g KH2PO4 25 mM, 

2.67 g Na2HPO4.2H2O 30 mM, 0.25 mL Triton X-100 0,1% (v/v) to a final volume of 250 

mL, pH 7,0], in the proportion of 2 ml of this solution per gram of liver fresh weight. Total 
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protein was quantified with the DCTM Protein Assay kit (Bio-Rad, USA) as per the 

manufacturer’s recommendations. 100 µl of the homogenate were diluted in 200 µl of 

10% (v/v) trichloroacetic acid (TCA). The solution was mixed for a few seconds and 

centrifuged at 6000 rpm and 4°C for 1 min. 200 µl of the obtained homogenate were then 

incubated with 200 µl of 1% (w/v) of thiobarbituric acid in a water bath at 95°C for 40 min. 

Samples were cooled down to RT and the reaction product was measured 

spectrophotometrically at 535 nm (µQuant, Bio Tek, Germany). The concentration of 

TBARS, expressed as malondialdehyde (MDA) equivalents, was calculated against an 

MDA standard curve. 

 

8. Liver histology 

Tissues specimens were 10% (v/v) formalin-fixed and embedded in paraffin. Three-

micrometer sections of liver were deparaffinized with xylene and hydrated by a passage 

through a grade of alcohols [100% (v/v), 96% (v/v), 70% (v/v) and 50% (v/v)] and distilled 

water. All stainings were performed using standard procedures and stained sections 

were mounted in Entellan (Merck Millipore, Germany). Representative pictures were 

obtained with an Olympus CX31 light microscope equipped with a DP-25 camera 

(Imaging Software Cell^B, Olympus, USA).  

 

8.1 Perls Prussian blue staining 

To visualize iron deposits in liver parenchyma and reticuloendothelial liver cells, tissue 

sections were stained with Perls Prussian blue. Briefly, sections were stained with Perls 

solution [equal parts mixture of 2% (w/v) potassium ferrocyanide (Merck Millipore, 

Germany) and 2% (v/v) hydrochloric acid] for 30 min, followed by several changes in 

ddH2O for 5 min. Sections were then counterstained with Neutral red stain [1g of Neutral 

red for microscopy (Sigma-Aldrich, Germany), 100 ml of ddH2O and 1 ml of glacial acetic 

acid] for 1 min, rinsed in ddH2O and rapidly dehydrated in 70% (v/v), 96% (v/v) and 100% 

(v/v) ethanol and xylene.  

Liver sections were graded to determine the presence of iron in parenchymal or 

mesenchymal cells. Iron in hepatocytes was graded as no visible iron (0), iron in very 

few hepatocytes (1), iron in 5 – 10% of hepatocytes (2), iron in ≥ 40% of hepatocytes (3), 

and abundant iron in most hepatocytes (4). Iron in Kupffer cells was classified as no iron 

(0), iron in < one-third of cells (1), iron in one third to ≤ two thirds of cells (2) and abundant 

iron in more than two-thirds of cells (3).  
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8.2 Hematoxylin and eosin staining 

To determine the severity of histological changes, such as the presence of steatosis, 

inflammation, and hepatocyte ballooning, hematoxylin and eosin (H&E) staining was 

performed. The protocol consisted in staining the histological sections with Gill’s 

hematoxylin solution (Merck Millipore, Germany) for 3 min, followed by rapid rinsing in 

0.1% (v/v) hydrochloric acid. Sections were then stained with eosin [100 mg of eosin 

(Merck Millipore, Germany), 100 ml of ddH2O and 160 µl of glacial acetic acid] for 3 min, 

rinsed under tap water and rapidly dehydrated in 50% (v/v), 70 % (v/v), 96% (v/v) and 

100% (v/v) ethanol and xylene.  

A system for scoring the features of nonalcoholic fatty liver disease called the NAFLD 

Activity Score (NAS) was developed as a tool to measure changes in NAFLD during 

therapeutic trials, evaluating traits such as steatosis, inflammation and hepatocellular 

ballooning (Brunt et al., 2011). Steatosis grading was made at low magnification (at most 

10x and usually at 4x) and graded as absent (<5%), mild (5%–33%), moderate (>33%–

66%) or severe (>66%), according to the amount of surface area of parenchyma visually 

determined to be involved by steatosis. The zonal distribution of steatosis was 

determined as zone 3 predominant (perivenular), zone 1 predominant, panacinar or 

azonal. Inflammation grading was determined as follows: no foci (0), <2 foci per 200X 

field (1), 2-4 foci per 200X field (2) and >4 foci per 200X field (3). Finally, hepatocyte 

ballooning was classified as: none (0), few ballooned cells (1) and many ballooned cells 

(2). 

 

8.3 Sirius red staining 

Fibrosis was assessed following a Sirius red staining. Liver sections were stained with 

Mayer’s hematoxylin (Sigma-Aldrich, Germany) for 8 min and washed under running tap 

water for 5 min. Afterwards, sections were stained for 60 min with Picro-sirius red solution 

[0.5 g of Direct Red 80 (Sigma-Aldrich, Germany) in 500 ml of a saturated solution of 

picric acid], washed 2 times with acidified water and dehydrated in three changes of 

100% (v/v) ethanol and xylene.  

The percentage of hepatic fibrotic area was assessed on three random images 

captured at 100× magnification under polarized light using ImageJ software. The same 

image threshold setting was applied to all images from the same study. Liver sections 

were also graded according to the amount of parenchyma with visible fibrosis as none 

(0), mild to moderate, zone 3, or portal/periportal only (1), portal/periportal and 

perisinusoidal (2), bridging fibrosis (3) and cirrhosis (4) (Kleiner et al. 2005).  



24 

 

FCUP 

Searching for a mouse model of NASH: the contribution of liver iron, aging and transcription factor Nrf2 

 

9. Isolation of total RNA from liver samples and DNase treatment 

Total RNA was extracted from frozen liver samples using 1 ml of TRI Reagent (Sigma-

Aldrich, Germany). Samples were homogenized using a mechanical homogenizer and 

centrifuged at 12000 × g for 10 min, at 4° C. The cleared supernatant was transferred to 

a new RNase-free tube and incubated for 5 min at RT. 200 μl of chloroform were added 

to each sample and tubes were vigorously shaken for 15 s, incubated at RT for 2-3 min 

and centrifuged at 12000 × g for 15 min, at 4° C. The RNA-rich aqueous phase was 

carefully removed and placed into a new tube and RNA was precipitated using 500 μl of 

isopropanol, followed by homogenization by inversion and incubation at RT for 10 min. 

Samples were then centrifuged at 12000 × g for 10 min, at 4° C, the supernatant was 

removed and the pellet was washed with 1 ml of 75% (v/v) ethanol. Afterwards, samples 

were briefly vortexed and centrifuged at 7500 × g for 5 min at 4° C, ethanol was removed 

and RNA pellets were left to air dry for 5-10 min. RNA was then resuspended in 400 µl 

of RNase-free water and incubated at 55°-60° C, for 10-15 min, to ensure complete 

solubilization. RNA was quantified by NanoDrop (Thermo Scientific, USA) and its purity 

was assessed by absorbance 260/280 and 260/230 ratios.  

RNA was treated with DNase for removal of contaminating DNA using a TURBO DNA-

free kit (Life Technologies, USA). Each reaction received 2.5 μl of 10x buffer, 1 μl of 

TURBO DNase, 4 μg of total RNA and RNase free water until the final volume of 25 μl. 

After samples were incubated at 37° C for 30 min, 2.5 µl of DNase inactivation reagent 

were added and reagents were well mixed to disperse the inactivation reagent. Following 

2 min of incubation at RT, RNA was centrifuged at 10000 × g for 90 s and treated RNA 

was transferred to a new tube and stored at -80° C. 

 

10. cDNA synthesis  

First-strand cDNA was obtained with NZY First-Strand cDNA Synthesis kit (Nzytech, 

Portugal) using DNase treated RNA. In each reaction 1 μl of Oligo(dT) primer mix 

(50μM), 9 µl of RNA and 1 μl of 10x annealing buffer were used to perform the annealing 

reaction. Samples were incubated at 65° C for 5 min in a SimpliAmp Thermal Cycler 

(Applied Biosystems, Life Technologies, USA) and then placed on ice. To perform the 

reverse-transcription step, 10 µl of NZYRT 2x Master Mix and 2 µl of NZYRT Enzyme 

Mix were added to each tube. Samples were incubated at 50° C for 30 min followed by 

85° C for 5 min for reaction inactivation. Finally, 1 µl of NZY RNase H (E. coli) was added 

to each sample, followed by a 37° C incubation for 20 min. All samples were diluted 1:2 

with nuclease-free water and cDNA was stored at -20° C. 
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11. Real-time polymerase chain reaction (qPCR) 

Relative gene expression levels were quantified using an iQ5 Real-Time PCR Detection 

System (Bio-Rad, USA). PCR mix was prepared by adding 10 μl iQ SYBR Green 

Supermix (Bio-Rad, USA), 0.08 µl of each primer (STAB vida, Portugal), 1 μl of cDNA 

sample and 8.84 µl of RNase-free water for a final volume of 20 μl. Primer sequences 

and respective annealing temperatures are listed in Table 1. The reaction plate was 

sealed, centrifuged briefly and placed in the Real-Time PCR Detection System. The 

amplification protocol consisted of denaturation at 95° C for 4 min and 40 cycles of 94° 

C for 30 s, followed by 59° C for 45 s, and 72° C for 30 s. Transcript quantity was 

estimated against the respective standard curve generated with serial dilutions of cDNA 

(1:1, 1:10 and 1:100) and normalized against the quantity of the endogenous control 

gene hypoxanthine phosphoribosyltransferase (Hprt). A single peak of the dissociation 

curve was always confirmed for each PCR reaction.  

 

Table 1. Mus musculus primer sequences for genes used in real-time PCR.  

Gene Forward primer Reverse primer References 

Hprt AGATGGGAGGCCATCACATTGT ATGTCCCCCGTTGACTGATCAT [1] 

α-Sma ACCCAGCACCATGAAGATCAAG AGGTAGACAGCGAAGCCAGGA [1] 

Tnf-α CTGTAGCCCACGTCGTAGCA CGGCAGAGAGGAGGTTGACT [1] 

Nqo1 
GTGCAGAAGCGAGCTGGAAATACT

C 

CGAATCTTGATGGAGGACTGGAT

GC 
[1] 

Hamp CATGTTCCAGAGGCGAAGGAGG GCAGCACATCCCACACTTTGATC [2] 

[1] designed with Primer3 software (Rozen and Skaletsky, 2000); [2] (Ilyin et al., 2003) 

 

12. Statistical analysis 

Results are expressed as the mean ± standard deviation (SD). For statistical analyses, 

ANOVA one-way test was used for the different experimental groups and significance 

was determined using Tukey’s post hoc test with GraphPad Prism 6. The trapezoidal 

rule was used to determine the area under the curve (AUC). Results were considered 

statistically significant when p < 0,05.
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Results 

 

Part I 

To evaluate whether feeding a western-type diet leads to the development of hepatic 

damage in an animal model of parenchymal iron overload, Hfe-/- female mice at the age 

of 8 weeks were fed a high-fat, high-sucrose diet (HFD) or a normal diet (ND) for 4, 8 or 

12 weeks. 

 

1. Food/energy intake and effect of diet on body weight 

The food/energy intake and body weight were monitored once every week. The 

percentage of body weight gain, liver weight and visceral fat weight were calculated at 

the end of the experiment. The daily food and energy intake of HFD-fed mice were higher 

than in mice fed ND (Table 2). 

 

Table 2. Daily food and energy intake. 

