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Resumo 

 

 Polimorfismos em genes que codificam enzimas metabolizadoras de fármacos 

(EMFs) são os maiores influenciadores da variabilidade interindividual no que diz 

respeito à resposta a fármacos. Dentro das EMFs, o citocromo P450, família 2, 

subfamília D, polipéptido 6, CYP2D6, é uma das mais importantes pois é responsável 

pela metabolização de 25 a 30% de todos os fármacos prescritos, incluindo 

antidepressivos, antipsicóticos, antiarrítmicos, bloqueadores β, anti-tumorais, entre 

outros. A atividade enzimática do CYP2D6 varia bastante entre indivíduos, 

principalmente devido a variações genéticas no gene codificante, resultando em 

consequências clínicas significativas para o metabolismo de fármacos e também riscos 

individualizados no que toca a efeitos adversos ou alterações na resposta pretendida. 

Apesar de várias populações já terem sido estudadas relativamente ao CYP2D6, ainda 

existem algumas que foram escassamente analisadas, como o caso dos ciganos 

europeus. 

 Os ciganos são um caso de estudo populacional interessante que ainda está 

pouco estudado em vários aspetos. Durante o seu período migratório, era normal 

ocorrer a fragmentação em grupos mais pequenos, mantendo na mesma as suas 

práticas endógamas. Do ponto de vista genético, isto leva a elevados efeitos de deriva 

genética, diversidade genética reduzida, elevado linkage disequilibrium e fluxo genético 

limitado entre grupos. 

 Assim, e atendendo à escassez de estudos farmacogenéticos nos ciganos, neste 

estudo pretendemos caracterizar a população de ciganos portugueses, através do 

estudo de Single Nucleotide Polymorphisms (SNPs) com interesse farmacogenético, e 

para avaliar se estes apresentam diferenças no que toca à resposta a fármacos, 

comparativamente à restante população portuguesa. Nesse sentido, 56 amostras de 

ciganos portugueses foram analisadas por reação de SNaPshotTM, desenhado e 

otimizado para detetar 11 SNPs dentro do gene CYP2D6, que estão associados a 

alterações na resposta a fármacos. Para comparação de resultados, foram usados 

dados anteriormente publicados para a restante população portuguesa, bem como 

dados de outras populações de todo o mundo, para inserir os nossos resultados num 

contexto mundial. 

 Das variações estudadas, apenas uma não se encontrava de acordo com o 

equilíbrio de Hardy – Weinberg, mesmo após a correção de Bonferroni, que foi a posição 
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4180 G>C. Comparativamente à restante população portuguesa, os ciganos 

apresentam uma frequência mais elevada do CYP2D6*4, um dos alelos que apresenta 

atividade nula. Relativamente aos perfis metabólicos teoricamente definidos, foram 

encontradas diferenças entre os ciganos e os restantes portugueses, principalmente nos 

perfis Poor Metabolizers (PM), Intermediate Metabolizers (IM) e Extensive Metabolizers 

(EM).  

 Contudo, apesar de ter sido aplicada uma técnica de considerável resolução, em 

termos de SNPs, estudos futuros são necessários para aprofundar os resultados 

obtidos, preferencialmente com análise conjunta bioquímica da atividade enzimática. 

Para além de caracterizar melhor a população cigana portuguesa, será também 

importante ter dados de outras populações ciganas europeias, para que o conhecimento 

sobre os ciganos europeus permita extrair mais inferências relevantes do ponto de vista 

da farmacogenética. 

 Com o desenvolvimento deste estudo, contribuímos para um aprofundamento da 

caraterização da população cigana, ajudando a promover o conhecimento do ponto de 

vista farmacogenético, relativo ao CYP2D6, bem como a realçar a importância da 

farmacogenética no cenário clínico. 

 

Palavras – Chave: Farmacogenética, Enzimas Metabolizadora de Fármacos, CYP2D6, 

SNP, População Cigana 
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Abstract 

  

 Polymorphisms in genes coding for drug-metabolizing enzymes (DME) are major 

players in interindividual variability in drug response. Among DME, cytochrome P450 

family 2, subfamily D, polypeptide 6, CYP2D6, is one of the most important, because it 

is involved in metabolism of 25% to 30% of all prescribed drugs, including 

antidepressants, antipsychotics, anti-arrhythmics, β-blockers, cancer 

chemotherapeutics, among others. The enzymatic activity of CYP2D6 varies widely 

among individuals, mainly due to functional genetic variations at the encoding gene, 

resulting in significant clinical consequences for drug metabolism and individual risk of 

adverse events or drug efficacy. Although many populations have been studied 

regarding the CYP2D6, there are still populations scarcely studied, such as the Roma 

from Europe.  

 The Roma represent an interesting population case study that is still understudied 

in many aspects. During the Gypsy diaspora, it was normal the occurrence of group 

fragmentation into smaller communities, but still maintaining endogamous practices. 

From a genetic point of view, this leads to high genetic drift effects, reduced genetic 

diversity, high linkage disequilibrium and limited gene flow between these groups.  

Therefore, due to these traits and to the scarcity of Pharmacogenetic studies in 

this population, in this present study, we intended to characterize the Portuguese Roma 

for Single Nucleotide Polymorphisms (SNPs), relevant from the Pharmacogenetics point 

of view, to evaluate if the Roma show any peculiarity regarding drug response, in 

comparison with the host population. In that sense, 56 samples from Portuguese Roma 

were analysed by SNaPshotTM reaction, designed and optimized to detect 11 SNPs 

located within the CYP2D6 gene, known to influence drug response. For comparative 

analysis, data from previous studies in the Portuguese host population was used, as well 

from several populations around the world, to put the data obtained in a worldwide 

context. 

For the variations studied, only one SNP revealed significant deviation from the 

Hardy – Weinberg expectation, even after the Bonferroni correction, which was the 4180 

G>C. Comparatively to the Portuguese host population, the Roma showed some 

differences, especially an increased frequency of the CYP2D6*4, an allele implying null 

enzymatic activity. Regarding the theoretical metabolic profiles, differences were found, 

especially the IM and PM profiles. 
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Even though we studied a set of SNPs considered to be of high resolution, further 

studies are needed to deepen the results here obtained, preferably with the joint analysis 

of biochemical assessment of enzymatic activity. Also, new studies are needed, not only 

in the Portuguese host population, but also in other European populations, with a larger 

number of SNPs, so that the knowledge regarding these populations and further 

comparative analysis can allow to extract more inferences relevant from the perspective 

of Pharmacogenetics. 

With the development of the present study, we have contributed to deepening the 

characterization of Roma populations, helping to further the knowledge from the 

pharmacogenetic point of view regarding the CYP2D6, as well as to enhance the 

importance of Pharmacogenetics in the clinical setting. 

 

Keywords: Pharmacogenetics, Drug-Metabolizing Enzymes, CYP2D6, SNP, Roma 

Population 
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I. INTRODUCTION 

 

1. Pharmacogenetics 

The term pharmacogenetics is often used to describe a relatively new field of 

genetics that covers the study of how different gene variants affect drug response or, by 

other words, the study of the effect of heredity in human’s drug response. Nowadays, 

pharmacogenetics is largely contributing to the emergence of personalised medicine, 

also called individualized or precision medicine that aims, in its narrow sense, to 

customize health care, with decisions and treatments tailored to each patient (1).  

Primordial observations in this field go back to 510 B.C., when Pythagoras 

described that some individuals, after ingesting fava beans, showed dangerous 

reactions, when the rest of them did not (2).  

In the 1950s, the introduction of therapeutic drug monitoring, generally defined 

as the clinical practice of measuring specific parameters at regular intervals that, with 

appropriate interpretation, directly influence drug prescribing procedures (3), 

represented the first systematic approach to individualize the treatment of patients that 

still has significant value in assessing drug therapy, particularly in psychiatry and severe 

infections (4, 5). With the unravelling of the structure of DNA and subsequent 

development of molecular biology, a new era was open to study the genetic bases of 

phenotypes associated with variability in drug response. Since then, it became 

increasingly well documented that genetic variations was an important determinant of 

interindividual variability in drug response (6). 

The grand majority of genetic variations influencing drug response belong to the 

class of Single Nucleotide Polymorphisms (SNPs), which are variations in single 

nucleotides of the DNA sequence characterized by the occurrence in at least 1% of the 

population. SNPs are the most common polymorphisms in the human genome, 

accounting to more than 90% of the human genetic variations. Although most SNPs do 

not present effect on gene function, some have profound impact on the function of 

associated genes, whether the SNPs occur in the coding regions or at a significant 

distance from the transcription starting site of the gene (6). When such kind of variations 

are encountered in genes that encode enzymes responsible for absorption, distribution, 

metabolism or excretion of drugs, enzyme activity can be disturbed, leading to 

undesirable response to drugs which can be potentially fatal. Therefore, it is important to 
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study these polymorphisms, not only on a pharmacological perspective (which can, in a 

near future, lead to individualized treatments), but also on a forensic viewpoint, where it 

can be applied, together with Toxicology, to solve cases where the cause of death is 

inconclusive (7, 8). 

