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 Abstract  

 Transthyretin (TTR) is a plasma protein, known to transport the thyroid hormone 

thyroxine (T4) and retinol-binding protein (RBP)-retinol complex. The main sources of 

TTR in the plasma and cerebrospinal fluid (CSF) are the liver and choroid plexus, 

respectively. In peripheral nervous system, TTR enhanced nerve regeneration and 

neurite outgrowth in dorsal root ganglion neurons and megalin was proposed as a 

mediator receptor. Regarding central nervous system, TTR null mice showed to have 

an infarct area bigger than wild type mice after ischemic condition. Moreover, TTR 

levels were upregulared in mouse hippocampus after traumatic brain injury, in CSF of 

rat subjected to a stroke model and also in patients with severe head injury. More 

recently, clinical studies reported that young acute ischemic stroke patients have levels 

of serum TTR significantly lower than normal control groups. Additionally, elevated 

levels of TTR seem to be a marker of good prognosis in cerebral infarction, suggesting 

a neuroprotective action for TTR. 

 Given all of these findings, the main goal of our study is to investigate the 

neuritogenic and neuroprotective proprieties of TTR in hippocampal neuronal cultures 

and the molecular mechanism involved in these actions. This work demonstrates that 

TTR promotes neurite outgrowth and neuroprotection over dendritic extensions of 

neurons in physiological and in ischemic pathological conditions, respectively. 

Furthermore, these TTR actions were megalin receptor dependent and involved Erk 

1/2, Akt and CREB, signaling pathways possibly through a Src/TrK transactivation 

mechanism. 

 Since, stroke is one the major causes of mortality worldwide and there is no 

effective therapy, this study unveils a new possible therapeutic target to explore. 

 

 

Key words: neuroprotection, neurite outgrowth, transthyretin, megalin, hippocampal 

neurons  
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 Resumo 

 A transtirretina (TTR) é uma proteína do plasma, conhecida por transportar a 

hormona da tiroide tiroxina (T4) e o complexo retinol e proteína da ligação do retinol 

(RBP). As principais fontes da TTR no plasma e no líquido cefalorraquidiano são o 

fígado e o plexo coroide, respetivamente. No sistema periférico nervoso, a TTR 

mostrou melhorar a regeneração nervosa e o crescimento de neurites em neurónios 

da raiz dorsal e a megalina foi proposta como o recetor mediador. Num estudo 

direcionado para o sistema nervoso central, ratinhos deficientes em TTR mostraram 

ter uma área de enfarte maior do que ratinhos do tipo selvagem, após condição de 

isquemia. Além disso, os níveis de TTR foram sob regulados no hipocampo de ratinho 

após um dano cerebral traumático, no líquido cefalorraquidiano de ratos sujeitos a um 

modelo de AVC e também em pacientes com grave traumatismo craniano. Mais 

recentemente, estudos clínicos relataram que jovens pacientes com AVC isquémico 

agudo têm níveis de TTR significantemente mais reduzidos do que grupos de controlo 

normais. Adicionalmente, elevados níveis de TTR parecem ser um marcador de bom 

prognóstico, sugerindo a ação neuroprotectora da TTR.  

 Dadas todas estas constatações, o principal objetivo do nosso estudo é 

investigar as propriedades neuritogénicas e neuroprotectoras da TTR em culturas de 

neurónios do hipocampo e o mecanismo molecular envolvido nessas ações. Este 

trabalho mostra que TTR promove o crescimento de neurites e a neuroproteção das 

extensões dendríticas dos neurónios em condições fisiológicas e patológicas de 

isquémica, respetivamente. Para além disso, estas ações da TTR mostraram ser 

dependentes do recetor de megalina e envolvem as cascatas de sinalização Erk 1/2, 

Akt e CREB, possivelmente através da Src/mecanismo de transactivação da TrK.  

 Uma vez que o AVC é uma das principais causas de mortalidade em todo o 

mundo e não há nenhuma terapia eficaz, este estudo revela um novo alvo terapêutico 

possível para explorar. 

 

 

Palavras-chave: neuroproteção, crescimento de neurites, transtirretina, megalina, 

neurónios do hipocampo 
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 General introduction  

 Cerebral Ischemia 

 Stroke is one of the major causes of mortality in Portugal (George, 2012) and 

the second cause of death worldwide with 6.7 million of obits in 2012 according to the 

World Health Organization (2012). There are two kinds of stroke: the hemorrhagic 

stroke and the ischemic stroke. Ischemic strokes are more frequent and constitute 87% 

of all cases and are caused by a transient or permanent reduction in cerebral blood 

flow that is restricted to the territory of a major brain artery.  Generally, reduction in flow 

results from occlusion of a cerebral artery by an embolus or local thrombosis. Despite 

the dimension of the disease, the cellular pathogenesis of hypoxic-ischemic brain 

damage is not totally known, and until now there is no effective therapy. 

 Cerebral blood flow reduction impairs delivery of substrates, particularly oxygen 

and glucose, essential for brain tissues to obtain energy by oxidative phosphorylation 

(Martin et al., 1994). This energy depletion results in the loss of membrane potential, 

and consequently, neurons and glia depolarize and release K+ and glutamate (Katsura 

et al., 1994). In addition, the lack of energy prevents the reuptake of excitatory amino 

acids at the synapse, leading to accumulation of glutamate in the extracellular space 

(Rossi et al., 2000).  Under these conditions, there is overactivation of synaptic and 

extrasynaptic glutamate receptors, namely NMDA, AMPA, kainate and also 

metabotropic glutamate receptor 1 (mGluR1) receptors. Glutamatergic overstimulation, 

a phenomenon known as  excitotoxicity, contributes to neuronal degeneration in many 

acute CNS diseases, including ischemia, trauma, and epilepsy, and may also play a 

role in chronic diseases, such as amyotrophic lateral sclerosis (ALS), Huntington’s,  

Parkinson’s and Alzheimer’s disease. This excitotoxicity results in Ca2+, Na+ and Cl- 

overload into neurons, combined with a lower significant efflux of K+ (Choi, 1992; 

Arundine and Tymianski, 2003).  Increased influx of cations into cells is followed by 

passive entry of water, resulting in edema in the infarct zone. 