Experimental group 
Food intake 

(g/animal/day) 

Energy intake 

(kcal/animal/day) 

ND 3.91 17.2 

HFD 4.21 22.1 

 

HFD feeding resulted in higher total body weight, compared to ND feeding (Figure 

9A). At the end of each time point (4, 8 and 12 weeks), mice tended to gain more weight 

when fed HFD, compared to their ND-fed counterparts. The most significant weight gain 

was observed at the end of 12 weeks of HFD feeding (p<0.01), compared to mice fed 

ND (Figure 9B).  
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Figure 9. Eight-week old female Hfe-/- mice on a C57BL/6 background (n=5 mice per group) were placed on a normal diet 

(ND) or a high-fat diet (HFD) for 4, 8 or 12 weeks. (A) Body weight was monitored once every week. (B) The percentage 

of weight gain was calculated at the end of the experiment. a. p<0.0001 (one-way ANOVA vs. Hfe-/- mice on 8 weeks on 

HFD). b. p<0.0001 (one-way ANOVA vs. Hfe-/- mice on 12 weeks on HFD). c. p<0.01 (one-way ANOVA vs. Hfe-/- mice on 

12 weeks on HFD). 
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Visceral fat tissue weight was registered since the accumulation of visceral fat is 

implicated in the etiology of the metabolic syndrome and NAFLD (Tilg and Moschen, 

2010). Visceral fat weight tended to increase from 8 weeks of HFD feeding, compared 

to ND feeding, although the difference was not statistically different (Figure 10A). In Hfe-

/- mice fed HFD, the liver weight increased with time and the difference became 

statistically significant at 12 weeks (p<0.05) (Figure 10B). There was a trend for higher 

liver weight and liver to body weight ratio in Hfe-/- mice fed HFD, compared to ND-fed 

counterparts, but statistical significance was not reached (Figure 10C). 
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Figure 10. Visceral fat weight (A), liver weight (B) and liver/body weight ratio (C) of Hfe-/- mice after 4, 8 and 12 weeks of 

ND or HFD feeding. a. p<0.05 (one-way ANOVA vs. Hfe-/- mice on 12 weeks of HFD). 

 

2. Effect of diet on iron metabolism 

The Hfe-/- mouse is a well-established model of systemic iron overload, as lack of Hfe 

gene leads to compromised hepcidin expression (Zhou et al., 1998). In this experiment, 

the hepatic iron stores increased significantly with time in mice fed ND (p<0.01) and 

those that received HFD (p<0.05) (Figure 11A). The increased liver weight of mice fed 

HFD for 12 weeks resulted nevertheless in a significant decrease in the hepatic non-

heme iron concentration (p<0.05) (Figure 11B).  
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Figure 11. Hepatic non-heme iron of Hfe-/- mice after 4, 8 and 12 weeks of ND or HFD feeding. (A) Hepatic iron stores 

were expressed as total liver iron or (B) as micrograms of iron per gram of dry tissue weight. a. p<0.0001 (one-way 

ANOVA vs. Hfe-/- mice on 12 weeks of ND). b. p<0.01 (one-way ANOVA vs. Hfe-/- mice of 12 weeks on ND). c. p<0.05 

(one-way ANOVA vs. Hfe-/- mice of 12 weeks on HFD). 

 

The analysis of liver sections stained with Perls Prussian blue revealed that Hfe-/- mice 

accumulated iron in the parenchyma predominantly in periportal areas, which was 

independent from the diet (Figure 13A). Parenchymal and mesenchymal iron load were 

assessed by blind grading of histological liver sections. In what concerns parenchymal 

iron load, no significant differences were found between Hfe-/- mice fed ND or HFD, 

irrespective of time on the diets (Figure 12A). Regarding the mesenchymal iron load, 

iron-rich macrophages were scarcely observed in Hfe-/- mice fed ND and HFD. After 12 

weeks of HFD feeding, the number of iron-rich macrophages was significantly lower than 

at earlier time points (p<0.05) (Figure 12B). 
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Figure 12. Histological grading of hepatic iron load saturation of Hfe-/- mice after 4, 8 and 12 weeks of ND or HFD feeding. 

(A) Parenchymal iron deposition. Iron in hepatocytes was graded as 0. No visible iron, 1. Iron in very few hepatocytes, 2. 

Iron in 5 – 10% of hepatocytes, 3. Iron in ≥ 40% of hepatocytes, and 4. Abundant iron in most hepatocytes (4). (B) 

Mesenchymal iron deposition. Iron in Kupffer cells was classified as 0. No iron, 1. Iron in < one-third of cells, 2. Iron in one 

third to two thirds of cells and, 3.Abundant iron in more than two-thirds of cells. a. p<0.05 (one-way ANOVA vs. Hfe-/- mice 

on 12 weeks of HFD). 



 

 
Figure 13. Representative liver sections from Hfe-/- mice fed ND or HFD for 4, 8 and 12 weeks. (A) Histological detection of iron deposits by Perls iron staining. (B) H&E staining for assessment of 

tissue architecture, steatosis and necroinflammation. (C) Sirius red staining for assessment of liver fibrosis. Original magnification: 100x.
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3. Effect of diet on hepatic steatosis 

Hepatic steatosis grading was performed on liver sections stained with H&E. The 

majority of mice on ND did not show any histological signs of steatosis. On the other 

hand, nearly all mice from the HFD-fed groups developed light steatosis and one 

individual developed moderate steatosis after 12 weeks of HFD feeding (Figure 14). 

Steatosis was mostly microvesicular and predominantly located in zone 1 (Figure 13B 

and 15). 
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Figure 14. Grading of liver steatosis in Hfe-/- mice after 4, 8 and 12 weeks on ND or HFD. Steatosis was graded as 0. 

Absent (<5%), 1. Light (5%–33%), 2. Moderate (>33%–66%) or 3. Severe (>66%), according to the amount of surface 

area of parenchyma visually determined to be involved by steatosis. 

 

 

Figure 15. Representative liver sections of Hfe-/- mice fed HFD for 8 weeks (A), and detailed magnified section showing 

mild microvesicular steatosis near periportal areas (B). Original magnification: 100x and 400x.  

 

4. Effect of diet on hepatic inflammation and fibrosis  

Liver sections stained with H&E were also inspected for histological evidence of 

inflammation. Grading of hepatic inflammation revealed the existence of very mild 

infiltration of inflammatory cells in every experimental group, especially in mice fed ND 

(Figure 16A). However, no statistical significance was reached. No hepatocyte 

ballooning was documented in any of the experimental groups. 
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Histological staging of liver fibrosis was performed on sections stained with Sirius red. 

None or mild fibrosis was observed in mice of all experimental groups. However, no 

statistically significant differences were observed between experimental groups (Figures 

13C and 16B).  
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Figure 16. Histological grading and staging of liver sections by H&E and Sirius red staining of Hfe-/- fed ND or HFD for 4, 

8 or 12 weeks. (A) Hepatic inflammation degree. Inflammation was graded according to the overall assessment of all 

inflammatory foci as 0. No foci, 1. <2 foci per 200X field, 2. 2-4 foci per 200X field and, 3. >4 foci per 200X field. (B) 

Hepatic fibrosis degree. Liver sections were graded according to the amount of parenchyma with visible fibrosis as 0. 

None, 1. Mild to moderate, zone 3, or portal/periportal only, 2. Portal/periportal and perisinusoidal, 3. Bridging fibrosis and 

4. Cirrhosis. 

 

The percentage of hepatic fibrotic area, representing the deposition of collagen fibers 

in the liver, was also assessed. No significant differences were observed throughout the 

12 weeks period, regardless of the diet. If at all, the hepatic fibrotic area appeared to 

decrease with time in mice fed HFD (Figure 17).  
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Figure 17. Percentage of hepatic fibrotic area of Hfe-/- mice on 4, 8 and 12 weeks of ND or HFD. 

 

Gene expression analysis by qPCR was employed to measure the expression of the 

inflammatory tumor necrosis factor alpha (Tnf-α) gene. TNF-α is a cell signaling protein 

mainly produced by activated macrophages and involved in systemic inflammation. In 

mice fed HFD for 12 weeks there was a significant increase in Tnf-α expression (p<0.01), 

compared to mice on HFD for 4 weeks (Figure 18A), but Tnf-α mRNA levels were not 
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significantly higher than in animals fed ND. The expression of α-Sma, a commonly used 

marker of hepatic stellate cell differentiation into myofibroblast was also measured by 

qPCR. α-Sma mRNA expression remained unchanged throughout the different 

experimental time points when mice were fed ND. On the other hand, in mice fed HFD 

there was a tendency for α-Sma expression to decrease with time, although no statistical 

significance was achieved (Figure 18B).  
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Figure 18. Hepatic pro-inflammatory and pro-fibrotic gene expression of Hfe-/- mice on 4, 8 and 12 weeks of ND or HFD. 

Expression of Tnf-α mRNA (A) and α-Sma mRNA (B) was determined by qRT-PCR. a. p<0.01 (one-way ANOVA vs. Hfe-

/- mice on 12 weeks of HFD). 
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Part II 

To evaluate the role of excessive parenchymal and mesenchymal hepatic iron deposition 

in the development of hepatic damage, 8 weeks old Hfe-/- and wt female mice, fed a high-

fat, high-sucrose diet (HFD) or a normal diet (ND), were intraperitoneally injected with 

iron dextran every 2 weeks, for a total period of 8 weeks (ND+Fe and HFD+Fe), or left 

untreated.  

 

1. Effects of diet, iron treatment and genotype on body weight 

The food/energy intake and body weight were monitored once every week throughout 

the duration of the experiment. The percentage of body weight gain, liver weight and 

visceral fat weight were calculated at the end of the experiment. The daily food intake of 

HFD-fed wt mice was higher than in mice fed ND. In Hfe-/- mice, however, food 

consumption was independent of the diet (Table 3). When iron was administered, we 

observed a drop in the consumption of both ND and HFD in mice of the two genotypes. 

The daily energy intake followed the same trend and is also depicted in Table 3.  

 

Table 3. Daily food and energy intake.  

Experimental group 
Food intake (g/animal/day) Energy intake (kcal/animal/day) 

ND HFD ND HFD 

Wt mice 2.75 5.09 12.1 26.8 

Wt mice+Fe 2.77 4.06 12.2 21.3 

Hfe-/- mice 2.98 3.13 13.1 16.5 

Hfe-/- mice+Fe 2.47 2.38 10.9 12.5 

 

As expected, mice fed HFD exhibited increased body weight compared to mice on 

ND, independently of the genotype (Figure 19A and 19B). However, when mice were 

treated with iron, this increase was less pronounced, especially on Hfe-/-mice. Hfe-/- mice 

tended to gain more weight over time when fed either a HFD or a ND, compared to wt 

mice. Nevertheless, when iron was intraperitoneally administered to both genotypes, Hfe-

/- mice tended to gain less weight than their counterparts. However, these results were 

only significant when comparing wt and Hfe-/- mice on a ND+Fe (p<0.05) (Figure 19C).  
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Figure 19. Eight-week old wild-type (wt) and Hfe-/- mice on a C57BL/6 background (n=5 females per group) were either 

placed on a normal diet (ND) or a high-fat diet (HFD). Additionally, wt and Hfe-/- mice (n=6 or 7 females per group) were 

given intraperitoneal injections of iron dextran complex every 2 weeks, for 8 weeks, while receiving ND (ND+Fe) or HFD 

(HFD+Fe). Body weight was monitored every week. (A) Body weight of wt mice. (B) Body weight of Hfe-/- mice. (C) 

Percentage of weight gain of wt and Hfe-/- mice. a. p<0.05 (one-way ANOVA vs. Hfe-/- mice on ND+Fe). 

 

Even if not statistically significant, visceral fat weight increased when mice were fed 

a HFD and decreased when iron was administered, regardless of the genotype or diet 

(Figure 20A). Liver weight was significantly lower in Hfe-/- mice, compared to wt mice, 

irrespective of the diet and iron treatment (Figure 20B). There was also a trend for lower 

liver to body weight ratio in Hfe-/- mice regardless of diet and iron treatment (Figure 20C). 