  

 

1.1. Pharmacogenetics applications  

 

 With the development of health care and the rise of its costs, there has never 

been a greater need to reduce waste. In this context, ineffective treatments and adverse 

drug effects must urgently be minimized. Nowadays, the path to maximizing benefit and 

reduce negative effects seems to reside in stratifying patient populations into subgroups 

taking into account the patient individuality in response to a certain treatment since it is 

well known that an individual’s response to a drug is affected by personal factors such 

as age, gender and genetics. Before a drug can be used in the clinical practice it must 

be subjected to clinical trials conducted to collect data demonstrating its safety and 

efficacy. Typically, however, clinical trials only give information regarding the “average 

patient”, not taking into account that every individual has different backgrounds which 

can lead to a wide variability in drug response. It is now widely considered that 

pharmacogenetics must have a critical role in the clinical trials, specifically in the early 

stages of the treatment, by assisting to define the number of patients to analyse, to 

predict the efficiency of the therapy and to identify subgroups in which a distinct treatment 

is needed. Besides the contribution to the success of clinical trials, pharmacogenetics is 

also crucial in the clinical setting, where the use of genetic tests can give a prediction of 

drug response regarding a certain person before the treatment is started, allowing thus 

saving in expensive therapeutics that would probably not work and at the same time 

preventing levels of toxicity that sometimes cannot be measured by traditional methods. 

This happens, for instance, in oncological treatments, where the use of genetic tests can 

lead to the identification of various mutations in driver oncogenes that reduce the binding 

capacity of the drug and consequently low therapeutic success and/or resistance (5, 9-

11). 

 Although pharmacogenetics has been preponderantly associated with the 

advantages it can provide in terms of clinical applications, it is also gaining ground in 

forensic sciences. Forensic pharmacogenetics is a relatively new and growing area of 

research. It is being increasingly applied in post-mortem cases, as an adjunct in the 

determination of the cause of death, namely through the analysis of certain genetic 
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variants in specific genes that encode proteins involved in drug metabolism. 

Pharmacogenetic approaches might help to infer if high levels of a specific drug detected 

in a corpse can be the cause of death due to overdose or due to inefficient metabolism 

caused by the presence of a certain genetic variation. As a matter of fact, acute drug 

intoxication is a major cause of unnatural deaths in occidental countries, usually requiring 

a forensic investigation to determine the reasons of the intoxication and consequently 

the likely explanation for the death. Among the most common drugs found in intoxication 

cases are psychiatric drugs and analgesics such for instance tramadol, an opioid 

analgesic commonly prescribed in the treatment of postoperative, dental, cancer, 

neuropathic and acute musculoskeletal pain. Since the enzyme CYP2D6 plays a 

predominant role in tramadol metabolism, and given that null variants in the encoding 

gene associated with enzyme inactivation can cause acute intoxication in patients 

administrated with inaccurate doses of the drug, CYP2D6 is being one of the most widely 

studied genes in forensic pharmacogenetics (7, 12).  

 

 

1.2. Pharmacogenetics Challenges 

 

 Despite being well recognised the importance of pharmacogenetics, which 

continues to grow, particularly in the clinical practice and in the pipeline of drug 

development, pharmacogenetics also faces some setbacks. For instance, the evaluation 

of the clinical cost – effectiveness of a genetic test is critical. Even though there are 

studies evidencing the advantages of pharmacogenetic testing, in order to obtain valid, 

accurate and relevant cost-effectiveness estimates, reliable economic studies are 

required and this proves to be a challenge because often there is no hard clinical 

evidence regarding the effects of the test on the clinical utility (4). Furthermore, the 

information is not available for every genetic variant of pharmacogenetic relevance. 

Differences in costs can be substantial between countries, or even laboratories, and thus 

it is important to take this into account in scenario analysis, as well as the sensitivity and 

specificity of pharmacogenetics tests, which also represent another challenge since they 

can vary in function of the different ethnicities studied or genetic variations analysed (4).  

 To perform economic evaluations of pharmacogenetic tests is necessary to rely 

in relevant clinical data, which are often difficult to obtain. Until recently, evidence has 

been mainly provided by means of conventional clinical trials, but there is now a 

movement toward using observational studies instead of randomized trials. The Clinical 
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Pharmacogenetics Implementation Consortium (CPIC), based in the United States, 

promotes reviewed guidelines on how to use pharmacogenetics tests results to improve 

treatments based on evidence according to patients’ medical records (13). Though the 

development of CPIC guidelines was a good step toward the implementation of 

pharmacogenetics tests in routine clinical practice, some fear that the assessment of 

pharmacogenetics might be obstructed because these guidelines “bypass traditional 

data requirements needed to support the use of a new intervention and move straight to 

producing recommendations for its use in clinical practice” (13). In other words, some 

people claim that the production of guidelines without information about, for instance, its 

effectiveness in a certain population, such as the one we can obtain through randomized 

trials, may still give insufficient information regarding cost effectiveness, not allowing 

policy makers to make reimbursement decisions easier. Therefore, there is the need to 

boost the development of a strong evidence - base for pharmacogenetics by alternative 

means that can satisfy the requirements of health care payers (4, 9, 13).  

 

 

2.  Drug Metabolism 

   

 Xenobiotics are foreign chemical substances which are not normally produced or 

expected to be within an organism. When these substances enter the human body, they 

pass through several biochemical transformations in order to be transformed in other 

metabolites, less harmful, minimizing thus aggression to the organism. The process by 

which these biochemical transformations occur is commonly known as xenobiotic or drug 

metabolism. One of the most important end results of the biochemical reactions that 

transform the foreign elements in products easier to be eliminated, is to avoid 

accumulation in the organism, thus preventing possible toxic reactions. Although drug 

metabolism typically inactivates drugs, they can also convert an inactive drug (called 

prodrug) into an active one, an active drug into an active or toxic metabolite, or an 

unexcretable drug into an excretable form (14, 15). 

 To process these foreign substances, many biochemical transformations occur 

that require the machinery of several enzymes, known as drug metabolizing enzymes or 

xenobiotic enzymes (DMEs or XMEs), responsible by different steps in the metabolic 

pathways. While DMEs can be synthetized in many organs, the most active one is the 

liver, where the grand majority of these enzymes are produced. Accordingly, it is also in 

the liver that many drugs begin to undergo extensive biotransformation. Its effectiveness 
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in the liver might be very high, so that only a small portion of the drug reaches the blood 

stream. This process - known as first pass effect or presystemic metabolism – whereby 

the concentration of a drug is greatly reduced before it reaches the systemic circulation, 

greatly influences the bioavailability of a drug  (16, 17).  

 Drug metabolism is divided in three phases: phase I, in which DMEs introduce 

reactive or polar groups into xenobiotics, mainly by oxidation, hydroxylation and 

hydrolysis (Figure 1, PHASE 1); phase II, where these modified compounds are then 

conjugated into polar compounds, such as glutathione (GSH) and glucuronic acid (Figure 

1, PHASE 2); and phase III, when the xenobiotic conjugates are further metabolized and 

excreted (Figure 1, PHASE 3). Although these phases can occur separately, they 

normally take place in succession. Whatever the process and phase of drug metabolism, 

the rate of biotransformation reactions is not the same for every individual, since 

differences in genetic profiles and environmental factors, such as age, gender, drinking 

and smoking habits, can account to wide intra-individual variability  (17-19).   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 - Schematic representation of drug metabolism in the human body. The 

Drug Metabolism is divided in 3 Phases: Phase 1, where occurs the 

biotransformation of the xenobiotics; Phase 2, where occurs the synthesis of these 

xenobiotics; Phase 3, where occurs the excretion of the metabolites resultant from 

the biodegradation of the xenobiotics through the different pathways. 
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2.1. Phase I of Drug Metabolism 

 

 Drug Metabolizing Enzymes (DMEs) play central roles in the metabolism, 

elimination and/or detoxification of xenobiotics or exogenous compounds introduced into 

the body (17). In the phase I of Drug Metabolism, a variety of enzymes act to introduce 

reactive and polar groups into their substrates. Phase I reactions may occur by oxidation, 

reduction, hydrolysis, cyclization and decyclization, all occurring predominantly in the 

liver. For instance, through phase I oxidation, which involves the conversion of a C-H 

bond to a C-OH, a pharmacologically inactive product (prodrug) can be converted into a 

pharmacologically active compound, or also a nontoxic molecule can be transformed in 

a toxic one as illustrated by phase I metabolism of acetonitrile to glycolonitrile, which 

rapidly dissociates into formaldehyde and hydrogen cyanide, both of which are toxic (14, 

17, 20).  Most of the enzymes involved in phase I reactions belong to the large family of 

cytochrome P450 (CYP450) enzymes, including the CYP2D6. 