 Furthermore, the increased calcium concentration activates a series of 

enzymes, including protein kinase C, proteases, phosphatases, phospholipases, 

neuronal nitric oxide synthase, and xanthine oxidase and overproduction of proteolytic 

enzymes, lipid peroxidation, reactive oxygen species and  reactive nitrogen species 

formation (Emerit et al., 2004). Oxidative stress changes energy metabolism and 

damage to mitochondria (Beal, 1992). Finally, these events trigger apoptosis, also 

known as programmed cell death (figure I). 
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Figure I.Schematic representation of the intracellular ischemic cascade. Flow reduction as consequence of 

ischemic stroke leads presynaptic neuron depolarization, opening sodium (Na) and potassium (K) channels. 

Consequently, glutamate is released to the presynaptic cleft and it overstimulates its postsynaptic receptors (NMDA, 

AMPA and mGluR). Overstimulation increases intracellular calcium concentration, activating proteases, lipases and the 

formation of reactive molecules. The set of these events triggers cell death apoptosis. [Adapted from (Danton and 

Dietrich, 2004)] 

 

 

 The cells located in the damaged core region will never be repolarized, but if 

these cells are in penumbra, the area between the core and the well irrigated, where 

some perfusion occurs and supply of neurotrophic factors are preserved, recovery of 

membrane potential and homeostasis happens (Hossmann, 1996). 

 However, over time and without treatment, the  penumbra  can  progress  to  an  

infarct  zone  similar  to  the  core, due to expansion of excitotoxicity from the core to  

the rest of the penumbra and through spreading of plasma membrane depolarizations  

(peri-infarct depolarizations), inflammation and apoptosis (figure II).  
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Figure II. Cascade of damaging events as a result of focal ischemic stroke . The ischemic stroke is followed 

by a sequence of events over the time, responsible by expansion from damaged core (dark) to penumbra (light grey), 

such as excitotoxicity, peri-infarct depolarization, inflammation process and lastly, apoptosis. The x-axis represents the 

evolution of the cascade over time and the y-axis illustrates the impact of each event of the cascade on final outcome. 

[Adapted from (Dirnagl et al., 1999; Brouns and De Deyn, 2009)] 

 

 Previous work from Santos et al reported that TTR null mice have significant 

increase in infarct area as compared to wild type mice, after ischemic conditions. It is 

thus very important to investigate TTR molecular mechanism related to neuroprotection 

in the central nervous system, particularly under ischemic conditions. 

 

  

 Transthyretin  

 In 1942, a study made reference the one “X component, a fraction with a 

mobility slightly greater than that of albumin” which appeared in electrophoresed 

human and rabbit blood serum samples (Seibert and Nelson, 1942). In parallel, Kabat 

et al. described a similar finding in electrophoresed human cerebrospinal fluid (CSF) 

samples (Kabat et al., 1942). During many years, this CSF- and plasma-circulating 

protein was designated by prealbumin, but in 1981 the Nomenclature Committee of the 

International Union of Biochemisty suggested the term “TransThyRetin” (1981), to 

translate the main physiological roles of this protein, which are the plasma transport of 
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the thyroid hormone thyroxine (T4) and of retinol (vitamin A) through binding to retinol 

binding protein (RBP). 

 Transthyretin (TTR) is found in a large number of vertebrate species including 

mammals, marsupials, birds, reptiles, amphibians and teleost fish, revealing to be an 

evolutionarily conserved protein (Schreiber and Richardson, 1997; Power et al., 2000). 

More recently, homologous sequences to TTR were discovered, known as 

transthyretin-like proteins (TLPs), in bacteria, nematods and plants. In Escherichia coli 

and Caenorhabditis elegans TLPs form homotetramers, like TTR, but do not bind T4 

(Eneqvist et al., 2003). 

 

 Structure of TTR  

 The first X-ray crystal structure of human TTR was determined at 1.8 Ȧ 

resolution by Colin Blake et al. in 1971 (Blake et al., 1971). It was shown to be a 54 

980 Daltons (Da) homotetrameric protein, each monomer has 13 745 Da and is 

constituted by 127 amino acids (Kanda et al., 1974). 

 The monomer is composed by 8 antiparallel β-strands (A through H), linked by 

seven loops and a small α-helix of nine residues located at the end of β-strand E, 

which result in a classic β-barrel conformation. The β-strand form an inner and outer β-

sheets (DAGH and CBEF) separated by about 10 Ȧ (figure III-a). The N- and C-

terminal regions of each monomer are composed by 10 and 5 unorganized residues, 

respectively. 

 The numerous hydrogen bonds formed between the β-strands F and H of each 

monomer result in a strong dimer. The tetramer is formed by hydrophobic and 

hydrophilic interactions between the AB loop of one monomer and the H strands of the 

two primed monomers (figure III-b), although these interactions are much weaker than 

those formed in dimer (Blake et al., 1974). The strong and extensive interactions 

formed in dimer suggest that this is the basic unit of transthyretin structure 

comparatively to the monomeric or tetrameric form. 

 The homotetrameric structure of native TTR has a globular shape and forms a 

central hydrophobic channel with two binding sites for T4 (Blake et al., 1974), which 

exhibit  negative cooperativity, thus only one molecule of T4 is transported by TTR 

(Andrea et al., 1980). 