In Hfe-/- mice, both HFD and iron treatment increased liver weight. Iron treatment 

appeared to increase liver weight, although this effect only reached statistical 

significance in Hfe-/- on a ND+Fe, compared to Hfe-/- mice on a ND (p<0.001) (Figure 

20B). Iron dextran increased the liver/body weight ratio in wt mice fed ND or HFD 

(p<0.001) and in Hfe-/- mice fed ND (p<0.0001) (Figure 20C). 
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Figure 20. Eight-week old wild-type (wt) and Hfe-/- mice on a C57BL/6 background (n=5 females per group) were either 

placed on a normal diet (ND) or a high-fat diet (HFD). Additionally, wt and Hfe-/- mice (n=6 or 7 females per group) were 

given intraperitoneal injections of iron dextran complex every 2 weeks while receiving ND (ND+Fe) or HFD (HFD+Fe). 

Visceral fat weight (A), liver weight (B) and liver/body weight ratio (C) in were determined at the end of 8 weeks. a. p<0.01 

(one-way ANOVA vs. Hfe-/- mice on ND). b. p<0.01 (one-way ANOVA vs. Hfe-/- mice on ND+Fe). c. p<0.05 (one-way 

ANOVA vs. Hfe-/- mice on HFD). d. p<0.01 (one-way ANOVA vs. Hfe-/- mice on HFD+Fe). e. p<0.05 (one-way ANOVA vs. 

Hfe-/- mice on ND+Fe). f. p<0.001 (one-way ANOVA vs. Hfe-/- mice on HFD+Fe). g. p<0.001 (one-way ANOVA vs. wt mice 

on ND+Fe). h. p<0.001 (one-way ANOVA vs. wt mice on HFD+Fe). i. p<0.0001 (one-way ANOVA vs. Hfe-/- mice on 

ND+Fe). j. p<0.001 (one-way ANOVA vs. Hfe-/- mice on ND). k. p<0.01 (one-way ANOVA vs. Hfe-/- mice on HFD). l. 

p<0.0001 (one-way ANOVA vs. Hfe-/- mice on HFD+Fe).  

 

2. Effects of diet, iron treatment and genotype on iron 

metabolism 

Hfe-/- mice fed ND had higher hepatic iron content than wt mice (Figure 21A). Serum 

iron (p<0.0001) (Figure 21B) and transferrin saturation (p<0.0001) (Figure 21C) were 

significantly elevated, and histologically detectable iron deposits in the liver parenchyma 

(Figure 22A) were also noticeable in Hfe-/- mice fed ND. Serum iron (p<0.0001) (Figure 

21B) and transferrin saturation (p<0.0001) (Figure 21C) were also significantly higher in 

Hfe-/- mice fed HFD, compared to wt mice. The HFD per se had apparently no effect on 

the hepatic iron content (Figure 21A). As expected, iron dextran administration 

increased the hepatic iron content significantly both in wt mice on ND (p<0.001) and on 

HFD (p<0.01). The same effect was observed in Hfe-/- mice on ND (p<0.0001) and Hfe-/- 

treated mice on HFD (p<0.0001). When comparing genotypes, the hepatic iron stores of 
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Hfe-/- mice were significantly higher than those of wt mice both on ND (p<0.0001) or HFD 

(p<0.0001) (Figure 21A). Serum iron and transferrin saturation were also significantly 

increased in wt mice fed ND (p<0.0001 and p<0.001, respectively) or HFD (p<0.0001 

and p<0.001, respectively) when iron was administered (Figure 21B and 21C). On the 

other hand, the iron treatment caused no further increase in serum iron or transferrin 

saturation in Hfe-/- mice fed either ND or HFD. 
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Figure 21. Eight-week old wild-type (wt) and Hfe-/- mice on a C57BL/6 background (n=5 females per group) were either 

placed on a normal diet (ND) or a high-fat diet (HFD). Additionally, wt and Hfe-/- mice (n=6 or 7 females per group) were 

given intraperitoneal injections of iron dextran complex every 2 weeks while receiving ND (ND+Fe) or HFD (HFD+Fe). 

Hepatic non-heme iron (A), serum iron (B), and transferrin saturation (C) determination on wt and Hfe-/- mice after 8 weeks 

of ND and HFD feeding and iron dextran administration. a. p<0.001 (one-way ANOVA vs. wt mice on ND+Fe). b. p<0.01 

(one-way ANOVA vs. wt mice on HFD+Fe). c. p<0.0001 (one-way ANOVA vs. Hfe-/- mice on ND+Fe). d. p<0.0001 (one-

way ANOVA vs. Hfe-/- mice on HFD+Fe). e. p<0.001 (one-way ANOVA vs. Hfe-/- mice on ND+Fe). f. p<0.0001 (one-way 

ANOVA vs. wt mice on ND+Fe). g. p<0.0001 (one-way ANOVA vs. Hfe-/- mice on ND). h. p<0.0001 (one-way ANOVA vs. 

wt mice on HFD+Fe). i. p<0.001 (one-way ANOVA vs. wt mice on HFD+Fe). 

 

Parenchymal iron overload is related to increased intestinal iron absorption caused 

by deficient hepcidin expression. Iron enters the liver through the portal vein and deposits 

within hepatocytes according to a decreasing gradient from periportal to centrolobular 

areas (Deugnier and Turlin, 2007). Accordingly, liver histology showed that Hfe-/- mice 

accumulated iron in the parenchyma predominantly in periportal areas, irrespective of 

the diets (Figure 22A). Hepatic parenchymal iron deposits were blindly graded and no 



 

 

Figure 22. Representative liver sections from wt and Hfe-/- mice fed ND or HFD and treated with iron dextran complex. (A) Histological detection of iron deposits by Perls iron staining. (B) H&E staining 

for assessment of tissue architecture, steatosis and necroinflammation. (C) Sirius red staining for assessment of liver fibrosis. Original magnification: 100x. 
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histological differences were found between Hfe-/- mice fed ND or HFD, irrespective of 

the iron dextran treatment. On the other hand, wt mice did not accumulate iron within 

their hepatocytes unless iron was intraperitoneally administered (Figures 22A and 23A).  

Mesenchymal iron overload corresponds to iron deposition within Kupffer cells and/or 

portal macrophages (Deugnier and Turlin, 2007). These iron loaded cells, when present, 

were either isolated or grouped without any lobular systematization (Figure 22A). Iron-

rich macrophages were scarcely observed on periportal areas of Hfe-/- mice fed ND and 

HFD, and became abundant throughout the parenchyma of mice of both genotypes after 

iron dextran treatment. Interestingly, Hfe-/- mice fed a HFD+Fe exhibited significantly less 

iron-rich Kupffer cells than their counterparts on ND+Fe, which may indicate a 

modulation of iron metabolism caused by the high-fat diet (Figure 23B). 

p
a

r
e

n
c

h
y

m
a

l 
ir

o
n

 d
e

p
o

s
it

io
n

0

1

2

3

4

w ild - ty p e H fe
- /-

ND

ND+Fe

HFD

HFD+Fe

A

 

m
e

s
e

n
c

h
y

m
a

l 
ir

o
n

 o
v

e
r
lo

a
d

0

1

2

3

a b

c

d

w ild - ty p e H fe
- /-

ND

ND+Fe

HFD

HFD+Fe

B

 

Figure 23. Iron deposits in liver parenchymal, mesenchymal and sinusoidal cells of wt and Hfe-/- mice fed ND or HFD, with 

or without iron dextran treatment. (A). Parenchymal iron deposition. Iron in hepatocytes was graded as 0. No visible iron, 

1. Iron in very few hepatocytes, 2. Iron in 5 – 10% of hepatocytes, 3. Iron in ≥ 40% of hepatocytes, and 4. Abundant iron 

in most hepatocytes (4). (B). Mesenchymal iron deposition. Iron in Kupffer cells was classified as 0. No iron, 1. Iron in < 

one-third of cells, 2. Iron in one third to two thirds of cells and, 3.Abundant iron in more than two-thirds of cells. a. p<0.0001 

(one-way ANOVA vs, wt mice on a ND+Fe). B. p<0.0001 (one-way ANOVA vs. wt mice on a HFD+Fe). c. p<0.01 (one-

way ANOVA vs. Hfe-/- mice on a ND+Fe). d. p<0.05 (one-way ANOVA vs. Hfe-/- mice on a HFD+Fe). 

 

The expression of the iron regulatory hormone hepcidin in the liver was analyzed by 

qPCR. As expected the iron treatment substantially increased Hamp mRNA expression 

in wt mice, independently of the diet (p<0.0001 vs. wt mice on ND and p<0.0001 vs. wt 

mice on HFD). In Hfe-/- mice, the expression of Hamp mRNA was lower and was not 

significantly altered by the iron treatment or diet (Figure 24). Nevertheless, HFD feeding 

appeared to decrease Hamp levels both in wt and Hfe-/- mice. 
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Figure 24. Eight-week old wild-type (wt) and Hfe-/- mice on a C57BL/6 background (n=5 females per group) were either 

placed on a normal diet (ND) or a high-fat diet (HFD). Additionally, wt and Hfe-/- mice (n=6 or 7 females per group) were 

given intraperitoneal injections of iron dextran complex every 2 weeks while receiving ND (ND+Fe) or HFD (HFD+Fe). 

Hepatic hepcidin (Hamp) mRNA expression was analyzed by qPCR at the end of 8 weeks. a. p<0.0001 (one-way ANOVA 

vs. wt mice on ND+Fe). b. p<0.0001 (one-way ANOVA vs. wt mice on HFD+Fe).  

 

3. Effects of diet, iron treatment, and genotype on hepatic lipid 

metabolism 

The main aim of these experiments was to examine the effects of iron treatment and 

dietary regimens on the development of NAFLD, the hepatic manifestation of the 

metabolic syndrome. Hyperglycemia is a condition in which blood glucose levels are 

elevated. The most common cause of hyperglycemia is diabetes, a condition in which 

the pancreas does not produce enough insulin or cells of the body become insulin 

resistant. Both conditions are associated with metabolic syndrome development. Under 

ND, Hfe-/- mice have lower serum glucose levels at starvation than wt animals (Figure 

25A). In wt mice, serum glucose levels were not affected by diet or iron treatment, 

although there was a trend for increased serum glucose in mice fed a HFD and treated 

with iron. On the other hand, in Hfe-/- mice, HFD intake seamed to increase serum 

glucose levels; however, no statistical significance was reached (Figure 25A).  

Animal fats are complex mixtures mostly comprised of triglycerides, with lower 

amounts of phospholipids and cholesterol. High blood cholesterol is one of the major risk 

factors for heart disease. As expected, the HFD promoted a significant increase in serum 

cholesterol levels, particularly in Hfe-/- mice (Figure 25B). Triglycerides are the most 

common form of fat in the body and elevated levels may cause fatty liver disease. Serum 

triglyceride levels (Figure 25C) showed no significant differences between treatments 

within the same genotype. Nonetheless, serum triglyceride levels seemed to be higher 

in Hfe-/- mice fed HFD or HFD+Fe (p<0.05), compared to wt mice on a HFD. Concerning 

hepatic triglyceride content, no differences could be attributable to genotype or 

consumption of HFD. However, hepatic triglyceride levels were significantly lower in iron-
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treated Hfe-/- mice fed ND and HFD (p<0.05), when compared to iron-treated wt animals 

(Figure 25D).  
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Figure 25. Eight-week old wild-type (wt) and Hfe-/- mice on a C57BL/6 background (n=5 females per group) were either 

placed on a normal diet (ND) or a high-fat diet (HFD). Additionally, wt and Hfe-/- mice (n=6 or 7 females per group) were 

given intraperitoneal injections of iron dextran complex every 2 weeks while receiving ND (ND+Fe) or HFD (HFD+Fe). 

Analysis of serum glucose at starvation (A), serum cholesterol (B), serum triglycerides (C), and liver triglycerides were 

determined after 8 weeks on the diet. a. p<0.05 (one-way ANOVA vs Hfe-/- mice on ND). b. p<0.05 (one-way ANOVA vs 

Hfe-/- mice on HFD+Fe). c. p<0.05 (one-way ANOVA vs Hfe-/- mice on HFD). d. p<0.05 (one-way ANOVA vs Hfe-/- mice 

on ND+Fe).  