 

2.1.1. Cytochrome P450 system   

 

 Cytochrome P450 (CYP450) is the generic name given to a large family of highly 

versatile enzymes involved in drug metabolism and response (15). Besides the 

preponderant role in xenobiotic metabolism, they also have important functions in other 

processes, including steroid and cholesterol biosynthesis, fatty acid metabolism and the 

maintenance of calcium homeostasis. CYP450 enzymes can be found abundantly in the 

endoplasmic reticulum of liver cells, but also in the gastrointestinal tract, lung and kidney, 

though showing lower levels of expression (17, 21). 

 There are 57 active CYP genes in the human genome, which are divided into 18 

families, accordingly with their amino acid sequence similarities. The first three families 

(CYP 1-3) are mainly responsible by the metabolism of exogenous substances, such as 

drugs, whereas the CYP families with higher numbers are usually more involved in the 

metabolism of endogenous substances. CYP enzymes participate in  75-80% of all 

phase I – dependent metabolism and for 65-70% of the clearance of clinically used drugs 

(22).  The CYP isoenzymes are named according to specific standards, which can be 

exemplified using the CYP2D6: CYP is the abbreviation for cytochrome P450, the 

https://en.wikipedia.org/wiki/Acetonitrile
https://en.wikipedia.org/wiki/Formaldehyde
https://en.wikipedia.org/wiki/Hydrogen_cyanide
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number “2” designates the family, the letter “D” stands for the subfamily and the number 

“6” represents a specific gene (23). 

 From all the active elements of the CYP family, CYP3A4 is responsible for about 

50% of all CYP-dependent drug metabolism. In the encoding gene, more than 20 

common genetic variants have been identified, most of them resulting in decreased 

enzymatic activity, which substantially contribute to the high variability among individuals 

regarding CYP3A4 – mediated drug metabolism, although other factors concur for such 

variability. On the other hand, nearly 40% of the metabolism of all clinical used drugs is 

carried out by CYP2C19 and CYP2D6 enzymes, whose genes are as well highly 

polymorphic. Other members, like CYP1A2, CYP2A6 and CYP2B6, that  contribute 

greatly to xenobiotic metabolism, are also encoded by highly polymorphic genes (22). 

 Due to the polymorphic nature of the CYP enzymes, they are usually associated 

with the phenotypic variation elicited in drug-treated subjects, which is much dependent 

on levels of enzymatic activity. Accordingly, individuals are often described to be 

ultrarapid, extensive, intermediate and poor metabolisers (Figure 2). Ultrarapid 

metabolisers (UM), usually carry more than two copies of alleles conferring together 

greater than normal enzymatic activity; intermediate metabolisers (IM) are heterozygous 

for one defective and one functional allele or for 2 partially defective alleles; poor 

metabolisers (PM) carry two defective alleles and extensive metabolisers (EM) carry two 

alleles with normal function of the CYP enzyme. Therefore, depending on the phenotype 

of each individual, the drug metabolism can vary, leading to alterations in drug 

effectiveness (15, 22, 24).  

 

 

 

 

 

 

 

 

Figure 2 - Representation of the different phenotypes in a population. Ultrarapid Metabolizers present more 

than 2 copies of the gene, Extensive Metabolizers present 2 copies of the normal gene, Intermediate 

Metabolizers present 1 copy with normal function and 1 with reduced function r both with reduced function and 

Poor Metabolizers present no functional copies of the gene.  Adapted from Krammer et al. (2009) 
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2.1.1.1. Cytochrome P450 2D6 – CYP2D6 

 

 So far, CYPD26 has been one of the most studied pharmacogenes, because it 

presents the greatest impact of genetic polymorphism among all major CYP enzymes, 

due to its wide spectrum of genetic variants (from null alleles to several-fold gene 

amplification), comparably little influence by environmental and non - genetic factors, 

and its extraordinarily broad substrate selectivity (15).  

CYP2D6 contributes to the metabolism of up to 25% of all clinically used drugs 

from virtually all therapeutic classes (25). It is involved in the Phase I of the drug 

metabolism, working through the various reactions described in point 2.1. According to 

He et al. (26), CYP2D6 acts on more than 160 drugs, including tricyclic antidepressants, 

serotonin-selective reuptake inhibitors, opioids, and antiemetics, but also antiarrythmics, 

β-blockers, antihistamines, and antiviral agents. In Table 1 are listed the most common 

clinically used drugs metabolized by CYP2D6, as well as some known drugs that may 

function as inhibitors of CYP2D6 activity. 

 

Table 1 – Drugs metabolized by the CYP2D6 gene. Adapted from Department of Medicine, Indiana University’s website 

(27) 

 

Beta-Blockers Antidepressants Antipsychotics Others

Carvedidol Amitriptyline Haloperidol Aripiprazole

S -  metopropol Clomipramine Risperidone Atomoxetine

Propafenone Desipramine Thioridazine Codeine

Timolol Duloxetine Dextromethorphan

Fluoxetine Doxepine

Imipramine Flecainide

Paroxetine Mexiletine

Ondansetron

Oxycodone

Tamoxifen

Tramadol

Venlafaxine

Diphenhydramine

SUBSTRATES
INHIBITORS

Bupropion

Fluoxetine

Paroxetine

Quinidine

Duloxetine

Amiodarone

Cimetidine

Aripiprazole

Terbinafine

Chlorpheniramine

Clomipramine

Doxepin

Haloperidol

Methadone

Ritonavir
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The CYP2D6 gene is located on chromosome 22q13.1, in a region containing the 

entire CYP2D gene cluster, which besides CYP2D6 also harbours 2 pseudogenes, 

CYP2D7 and CYP2D8P (Figure 3). The pseudogene CYP2D7 is expressed as mRNA in 

the liver, but due to an insertion in the first exon disrupting the reading frame, protein 

production is null. In the case of the CYP2D8P, it’s a true pseudogene which has 

accumulated several gene-disrupting mutations (15). The expression of CYP2D6 is 

mostly confined to the liver, although low levels of protein have been shown in 

extrahepatic tissues like the gastrointestinal tract and in the human brain. 

 

 

 

 CYP2D6 gene contains 9 exons spanning ~4,4 kb, and encodes a protein with 

497 amino acids, although other alternatively spliced transcripts resulting in different 

isoforms have been reported 

(http://grch37.ensembl.org/Homo_sapiens/Gene/Summary?db=core;g=ENSG0000010

0197;r=22:42522501-42526908).  There are currently more than 100 distinct alleles and 

a grand number of rare variants described in the Human Cytochrome P450 (CYP) Allele 

Nomenclature Database - (http://www.cypalleles.ki.se/cyp2d6.htm). Many result in 

absent or non – functional protein (i.e. CYP2D6*3, *4, *5, *6), in decreased (i.e. 

CYP2D6*9, *10, *17, *41) or increased (i.e. CYP2D6*1XN, *2XN) expression. Other 

alleles present normal function (i.e. CYP2D6*1 or Wild type and CYP2D6*2) (15, 28-30).  

The majority of these alleles result from sequence variations like SNPs and small 

In/Dels within the CYP2D6 gene.  However, structural variants are also commonly 

Figure 3 - Schematic representation of the CYP2D6 gene cluster. In dark green, purple and light green, we have the representation of the 

CYP2D8, CYP2D7 and CYP2D6, respectively. The CYP2D7 spacer is located between a common 0,6 kb repeat (marked as red) and the 2,8 

kb REP 7 sequence, a repetitive segment specific of the CYP2D7 pseudogene (marked as grey). The 0,6 kb repeat is found downstream of 

all genes. The 2,8 kb REP 6 sequence, a repetitive segment specific of the CYP2D6 gene, is marked as a blue. Adapted from Krammer et al. 

(2009) and Gaedigk et al. (2007)   

http://grch37.ensembl.org/Homo_sapiens/Gene/Summary?db=core;g=ENSG00000100197;r=22:42522501-42526908
http://grch37.ensembl.org/Homo_sapiens/Gene/Summary?db=core;g=ENSG00000100197;r=22:42522501-42526908
http://www.cypalleles.ki.se/cyp2d6.htm
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detected in the entire CYP2D locus, because the locus is very prone to unequal crossing 

over between the highly homologous regions it contains. Accordingly, complete or partial 

deletions and duplications were shown to occur often, meaning thus that copy number 

variation involving the CYP2D6 gene is quite common. In addition, other products of 

recombination within the CYP2D cluster account to the diversity at the locus. It follows 

that both sequence and structural variations may originate alleles conferring no, 

decreased, normal or increased function, which in the whole are highly responsible for 

the wide range of levels of enzymatic activity across individuals. One of the extremes 

contains the so-called poor metabolizers, individuals with two non-functional alleles who 

cannot metabolize or bioactivate drugs through CYP2D6, while the other extreme 

contains the ultra-rapid metabolizers, who are those carrying at least one increased 

function allele (i.e., two or more copies of a functional allele on one chromosome) in 

addition to a normal-function allele. The groups of poor and ultra-rapid metabolizers are 

at the highest risk for experiencing dose-related adverse events or treatment failure, 

depending on the drug administered (25).  