 RBP binds to TTR to form a very stable complex, preventing RBP filtration and 

degradation of TTR in kidney and also serves as retinol transport (Goodman, 1984; 

Noy et al., 1992). TTR  tetramer  has  four  RBP-binding  sites,  two  in  each  dimer  at  

the  protein’s surface. However, TTR only can bind two molecules of RBP due to the 
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steric hindrance, but in physiological conditions, just one molecule of RBP is 

transported (Monaco et al., 1995; van Bennekum et al., 2001). Moreover, RBP binding 

to TTR is not affected by T4 binding (Raz and Goodman, 1969). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure III. The structure of transthyretin. (a) Transthyretin is a homotetrameric protein and each monomer is 

composed by 8 antiparallel β-strands (A through H), linked by seven loops and a small α-helix. The β-strand form an 

inner and outer β-sheets (DAGH and CBEF) separated by about 10 Ȧ. (b) The tetramer with a globular shape is formed 

by hydrophobic and hydrophilic interactions between the AB loop of one monomer and the H strands of the two primed 

monomers. [Adapted from (Foss et al., 2005)] 

 

 Transthyretin expression 

 TTR is mainly synthesized by liver (Felding and Fex, 1982) and the choroid 

plexus, a secretory structure which is part of the blood-brain barrier (Aleshire et al., 

1983), being the sources of TTR in the plasma and CSF, respectively.   

 The meninges are also a source of TTR in the nervous system, but in minor 

amount than the choroid plexus (Blay et al., 1993). 

 Gerhard Schreiber et al. reported that, the rat choroid plexus contained eleven 

times more transthyretin mRNA compared to liver per gram wet tissues and that 

synthesis of TTR was thirteen times faster than the liver (Schreiber et al., 1990). In 

CSF, TTR concentration ranges from 5-20 mg/L (Vatassery et al., 1991) and 
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represents about 25% of the total CSF protein content (Aldred et al., 1995). In adult 

plasma, transthyretin levels reach concentrations of 174-420 mg/L, but after the fifth 

decade begin to decrease (Stabilini et al., 1968; Benvenga et al., 1986; Li and 

Buxbaum, 2011). 

 TTR levels are reduced in conditions of malnutrition or chronic inflammation 

(Navab et al., 1977; Dickson et al., 1982), being used as a preferential  

nutritional/inflammatory parameter (Ingenbleek and Young, 1994). Furthermore, TTR 

levels are lower in patients with transthyretin-associated amyloidosis and at-risk 

individuals (Skinner et al., 1985), as well as, in young acute ischemic stroke patients 

(Gao et al., 2011). 

 It has been shown that TTR is produced in other sites in mammals  such  as  

the pancreatic  islets  of  Langerhans  (Kato et al., 1985; Jacobsson et al., 1989) and in 

minor extension in the heart, skeletal muscle, spleen (Soprano et al., 1985),  visceral 

yolk sac endoderm (Soprano et al., 1986), retinal pigment epithelium (Cavallaro et al., 

1990) and trophoblast of human placenta (McKinnon et al., 2005). 

 Regarding its expression in brain, this subject has caused discussion between 

several authors. The presence of TTR mRNA has been reported in diverse brain areas, 

such as cortex, hippocampus or cerebellum (Carro et al., 2002; Stein and Johnson, 

2002; Buxbaum et al., 2008; Li et al., 2011), suggesting that these tissues secreted 

TTR. It was reported that the transthyretin gene is also expressed in dorsal root ganglia 

(Murakami et al., 2008), but this result was disclaimed in the same year (Sousa and 

Saraiva, 2008) as false positive results by contamination from adjacent meninges 

(Sousa et al., 2007a). 

 

 Transthyretin receptors 

 In 1988, Makover et al demonstrated that 36-38% of total body TTR  

degradation  occurred  in  liver,  12-15%  in  muscle  and  8-10%  in  skin.  A minor 

proportion of body TTR, about 1-8%, is degraded in kidneys, adipose tissue, testes and 

gastrointestinal tract (GI). In the examined tissues of the nervous system evidence of 

TTR degradation were not evident. The organs with the highest rate of TTR 

degradation,  per gram  of  wet  weight, were the liver and the kidney (Makover et al., 

1988). 

 Internalization of TTR is not fully understood, but several studies suggest that 

occurs by a receptor-mediated mechanism. 

 Studies in hepatomas and primary hepatocytes suggest that TTR uptake is 

mediated by cellular receptors. TTR internalization demonstrated to be affected by its 
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ligands, with a 70% decrease for the TTR-RBP complex and a 20% increase for TTR 

bound to T4. Moreover, it was showed that different TTR mutants display differences in 

uptake, suggesting that TTR structure is important to receptor binding. TTR hepatic 

uptake was inhibited by the receptor-associated protein (RAP), a ligand for all 

members of low-density lipoprotein receptor (LDLr) family; however, no member of 

LDLr-family was identified to mediate TTR uptake in the liver. Thus, a new unidentified 

RAP-sensitive receptor to TTR internalization in the liver was proposed (Sousa and 

Saraiva, 2001). 

 In contrast, TTR endocytosis in the kidney was inhibited by RAP and megalin, 

an endocytic multi-ligand receptor of the LDL receptor family expressed on the apical 

surfaces of epithelium of renal proximal tubules, was identified as first receptor involved 

in TTR uptake. In addition to this, megalin deficient mice did not present TTR 

accumulated in lysosomes of renal tubules comparatively to the control animals. TTR 

binding to megalin was not influenced by its ligands, T4 and RBP (Sousa et al., 2000b).  

 Regarding the peripheral nervous system, the megalin-TTR interaction was also 

described, which effects of neurite outgrowth and nerve regeneration; TTR 

internalization is megalin-dependent in sensory neurons from dorsal root ganglion 

(Fleming et al., 2009). 

 The receptor for advanced glycation end products (RAGE), a member of the 

immunoglobulin superfamily of cell surface molecules, was shown to interact with TTR. 

In familial amyloidotic polyneuropathy (FAP) tissues, RAGE levels were increased and 

the binding of aggregated TTR to RAGE induced the activation of the transcription 

factor NF-kB, mediating an inflammatory and apoptotic response. In vivo, TTR binding 

to RAGE, in peripheral nerve of FAP patients, leads to the neurodegeneration, but the 

TTR ability to bind RAGE is lost when TTR interacts with RBP (Sousa et al., 2000a). 