 

The characterization of hepatic steatosis was performed by blinded grading of the 

histological degree of steatosis in each group. Under ND and ND+Fe, Hfe-/- mice did not 

develop any signs of steatosis and only one wt individual in the ND group and one 

individual in the ND+Fe group presented with light steatosis. On the other hand, 

practically all wt and Hfe-/- mice from the HFD groups developed light to moderate hepatic 

steatosis. Its degree was, however, higher in wt individuals fed a HFD (p<0.05) or a 

HFD+Fe (p<0.01), compared to Hfe-/- mice on the same set of experimental treatments. 

These results suggest a connection between elevated iron deposits as seen in Hfe-/- mice 

and fat deposition. Steatosis was either microvesicular, macrovesicular or mixed and it 

was predominantly located in zone 1. (Figure 22B and 26).  
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Figure 26. Grading of liver steatosis in wt and Hfe-/- mice on ND or HFD for 8 weeks and either treated or untreated with 

iron dextran complex. Steatosis was graded as 0. Absent (<5%), 1. Light (5%–33%), 2. Moderate (>33%–66%) or 3. 

Severe (>66%), according to the amount of surface area of parenchyma visually determined to be involved by steatosis 

a. p<0.05 (one-way ANOVA vs. wt mice on HFD). b. p<0.01 (one-way ANOVA vs. wt mice on HFD+Fe). 

 

4. Effects of diet, iron treatment, and genotype on hepatic 

inflammation and fibrosis  

The diagnosis of nonalcoholic steatohepatitis (NASH) is defined by the presence and 

pattern of specific histological abnormalities on liver biopsy such as steatosis, 

inflammation and hepatocyte ballooning in the absence of significant alcohol 

consumption. The presence of liver fibrosis is not necessary for a NASH diagnosis, but 

it is often a consequence of NASH development. Serum alanine transaminase (ALT) 

activity is commonly measured in the clinics as a part of a diagnostic evaluation of 

hepatocellular injury. Under ND or HFD, Hfe-/- mice did not exhibit elevated values of this 

liver-derived serum transaminase, compared to wt controls (Figure 27). Iron treatment 

per se did not have an effect on serum ALT in Hfe-/- mice, but appeared to significantly 

decrease ALT activity in the livers of wt mice.  
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Figure 27. Analysis of serum transaminase ALT in wt and Hfe-/- mice on ND or HFD and either treated or untreated with 

iron for 8 weeks. a. p<0.0001 (one-way ANOVA vs. wt mice on ND+Fe). b. p<0.01 (one-way ANOVA vs. Hfe-/- mice on 

ND). c. p<0.001 (one-way ANOVA vs. Hfe-/- mice on HFD).  
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Liver sections stained with H&E were inspected for histological analysis and grading 

of inflammation. While areas with very mild infiltration of inflammatory cells were 

documented in every group (Figure 28A), there was no evidence of iron-induced 

necroinflammation (Figure 22B). Histological grading of liver sections stained with Sirius 

red showed none to mild or moderate zone 3 fibrosis, as well as portal/periportal and 

perisinusoidal fibrosis in every experimental group. However, the only significant 

increase was in Hfe-/- on HFD (p<0.01) which was normalized following HFD+Fe intake 

(Figures 22C and 28B). No hepatocyte ballooning was documented in any of the 

experimental groups. 

h
e

p
a

ti
c

 i
n

fl
a

m
m

a
ti

o
n

0

1

2

3

w ild - ty p e H fe
- /-

ND

ND+Fe

 HFD

HFD+Fe

A

fi
b

r
o

s
is

 d
e

g
r

e
e

0

1

2

3

4

w ild - ty p e H fe
- /-

ND

ND+Fe

HFD

HFD+Fe

B

 

Figure 28. Histological grading of liver sections by H&E staining on wt and Hfe-/- fed ND or HFD for 8 weeks and either 

treated or untreated with iron dextran complex. (A) Hepatic inflammation degree. Inflammation was graded according to 

the overall assessment of all inflammatory foci as 0. No foci, 1. <2 foci per 200X field, 2. 2-4 foci per 200X field and, 3. >4 

foci per 200X field. (B) Hepatic fibrosis degree. Liver sections were graded according to the amount of parenchyma with 

visible fibrosis as 0. None, 1. Mild to moderate, zone 3, or portal/periportal only, 2. Portal/periportal and perisinusoidal, 3. 

Bridging fibrosis and 4. Cirrhosis. 

 

Gene expression analysis by qPCR was employed to measure the expression of Tnf-

α and α-Sma. In wt mice, the expression of Tnf-α mRNA was significantly increased in 

response to iron, irrespective of the diet (p<0.01). In the Hfe-/- group, Tnf-α mRNA was 

also increased when both ND and HFD fed mice were given the iron treatment, but this 

increase was only significant for mice fed ND+Fe (p<0.05) (Figure 29A). In wt mice, α-

Sma expression also appeared to increase in response to iron, although the effect only 

reached statistical significance for wt mice fed ND+Fe (Figure 29B).  
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Figure 29. Hepatic pro-inflammatory and pro-fibrotic gene expression in wt and Hfe-/- mice fed ND or HFD and either 

treated or untreated with iron dextran complex. Expression of Tnf-α mRNA (A) and α-Sma mRNA (B) was determined by 

qRT-PCR at the end of 8 weeks. a. p<0.01 (one-way ANOVA vs. wt mice on a ND+Fe). b. p<0.01 (one-way ANOVA vs. 

wt mice on a HFD+Fe). c. p<0.05 (one-way ANOVA vs. Hfe-/- mice on a ND+Fe). d. p<0.05 (one-way ANOVA vs. wt mice 

on a ND+Fe).  
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Part III 

To evaluate the effect of age on the development of hepatic steatosis and steatohepatitis, 

Hfe-/-, Nrf2-/- and wt mice on C57BL/6 background received  HFD for 12 weeks, starting 

at 8 or at approximately 52 weeks of age . These ages were selected to reflect the normal 

physiology of young and middle-aged mice, respectively. Control groups consisted of 

mice of the same genotype and age fed a standard rodent diet (SD). Since the samples 

from mice on SD had already been collected in the host laboratory, some data were only 

assessed for HFD-fed mice. 

 

1. Effects of diet, age, and genotype on body weight 

The food and energy intake, as well as the body weight of young and middle-aged wt, 

Nrf2-/- and Hfe-/- animals on HFD was monitored once every week. The percentage of 

body weight gain, liver weight and visceral fat weight were calculated at the end of the 

experiment. The daily food and energy intake of middle-aged wt and Nrf2-/- mice fed HFD 

was lower compared to younger counterparts, whereas in Hfe-/- mice food consumption 

was independent of age (Table 4). Young Hfe-/- mice consumed less food/energy than 

their wt and Nrf2-/- counterparts. 

 

Table 4. Daily food and energy intake. 

Experimental group Age 

Food intake 

(g/animal/day) 

Energy intake 

(kcal/animal/day) 

HFD HFD 

Wt 
Young 4.94 25.99 

Middle-aged 3.44 18.09 

Nrf2-/- 
Young 5.12 26.90 

Middle-aged 2.89 15.18 

Hfe-/- 
Young 3.02 15.86 

Middle-aged 3.25 17.11 

 

Feeding HFD for 12 weeks resulted in an increase in body weight in young mice of 

the 3 genotypes (Figure 30A). Despite similar food/energy intake, Nrf2-/- mice displayed 

significantly higher body weight (Figure 30A) and weight gain (Figure 30C), compared 

to their young wt counterparts (p<0.0001). The body weight and weight gain of young 

Hfe-/- mice, on the other hand, were not significantly different from those of wt mice. The 

HFD has also increased the body weight of middle-aged wt and Nrf2-/- mice (Figure 30B) 

but, contrary to young mice, the weight gain was similar in both groups (Figure 30C). It 

is worth noting that middle-aged Hfe-/- mice did not appear to gain weight after 12 weeks 

of HFD feeding (p<0.001) (Figure 30B and 30C). This may be explained by the 
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development of liver tumors in all mice of this experimental group, as depicted in Figure 

31. 
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Figure 30. Body weight gain in young and middle-aged wt, Nrf2-/- and Hfe-/- mice after 12 weeks of HFD feeding. The body 

weight of (A) young and (B) middle-aged mice was determined weekly. (C) The percentage of weight gain was determined 

at the end of the experiment. a. p<0.0001 (one-way ANOVA vs. young Nrf2-/- mice on HFD). b. p<0.01 (one-way ANOVA 

vs. middle-aged Nrf2-/- mice on HFD). c. p<0.001 (one-way ANOVA vs. middle-aged Hfe-/- mice on HFD).  

 

 

Figure 31. Hepatic tumors in middle-aged Hfe-/- mice fed HFD for 12 weeks. Two representative animals are shown. The 

right panels show H&E staining of a liver tumor section denoting abundant mitotic cells (arrowheads) and apoptotic bodies 

(arrows). 
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The visceral fat weight was also determined after the 12 weeks of HFD feeding. Young 

Nrf2-/- mice had considerably more visceral fat than wt and Hfe-/- animals of the same 

age. The visceral fat weight tended to increase in middle-aged wt and Hfe-/- mice, 

compared to younger counterparts, although statistical significance was not reached. 

The visceral fat weight of middle-aged Nrf2-/- mice was similar to what was observed in 

young mice of the same genotype and in middle-aged wt mice (Figure 32A). Liver weight 

was determined for mice that received SD and HFD. As for the visceral fat, the HFD 

increased liver weight in middle-aged mice of all genotypes and in young Nrf2-/- mice 

(Figure 32B). In middle-aged wt and Hfe-/- mice fed HFD, liver weight increased to a 

similar extent when comparing with both HFD-fed young mice (p<0.0001) and SD-fed 

middle-aged counterparts (p<0.0001). Young (p<0.0001) and middle-aged (p<0.0001) 

Nrf2-/- mice had significantly heavier livers when fed HFD, compared to SD-fed 

counterparts. The ratio was substantially higher in the Hfe-/- mice, likely reflecting the 

growth of liver tumors in these animals (Figure 32C).  
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Figure 32. Visceral fat weight (A), liver weight (B) and liver/body weight ratio (C) in young and middle-aged wt, Nrf2-/-, 

and Hfe-/- mice after 12 weeks of SD or HFD feeding. a. p<0.0001 (one-way ANOVA vs. young Nrf2-/- mice on SD). b. 

p<0.0001 (one-way ANOVA vs. middle-aged wt mice on HFD). c. p<0.001 (one-way ANOVA vs. young Nrf2-/- mice on 

HFD). d. p<0.0001 (one-way ANOVA vs. middle-aged Nrf2-/- mice on HFD). e. p<0.0001 (one-way ANOVA vs. young Nrf2-

/- mice on HFD). f. p<0.05 (one-way ANOVA vs. middle-aged Nrf2-/- mice on HFD). g. p<0.0001 (one-way ANOVA vs. 

middle-aged Hfe-/- mice on HFD). h. p<0.05 (one-way ANOVA vs. middle-aged wt mice on HFD). i. p<0.001 (one-way 

ANOVA vs. middle-aged wt mice on HFD). j. p<0.01 (one-way ANOVA vs. middle-aged Nrf2-/- mice on HFD). k. p<0.01 

(one-way ANOVA vs. middle-aged Hfe-/- mice on HFD).  
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2. Effects of diet, age, and genotype on iron metabolism 

As expected, young Hfe-/- mice fed SD or HFD showed significantly increased levels of 

hepatic iron concentration (Figure 33A), serum iron (Figure 33C) and transferrin 

saturation (Figure 33D), compared to young wt mice on the same diets. On the contrary, 

middle-aged Hfe-/- mice presented only a significant increase in serum iron, compared to 

wt counterparts. In agreement with the two previous experiments, both young (p<0.0001) 

and middle-aged (p<0.05) Hfe-/- mice on HFD showed significant lower non-heme iron 

concentrations, compared to mice fed SD. The same was, however, not evidenced for 

serum iron and transferrin saturation. Interestingly, middle-aged Hfe-/- mice on either SD 