Given the clinical relevance of CYP2D6, numerous genotyping strategies have 

been developed (28, 29) with the main goal of be able to predict the metaboliser 

phenotype of each tested individual. However, the design of genotyping assays for 

CYP2D6 is very challenging, once is necessary to deal with the major problem of 

detecting not only the multitude of alleles defined by sequence variation in a gene that is 

highly polymorphic, but also the structural variants that might be present in combination 

with any other CYP2D6 allele. For this reason, even with the most accurate genotyping 

methods, much caution is needed to make phenotypic predictions from genotypic data 

(29). Indeed, the reliability of phenotype prediction from genotype data is strongly 

influenced by the alleles interrogated in the typing assays. Unless using complete 

resequencing approaches, many alleles altering enzymatic activity might escape 

detection, resulting in frequencies of default alleles misleadingly overestimated (25). 

This is a problem that cannot be overcome even following the guidelines that 

have been developed by the Clinical Pharmacogenetics Implementation Consortium 

(https://cpicpgx.org/) to translate genotypes into predicted phenotypes (31). 

 

 

 

https://cpicpgx.org/
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2.1.1.2. Worldwide Genetic Distribution  

   

 

It is well documented that most genetic polymorphisms in drug metabolizing 

enzymes reveal substantial differences in allele frequencies across major human 

populations. CYP2D6 is no exception, and shows allele frequencies highly varying in 

world populations, which consequently implies extensive variation in the distribution of 

the phenotypic response to drugs metabolized by CYP2D6 among worldwide 

populations. 

Previous genetic studies revealed that CYP2D6 diversity was far greater within 

populations than between groups of populations and that null or low-activity variants 

occurred at considerably high frequencies in various regions of the world, although 

specific allelic variants are present at very distinct frequencies among world populations, 

whereas other are restricted to certain population groups (25). 

Furthermore, the macrogeographical spatial patterns of diversity at CYP2D6 

revealed to be clinal, and very similar to those shown by neutral markers, indicating that 

CYP2D6 diversity was modelled by the same factors that randomly affected neutral 

genomic variation (32). It is known that geography was the main factor influencing 

genetic differentiation among humans. Both physical distances and geographic barriers 

limits human communication and interaction, which has led to a global genetic 

substructure that largely follows geographic clines.  

However, populations may be genetically structured, when composed by more 

than one subpopulation that tend to maintain endogamous practices. These 

subdivisions, often corresponding to ethnic groups, are not mainly influenced by 

geography, but instead by social factors, including religion, culture, language, and other 

sources of group identification, thus leading to varying degrees of genetic structure, 

depending on the extent of reproductive isolation and endogamy.  

From the genetic point of view, the Portuguese represent a homogeneous 

population that is very well integrated in the context of populations from Western Europe. 

This scenario does not take into account the Portuguese Roma, who were demonstrated 

to contribute to some level of population structure in Portugal (33). 
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3.  Portuguese Roma 

 

 The Roma, also referred to as Romani and widely known as “Gypsies” among 

English-speaking people, are a transnational ethnic group, often reputed for their 

nomadic tradition, that nowadays is mostly spread throughout Europe, Near East, 

Caucasus and the Americans. 

 The social structure of the Roma groups is heavily influenced by the traditional 

endogamy, which is the trend to marry individuals within the same subgroup, since 

marriages between non-Roma or between Roma from different groups are avoided.  

Although their history was largely lost, important insights on the issue have come 

from scarce historical records documenting the presence in countries where they have 

lived, from  linguistics, and more recently from genetics (34).  

 Most studies performed so far suggested that the original homeland of the Roma 

was India, from where they departed around the 5th and 10th century, travelling to Europe, 

reaching first the Balkans region and later migrating into multiple locations throughout 

the whole continent in such way that by the 15th century they were already present in 

Spain and Portugal (34, 35). Genetic and linguistic studies pinpointed affinities between 

Roma population and various Indian groups. Comparative linguistics studies suggested 

that North-western Indian languages, such as Punjabi or Kashmiri or Central Indian 

languages like Hindi are the most related to Romani (35, 36). Genetic studies in groups 

of European Roma, showed that all groups share high frequency of Y – chromosome 

lineages, such H1a-M82 and mitochondrial haplogroups like M5a1, M18 and M35b, 

which are usually absent in European populations, while being rather common in South 

Asian Populations, especially from Northern India (36, 37). Nevertheless, the ancestral 

group/geographic region of India from which the Roma groups have originated is still 

unclear, given the contradictory evidence provided by a recent study  that they might 

descend from southern Indian groups (34, 37). 

 The Roma populations represent an interesting case of study, especially from a 

genetic point of view, because due to their endogamous practices, limited gene flow 

between groups and past history of successive group fragmentations that occurred 

during their migration into and within Europe, they present signatures of strong genetic 

drift effects, such as reduced genetic diversity and high linkage disequilibrium (36). 

Besides, from a pharmacogenetic point of view, the Roma population is still 

understudied. Although a previous study addressing genes that influence drug response 
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has already been conducted in the Portuguese Roma Population (38), they still remain 

very poorly characterized in regard to a fraction of diversity that can have high clinical 

relevance.  

 

 

II. AIMS 

 

 In the present study we intended to assess, in the Portuguese Roma, genetic 

diversity in the CYP2D6, a gene very important from a Pharmacogenetic point of view, 

to evaluate whether this population group show any peculiarity regarding drug response, 

in comparison with the remaining Portuguese population. In order to achieve this goal, 

the following partial aims were established: 

 Search and selection of SNPs and CNVs with pharmacological relevance 

and development of PCR and minisequencing multiplex reactions 

(SNaPshotTM); 

 Genotyping of a sample of Portuguese Roma population; 

 Comparison of the results in the Portuguese Roma with those previously 

available for the Portuguese host population and other populations, to put 

the data obtained in a worldwide context. 

 

 

III. MATERIALS AND METHODS 

 

1. Samples and DNA extraction 

In this study, 56 samples from self-identified Portuguese Gypsies were analysed. All 

samples have been extracted for previous works by the Chelex®-100TM (BioRad) 

method described in Laureau et al. (39). 
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2. PCR design 

 

We first performed a thorough literature search in order to select SNPs in the 

CYP2D6 with pharmacogenetic interest. At the end, the following eleven SNPs were 

chosen: 100 C>T (rs1065852); 1023 C>T (rs28371706); 1659 G>A (rs61736512); 1707 

del. T (rs5030655); 1846 G>A (rs3892097); 2549 del. A (rs35742686); 2615 del. AAG 

(rs5030656); 2850 C>T (rs16947); 2988 G>A (rs28371725); 3183 G>A (rs59421388); 

4180 G>C (rs1135840). This set of SNPs allows the identification of the CYP2D6 

haplotypes that are widely represented in different human populations. For the sake of 

simplicity, the CYPD2D6 haplotypes are conventionally referred to as CYPD2D6 alleles 

(http://www.cypalleles.ki.se/cyp2d6.htm), among which are included some that do not 

affect enzyme function (i.e. CYP2D6*1, *2, *34, *39), and others that are associated to 

low or null metabolic activity (i.e. CYP2D6 *3, *4, *5, *6, *9, *10, *17, *41) (23, 25).  To 

obtain genotype data for these SNPs, a SNaPshotTM strategy was applied, as will be 

described in the next point.  

 

Viewing the detection of cases where CYP2D6 is deleted and the whole gene, 

primers were designed based on previous studies involving the CYP2D6 gene. For 

amplification of the whole gene, a pair of primers were designed as described in Sistonen 

et al. (2005) (28) with the exception of the forward primer, which was designed by us 

since the previous one was located in a highly polymorphic region, resulting in fragment 

A (Figure 4.c). In order to detect the presence or not of the gene deletion, a pair of 

primers described in Krammer et al. (2009) (40) was selected, resulting in the fragment 

C (Figure 4.b). Also, a PCR reaction was performed to detect cases where CYP2D6 was 

duplicated, using a pair of primers identical to the one described in Gaedigk et al. (2007) 

(29), resulting in fragment B (Figure 4.c). Also, in order to access whether there was a 

gene duplication or not, a control sample from the Human Genome Database Panel – 

Centre Étude Polymorphism Humain (HGDP-CEPH) was used. Lastly, an approach to 

amplify the whole duplicated gene in samples positive for the previous approach 

described was developed, using a set of primers identical to those described in Gaedigk 

et al. (2007) (29), resulting in fragment D (Figure 4.c). Detection of possible non-specific 

annealing was tested in BLAT (UCSC) (htts://genome.ucsc.edu/cgi-

bin/hgBlat?command=start) selecting only the human genome. In order to find out if the 

primers could form primer-dimer structures and/or hairpins, the Oligocalc program was 

http://www.cypalleles.ki.se/cyp2d6.htm
https://genome.ucsc.edu/cgi-bin/hgBlat?command=start
https://genome.ucsc.edu/cgi-bin/hgBlat?command=start
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used (http://biotools.nubic.northwestern.edu/OligoCalc.html). After the in silico  

evaluation, each pair of primers was tested in individual amplifications in order to assess 

their functionality. Each one of the primers was used at a final concentration of 4 µM.  