Ligand blotting and cross linking experiments performed in ependymoma cells, 

constituents of the brain cerebrospinal barrier, evidenced the presence of a 100 kDa 

receptor. Receptor binding of TTR suggests a potential mechanism for the delivery of 

T4 within the central nervous system (Kuchler-Bopp et al., 2000). This finding was 

confirmed by the presence of an approximately 115-kDa TTR-binding membrane 

protein in chicken oocytes, where TTR was detected in clathrin-coated vesicles (Vieira 

et al., 1995). However, none of these putative TTR receptors was identified. More 

recently, TTR was shown to upregulate the insulin-like growth factor receptor I (IGF-IR) 

levels in hippocampal neuronal cultures, through nuclear translocation of receptor 

(Vieira et al., 2014), suggesting that TTR binds to IGF-IR. Since this receptor as an 

approximate size of 100KDa and is also highly enriched in the choroid plexus, we can 
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speculate that this could be the non-identified receptor by Kuchler at the time. 

However, the detailed characteristics of this binding still need further studies. 

 

 TTR null mice: a tool to study the role of TTR  

 In 1992, Episkopou and colleagues produced a transthyretin knockout (TTR 

KO) mice strain. For this, the mouse TTR gene was disrupted using the technique of 

gene targeting in embryonic stem cells. The MC1neo expression cassette was 

introduced into the second exon of a 5.9-kb genomic mouse TTR gene fragment that 

carries exons 1-3. TTR null animals shown to be viable and fertile were also 

phenotypically similar to wild-type and heterozygous littermates. However, these 

transgenic mice had no detectable plasma retinol and had depressed levels of 

thyroxine (Episkopou et al., 1993). 

 The TTR KO mouse model has become an important tool to evidence not only 

the physiological role of TTR as a transporter of T4 and RBP-retinol, but also to study 

the importance of TTR in nervous system. 

 Concerning the study of the nervous system, TTR KO mice revealed, in 

behavioral studies, less immobility and increased activity in the forced swim and in the 

locomotor activity test, when compared to WT animals, leading the authors to propose 

that lack of TTR is associated with increased exploratory activity and reduced signs of 

depressive-like behavior. Moreover, TTR null mice showed higher levels of 

noradrenaline in the limbic forebrain (Sousa et al., 2004), indicating that TTR may 

modulate the noradrenergic system. 

 In TTR KO mice the gene of peptidylglycinea-amidating monooxygenase 

(PAM), an enzyme essencial in the process of amidated neuropeptide maturation, is 

upregulated in dorsal root ganglion (DRG), sciatic nerve, hippocampus, cortex and 

spinal cord. Consequently, these mice have increased levels of NPY (Nunes et al., 

2006), the major amidated neuropeptide and with antidepressant properties, 

corroborating the finding that TTR KO mice are less depressed (Sousa et al., 2004). 

 Additionally, older TTR null mice present a sensorimotor impairment as 

compared to wild type (Wt) mice although any morphological difference has been found 

in sciatic nerves or in cerebellum of both strains. Nerve regeneration was also affected 

by lack of TTR, since TTR KO mice presented a decreased regenerative capacity after 

sciatic nerve injury (Fleming et al., 2007).  Nevertheless, this phenotype was recovered 

when TTR was expressed locally in the nerve of TTR KO mice (Fleming et al., 2009). 

Furthermore, TTR KO mice present decreased levels of myelinated and unmylinated 
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axons (Fleming et al., 2007) and a compromised retrograde transport (Fleming et al., 

2009).  

 Using a panel of behavioral tests designed to study cognitive performance, such 

as the Barnes maze and the Morris water maze, young/adult TTR KO mice displayed a 

defect in spatial learning and in memory as compared to Wt animals (Sousa et al., 

2007b; Brouillette and Quirion, 2008; Buxbaum et al., 2008). In agreement with this 

notion is the fact that Wt mice also have a decrease in cognitive performance over the 

years, at the same time that TTR levels in CSF are being reduced (Sousa et al., 

2007b). 

 In vitro, TTR has also the capacity of inducing neurite outgrowth in TTR KO 

DGR neurons and PC12 cells. This effect of TTR is independent of its ligands, as it is 

also triggered by I84S TTR, a TTR variant which has very low affinity for both T4 and 

RBP (Fleming et al., 2007). Neuritogenic activity of TTR in DRG neurons depends on 

its internalization, a process that is clathrin dependent and megalin-mediated. Mice 

deficient in megalin had a similar decrease in nerve regeneration comparatively to the 

TTR KO mice, suggesting that megalin and TTR may act in the same pathway 

(Fleming et al., 2009).  

 More recently, it was demonstrated that young/adult TTR KO mice have 

decreased levels of insulin-like growth factor receptor I in hippocampus (Vieira et al., 

2014), an receptor able to protect from apoptosis (Kooijman, 2006; Annunziata et al., 

2011) 

 So, we can conclude that the lack of TTR in physiological conditions impairs 

several aspects of nervous system. Accordingly, the development of gene therapies for 

FAP that propose the silencing/reducing the whole production of TTR (Benson et al., 

2006) should be discussed with more caution. 

 

 TTR in neurodegenerative diseases  
 

 In pathological cases TTR is highly associated with familial amyloidotic 

polyneuropathy (FAP), but over time it has been linked with several other 

neuropathologies such as Guillain–Barré syndrome, Alzheimer’s disease, 

frontotemporal dementia and Parkinson’s disease. More recently, TTR role begins to 

be studied in cerebral ischemia, the pathology focused in our research project. 

 Familial amyloid polyneuropathy  

 Familial amyloid polyneuropathy is an autosomal dominant disease described 

for the first time by Andrade in patients of the Northern region of Portugal (Andrade, 
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1952). This neurodegenerative disease is associated with mutations in TTR, resulting 

in the deposition of TTR amyloid fibrils, particularly in the peripheral nervous system 

(PNS). The clinical features associated with the disease are early impairment of 

temperature, pain sensation in the feet, autonomic dysfunction leading to paresis, 

malabsorption and emaciation. The symptoms start between the ages of 20 and 35 

leading to death within 10-15 years (Dyck and Lambert, 1969; Sousa and Saraiva, 

2003). The most frequent mutation in FAP patients is the substitution of a valine 

residue for a methionine at position 30 (TTR V30M) (Saraiva et al., 1984). However, 

more than 100 TTR mutations have been related with amyloid deposition, with 

predominance of the PNS and/or the heart (Saraiva, 2001).  