(p<0.0001) or HFD (p<0.0001) presented a significant decrease in hepatic non-heme 

iron concentration compared to their younger counterparts. Wt and Nrf2-/- mice, on the 

other hand, did not present any significant variations in hepatic non-heme iron 

concentration, serum iron or transferrin saturation as a result of age or diet. The total 

amount of iron stored in the liver, however, increased significantly in HFD-fed middle-

aged wt mice, compared to their young counterparts (p<0.05) (Figure 33B), which is 

likely attributed to the increased liver weight of mice fed HFD (Figure 32B). Iron stores 

were also significantly higher in HFD-fed middle-aged Hfe-/- mice (p<0.001), compared 

to their younger counterparts.  
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Figure 33. Hepatic non-heme iron, serum iron and transferrin saturation in young and middle-aged wt, Nrf2-/- and Hfe-/- 

mice after 12 weeks of SD or HFD feeding. Hepatic iron stores were expressed as (A) micrograms of iron per gram of dry 
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tissue weight or (B) total liver iron. (C) Serum iron. (D) Transferrin saturation. a. p<0.0001 (one-way ANOVA vs. young 

Hfe-/- mice on SD). b. p<0.0001 (one-way ANOVA vs. young Hfe-/- mice on HFD). c. p<0.0001 (one-way ANOVA vs. 

middle-aged Hfe-/- mice on SD). d. p<0.0001 (one-way ANOVA vs. middle-aged Hfe-/- mice on HFD). e. p<0.05 (one-way 

ANOVA vs. middle-aged Hfe-/- mice on HFD). f. p<0.05 (one-way ANOVA vs. middle-aged wt mice on HFD). g. p<0.001 

(one-way ANOVA vs. young Hfe-/- mice on SD). h. p<0.01 (one-way ANOVA vs. young Hfe-/- mice on HFD). i. p<0.01 (one-

way ANOVA vs. middle-aged Hfe-/- mice on HFD).  

 

Parenchymal and mesenchymal iron load were blindly graded in histological liver 

sections stained with Perls Prussian blue. Young and middle-aged Hfe-/- mice on SD 

displayed a significantly greater parenchymal iron deposition, compared to wt mice of 

the same age and diet and to their HFD-fed counterparts (Figure 34A). Analysis of liver 

sections stained with Perls Prussian blue revealed that iron accumulated predominantly 

periportal areas (Figures 35A and 36A). On the other hand, parenchymal iron deposition 

was nearly undetected in middle-aged Hfe-/- mice fed HFD. Young (Figure 35A) and 

middle-aged (Figure 36A) wt and Nrf2-/- mice also did not exhibit significant iron deposits 

in liver parenchyma. Mesenchymal iron deposition, in turn, was rarely observed in Hfe-/- 

mice and was practically absent in wt and Nrf2-/- mice (Figure 34B). 
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Figure 34. Histological grading of hepatic iron load in young and middle-aged wt, Nrf2-/-, and Hfe-/- mice after 12 weeks of 

SD or HFD feeding. (A) Parenchymal iron deposition. Iron in hepatocytes was graded as 0. No visible iron, 1. Iron in very 

few hepatocytes, 2. Iron in 5 – 10% of hepatocytes, 3. Iron in ≥ 40% of hepatocytes, and 4. Abundant iron in most 

hepatocytes (4). (B) Mesenchymal iron deposition. Iron in Kupffer cells was classified as 0. No iron, 1. Iron in < one-third 

of cells, 2. Iron in one third to two thirds of cells and, 3.Abundant iron in more than two-thirds of cells. a. p<0.0001 (one-

way ANOVA vs. young Hfe-/- mice on SD). b. p<0.0001 (one-way ANOVA vs. young Hfe-/- mice on HFD). c. p<0.0001 

(one-way ANOVA vs. middle-aged Hfe-/- mice on SD). d. p<0.0001 (one-way ANOVA vs. middle-aged Hfe-/- mice on HFD). 

e. p<0.05 (one-way ANOVA vs. young Hfe-/- mice on HFD).  

 



 

 

Figure 35. Representative liver sections from young wt, Hfe-/-, and Nrf2-/- mice fed SD or HFD for 12 weeks. (A) Histological detection of iron deposits by Perls iron staining. (B) H&E staining for 

assessment of tissue architecture, steatosis and inflammation. (C) Sirius red staining for assessment of liver fibrosis. Original magnification: 100x.   



 

 

Figure 36. Representative liver sections from middle-aged wt, Nrf2-/-, and Hfe-/- mice fed SD or HFD for 12 weeks. (A) Histological detection of iron deposits by Perls iron staining. (B) H&E staining for 

assessment of tissue architecture, steatosis and inflammation. (C) Sirius red staining for assessment of liver fibrosis. Original magnification: 100x. 
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3. Effects of diet, age, and genotype on glucose tolerance and 

hepatic lipid metabolism 

To establish whether mice of different age and genotype acquire insulin resistance after 

administration of HFD, an intraperitoneal glucose tolerance test (IGTT) was performed. 

After fasting for 6 h, baseline blood glucose levels were determined and mice were 

administered glucose intraperitoneally. Blood glucose measurements were repeated at 

30, 60, 90 and 120 min after the glucose bolus. IGTT showed that, unlike their young 

counterparts, middle-aged wt mice fed HFD for 12 weeks were not able to clear glucose 

from the peripheral circulation within 120 minutes post glucose administration (Figure 

37A). On the other hand, the rate of glucose clearance in young and middle-aged Nrf2-/- 

mice was similar (Figure 37B). Notably, young Nrf2-/- mice displayed a lower glucose 

disposal rate, as illustrated by significantly higher estimates of the area under the curve 

(AUC), similar to the AUCs observed for older mice of both genotypes (Figure 37D). 

Whilst the test was not performed on young Hfe-/- mice, middle-aged Hfe-/- animals fed 

HFD showed a normal IGTT, compared to wt counterparts (Figure 37C).  
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Figure 37. Intraperitoneal glucose tolerance test (IGTT) on young and middle-aged wt, Nrf2-/-, and Hfe-/- mice after 12 

weeks of HFD feeding. (A, B and C) Blood glucose levels in wt, Nrf2-/-, and Hfe-/-, respectively, over a 2 h interval. (D) The 

amount of glucose cleared from the circulation as calculated from the area under the curve (AUC) from (A), (B) and (C). 

a. p<0.05 (one-way ANOVA vs. young Nrf2-/- mice on HFD). 
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Regarding serum cholesterol levels (Figure 38A), no significant differences could be 

attributed to age in the wt and Nrf2-/- groups fed HFD. However, middle-aged Hfe-/- mice 

on HFD showed significantly higher levels of serum cholesterol, compared to wt and 

Nrf2-/- counterparts and to young Hfe-/- mice. Serum triglyceride levels (Figure 38B) 

showed no significant differences between treatments within the same genotype, except 

for Hfe-/- mice, which exhibited significantly higher serum triglyceride levels in middle-

aged mice fed HFD (p<0.01), compared to younger counterparts. Nonetheless, serum 

triglyceride levels were significantly higher in young Nrf2-/- mice, compared to wt 

counterparts, and in middle-aged Hfe-/- mice, compared to wt counterparts. Concerning 

the hepatic triglyceride content (Figure 38C), Nrf2-/- mice fed HFD presented with 

significantly higher hepatic triglyceride levels, compared to younger wt and Hfe-/- 

counterparts and middle-aged Nrf2-/- animals. Under HFD, both young and middle-aged 

Hfe-/- mice had significantly lower levels of hepatic triglycerides than wt counterparts.  
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Figure 38. Analysis of serum cholesterol (A), serum triglycerides (B), and liver triglycerides (C) of young and middle-aged 

wt, Nrf2-/-, and Hfe-/- mice after 12 weeks of HFD feeding. a. p<0.01 (one-way ANOVA vs. middle-aged Hfe-/- mice on 

HFD). b. p<0.001 (one-way ANOVA vs. middle-aged Hfe-/- mice on HFD). c. p<0.0001 (one-way ANOVA vs. middle-aged 

Hfe-/- mice on HFD). d. p<0.05 (one-way ANOVA vs. young Nrf2-/- mice on HFD). e. p<0.01 (one-way ANOVA vs. young 

Nrf2-/- mice on HFD). f. p<0.001 (one-way ANOVA vs. young Hfe-/- mice on HFD). g. p<0.0001 (one-way ANOVA vs. 

middle-aged Nrf2-/- mice on HFD). h. p<0.0001 (one-way ANOVA vs. young Hfe-/- mice on HFD). 
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4. Effects of diet, age, and genotype on steatohepatitis and 

fibrosis 

Under SD, young and middle-aged mice did not exhibit elevated serum ALT activity, 

regardless of genotype (Figure 39). The HFD caused significantly higher levels of this 

liver-derived serum transaminase in middle-aged wt, Hfe-/- and Nrf2-/- mice and also in 

young Nrf2-/- mice. Middle-aged Hfe-/- mice had the most elevated levels of serum ALT 

activity, likely due to the presence of hepatic tumors in mice from this experimental group.  
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Figure 39. Analysis of serum ALT activity in young and middle-aged wt, Nrf2-/-, and Hfe-/- mice after 12 weeks of SD or 

HFD feeding. a. p<0.0001 (one-way ANOVA vs. middle-aged wt mice on HFD). b. p<0.05 (one-way ANOVA vs. young 

Nrf2-/- mice on HFD). c. p<0.0001 (one-way ANOVA vs. middle-aged Hfe-/- mice on HFD). d. p<0.001 (one-way ANOVA 

vs. young Nrf2-/- mice on HFD). e. p<0.0001 (one-way ANOVA vs. middle-aged Nrf2-/- mice on HFD). f. p<0.0001 (one-

way ANOVA vs. young Hfe-/- mice on HFD). 

 

The characterization of hepatic steatosis was performed by blind grading of the 

histological degree of steatosis in liver sections stained with H&E. Mixed sized vesicles 

(microvesicles and macrovesicles) were only visible in the HFD-fed groups, 

independently of the genotype. Young and middle-aged wt, Nrf2-/- and Hfe-/- mice 

exhibited signs of zone 1 macrovesicular steatosis and zone 3 microvesicular steatosis 

(Figures 35B and 36B). Upon HFD feeding, all young Nrf2-/- mice and middle-aged wt 

and Nrf2-/- mice developed severe steatosis. Hfe-/- mice and young wt mice exhibited light 

to moderate steatosis (Figure 40). Young and middle-aged individuals fed SD did not 

develop any signs of hepatic steatosis. 
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Figure 40. Grading of liver steatosis in young and middle-aged wt, Nrf2-/-, and Hfe-/- mice after 12 weeks of SD or HFD 

feeding. Steatosis was graded as 0. Absent (<5%), 1. Light (5%–33%), 2. Moderate (>33%–66%) or 3. Severe (>66%), 

according to the amount of surface area of parenchyma visually determined to be involved by steatosis. 