 

 

 

 

 

 

 

 

 

The PCR reactions were performed in a final volume of 10 µL, containing 4,5 µL 

of deionized water, 1 µL of 10x Advantage® Genomic LA Buffer (Clontech), 0,4 µL of 

Expand Long Range dNTP Pack (Roche Diagnostics GmbH), 1,2 µL of each primer, 0,1 

µL of Advantage® Genomic LA Polymerase Mix (Clontech) and 1,6 µL of DNA. The 

amplification conditions were as follow: 94ºC for 3 minutes, proceeded by 5 cycles at 

98ºC for 15 sec, 63ºC for 1.30 min and 68ºC for 8 min, and another 30 cycles at 98ºC for 

15 sec, 62ºC for 1.30 min and 68ºC for 8 min and a final extension at 72ºC for 10 min. In 

the case of the specific region approach and the whole gene duplication approach, the 

Table 2 - Primers used in the PCR amplifications 

Figure 4 – Schematic representation of different CYP2D6 gene arrangements. a) Normal representation of the CYP2D6 gene cluster; b) Representation of 

a CYP2D6 gene deletion. As we can notice, comparing with a), the CYP2D6 gene is deleted and a hybrid between the CYP2D6 specific replicated region 

REP 6 and the specific replicated region of CYP2D7, REP 7, is formed, and using the primers CYP2D7_Seq B1 and CYP2D6_Rep 7R3 (Table 2), we 

obtain fragment C, indicative of a CYP2D6 gene deletion; c) Representation of duplicated event. Fragment A results from the use of primers CYP2D6_F 

and CYP2D6_R (Table 2), which were used to assess the presence of the CYP2D6 gene. Fragment B results from the use of primers CYP2D6_DUP_Fw 

and CYP2D7_DUP_Rv (Table 2), which amplifies a specific replicated region of the duplicated gene, nominated REP-DUP, which is an indicative of a 

duplication of the CYP2D6 gene. Fragment D is the result of primers CYP2D7_Fw_DUP_TOTAL and CYP2D7_DUP_Rv, amplifying the whole CYP2D6 

duplicated gene from samples positive for Fragment B. Adapted from Krammer et al. (2009) 

NAME Sequence 5' -  3 ' SIZE (Kb)

CYP2D6_F TCAGGAGCTTGGAGTGGGGAGA

CYP2D6_R ACTGAGCCCTGGGAGGTAGGTA

CYP2D7__Seq B1  GTCCCACACCAGGCACCTGTACT

CYP2D6_Rep 7R3  GAATTAGTGGTGGTGGGTGTTTG

CYP2D6_DUP_Fw CCATGGAAGCCCAGGACTGAGC

CYP2D7_DUP_Rv CGGCAGTGGTCAGCTAATGAC

CYP2D6_Fw_DUP_TOTAL CCAGAAGGCTTTGCAGGCTTCAG

CYP2D7_DUP_Rv CGGCAGTGGTCAGCTAATGAC
8,6

5,5

3,5

3,5

http://biotools.nubic.northwestern.edu/OligoCalc.html
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PCR reactions were performed in a final volume of 10 µL, containing 3,5 µL of deionized 

water, 1 µL of 10x Advantage® Genomic LA Buffer (Clontech), 0.4 µL of Expand Long 

Range dNTP Pack (Roche Diagnostics GmbH), 1.2 µL of each primer, 0.1 µL of 

Advantage® Genomic LA Polymerase Mix (Clontech), 1 µL of Q-solution (Quiagen ®), 

in order to stabilize the PCR reaction and minimize non-specific amplification, and 1.6 

µL of DNA. The amplification conditions for the specific region approach were as follow: 

94 ºC for 3 minutes, proceeded by 2 cycles at 98 ºC for 15 sec, 68ºC for 6 min, another 

3 cycles at 98 ºC for 15 sec and 66 ºC for 6 min and another 30 cycles at 98 ºC for 15 

sec and 64 ºC for 6 min and a final extension at 72 ºC for 10 min. For the whole gene 

duplication were as follow: 94 ºC for 3 minutes, proceeded by 2 cycles at 98 ºC for 15 

sec, 68ºC for 8 min, another 3 cycles at 98 ºC for 15 sec and 66 ºC for 8 min and another 

30 cycles at 98 ºC for 15 sec and 64 ºC for 8 min and a final extension at 72 ºC for 10 

min. 

 The amplification reactions were conducted in 2720 Thermal Cycler (Applied 

Biosystems) or/and T100TM Thermal Cycler (BioRad).  

 

   

 2.1. Electrophoresis 

 

All PCR products were run in agarose electrophoresis (1.5%) in order to assess 

the success of the amplification reactions and the presence of possible contaminations. 

Images of the DNA bands in the agarose gel were acquired using the ChemidocTM XRS+ 

System, with the aid of Quantity One 1-D Analysis Software. 

 

 

3. SNP Genotyping 

 

 To obtain the genotyping data for SNPs (Figure 5), SNaPshotTM reactions were 

performed. 11 single base extension (SBE) primers were designed in a similar way for 

the amplification primers, only excepting that these end right before the target SNPs 

(Table 3). Primer sequences were identical to those described in Sistonen et al. (2005) 

(28). To promote differences in electrophoretic mobility, a non-annealing tail with different 

sizes was added to the SBE primers. 
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Before the SNaPshotTM reactions, a purification step was performed with 

ExoSAP-IT® in order to remove the surplus of dNTPs and primers present in the PCR 

product. Each reaction contained 1 µL of amplified product and ExoSAP-IT® and the 

thermocycler conditions used were 37ºC for 15 min and 85ºC for 15 min. A mix containing 

all SBE primers was prepared with the following primer quantities: 0,1 µL of the 1659 

G>A and 1846 G>A, 0,5 µL from the 4180 G>C and 0,2 µL for the remaining SNPs. The 

SNaPshotTM reactions were carried out in a final volume of 5,2 µL containing 2 µL of 

purified PCR product, 2,2 µL of SBE primer mix and 1 µL of SNaPshotTM Multiplex Kit 

(Applied Biosystems). The reaction conditions were 25 cycles at 96ºC for 10 sec, 50ºC 

for 5 sec and 60ºC for 30 sec. After this step, the products were treated with 1 µL of SAP 

enzyme (USB®) at 37ºC for 60 min and 85ºC for 15 min. All these reactions were 

performed in a 2720 Thermal Cycler (Applied Biosystems) and/or T100TM Thermal Cycler 

(BioRad). Lastly, 1 µL of the SNaPshotTM purified products were mixed with 12 µL of Hi-

DiTM Formamide (Applied Biosystems) and Gene-ScanTM – 120 LIZTM size standard. 

Capillary electrophoresis was then carried out in an ABI 3130 Genetic Analyser (Applied 

Biosystems). 

Table 3 - Primers used in the SNaPshotTM reactions. 

Figure 5 - Representation of the CYP2D6 exons and the different positions of the SNPs analysed. Each number (1-9) represents the position of each 

exon from 5’ to 3’. The primers used of each position are described in table 3. Adapted from Sistonen et al. (2005) 

100C>T rs1065852 ACGCTGGGCTGCACGCTAC

1023C>T rs28371706 ACCGCCCGCCTGTGCCCATCA

1659G>A rs61736512  CTGACAAGCGCGAGCAGAGGCGCTTCTCC

1707delT rs5030655 GCAAGAAGTCGCTGGAGCAG

1846G>A rs3892097 CCGCATCTCCCACCCCCA

2549delA rs35742686 GATGAGCTGCTAACTGAGCAC

2615delAAG rs5030656 GCCTTCCTGGCAGAGATGGAG

2850C>T rs16947 AGCTTCAATGATGAGAACCTG

2988G>A rs28371725 AGTGCAGGGGCCGAGGGAG

3183G>A rs59421388 TGTCCAACAGGAGATCGACGAC

4180G>C rs1135840 GTGTCTTTGCTTTCCTGGTGA

Polymorphism Rs Sequence 5´-3 '
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4. Sanger Sequencing 

 

The Sanger Sequencing method was used to confirm results from the 

SNaPshotTM reactions, using primers described in table 4. Initial purification was carried 

out on the amplification products as described in section 3. The sequencing reactions 

were performed in a final volume of 5 µL containing 2 µL of purified amplification product, 

1 µL of the amplification primer at 4 µM, 1 µL of BigDye® Terminator v3.1 Cycle 

Sequencing Kit and 1 µL of sequencing Buffer. The conditions used were as follow: 96ºC 

for 4 min, followed by 35 cycles at 96ºC for 10 sec, 55ºC for 5 sec and 60ºC for 4 min, 

and a final step at 60ºC for 10 min. The reactions were carried out in Thermal Cycler 

(Applied Biosystems) or/and T100TM Thermal Cycler (BioRad). After this, the sequencing 

products were purified in Sephadex® columns (760 µL) through centrifugation for 4 min 

at 4400 rpm. The final products were resuspended in 12 µL of Hi-DiTM Formamide and 

capillary electrophoresis was performed in an ABI 3130 Genetic Analyser (Applied 

Biosystems). 