 The origin of TTR deposition in FAP is unknown, but structural studies suggest 

that amyloid formation by TTR is triggered by tetramer dissociation to a compact non-

native monomer, which can originate instable thermodynamic monomeric species with 

a high tendency for ordered aggregation into amyloid fibrils through specific 

intermolecular contacts (Quintas et al., 2001). 

 

 Alzheimer´s disease 

 Alzheimer´s disease (AD) is the most common cause of dementia worldwide 

and it is clinically characterized by an initial memory decline, which progressively leads 

to the impairment of cognitive functions, till death. This neurodegenerative disease 

exhibits extraneuronal amyloid deposits composed by aggregates of Aβ peptide. The 

aggregates result from the proteolytic cleavage of the amyloid precursor protein and 

intraneuronal neurofibrillary tangles constituted by aggregates of abnormally 

hyperphosphorylated tau protein (Goedert and Spillantini, 2006). 

 In AD patients, TTR levels were found to be significantly reduced in CSF 

(Elovaara et al., 1986) and in plasma, comparatively to the control group (Han et al., 

2011). Moreover, TTR levels in CSF were negatively correlated with the degree of 

dementia in AD (Riisoen, 1988) and with the abundance of amyloid plaques (Merched 

et al., 1998). Recently, it was reported that TTR is decreased in serum of mild-cognitive 

impairment (MCI) and of AD patients in comparison with non-demented controls 

(Ribeiro et al., 2012), suggesting TTR as an early biomarker of AD. 

 In a transgenic mouse model for AD, a reduction of TTR plasma levels in early 

stages of AD as compared to non-transgenic littermates was also observed, but a 

contradictory effect is verified in later stages (Oliveira et al., 2011); the genetic 

reduction of TTR accelerates Aβ deposition (Choi et al., 2007). 
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 Studies showed that TTR is able to bind Aβ aggregates, suggesting that TTR 

has a chaperone-like mechanism to perform its neuroprotective role in Alzheimer´s 

disease (Buxbaum et al., 2008). Costa and colleagues evidenced that TTR binds 

soluble, oligomeric and fibrillar forms of Aβ, having also the ability to inhibit and to 

disrupt Aβ fibrils (Costa et al., 2008a) and to cleave Aβ in multiple positions (Costa et 

al., 2008b). Also, it was proposed that TTR contributes not only to the maintenance of 

Aβ levels within a normal range, but also to clearance from the brain, preventing the 

accumulation of Aβ peptides. 

 Taken together these evidences and the fact that overexpression of human TTR 

decreased Aβ deposition and improved cognition in APP23 mice (Buxbaum et al., 

2008), makes TTR an interesting therapeutic target.  

 

 Parkinson’s disease 

 Parkinson’s disease (PD) is a common neurodegenerative movement disorder 

and the clinic symptoms include motor impairments involving resting tremor, 

bradykinesia, postural instability, gait difficulty and rigidity. Disease progression 

involved cognitive (dementia), neuropsychiatric (depression and anxiety) and 

autonomic (hypotension and constipation) dysfunctions. The pathological features of 

disease are loss of dopaminergic neurons and presence of Lewy bodies, composed of 

aggregated α-synuclein and other proteins (Thomas and Beal, 2007; Wirdefeldt et al., 

2011).  

 CSF of patients with Parkinson's disease who underwent adrenal medullary 

autotransplantation showed a significantly increase in TTR concentration (Abram et al., 

1990) and the same finding was confirmed in CSF from a rat model of PD (Rite et al., 

2007). More recently, study using two-dimensional differential in gel electrophoresis 

(2D-DIGE) in postmortem ventricular CSF (V-CSF) from neuropathologically confirmed 

PD subjects suggested TTR as a biomarker of the disease, since TTR was raised in 

PD when compared to the normal control group (Maarouf et al., 2012). 

 Since TTR levels seem to have a correlation with the pathophysiology of 

Parkinson's disease, studies of TTR role in this neurodegenerative disorder with more 

detail will be pertinent. 

 

 The effect of TTR in cerebral ischemia  

 In brain, TTR levels have been found to be upregulared in the following 

ischemic situations: (I) cerebral oligemia in mice, a surgery that results in the blood flow 
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reduction without acute tissue damage (Liverman et al., 2004); (II) in mouse 

hippocampus after traumatic brain injury (Long et al., 2003); (III) in CSF of a rat model 

after transient middle cerebral artery occlusion (Suzuyama et al., 2004) and (IV) in 

patients with severe head injury (Young et al., 1996). Moreover, TTR excretion in urine 

of stroke-prone rates before cerebral ischemia was also detected (Sironi et al., 2001). 

More recently, a clinical study showed that young acute ischemic stroke patients have 

significantly lower TTR serum levels than normal control groups. Elevated levels of 

TTR indicate a good prognosis in cerebral infarction (Gao et al., 2011).  

 Santos et al. used the model of permanent middle cerebral artery occlusion 

(pMCAO) to induce cerebral ischemia in TTR null mice with impaired heatshock 

transcription factor 1 (HSF1) to study the possible neuroprotective role of TTR in 

cerebral ischemia. After pMCAO, TTR-/-HSF1+/- mice showed increased cortical 

infarction, cerebral edema and microglial-leukocyte response when compared with 

TTR+/+HSF1+/- mice. In addition, increased transcript levels of TNF-α and IL1-β 

observed in TTR-/-HSF1+/-, suggested that TTR might influence the inflammatory 

process (Santos et al., 2010).Therefore, this study suggests that TTR contributes to the 

control neuronal cell death, edema and inflammation, evidencing the possible 

neuroprotection of TTR in cerebral ischemia. 