 

Liver sections stained with H&E were also inspected for histological analysis and 

grading of inflammation. Areas with mild infiltration of inflammatory cells were 

documented in nearly every experimental group, especially in mice fed HFD (Figure 

41A). Inflammation was significantly higher in middle-aged Nrf2-/- and Hfe-/- mice fed 

HFD, compared to younger HFD-fed and middle-aged ND-fed counterparts. Hepatocyte 

ballooning is a form of liver parenchymal cell death that is usually associated with fatty 

degeneration. Ballooned cells are typically two to three times the size of adjacent 

hepatocytes and are characterized by a clear or vacuolated cytoplasm and pyknotic 

nuclei on H&E stained sections (Yip and Burt, 2006). Significant hepatocyte ballooning 

was observed in middle-aged wt mice fed HFD and, to a greater extent, in young and 

middle-aged Nrf2-/- mice fed the same diet (Figure 41B). For illustration purposes, 

Figures 42A and 42B depict a contiguous patch of hepatocytes with prominent 

ballooning injury in a middle-aged Nrf2-/- mouse after 12 weeks of HFD feeding.  
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Figure 41. Histological grading of hepatic inflammation and hepatocyte ballooning in young and middle-aged wt, Nrf2-/-, 

and Hfe-/- mice after 12 weeks of SD or HFD feeding. (A) Hepatic inflammation degree. Inflammation was graded according 

to the overall assessment of all inflammatory foci as 0. No foci, 1. <2 foci per 200X field, 2. 2-4 foci per 200X field and, 3. 

>4 foci per 200X field. (B) Hepatocyte ballooning degree. Hepatocyte ballooning was classified as 0. None, 1. Few 

ballooned cells, and 2. Many ballooned cells. a. p<0.001 (one-way ANOVA vs. middle-aged Nrf2-/- mice on HFD). b. 

p<0.0001 (one-way ANOVA vs. middle-aged Nrf2-/- mice on HFD). c. p<0.001 (one-way ANOVA vs. middle-aged Hfe-/- 
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mice on HFD). d. p<0.01 (one-way ANOVA vs. middle-aged Hfe-/- mice on HFD). e. p<0.0001 (one-way ANOVA vs. 

middle-aged wt mice on HFD). f. p<0.0001 (one-way ANOVA vs. young Nrf2-/- mice on HFD). g. p<0.0001 (one-way 

ANOVA vs. middle-aged Hfe-/- mice on HFD). 

 

 

Figure 42. Representative liver sections from middle-aged Nrf2-/- mice on HFD for 12 weeks. (A) Periportal (zone 1) 

macrovesicular steatosis and perivenular (zone 3) microsteatosis and ballooning degeneration of hepatocytes. (B) 

Ballooned hepatocytes with enlarged, rarefied cytoplasm. Original magnification: 100x and 400x. 

 

The staging of hepatic fibrosis was performed on liver sections stained with Sirius red. 

Within each genotype, the highest stages of fibrosis were seen in middle-aged mice fed 

HFD. Middle-aged wt and Nrf2-/- mice showed mild to moderate zone 3 fibrosis, as well 

as portal/periportal and perisinusoidal fibrosis (Figure 43A). More advanced stages of 

liver fibrosis, such as bridging fibrosis and cirrhosis were only detected in middle-aged 

Hfe-/- mice fed HFD. The percentage of hepatic fibrotic area was also determined and 

corroborated the staging (Figure 43B). It is worth noting that young Nrf2-/- mice fed HFD 

presented a significant increase in the percentage of fibrotic area, compared to wt and 

Hfe-/- counterparts and to SD-fed young Nrf2-/- mice.  
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Figure 43. Histological evaluation of liver fibrosis by Sirius red staining of young and middle-aged wt, Nrf2-/-, and Hfe-/- 

mice after 12 weeks of SD or HFD feeding. (A) Hepatic fibrosis degree. Liver sections were graded according to the 

amount of parenchyma with visible fibrosis as 0. None, 1. Mild to moderate, zone 3, or portal/periportal only, 2. 

Portal/periportal and perisinusoidal, 3. Bridging fibrosis and 4. Cirrhosis. (B) Percentage of hepatic fibrotic area. a. p<0.05 

(one-way ANOVA vs. middle-aged Hfe-/- mice on HFD). b. p<0.0001 (one-way ANOVA vs. middle-aged Hfe-/- mice on 

HFD). c. p<0.05 (one-way ANOVA vs. middle-aged wt mice on HFD). d. p<0.0001 (one-way ANOVA vs. young Nrf2-/- 
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mice on HFD). e. p<0.0001 (one-way ANOVA vs. middle-aged Nrf2-/- mice on HFD). f. p<0.0001 (one-way ANOVA vs. 

young Hfe-/- mice on HFD). g. p<0.01 (one-way ANOVA vs. middle-aged Nrf2-/- mice on HFD). 

 

The NAFLD activity score (NAS) is the sum of the separate scores for steatosis (0–

3), hepatocellular ballooning (0–2) and lobular inflammation (0–3) and is represented in 

Figure 44. The HFD elevated the NAS score in wt mice, but the effect appeared to be 

age-dependent. In Nrf2-/- mice, however, the NAS score was greatly elevated by the HFD 

in both young and middle-aged animals. 
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Figure 44. NAFLD activity score (NAS) in young and middle-aged wt, Nrf2-/-, and Hfe-/- mice after 12 weeks of SD or HFD 

feeding. 

 

Gene expression analysis by qPCR was employed to measure the hepatic expression 

of NAD(P)H dehydrogenase [quinone] 1 (Nqo1), Tnf-α, α-Sma and Hamp. Nqo1 encodes 

a 2-electron reductase and its enzymatic activity includes the detoxification of reactive 

oxygen species. Nqo1 induction is regulated through the Keap1/NRF2/ARE pathway 

(Dinkova-Kostova et al., 2002). As expected, hepatic Nqo1 mRNA expression was lower 

in Nrf2-/- mice, compared to wt and Hfe-/- mice (Figure 45A). Middle-aged Hfe-/- fed HFD 

mice displayed significantly increased levels of Nqo1 mRNA, compared to wt and Nrf2-/- 

counterparts and to young Hfe-/- mice fed HFD and middle-aged Hfe-/- mice fed SD. Tnf-

α mRNA expression increased in middle-aged wt, Nrf2-/- and Hfe-/- mice and also in young 

Nrf2-/- and Hfe-/- mice (Figure 45B). However, this increase was only statistically 

significant in young Hfe-/- mice fed HFD and middle-aged wt mice. The expression of α-

Sma was also measured by qPCR (Figure 45C). A trend for increased α-Sma expression 

was observed in young and middle-aged Nrf2-/- mice and in middle-aged Hfe-/- mice, 

although no statistical significance was achieved. Interestingly, the consumption of HFD 

appeared to reduce the Hamp transcript levels in mice of all genotypes and age groups 

(Figure 45D). 
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Figure 45. Hepatic gene expression in young and middle-aged wt, Nrf2-/-, and Hfe-/- mice after 12 weeks of SD or HFD 

feeding. Expression of Nqo1 mRNA (A), Tnf-α mRNA (B) and α-Sma mRNA (C) was determined by qRT-PCR. a. 

p<0.0001 (one-way ANOVA vs. middle-aged Hfe-/- mice on HFD). b. p<0.001 (one-way ANOVA vs. young Hfe-/- mice on 

HFD). c. p<0.01 (one-way ANOVA vs. middle-aged wt mice on HFD). d. p<0.001 (one-way ANOVA vs. middle-aged wt 

mice on HFD). e. p<0.01 (one-way ANOVA vs. middle-aged Hfe-/- mice on ND). f. p<0.0001 (one-way ANOVA vs. young 

Nrf2-/- mice on HFD). g. p<0.001 (one-way ANOVA vs. middle-aged Nrf2-/- mice on HFD). h. p<0.05 (one-way ANOVA vs. 

young Hfe-/- mice on HFD). 

 

5. Effects of diet, age, and genotype on lipid peroxidation 

To evaluate the degree of lipid peroxidation, hepatic TBARS (thiobarbituric acid reactive 

substances) were quantified and reported as MDA equivalents. TBARS are formed as a 

byproduct of lipid peroxidation and thus represent markers of oxidative stress. Levels of 

MDA equivalents were unchanged in Hfe-/- mice but were significantly increased in 

middle-aged wt and Nrf2-/- mice fed HFD, compared to young counterparts fed HFD and 

middle-aged mice fed SD (Figure 46).  
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Figure 46. Hepatic MDA equivalents in young and middle-aged wt, Nrf2-/-, and Hfe-/- mice after 12 weeks of SD or HFD 

feeding. a. p<0.0001 (one-way ANOVA vs. middle-aged wt mice on HFD). b. p<0.0001 (one-way ANOVA vs. middle-aged 

Hfe-/- mice on HFD). c. p<0.01 0001 (one-way ANOVA vs. middle-aged Hfe-/- mice on HFD). d. p<0.01 (one-way ANOVA 

vs. middle-aged Nrf2-/- mice on HFD). e. p<0.001 (one-way ANOVA vs. middle-aged Nrf2-/- mice on HFD). 
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Discussion 

NASH is characterized by the presence of hepatocellular steatosis, fatty degeneration of 

hepatocytes and lobular inflammation. The deposition of collagen fibers, although not 

obligatory, is often observed. NASH may arise from a “two-step” process in which fat 

accumulation derived from insulin resistance first leads to hepatic steatosis. The liver is 

the prime target for fat deposition and the mechanism whereby TG accumulate within 

hepatocytes is attributed to both an increase uptake of FFA and a reduced TG secretion 

via VLDL (Rinella et al., 2008). Subsequently, oxidative stress derived from increased 

lipid β-oxidation and a number of other intracellular and extracellular triggers may drive 

inflammation and hepatocyte ballooning (Day and James, 1998; Tanaka et al., 2008; 

Tariq et al., 2014). The triad of steatosis, inflammation and hepatocyte ballooning is 

considered essential for a NASH diagnosis, while the presence of fibrosis is not required 

for diagnostic purposes.  

In this study a high-fat, high-sucrose diet model was used to assess the development 

of NASH in mice. Several studies have focused on the effects of other steatosis-inducing 

diets such as the methionine- and choline-deficient diet (MCD), which promotes 

intrahepatic lipid accumulation in rodents (Chowdhry et al., 2010; Sugimoto et al., 2010; 

Zhang et al., 2010). However, the MCD diet is of limited value as a human disease model, 

as mice fed this diet only develop hepatic symptomatology and do not exhibit any signs 

of insulin resistance. The high-fat, high-sucrose diet (or ‘western-type’ diet), on the other 

hand, is the most reliable representation of the clinical situation whereby patients develop 

NASH in the settings of obesity, insulin resistance, dyslipidemia and metabolic 

syndrome. Several authors have demonstrated that the over-nutrition provided by a 

modern Western-type diet, not only from vegetable or animal fat sources (fatty acids and 

cholesterol), but also from the inclusion of carbohydrates in the diet (fructose and 

sucrose) is of utmost importance for steatohepatitis development (Fakhoury-Sayegh et 

al., 2015; Meli et al., 2013; Moriya et al., 2012; Ragab et al., 2015; Takai et al., 2015; 

Tan et al., 2011).  

 

1. Parenchymal and mesenchymal iron overload did not promote hepatic injury in 

wild-type and Hfe knock-out mice fed a high-fat diet 

The liver is one of the main sites for iron storage in the organism. Hepatocytes have at 

least two distinct mechanisms for iron uptake: a transferrin/TfR1 cycle and another 

important iron uptake pathway that takes up NTBI when serum iron levels exceed Tf 

biding capacity. Recycling macrophages are also major players in iron flux into 

extracellular fluid, exceeding the contribution of dietary iron absorption and the release 
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of stored iron from hepatocytes (Ganz, 2012). The HFE protein is a regulator of 

circulating iron uptake and systemic iron balance. HFE mutations may cause iron 

overload disorders such as Hereditary Hemochromatosis. In humans, the contribution of 

HFE mutations to NAFLD is controversial, but increased hepatic stores are often 

encountered in NAFLD patients (O'Brien and Powell, 2012). Excessive iron deposition is 

thought to aggravate the disease and favor the progression to NASH (Maliken et al., 

2013; Nelson et al., 2011; Valenti et al., 2010). Conversely, HH patients often present 

with hepatic steatosis (Bonkovsky et al., 1999; Powell et al., 2005). As steatosis, together 

with cellular iron loading, produces a combination of factors that may result in the 

production of ROS, we aimed to determine experimentally whether excessive 

parenchymal hepatic iron deposition, as seen in HFE-related HH, is an aggravating factor 

in the progression from hepatic steatosis to steatohepatitis and to NASH-related fibrosis. 