 

 

 

 

 

 

 

 

 

 

 

 

NAME SEQUENCE 5 '-3 ' SNPs RANGED EXPECTED SIZE

CYP2D6_SEQ_1_F ATCTTCCTGCTCCTGGTGGAC 100C>T ~80 bp

CYP2D6_SEQ_2_F TTCAAATAGGACTAGGACCTGTA 1023C>T ~250bp

CYP2D6_SEQ_3_R GAATGTCCTTTCCCAAACCCAT 1659G>A; 1707delT; 1846G>A ~500 bp

CYP2D6_SEQ_4_F CACAGGAGGGATTGAGACCC 2549delA; 2615delAAG; 2850C>T; 2988G>A; 3183G>A ~800 bp

CYP2D6_SEQ_5_R TTATTGTACATTAGAGCCTCTGG 4180G>C ~100 bp

Table 4 - Primers used in the Sanger Sequencing reactions. 
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5. Data Analysis 

 

The results obtained in the SNaPshotTM reactions were analysed using the 

GeneMapper® v4.0 software and the sequencing data was analysed with Geneious Pro 

5.5.8. The Arlequin Software v3.5 was used to test for Linkage Disequilibrium (L.D.), 

estimate haplotype frequencies and to test deviations from the Hardy-Weinberg 

Equilibrium.  

In order to perform comparative analysis, data from previous works published 

was used (25, 30, 41). 

To evaluate the significance of the difference between the two proportions, the z-

ratio was calculated in the web site http://vassarstats.net/. 

 

 

IV. RESULTS AND DISCUSSION 

 

1. CYP2D6 Genotyping  

 

After applying the strategy to detect the presence of the entire CYP2D6 gene, 

positive results were observed in 55 of the 56 individuals tested. In the remaining subject, 

the suspicion of being homozygous for the deletion was confirmed through the strategy 

used to identify the deletion of the entire CYP2D6 gene, which was applied for all the 

samples in this study. In figure 6 is depicted an example of an agarose electrophoresis 

of different PCR products. As is illustrated, samples positive for the presence of the gene 

presented a band corresponding to the whole gene (marked arbitrarily as “G”). That band 

was absent in a unique individual (“X5” in Figure 6), who was also the unique presenting 

the band expected when submitted to the approach undertaken to test the gene deletion 

(marked as “X5 D”). 

http://vassarstats.net/
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The 11-plex SNaPshotTM reaction was successfully developed and applied for all 

the 56 samples. In figure 7 are shown illustrative CYP2D6 electropherograms obtained 

for different individuals. The electropherogram at the bottom presented in the figure 

corresponds to the result observed for sample “X5”, identified as a homozygous for the 

gene deletion, which showed entire failure of the SNaPshotTM reaction, thereby 

consistent with a gene deletion on this sample. 

 Lastly, a molecular strategy directed to the identification of gene duplications was 

applied to the 55 samples positive for the presence of CYP2D6 (Figure 8), which allowed 

to identify 3 individuals possibly harbouring that kind of copy number variations. 

However, when the strategy used to validate the presence of the whole duplicated gene 

Figure 7 – Example of an electropherogram performed in this study and respective predicted genotype. The last one 

was obtained from the sample suspected to have a deletion of the whole gene, confirming our suspicion. 

Figure 6 – Example of an Agarose Electrophoresis performed for the analysis of the whole gene and cases of gene deletion. Lanes 1 and 

11- DNA molecular weight markers (Ladder 1 kb); Lanes 2 to 9 - samples amplified with the primers designed to detect the whole gene. 

Lanes 12 to 18 - the same samples amplified with the primers designed to detect deletion of the whole gene. Lanes 10 and 20 – Negative 

controls of the PCR reactions.  Sample in lane 8 doesn’t present any band when tested for the presence of the whole gene, but presents a 

band when tested for the deletion of the whole gene (Lane 18). Sample in lane 9 didn’t present any band after the two amplification 

approaches, due to poor quality of DNA.  
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was applied to these 3 individuals (Figure 9), only in one of them was observed a positive 

result, which was further confirmed after using the SNaPshotTM technique (Figure 10). 

Thus, a gene duplication was detected in a unique individual from the studied Roma 

sample.     

  

 

 

 

 

 

Figure 8 – Example of an agarose electrophoresis performed to determine the presence or not of 

duplication events. A control sample from the HGDP-CEPH (lane 1) was used as a positive control of the 

amplification. Sample in lane 10 presents a band identical to the positive control, indicating the presence 

of a duplication event. The bands presented in the remaining lanes (2-9) are due to non-specific 

amplification. 

Figure 9 – Example of an agarose electrophoresis performed to determine the presence of 

the whole duplicated gene. A control sample from the HGDP-CEPH (Lane 2) was used again 

as a positive control. In lane 1 is the negative control for the amplification. The 3 samples 

tested (lane 3-5) were those identified through a previous approach as suspected to have a 

gene duplication. Only one of them (lane 4) presented a positive result in the PCR assay 

specific for the detection of the whole duplicated gene. 
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2.  Inference of CYP2D6 diplotypes 

 

 

Out of the 11 polymorphic positions screened in our sample, no variation was 

detected at 1023C>T, 1659 G>A, 1707 del, 2615 delAAG and 3183 G>A. For the 

remaining 6 polymorphisms, tests for Hardy-Weinberg equilibrium were performed 

Table 5 – Results from the Hardy – Weinberg equilibrium test obtained for the 11 positions 

Position n p - value s. d.

100 C>T 56 0.53450 0.00049

1023 C>T

1659 G>A

1707 delT

1846 G>A 56 1 0

2549 delA 56 1 0

2615 delAAG

2850 C>T 56 0.34462 0.00048

2988 G>A 56 1 0

3183 G>A

4180 G>C 56 0.00448 0.00007

Observable Heterozygosity Expected Heterozygosity

0.48214 0.43356

0.40851

0.13611

0.48440

Monomorphic

Monomorphic

Monomorphic

Monomorphic

Monomorphic

0.29091

0.14545

0.05354

0.41635

0.41818

0.05455

0.36364

Figure 10 – SNaPshotTM reaction performed to confirm the results of the whole duplicated gene approach. a) Control 

Sample HGDP00531; b) Sample with duplication identified in the present study. In the electropherogram of the control 

HGDP00531, known to have the genotype *2/*4N, the position 1846 is altered, presenting an A instead of a G, therefore 

indicative of the duplication event in the allele *4. In our sample, the electropherogram did not reveal alterations in the 

position 1846, as well as the remaining positions, therefore indicating that the duplicated gene harbors allele *1. 
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(Table 5), which uniquely revealed a significant departure between observed and 

expected genotypic distributions at 4180 G>C due to an excess of homozygotes 

(observed heterozygosity: 29,1%; expected: 48,4%), even after the Bonferroni correction 

for multiple tests was applied. 

 

   

 As expected, significant Linkage Disequilibrium (L.D.) was detected between the 

intergenic variations examined (Table 6).  Accordingly, from the unphased genotypic 

data, diplotypes were reconstructed for each individual using the EM algorithm 

implemented in Arlequin, which was also used to estimate frequencies for the inferred 

haplotypes.  

  

 

 

 

The program has inferred 13 distinct haplotypes in our sample, all of which 

corresponding to allelic variants or sub-variant already defined in the CYP Allele 

Nomenclature Database. 

Positions 100 C>T 1023 C>T 1659 G>A 1707 delT 1846 G>A 2549 delA 2615 delAAG 2850 C>T 2988 G>A 3183 G>A 4180 G>C

100 C>T * - - - + - - - - - +

1023 C>T - * - - - - - - - - -

1659 G>A - - * - - - - - - - -

1707 delT - - - * - - - - - - -

1846 G>A + - - - * + - + + - +

2549 delA - - - - + * - + + - +

2615 delAAG - - - - - - * - - - -

2850 C>T - - - - + + - * + - +

2988 G>A - - - - + + - + * - +

3183 G>A - - - - - - - - - * -

4180 G>C + - - - + + - + + - *

Table 6 – Results of Linkage Disequilibrium (L.D.) obtained for the 11 positions. Presence of L.D. (+); Absence of L.D. (-) 

Table 7 - Haplotypes defining different CYP2D6 alleles, corresponding effects in enzyme activity and frequencies in the Portuguese Roma. Note: 

Haplotype ID corresponds to the identifier provided by Arlequin, while the CYP2D6 allele designations and effects in enzyme activity were assigned 

according to the CYP Allele Nomenclature Database. 