 

 Megalin, member of LDL-receptor family 

 Megalin (also known as LRP2, gp330 or gp600) is a giant membrane 

glycoprotein of 600kDa that is expressed mainly on the apical side of absorptive and 

secretory epithelial cells. It belongs to the LDL-receptor family, which is characterized 

by similar structure in ligand binding (complement)-type cysteine-rich repeats, 

epidermal growth factor (EGF) homology domains consisting of EGF repeats and a 

YWTD propeller domain, a single membrane-spanning segment and a short 

cytoplasmic tail that contains various sequence motifs that mediate interactions with 

cytoplasmic adaptor and scaffolding proteins (Gotthardt et al., 2000; Herz and Beffert, 

2000; Herz and Bock, 2002). 

 The mammalian LDL receptor family is composed by seven core members 

(LDLR, VLDLR, ApoER2, MEGF7, LRP, LRP-1b, and megalin) and three distantly 

related receptors (LRP-5, LRP-6, and LR11/SorLA) (Herz and Bock, 2002).  
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 Discovery of megalin 

 In 1982, Dontscho Kerjaschki and Marilyn Farquhar described a membrane 

glycoprotein of 330 kDa (gp330) as a pathogenic antigen of Heymann nephritis 

(Kerjaschki and Farquhar, 1982); two years later it was proposed to be an endocytotic 

receptor (Kerjaschki et al., 1984). 

 Claes Juhlin in 1987 produced reactive monoclonal antibodies against 

parathyroid cells and tubule cells of the kidney (Juhlin et al., 1987), which later were 

proven to react with a human gp330 homologue (Lundgren et al., 1994). 

 In 1989, Robert T. McCluskey showed that gp300 is member of LDL-receptor 

family (Raychowdhury et al., 1989). In 1994, the Farquhar group worked to publish the 

full-length sequence of rat gp330 (Saito et al., 1994). Afterwards, the human sequence 

was published, revealing that human gp330 is a protein of 4655 amino acid residues, of 

which 4398 belonged to the extracellular domain, 23 amino acid residues made up the 

single transmembrane spanning domain, and 209 amino acid residues the cytoplasmic 

domain. This sequence also revealed a 25-amino acid residues N-terminal signal 

peptide sequence (Hjalm et al., 1996). 

 Regarding the genome, DNA megalin sequences of rat and human have 77% 

identity; the human megalin gene is located on chromosome 2q24–q31 (Korenberg et 

al., 1994), containing 79 exons, affording a transcript of 14384 base pairs (Birney et al., 

2006). 

 

 Megalin structure 

 The megalin structure is characterized by a large extracellular domain 

comparatively to short intracellular domains (figure IV). The extracellular domain is 

composed by four clusters of cysteine-rich complement-type ligand binding repeats, 

responsible by ligand binding, which are separated by 17 epidermal growth factor 

(EGF)-like repeats and eight cysteine-poor spacer regions (Saito et al., 1994), which 

contain YWTD motifs that are involved in the receptor folding (Culi et al., 2004; 

Lighthouse et al., 2011) and dissociation of their ligands in the acidic endosomal 

compartment (Jeon et al., 2001). The EGF-precursor like domain can be divided into 

calcium and non-calcium binding domains and within the YWTD repeat spacer regions 

there are 19 potential N-linked glycosylation sites. Furthermore, the sequence of 

human gp330 reveals a potential furin cleavage signal localized between residues 

3243 and 4246 (Hjalm et al., 1996). 

 Megalin contains one transmembrane domain (Marzolo et al., 2003), that is a 

substrate for the ϒ-secretase complex (Zou et al., 2004; Biemesderfer, 2006). 
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 The cytoplasmic domain contains two NPxY-motifs and one NPxY like motif 

(Saito et al., 1994; Hjalm et al., 1996). These motifs of the LDL-receptor family are 

important by its internalization mediated by clathrin (Chen et al., 1990) and basolateral 

distribution (Matter et al., 1992; Gan et al., 2002). However, it is not yet clearly defined 

what is the function of these motifs for megalin. 

 Megalin also contains one potential SH2-binding motifs (Songyang et al., 1993), 

one potential dileucine repeat, four potential SH3-domain binding motifs (Yu et al., 

1994), three protein kinase C phosphorylation sites (PKC), seven casein kinase II (CK-

II) sites and one PDZ-binding motif (Hjalm et al., 1996). 

 The cytosolic domain of megalin binds various intracellular proteins, namely 

mitogen activated protein kinase (MAPK) scaffold proteins, JIP-1 and JIP-2 (JNK-

interacting proteins, 1 and 2) (Gotthardt et al., 2000), post-synaptic density protein-95 

(PSD95)-like membrane-associated guanylate kinase proteins (Larsson et al., 2003), 

and adaptor-type molecules such as SEMCAP-1 (a transmembrane semaphorin-

binding protein) (Gotthardt et al., 2000), Disabled-2 (Dab2) (Oleinikov et al., 2000) and 

autosomal recessive hypercholesterolaemia protein (ARH) (Nagai et al., 2003).  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

Figure IV. The structure of megalin receptor.  Megalin is a transmembrane glycoprotein of approximately 600 kDa 

composed for a large extracellular domain followed by a transmembrane domain and a small cytoplasmic tail. The 

extracellular domain is composed by four clusters of cysteine-rich complement-type ligand binding repeats, responsible 

by ligand binding, which are separated by 17 epidermal growth factor (EGF)-like repeats and eight cysteine-poor spacer 

regions, which contain YWTD motifs. The cytoplasmic tail is constituted by two NPxY motifs and one NPxY-like motif in 

addition to several Src-homology-3 (SH3) and one Src-homology-2 (SH2) recognition sites and binds several 

intracellular proteins involved in signaling cascade. [Adapted from (Christensen and Birn, 2002)] 
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 Megalin signaling   

 Although only one study reports megalin phosphorylation, the presence of 

several consensus phosphorylation sites within the cytoplasmic domain strongly 

suggests that this post translational modification happens and that it may have a 

relevant role in the receptor’s trafficking and signaling.  