In the first set of experiments, we studied the development of hepatic steatosis, 

inflammation and fibrosis in an animal model of parenchymal iron overload. Hfe-/- mice 

at 8 weeks of age were fed high-fat, high-sucrose diet (HFD) or normal diet (ND) for 

experimental periods of 4, 8 or 12 weeks. Parenchymal iron load was visible in most 

hepatocytes, especially in periportal areas, independently of the diet. Nevertheless, non-

heme iron concentration decreased when mice were fed HFD. This decrease in iron 

concentration can perhaps be explained through the fat source in the high-fat diet. It has 

been documented by several authors that a diet rich in animal fats tends to decrease 

hepatic iron concentration (Chung et al., 2011; Sonnweber et al., 2012; Takai et al., 

2015), while diets rich in vegetable fats increase iron deposition (Ahmed and Oates, 

2013; Johnson et al., 1987; Meli et al., 2013; Otogawa et al., 2007). Iron deposits within 

macrophages were also mildly present after 8 weeks of ND and HFD feeding. However, 

hepatic macrophages became iron-depleted after 12 weeks on the diets, a characteristic 

of mouse models of HH (Fleming et al., 2011). This depletion may have been caused by 

decreasing levels of hepatic hepcidin expression after 12 weeks of ND and HFD feeding, 

causing overexpression of ferroportin in macrophages and recapitulating the late onset 

of the human disease.  

After 12 weeks of HFD feeding, Hfe-/- mice exhibited higher body, visceral fat and liver 

weight than their ND-fed counterparts. These mice also developed light to moderate 

microvesicular steatosis and signs of hepatic inflammation denoted by the elevated 

levels of Tnf-α transcript, but no other evidence of liver injury. In particular, we have not 

observed other signs of severe fatty liver disease phenotype akin to human NASH, 

including hepatocyte ballooning and early fibrogenesis. These results suggest that 

longer periods of high-fat diet feeding may represent a risk factor for developing NAFLD 
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and possibly NASH. But, under our experimental conditions, parenchymal iron overload 

coupled with high-fat diet feeding for up to 12 weeks failed to trigger the progression from 

steatosis to advanced liver disease.  

Whilst the Hfe-/- mouse is a model of parenchymal iron deposition, mixed 

hepatocellular and mesenchymal iron deposition has been reported in NAFLD and NASH 

(Corradini and Pietrangelo, 2012; Nelson et al., 2011; Otogawa et al., 2007; Sorrentino 

et al., 2009). It can be hypothesized that the iron-loaded hepatic macrophages would 

become activated and promote steatohepatitis and fibrosis, while iron loading of 

hepatocytes would not contribute significantly to disease progression. To replicate the 

mixed (parenchymal and mesenchymal) iron deposition characteristic of some NAFLD 

patients, wt and Hfe-/- mice were given intraperitoneal injections of iron dextran. 

Intraperitoneal administration of iron dextran complex increased hepatic iron 

concentration, transferrin saturation and serum iron significantly in wt mice. In Hfe-/- mice, 

iron dextran increased the hepatic iron content even further without increasing serum 

iron concentration or transferrin saturation, independently of the diet. In iron overload 

disorders, serum iron concentration may exceed the transferrin binding capacity, 

generating NTBI. We speculate that, in Hfe-/- mice, iron administration may have 

increased serum NTBI and its uptake by the liver. In what concerns hepatic iron 

distribution, a mixed (parenchymal and mesenchymal) iron deposition was achieved with 

the iron treatment in both wt and Hfe-/- mice (Figure 22). In theory, basal hepcidin 

expression is low in genetic mouse models of HH, hence ferroportin is overexpressed in 

reticuloendothelial cells, rendering them iron-depleted. It has been shown, however, that 

parenteral iron treatment or high-iron diets induce residual hepcidin expression, which 

leads to iron retention within macrophages (Daba et al., 2013; Gkouvatsos et al., 2014; 

Padda et al., 2015). In wt mice, it is plausible to assume that ND+Fe and HFD+Fe 

treatments promoted iron loading in Kupffer cells due to increased hepcidin expression. 

However, iron injections did not increase hepcidin expression significantly in Hfe-/- mice 

(Figure 24). We speculate that the low basal hepcidin levels of Hfe-/- mice may enable 

some iron-retention within hepatic reticuloendothelial cells.  

The iron treatment per se did not cause liver injury in animals of either genotype. After 

8 weeks on HFD, both wt and Hfe-/- mice developed hepatic steatosis. It is interesting to 

note that while 8 weeks of HFD feeding increased body and visceral fat weight in wt and 

Hfe-/- mice compared to their normal diet-fed counterparts, mice that received iron 

intraperitoneally failed to gain as much weight and visceral fat as non-iron-treated mice. 

On the other hand, iron treatment did not alter the hepatic steatosis degree, as all wt and 

Hfe-/- mice fed HFD developed light to moderate microvesicular steatosis. Evidence of 

mild hepatic inflammation was also present in mice given iron dextran injections. No 
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hepatocyte ballooning or fibrosis were observed. We conclude that, despite substantial 

parenchymal and mesenchymal iron overload, the steatosis did not evolve to 

steatohepatitis in the iron-treated groups. One possible explanation is that neither the 

strictly parenchymal iron overload nor the mixed iron overload in our experiments were 

sufficient to increase oxidative stress and trigger the progression from simple steatosis 

to steatohepatitis. Similar results were obtained by (Padda et al., 2015) using the Hjv-/- 

mice model coupled with a high-fat and iron-rich diet. On the other hand, another study 

showed that Hfe-/- mice develop a NASH-like phenotype and early fibrosis in response 

to HFD-feeding for 8 weeks (Tan et al., 2011). We speculate that the striking differences 

may be attributable to the higher cholesterol and carbohydrate composition of the diets 

employed by (Tan et al., 2011). 

 

2. Aging and Nrf2 deletion promote steatosis and steatohepatitis in mice fed high-

fat diet 

Nrf2-/- mice are an established model of compromised antioxidant response and deleting 

Nrf2 from mice results in rapid onset and progression of methionine- and choline-

deficient diet-induced NASH (Chowdhry et al., 2010; Sugimoto et al., 2010). To examine 

the potential effects of aging on NAFLD development, we challenged wt and Nrf2-/- 

female mice of different ages with high-fat, high-sucrose diet for a period of 12 weeks to 

induce metabolic syndrome and NASH. This experimental design was intended to 

question whether the age altered the development of steatosis and steatohepatitis in 

response to a defined period of diet, as the prevalence of the metabolic syndrome 

increases significantly with age (Ford et al., 2002). NAFLD, the hepatic manifestation of 

the metabolic syndrome, has also been associated with aging. In particular, several 

population based studies have reported increased incidence of steatohepatitis and 

mortality in older individuals (Daryani et al., 2010; Gan et al., 2011; Williams et al., 2011). 

The link between aging and the development of the metabolic syndrome may result from 

age-related increases in obesity and diabetes, mainly derived from lifestyle factors such 

as diet and the lack of physical activity.  

The transcription factor NRF2, besides playing a pivotal role in the activation of 

antioxidant and detoxification genes in response to electrophilic or oxidative stress, has 

an important role in hepatic fatty acid metabolism. NRF2 has been reported as a 

repressor of genes involved in FA synthesis (Kitteringham et al., 2010; Yates et al., 2009) 

and inflammation (Kohler et al., 2015; Reddy et al., 2011). NRF2 has also been shown 

to play a crucial role in the regulation of hepatic lipid metabolism not only in mice fed 

MCD, but also in mice fed HFD (Huang et al., 2010; Tanaka et al., 2008; Tanaka et al., 
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2012). Furthermore, pharmacological activation of Nrf2 down-regulates lipogenesis 

genes (Shin et al., 2009). As loss of Nrf2 seems to increase both the expression of 

lipogenesis genes and sensitivity to oxidative stress, it may also contribute to the etiology 

of NASH.  

Middle-aged wt mice exhibited higher levels of body, visceral fat and liver weight than 

their younger counterparts. On the other hand, features of the metabolic syndrome, such 

as increased body mass and visceral fat weight that developed as a consequence of the 

HFD-feeding, were similarly elevated in young and middle-aged Nrf2-/- mice. Moreover, 

middle-aged wt and Nrf2-/- mice and young Nrf2-/- mice developed signs of insulin 

resistance, as they were not able to clear glucose from their peripheral circulation 2 hours 

after glucose administration. We conclude that the age-associated metabolic changes 

observed in HFD-fed wt mice, such as obesity and insulin resistance, occur prematurely 

in Nrf2-/- animals.  

We have also observed that young Nrf2-/- mice developed zone 1 macrovesicular 

steatosis and zone 3 microvesicular steatosis more rapidly and with greater severity than 

young wt and Hfe-/- mice when fed HFD. Notably, the severe steatotic phenotype 

displayed by young Nrf2-/- mice was similar to that observed in middle-aged wt and Nrf2-

/- mice. This finding is not surprising in light of the similar extent of weight gain and insulin 

resistance in Nrf2-/- mice and middle-aged wt mice. This indicates that Nrf2 knock-out 

predisposes mice to hepatic lipid accumulation and that the phenotype is unaffected by 

age. Correlating with the severe steatosis, TG concentration of liver tissues was 

significantly increased in young Nrf2-/- mice fed HFD. On the other hand, liver TG were 

not as elevated in middle-aged Nrf2-/- mice, which might be explained by the lower liver 

weight observed in these animals. Serum TG and cholesterol levels were also increased 

in Nrf2-/- mice and middle-aged wt mice. We can thus speculate that the differences may 

result from changes in the expression of genes involved in lipid metabolism, namely in 

synthesis, catabolism, uptake and secretion of lipids. It would be useful to investigate the 

expression of genes involved in FA synthesis and uptake. Nevertheless, these results 

are in agreement with the previously reported Nrf2-mediated inhibition of fat 

accumulation in the liver of mice fed HFD (Tanaka et al., 2008) or MCD diet (Sugimoto 

et al., 2010).  

Correlating with liver histology grading of inflammation and staging of fibrosis, the 

expression of the inflammatory cytokine Tnf-α and of the pro-fibrogenic gene α-Sma 

were significantly increased in middle-aged wt mice and Nrf2-/- mice fed HFD. 

Considering the well-established immune response depression with aging (Weiskopf et 

al., 2009), we believe that the increase in liver inflammation in older mice is related with 

a secondary response to liver injury in response to the HFD. Accordingly, middle-aged 
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wt mice and Nrf2-/- mice fed HFD had significantly increased hepatocyte ballooning and 

serum ALT activity, confirming that the lack of Nrf2 and aging promoted liver injury in our 

experimental settings.  

The levels of hepcidin mRNA were also measured in the livers of wt and Nrf2-/- mice. 

It has been shown that mice fed a high-fat diet undergo sustained hepatic inflammation. 

Inflammation increases hepatic hepcidin expression, which results in a reduction of the 

hepatic iron level (Chung et al., 2011). Our data are not in agreement with the literature, 

as Nrf2-/- mice on HFD and middle-aged wt mice on HFD, the experimental groups 

exhibiting the lowest hepcidin mRNA levels, were precisely the ones exhibiting more 

hepatic inflammation. Furthermore, we would expect the decreased hepcidin expression 

of mice fed HFD to result in increased intestinal iron absorption, elevated levels of serum 

iron and transferrin saturation, and higher hepatic iron accumulation. This was, however, 

not the case, which points to alternative pathways of hepcidin regulation. CREB-H (cyclic 

AMP response element–binding protein H) is an ER stress-activated liver-specific 

transcription factor originally recognized for its involvement in the induction of acute-

phase response genes (Omori et al., 2001). Recent studies indicate that CREB-H is 

activated by fasting, obesity and diabetes, disorders associated with active 

gluconeogenesis and insulin resistance, and that its expression up-regulates lipid 

metabolism genes. CREB-H has also been reported to activate the transcription of 

hepcidin, linking glucose and iron homeostasis (Vecchi et al., 2014). This mechanism is, 

however, not a likely explanation for our results, as the expression of CREB-H would 

have been higher in middle-aged wt mice and Nrf2-/- mice in response to the HFD 

feeding. The increase in CREB-H expression would have up-regulated the expression of 

hepcidin, which is the opposite effect to what we observed in the current study. Further 

investigation about the interaction between the iron and lipid metabolism is required. 