1 T C G T A A AAG C G G C *4 None 0,238444 ± 0,0433

2 C C G T G A AAG C G G C *39 Normal 0,035977 ± 0,018525

3 T C G T A A AAG C G G G *4J None 0,009322 ± 0,009732

4 C C G T G A AAG C G G G *1 Normal 0,317943 ± 0,048101

5 T C G T G A AAG C G G C *10 Decreased 0,046051 ± 0,019395

6 C C G T G A AAG T G G C *2 Normal 0,179935 ± 0,040293

7 C C G T G G AAG C G G G *3 None 0,026786 ± 0,016723

8 C C G T G A AAG T A G C *41 Decreased 0,059859 ± 0,025156

9 C C G T G A AAG C A G G *41v Decreased 0,01157 ± 0,010385

10 C C G T G A AAG T G G G *34 Normal 0,027237 ± 0,018843

11 C C G T A A AAG C G G C *4M None 0,010337 ± 0,009338

12 T C G T A A AAG T G G C *4K None 0,018683 ± 0,01566

13 - - - - - - - - - - - *5 None 0,017857 ± 0,012943

Haplotype I.D 100 C>T 1023 C>T 1659 G>A 1707 del. T 1846 G>A 2549 del. A 2615 del. AAG 2850 C>T 2988 G>A 3183 G>A 4180 G>C CYP2D6 allele Enzyme Activity Frequency
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 In table 7 are presented the detected alleles, their frequencies in the sample of 

Portuguese Roma and the effect of each allele in enzyme function. Allele CYP2D6*5, 

which refers to the deletion of the gene and consequently to a non-functional allele, was 

present in homozygosity in one individual.  No heterozygous for the deletion were found, 

although carriers could be identified with the methodological strategy used to detect this 

kind of copy number variation. Given that the frequency of CYP2D6*5 was 1,8%, the 

number of expected heterozygous in a sample of 56 individuals was 1,96, which is a 

considerably low value, likely explaining that by chance heterozygous were missing in 

the studied sample of Portuguese Roma. 

 

 Four other alleles were detected in the Roma that were associated to absence of 

enzymatic activity: CYP2D6*4 and its subtypes *4J, *4M and *4K, all bearing the splice 

site mutation 1846 G>A responsible for loss of activity, and CYP2D6*3, defined by 2549 

del.A, which is a frameshift mutation also responsible for a non-functional product. Taken 

together the alleles conferring none activity summed up 29,8 % in the sample. Two 

partially functioning variants were identified, CYP2D6*10 and CYP2D6*41, both leading 

to decreased enzymatic activity, that together were present at 11,7%. The remaining 

detected alleles were normal function variants, including CYP2D6*1, which was the 

commonest allele (30,4%), CYP2D6*2, *34 and *39.  In total, the normal alleles reached 

53.7% in the sample.  

 

 As mentioned, the analysis of copy number variation revealed the presence of 

gene duplications in 1 individual, whose inferred genotype based on the SNaPshotTM 

results was *1/*4. The approach used to amplify the whole gene duplication also 

permitted to conclude that the duplicated gene involved the allele *1 of the genotype 

*1/*4. Nevertheless, the approach does not allow to infer the number of gene copies 

present in the individual. 
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3.  Metabolic Profiles  

 

 In order to predict the theoretical metabolic profiles from the CYP2D6 genotypes, 

we followed the strategy previously described by Gaedigk et al. (25, 31). It is referred to 

as “Activity Score” System, according to which genotypes are categorized by the 

‘‘number of active genes’’, alleles are grouped based on their assumed functionality, 

active scores (AS) are assigned to each genotype and then ASs are translated into a 

phenotype prediction that include the traditional classification as PM, IM, EM, and UM. 

To calculate the AS, a value of 1 is assigned to normal alleles (i.e. *1, *2, *34, *39), 0.5 

for reduced – activity alleles (i.e. *10, *17), 0 for null variant alleles (i.e. *3, *3xN, *4, *4K, 

*3xN, *4xN, *5) and 2 for multiplications alleles like *1xN or 2*xN. Therefore, genotypes 

with AS=0, were considered PM, with AS = 0,5 were considered IM, with AS = 1-2 were 

considered EM and with AS≥2 were considered UM. 

 

In Table 8 are presented the frequencies of the CYP2D6 genotypes in the 

Portuguese Roma and their ascribed AS. For the three subjects known to harbour gene 

duplications, only one presented a real duplicated event, which was the individual with 

the genotype *1/*4, and the duplication event was in allele *1, but we still cannot infer 

the extent of the duplication. Because he had at least two active gene, it is possible to 

deduce that the active score is two or greater than two. In terms of predicted metabolic 

profiles, the categories poor and intermediate metabolizers can be excluded, but he 

might fall either in the group of extensive or ultra metabolizers, depending on the extent 

of the duplicated allele.  

 

  

 

 

 

 

 

 

 

 

 



                                                                                                                                                  FCUP 40 
                                                  Updating the study of pharmacogenetic polymorphisms in the Portuguese Roma 

 

 

 

 

 

 

 

 

  

 

 

 

  

 

 

  

 

 

 

 

 

 Taking into account the ascribed ASs, the great majority of the Portuguese Roma 

were predicted to be extensive (83,9%) or intermediate metabolizers (5,4%) (Figure 11). 

However, a substantial proportion of 8,9% (Figure 11) was assigned to the category of 

poor metabolizers, giving thus a prediction of the proportion of Roma at high risk of 

experiencing adverse reactions when treated with drugs that are metabolized by 

CYP2D6.    

Table 8 - Frequencies of CYP2D6 genotypes in the Portuguese Roma population. 

Concerning the genotype referred to as *1xN/*4, since it was not possible to infer the 

number of gene copies, while knowing that the duplicated gene involved allele *1, its 

number of active genes and active score is at least 2 although it can be greater than 2. 

N – Duplication event 

*1/*1 7 2 2 0,1250

*1/*2 3 2 2 0,0536

*1/*3 3 1 1 0,0536

*1/*4 9 1 1 0,1607

*1/*4J 1 1 1 0,0179

*1/*34 1 2 2 0,0179

*1/*41 4 2 1,5 0,0714

*2/*2 3 2 2 0,0536

*2/*4 6 1 1 0,1071

*2/*10 3 2 1,5 0,0536

*2/*39 1 2 2 0,0179

*2/*41 1 2 1,5 0,0179

*4/*4 2 0 0 0,0357

*4/*4M 1 0 0 0,0179

*4K/*4K 1 0 0 0,0179

*4/*10 1 1 0,5 0,0179

*4/*39 3 1 1 0,0536

*4/*41 2 1 0,5 0,0357

*5/*5 1 0 0 0,0179

*10/*41 1 2 1 0,0179

*34/*34 1 2 2 0,0179

*1xN/*4 1 ≥ 2 ≥ 2 0,0179

Genotype n Active Genes Active Score Frequency
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 As stated before, while we could infer that only one individual presented a 

duplication, it was not possible to deduce the extent of the duplication event, which is the 

total of gene copies contained in the chromosome with the duplication. This individual 

has a minimum number of two CYP2D6 genes but in fact can have more than two copies, 

and so he is the unique candidate in the Roma sample that theoretically can be ultrarapid 

metabolizer. As follows, we can only anticipate that this metabolic category in the 

Portuguese Roma might range from 0 and the maximum frequency of 1,8%. Depending 

on that, the frequency of extensive metabolisers can also vary between the minimum 

estimate at 83.9% and a maximum of 85.7%, with the latter value registered if the 

individual is not ultra metabolizer. 

 

 

 

 

 

 

 

 

 

Figure 11 - Frequencies of theoretical metabolic profiles in the Portuguese Roma 

population. EM – Extensive Metabolizers; IM – Intermediate Metabolizers; PM – Poor 

Metabolizers; UM – Ultrarapid Metabolizers.  
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4.  Comparison with other populations 

 

 To put the data here obtained for the Portuguese Roma in a broad population 

context, we took advantage on a recently study that constitutes the most comprehensive 

work up to now performed summarizing CYP2D6 allele frequencies, diplotypes and 

predicted phenotype across major populations (25). The study was based on an 

exhaustive data compilation from the literature, which ended up with hundred entries for 

multiple ethnic groups and populations from different geographical regions, including two 

about the Portuguese previously studied for CYP2D6 (30, 41). 

 

 Among the many population entries in the work of Gaedigk et al. (2016), we 

selected a few to illustrate the distribution of CYP2D6 alleles in European and Asian 

populations, which are presented in Table 9, where are also included the results from 

the present study. 

 

 As we can notice, there are many alleles without information for most of the 

populations listed in Table 9. This is not a consequence of any bias arising from our 

selection criteria, but only the reflex of the variety of genotyping strategies used in 

different studies. Owing to the major contribution to the metabolism and 

biotransformation of numerous drugs, CYP2D6 is one of the pharmacogenes most 

extensively analysed, although based in genotyping assays that greatly varied between 

studies. Many examined a small number of variations within the gene, usually coinciding 

with the allelic variants most common and with a widespread distribution, and 

consequently several variants certainly escaped detection. This causes a problematic 

skewed distribution, falsely overestimating the frequency of the default allele, that is the 

allelic category in which are included all those alleles not bearing any of the variations 

examined. 
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 The default allele is usually assumed to be CYP2D6*1 also referred to as the 

“wild-type” allele, which might then encompass the “non-normal” alleles that could not be 

detected with the screened positions. In this work we used a CYP2D6 genotyping 

technique that allows the detection of 11 of the most relevant polymorphic positions in 

the gene covering the majority of the clinically important mutations (28). However, most 

of those positions were not included in previous conventional typing methods, not 

including those more recently developed or obviously those relying in high-throughput 

assays that are still very scarce (42, 43). This represented a setback regarding 

comparative statistical analysis. For instance, allele *41, which is a reduced - activity 

allele, is characterized by the presence of A instead of a G in position 2988, but also 

presents a T instead of a C in position 2850 and a C instead of a G in position 4180. 