 Studies showed that LRP1 is constitutively phosphorylated by protein kinase A 

(PKA) at a serine residue, which affects the receptor’s endocytosis (Li et al., 2001). 

Moreover, the extracellular molecules binding to LRP1, such as PDGF, induce tyrosine 

phosphorylation of its cytoplasmic tail, resulting in the recruitment Src tyrosine kinases 

(Loukinova et al., 2002). Other example is reelin that binds to extracellular domain of 

lipoprotein receptors, the apoER2 and VLDL-R, resulting in tyrosine phosphorylation of 

Dab1, an adaptor protein that interacts with NPxY motifs in both receptor tails, and 

activatation of Src family of kinases (Arnaud et al., 2003; Bock and Herz, 2003). Also 

LRP6, involved in the canonical Wnt signaling pathway, is phosphorylated in PPPSP 

motifs, present within the carboxyl terminus of its cytoplasmic tail, by glycogen 

synthase kinase-3 (GSK3) and casein kinase-I (CK-I) in response to ligand binding 

(Tamai et al., 2004; Zeng et al., 2005). 

 A study using in situ-mutagenesis described that megalin phosphorylation by 

GSK3 is critically dependent on a PPPSP motif and its function is related to the control 

of megalin recycling from the endosomes (Yuseff et al., 2007). 

  

 Ligands and tissues distribution  

 Megalin expression occurs mainly in the apical surface of absorptive or 

secretory epithelial cells. Firstly, megalin was described in parathyroid cells and tubule 

cells of the kidney (Juhlin et al., 1987), but its expression extends in a wide variety of 

adult tissues, namely mammary epithelia, thyroid follicular cells and the ciliary body of 

the eye (Lundgren et al., 1997). It is found in the intestinal brush border (Yammani et 

al., 2001), the male reproductive tract (Van Praet et al., 2003), uterus and oviduct 

(Argraves and Morales, 2004), gallbladder epithelium (Erranz et al., 2004), type II 

pneumocytes of the lung (Chatelet et al., 1986; Lundgren et al., 1997) and yolk sac 

(Lundgren et al., 1997). 

 In central nervous system (CNS), megalin was shown to be express in choroid 

plexus (Chun et al., 1999), ependymal cells of the lateral ventricles (Gajera et al., 

2010), oligodendrocytes (Wicher et al., 2006), astrocytes (Bento-Abreu et al., 2008), 

and neurons, including retinal ganglion cells (Fitzgerald et al., 2007), cortical neurons 
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(Chung et al., 2008), cerebellar granule neurons (Ambjorn et al., 2008) and DRG 

neurons of the PNS (Fleming et al., 2009). 

 Megalin is known to interact with several ligands and some of them are shown 

in table I, including transthyretin (Sousa et al., 2000b).  

  

Vitamin-binding proteins 
 

Transcobalamin–vitamin B12 
Vitamin-D-binding protein 

Retinol-binding protein 
 

Other carrier proteins 
 

Albumin 
Lactoferrin 

Haemoglobin 
Odorant-binding protein 

Transthyretin 
 

Lipoproteins 

 
Apolipoprotein B 
Apolipoprotein E 

Apolipoprotein J/clusterin 
Apolipoprotein H 

Hormones and hormone precursors 

 
Parathyroid hormone 

Insulin 
Epidermal growth factor 

Prolactin 
Thyroglobulin 

Drugs and toxins 
 

Aminoglycosides 
Polymyxin B 

Aprotinin 
Trichosanthin 

Immune- and stress-response-related proteins 
 

Immunoglobulin light chains 
PAP-1 

β2-microglobulin 

Enzymes and enzyme inhibitors 
 

PAI-1 
PAI-1–urokinase 

PAI-1–tPA 
Pro-urokinase 

Lipoprotein lipase 
Plasminogen 

β-amylase 
β1-microglobulin 

Lysozyme 

Others 
 

RAP 
Ca2+ 

Cytochrome c 

Table I. Ligands that bind megalin.  [Adapted from (Christensen and Birn, 2002)] 

 

 RAP binding to megalin 

 RAP is a 39-kDa protein located in the endoplasmic reticulum, that has been 

shown to bind megalin with high affinity (KD =8nM) (Kounnas et al., 1992). Orland et al 

described for the first time that RAP binds to the second of the forth clusters of ligand-

binding repeats of megalin (amino acids 1111–1210) (Orlando et al., 1997). However,  
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a more recent report suggests that megalin have additional binding site for RAP 

(McCarthy et al., 2002).  

 It was demonstrated that RAP inhibits premature binding of ligands to several of 

the ligand-binding motifs (Iadonato et al., 1993; Bu and Rennke, 1996) of the LDL-

receptor family members, including megalin (Kounnas et al., 1992), and assists in the 

proper folding of the receptors (Bu and Rennke, 1996). In addition, it was proposed that 

RAP is involved in biosynthetic processing and trafficking of megalin, being crucial for 

its function (Kounnas et al., 1992; Birn et al., 2000).  

 The ability of RAP to inhibit binding of most ligands to the LDL-receptor family 

has made it an extraordinary tool for physiological and cellular studies. 

 Megalin deficient mice  

 Megalin knockout mice have a low survival rate (1/50), because during the 

perinatal phase they die due to cranial midline defects that include cleft palate and 

holoprosencephaly, and immediately after birth respiratory complications lead to death. 

Holoprosencephaly is a set of brain malformations that include forebrain fusion, a 

common ventricular system and lack of the olfactory bulb (Willnow et al., 1996). 

Studies in mice with megalin brain conditional KO show that this receptor is important 

to the development for the ventral telencephalon, since it exerts functions as a receptor 

for signaling proteins and morphogens such as Shh and Bone Morphogenetic Protein 4 

(BMP4) (McCarthy et al., 2002; Spoelgen et al., 2005). 