Our data are suggestive of oxidative stress in middle-aged wt and Nrf2-/- mice on HFD, 

as evidenced by increased hepatic malondialdehyde. Furthermore, mRNA levels of the 

detoxifying enzyme Nqo1 was significantly decreased in the livers of Nrf2-/- mice. It 

seems plausible that the inability of Nrf2-/- mice to up-regulate their antioxidant defenses 

results in lipid peroxidation, facilitating the development of NASH, as reported by (Ikura 

et al., 2006). Moreover, these results also suggest that aging plays a prominent role in 

decreasing NRF2-dependent oxidative stress defenses, contributing to the rapid onset 

of NASH in Nrf2-/- animals, comparable to the phenotype of older wt mice. 

The nonoccurrence of steatohepatitis within 12 weeks of HFD feeding in young wt 

mice clearly shows that a HFD per se does not trigger the development of NASH in the 

young. The aging process coupled with HFD, however, was sufficient to promote the 
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development of liver injury and inflammation in wt animals. Importantly, what our results 

also disclose is that the lack of Nrf2 is as efficient as the age-related factors to prompt 

the metabolic events leading to NASH.  

 

3. High-fat diet feeding promoted the development of liver tumors in middle-aged 

Hfe-/- mice 

Herein, we have also studied of effects of age and dietary treatment in the development 

of steatosis and steatohepatitis in Hfe-/- mice, as altered lipid metabolism in Hfe-/- mice 

reportedly promotes severe NAFLD and early fibrosis in response to HFD (Tan et al., 

2011). Hfe-/- mice of different ages were also challenged with high-fat, high-sucrose diet 

feeding for a period of 12 weeks to induce the metabolic syndrome and NAFLD. Young 

Hfe-/- mice exhibited similar body, visceral and liver weight compared to wt counterparts, 

but middle-aged Hfe-/- mice fed HFD tended to gain less weight. The most significant 

finding of this experiment was that every single middle-aged Hfe-/- mouse fed HFD 

developed liver tumors, evidenced by the macroscopic appearance of the livers and 

abnormal histology (Figures 31 and 36). Another two individuals from this experimental 

group died before the end of the 12 weeks of high-fat diet feeding and at least one of 

these mice also exhibited a liver tumor. We found no evidence of hepatocyte ballooning 

(a NASH signature) in these mice. Moreover, young mice of the same genotype did not 

develop inflammation, hepatocyte ballooning or fibrosis in response to the HFD, so we 

cannot confidently attribute the development of liver tumors in middle-aged mice to HFD-

induced steatohepatitis. Nevertheless, we consider it unlikely that the development of 

hepatic tumors derived just from old age, since no tumors were observed in middle-aged 

Hfe-/- fed SD or in considerably older Hfe-/- mice (up to 24 months old) (Tiago Duarte, 

personal communication). The identification of the tumor type will be performed soon in 

collaboration with an experienced pathologist, which is expected to help understand its 

etiology. But we can speculate that the apparently rather advanced stage of the tumors 

is responsible for the discrepancies in several biological parameters, compared to their 

younger counterparts. For example, the rapid glucose clearance from their bloodstream 

might have been caused by the high metabolic activity of the hepatic tumor, as rapidly 

dividing cells need great amounts of energy to proliferate. Despite being a model of iron 

overload and having significantly lower hepatic hepcidin mRNA levels than their younger 

HFD-fed counterparts, these mice exhibited decreased hepatic iron deposits. We can 

also speculate that the hepatic tumors may have consumed the hepatic iron deposits. 

Serum iron and transferrin saturation, on the other hand, had normal values in this 

experimental group, compared to Hfe-/- counterparts. This might indicate that the tumor 

was only using local hepatic iron, instead of having a systemic effect in circulating iron. 
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Serum cholesterol and triglyceride levels were also significantly higher in middle-aged 

Hfe-/- mice fed HFD than in younger counterparts, despite a lower degree of steatosis 

and lower hepatic triglyceride content.  

Another consequence of the tumors was a dramatic elevation of serum ALT activity, 

which is indicative of hepatocellular injury. The grading of inflammation and staging of 

fibrosis in liver sections, as well as the levels of Tnf-α and α-Sma transcripts, showed 

that middle-aged Hfe-/- mice fed HFD exhibited significant liver inflammation, which was 

accompanied by bridging fibrosis and cirrhosis. Substantial amounts of collagen 

deposition were seen surrounding the hepatic tumors (Figure 36C). 

In many cancers, uncontrolled NRF2 activity increases the expression of 

cytoprotective genes and, consequently, provides growth advantage to cancerous cells 

(Kanninen et al., 2015). The mRNA levels of Nqo1, a prototypical target of NRF2, were 

significantly elevated in middle-aged Hfe-/- mice fed HFD, which suggests that NRF2 may 

have a protective role in the proliferation of this type of tumor.  
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Conclusions 

Our results show that, in young animals, the mild parenchymal iron overload associated 

with the loss of Hfe-/- was not sufficient to prompt the development of NASH upon feeding 

a ‘Western-type diet’. Moreover, wt and Hfe-/- mice intraperitoneally injected with iron to 

increase both the parenchymal and mesenchymal hepatic iron overload also failed to 

develop features of NASH, such as obesity, hepatocyte ballooning or fibrosis. 

The nonoccurrence of steatohepatitis in young wt mice fed HFD clearly shows that 

this diet per se does not trigger the development of NASH in the young. The aging 

process coupled with HFD, however, was sufficient to promote the development of liver 

injury and inflammation in wt animals. We demonstrated that aging promotes obesity, 

steatosis and steatohepatitis in wt mice fed high-fat diet. Importantly, we also 

demonstrated that Nrf2 deletion leads to rapid progression of nutritional steatohepatitis 

in young as well as middle-aged mice fed a Western-type diet. We thus conclude that 

the lack of Nrf2 is as efficient as the age-related factors to prompt the metabolic events 

leading to NASH, as age-associated metabolic changes observed in HFD-fed wt mice 

occurred prematurely in Nrf2-/- animals. Moreover, our data suggest that the decrease in 

NRF2-dependent oxidative stress defenses that occurs as part of the aging process may 

contributing significantly to the onset of NASH in the elder. 

Finally, we showed that feeding a high-fat, high-sucrose diet promotes the 

development of liver tumors in middle-aged Hfe-/- mice. These animals exhibited 

extensive hepatocellular injury, as evidenced by the dramatic elevation of serum ALT 

activity, and significant liver inflammation, which was accompanied by bridging fibrosis 

and cirrhosis. However, young mice of the same genotype did not develop features of 

NASH such as obesity, insulin resistance, hepatic steatosis, inflammation, hepatocyte 

ballooning or fibrosis in response to the HFD. Hence, we cannot confidently attribute the 

development of liver tumors in middle-aged mice to HFD-induced steatohepatitis.  

 

Future perspectives  

The results of the current work suggest that Nrf2 is an interesting therapeutic target for 

the prevention and treatment of NAFLD and NASH. It would be interesting to investigate 

whether Nrf2 target therapy with thiol-reactive, electrophilic compounds, such as 

sulphoraphane, would be capable of activating NRF2/ARE-dependent gene expression 

in old wt and Hfe-/- mice, and prevent the progression of nonalcoholic steatohepatitis and 

hepatic tumors, respectively.  
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Future work could also focus on the study of the Hamp knock-out mouse, a more 

severe model of iron overload. This model would enable the deposition of massive 

amounts of hepatic iron that, when coupled with the high-fat, high-sucrose diet feeding, 

may be sufficient to trigger the development of NASH in young mice. Additionally, it 

would be interesting to determine whether iron overload in Hamp-/- individuals fed a 

Western-type diet would also favor the development of hepatic tumors in middle-aged 

mice.  
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Appendixes  

 

Appendix I 

Table 1. Dietary composition of experimental diets. 

 
Standard rodent 
diet (Mucedola) 

Control diet (ssniff) 
Western-type diet 

(ssniff) 

Energy [kJ %] 

From protein 27 18 15 

From carbohydrate 60 70 43 

From fat 6.5 12 42 

Metabolizable energy 
(kcal/g) 

2.675 3.726 4.562 

Total calories (kcal/g) 3.952 4.398 5.258 

Crude nutrients [%] 

Dry matter - 95.9 94.6 

Crude Protein 19.4 17.1 17.5 

Crude Fat 2.6 5.1 21.2 

Crude fiber 5.5 5.0 5.0 

Crude ash 6.8 4.2 4.5 

N free extracts 54.6 64.5 48.8 

Starch - 39.0 14.6 

Sugar 4 23.3 33.2 

Minerals [%] 

Calcium 0.91 0.77 0.76 

Phosphorus 0.76 0.46 0.46 

Sodium 0.36 0.22 0.37 

Magnesium 0.20 0.08 0.10 

Potassium 0.84 0.55 0.54 

Fatty acids [%] 

Butyric acid 4:0 - - 0.80 

Caproic acid 6:0 - - 0.53 

Caprylic acid 8:0 - - 0.29 

Capric acid 10:0 - - 0.63 

Lauric acid 12:0 - - 0.72 

Myristic acid 14:0 - 0.02 2.21 

Palmitic acid 16:0 4.39 0.55 5.74 

Palmitoleic acid 16:1 0.20 0.03 0.38 

Margaric acid 17:0 - - 0.13 

Stearic acid 18:0 0.68 0.23 2.04 

Oleic acid 18:1 5.05 1.32 4.63 

Linoleic acid 18:2 12.3 2.65 0.38 

Linolenic acid 18:3 1.20 0.33 0.11 
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Arachidic acid 20:0 - 0.03 0.04 

Paullinic acid 20:1 - - 0.02 

Cholesterol [mg/kg] - - 500-600 

Amino acids [%] 

Lysine 9.72 1.39 1.42 

Methionine 4.45 0.91 0.63 

Met+Cys - 0.99 1.00 

Threonine - 0.75 0.76 

Tryptophan 2.83 0.22 0.23 

Arginine 10.94 0.62 0.67 

Histidine - 0.53 0.52 

Valine - 1.15 1.19 

Isoleucine - 0.88 0.93 

Leucine - 1.66 1.70 

Phenylalanine - 0.91 0.90 

Phe+Tyr - 1.81 1.80 

Glycine 8.75 0.35 0.36 

Glutamic acid - 3.81 3.84 

Aspartic acid - 1.26 1.27 

Proline - 1.95 1.97 

Alanine - 0.55 0.57 

Serine - 1.01 1.02 

Cystine 3.86 - - 

Vitamins [IU] 

Vitamin A 14400 15000 15000 

Vitamin D3 1260 1500 1500 

Vitamins [mg] 

Vitamin E 64.3 150 150 

Vitamin K 3.2 20 20 

Vitamin C - 1030 1030 

Thiamin (B1) 17.2 16 16 

Riboflavin (B2) 15.2 16 16 

Pyridoxine (B6) 10.7 18 18 

Cobalamin (B12) 0.027 30 30 

Nicotinic acid - 45 45 

Panthothenic acid 24.8 55 55 

Folic acid 2.3 19 19 

Biotin 0.40 305 305 

Choline-Chloride 2256 2040 2040 

Inositol - 80 80 

Niacin 95.8 - - 

    

Trace elements [mg] 

Iron 480 200 200 
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Manganese 86 23 23 

Zinc 103 39 39 

Copper 25.7 11 11 

Iodine 1 0.28 0.28 

Selenium - 0.14 0.14 

Cobalt 0.85 0.02 0.02 
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