Allele *2 is characterized by the presence of a T instead of a C in position 2850 and a C 

instead of a G in position 4180. If the SNP 2988 G>A is not analysed, we can misidentify 

an individual as *2/*2, when he could be *2/*41 or *41/*41. 

 

 Another issue in the comparative analysis was the difficulty to deal with 

multiplications. Although we developed a strategy to identify the allele duplicated, we 

could not infer the number of copies present with this approach. Therefore, and for the 

sake of simplicity, we have agglomerated the distinct types of multiplications reported in 

the populations considered in Table 9 in one single group, named “Multiplications”. 

 

 Regarding the set of normal alleles as a whole, including *1, *2, *34, *39 and 

“Others”, we can see that the Portuguese Roma present one of the lowest frequencies 

among Eurasian populations. For instance, comparatively to the host population, normal 

alleles summed up 71%, whereas the frequency in the Roma was substantially lower 

(56,1%), with the difference being statistically significant (P= 0,001 in the z-ratio for the 

significance of the difference between the two proportions). In compensation, the total 

frequency of defective alleles in the Portuguese Roma (32,1%) lies in the limit of the 

upper range of values until now reported. Focusing again in the comparison with the 

Portuguese host population, all defective alleles present in the Roma (*3, *4 and *5) are 

also present in the Portuguese host population. However, it is remarkable the increased 

frequency of the null allele CYP2D6*4 in the Roma (27,7%), comparatively to other 

Portuguese, among whom the frequency is considered below 20%. 
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 As for reduced – activity alleles, two variants are present in the Portuguese 

Roma: CYP2D6*10, with a frequency of 4,6% and CYP2D6*41, with a frequency of 7,1%. 

The first was also found in the Portuguese host population, while the second one was 

not screened up to now in other Portuguese. Both CYP2D6*10 and *41 are encountered 

in most other European populations, with a typical frequency range in which fall the 

values observed in the Portuguese Roma. Interestingly, CYP2D6*10 is very well 

represented in Indian populations, particularly from the North where it reaches 16.8%, 

as well is CYP2D6*41, at least in West India (12,5%), once it was not yet screened in 

other Indian populations. Actually, the distribution of latter allele is still very scarcely 

known because often it was not included in the CYP2D6 typing methods. The highest 

frequency up to now reported in Europe was among Austrians, attaining 12.4%, thus a 

value similar to the reported for Western Indians. 

 

 Data for CYP2D6 was available for a Roma group from Hungary (Table 9), 

although based on a panel of variations with low resolution, and so only allowed to 

identify the alleles CYP2D6*4 and *10, two variants we found in the Portuguese Roma, 

but also widespread in other populations. However, a finding that deserves attention is 

the high frequency of CYP2D6*4 in the Hungarian Roma (22,5%), though lower than 

among the Portuguese Roma (27,7%) as well as the very high proportion of CYP2D6*10 

(26.6%).  In non-Roma European populations, very rarely CYP2D6*4 exceeds 20% (two 

unique reports in the Swedish, 24.4%, and, suggestively, in the Hungarian non-Roma, 

20.4%), while the values of CYP2D6*10 in Europe are usually lower than 5%. The 

atypically increased frequencies of some CYP2D6 alleles in the Portuguese and 

Hungarian Roma, is fully consistent with what is known about the demographic history 

of Roma groups, which along time was always accompanied by remarkable founder 

events.  

  

 In respect to the multiplications, we can see that the frequency of 1.8% in the 

Portuguese fits well the values reported for other populations. Notably, the distribution of 

multiplications across populations is quite uniform. 
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 In terms of metabolic profiles, we recall that the inferred theoretical categorization 

in the Portuguese Roma was 83.9% for EM, 5.4% for IM, 8.9% for PM and 1.8% still 

partially unknown, which can only fall in EM or UM, but for the sake of comparative 

analysis, we decided to consider it UM.  In order to compare this profile with that from 

the Portuguese non-Roma, we applied the same criteria to the raw data presented by 

Albuquerque et al, which has yielded the following proportions: 88.7% for EM, 0.7% for 

IM, 6.3% for PMs and 4.3% for UM. Figure 12 shows the profiles of the Portuguese Roma 

and non-Roma, which despite not differing too much, reveal that the proportion of PMs 

in the Roma is slightly higher than in non-Roma, but the difference is not statistically 

significant (P=0.228), and that the proportion of IM in the Roma is also higher than in 

non-Roma, but in this category difference reaches statistical significance (P=0.006). This 

is due to elevated frequency of null variant alleles detected in the Portuguese Roma, 

namely alleles *4 and *10, which have contributed to diminish the frequency of EMs at 

the cost of increased frequency of PMs plus IMs individuals. 

 

 

 

 

 

 

 

 

 

Figure 12 - Frequencies of theoretical metabolic profiles. a) Portuguese Roma (current study); b) Portuguese host (Albuquerque et al. 2013). 

EM – Extensive Metabolizers; IM – Intermediate Metabolizers; PM – Poor Metabolizers; UM – Ultrarapid Metabolizers; 
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V. FINAL REMARKS 

 

 In this study we have applied a high resolution SNaPshotTM methodology to 

characterize CYP2D6 in a sample of Portuguese Roma.  

 

 The results obtained led to conclude that when Portuguese Roma are submitted 

to treatments with drugs in which CYP2D6 acts in the biotransformation, they likely will 

be more susceptible to adverse drug reactions than other Portuguese, because they 

have higher frequencies of null CYP2D6 alleles. And this is where, like it has been 

discussed throughout the years, pharmacogenetic will have a preponderant role in 

clinical practice. With the improvement and introduction of genetic test in the clinical 

setting, there will be the possibility of developing the so called “Personalized Medicine”, 

which will give the physician the tools needed to not only prescribe the right dose of the 

drug necessary, but also monitor the response of the patient throughout the treatment. 

Expectation are growing with the raise of high-throughput genomic approaches. 

Respecting CYP2D6 micro-chip/array analysis is already often applied, it has some 

disadvantages because this methodology cannot discriminate accurately the number of 

active genes, which is critical in cases of UM individuals (30). Next generation 

sequencing is a powerful tool, but was also demonstrated to be problematic in the 

analyses of CYP genes. Therefore, there is an imperative need to develop a more 

reliable, efficient and cost – effective method, in order to be more commonly used in 

clinical practice. There has been some works developed in that way, mainly through the 

use of WGS (Whole – Genome Sequencing). This method has been successfully applied 

to the molecular diagnosis of genetic diseases, particularly in a clinical paediatric context, 

in cases of neurodevelopment disorders, to diagnose suspected underlying genetic 

diseases (43). Although we are still far of recommending WGS as the platform for routine 

pharmacogenetic testing, a study was already published by Twist et al. (42), reporting 

the development of a “computational method for automated derivation of diploid 

functional haplotypes from unphased WGS” for the CYP2D6 gene, designated as 

“Constellation”, which allows to detect all gene variants, including gene conversions and 

rearrangements. Nevertheless, the method encountered some setbacks as, for instance, 

it cannot consistently detect some rare variants like CYP2D6*68+*4, a tandem 

arrangement featuring a hybrid CYP2D6 / CYP2D7 gene upstream of a nonfunctional 
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CYP2D6*4. Despite the many works and efforts towards the implementation of 

pharmacogenetics in clinical practice, its application is still somehow new.  

 

 Another issue that needs further investigation is the correlation between the 

predicted metabolic profiles and levels of enzymatic activity assessed through 

biochemical assays. Although strong correlations have been reported mainly for 

European populations, given the complexity of the variations in CYP2D6, more studies 

are still needed to validate inferences based on genotypic data and avoid thus 

misidentification of metabolic categories. For instance, an individual predicted to be EM, 

might have an unsuspected and so unscreened null variant allele causing decrease of 

enzyme activity, which would escape detection by conventional genotypic analysis. 

 

 With the development of this study, even though our primary goal was to explore 

the knowledge regarding allelic frequencies and theoretical metabolic profiles at the 

CYP2D6 gene in the Portuguese Roma, we also intend to aware to the impact that 

pharmacogenetics can have in clinical practice and that there is a great need to improve 

on this field. The implementation of Pharmacogenetics in the clinical setting cannot 

exempt the individualization of genetic tests. However, the knowledge of the specificities 

of groups like the Roma might alert for the need to rethink dedicated measures in terms 

of health care. 
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