 Surviving megalin deficient mice develop low molecular weight proteinuria 

(Leheste et al., 1999), since molecules cannot be reabsorbed by megalin in the renal 

proximal tubule. These viable and fertile mice also suffer insufficiency in plasma 

vitamins, hypocalcemia and severe bone disease, probably due to inability of 25-(OH) 

vitamin D3-DBP complex to be uptaken by megalin in the proximal tubule (Leheste et 

al., 2003). This clinical status evidence the crucial role of megalin in vitamin and 

calcium homeostasis in the renal proximal tubule (Christensen and Willnow, 1999). In 

2001, an human case of possible deficiency in megalin, who suffered from 

holoprosencephaly, pulmonary insufficiency, absent circulating vitamin D metabolites, 

mild albuminuria and loss of vitamin D-binding protein in urine was reported (Muller et 

al., 2001). 

 There are two syndromes associated with mutated megalin, Donnai-Barrow and 

facio-oculo-acoustico-renal (FOAR) syndromes and both are characterized by agenesis 

of the corpus callosum, developmental delay, proteinuria, hearing loss and ocular 

abnormalities (Pober et al., 2009). Therefore, these defects reveal the importance of 

megalin during development in organs such as brain, eye, ear and kidney. 
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  Megalin and the brain  

 The expression of megalin in CNS and the several ligands able to bind to this 

receptor was previously reported. Many studies have shown that some of these ligands 

have a potential role in neuronal survival and regeneration, revealing megalin as a 

likely mediator of CNS protection.   

 In Alzheimer’s disease, Aβ peptide, produced by amyloidogenic processing of 

the amyloid precursor protein (APP), can form complexes with different megalin ligands 

such as clusterin/apoJ (Zlokovic et al., 1996; Hammad et al., 1997; Nuutinen et al., 

2009) and apoE (Zlokovic et al., 1996; Bell et al., 2007), facilitating Aβ clearence. In 

addition, it was shown that the IGF-I receptor interacts with the transmembrane region 

of megalin, whereas the perimembrane domain of megalin is required for IGF-I 

internalization. Furthermore, internalization of IGF-I is increased with inhibition of a 

GSK3 site within the Src homology 3 domain of the C-terminal region of megalin, 

modeling Alzheimer amyloidosis (Bolos et al., 2010). Additionally, megalin also 

regulates the transport of leptin in the choroid plexus by transcytosis (Dietrich et al., 

2008) and it is known that leptin levels are involved in the decreased activity of β-

secretase or BACE (Marwarha et al., 2010), a limiting the step of Aβ formation. 

 Megalin levels are decreased with age and in AD patients (Odera et al., 2007; 

Dietrich et al., 2008), indicating that the neuroprotective function of this receptor is also 

reduced. In choroid plexus, megalin enhanced the Aβ clearance induced by IGF-I and 

is involved in IGF-I transport into the brain (Carro et al., 2005).  

 It has been shown that metallothionein (MT) binds to megalin and exerts 

several functions in the brain through this receptor. In retinal ganglion cells (RGC), MT 

binding to megalin promotes neurite extension and it was proposed by some authors 

that this effect is a result of signal pathways activation by the NPxY motifs of megalin's 

cytoplasmic tail (Fitzgerald et al., 2007). Both molecules, MT and EmtinB, have been 

able to bind megalin and LRP1 and induce neurite outgrowth and survival in cerebellar 

granule neurons cultures, by activation of extracellular signal-regulated kinase, protein 

kinase B, and cAMP response element binding protein (Ambjorn et al., 2008). Megalin 

mediates astrocytic metallothioneins transport into neurons, resulting in a regenerative 

action (Chung et al., 2008). 

 In PNS, the neurite outgrowth and nerve regeneration mediated by TTR is 

megalin-dependent (Fleming et al., 2009). 

 However, pathways involved in the neuroaction mediated by megalin and its 

ligands require further study.  
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 Objectives 

 

 The main goal of this research project is to study the effect of TTR in neuronal 

hippocampal cultures in physiological and ischemic pathological conditions. The 

molecular mechanisms involved in these effects will be also addressed. Therefore, we 

propose to: 

 

 Search for the neuritogenic activity of TTR in the central nervous system 

 Explore signaling pathways activated by TTR 

 Evaluate if TTR has a neuroprotective role towards dendrites and/or axons 

 Investigate if the neuritogenic and neuroprotective effects, as well the signaling 

pathways activated by TTR involve the LDL receptor family 

 Clarify if the TTR neuritogenic and/or neuroprotective action are mediated by 

the megalin receptor 
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 Materials and methods 

 Animals  

 Mice were handled according to European Union and National rules. Wild type 

(Wt), TTR knockout (TTR KO) (Episkopou et al., 1993) and Meg+/- TTR KO were used.  

Meg+/- TTR KO (129/Sv background) were obtained from the offspring of TTR KO and 

megalin heterozygous breeding pairs [Meg+/-, kindly provided by Dr. Thomas Willnow, 

Max-Delbrueck Center for Molecular Medicine, Berlin, Germany]. All animals were 

maintained under a 12 hours light/dark cycle and fed with regular rodent’s chow and 

tap water ad libitum. Genotypes were determined from tail extracted genomic DNA, 

using the primers: 5’-CAT-ATC-TTG-GAA-ATA-AAG-CGA-3’ and 5’-GAC-CAT-TTG-

GCA-GCC-AAG-G-3’ for megalin gene; 5’-CAT-ATC-TTG-GAAATA-AAG-CGA-3’ and 

5’-GAT-TGG-GAA-GAC-AAT-AGC-AGG-CAT-3’ for MC1neo cassette gene. 

  

 TTR production and purification   

 Recombinant  mouse TTR  was  produced  in  a  bacterial  expression  system  

using  Escherichia coli BL21 (Furuya et al., 1991) and purified as previously described 

(Almeida et al., 1997). Briefly, after growing the bacteria, the protein was isolated and 

purified by preparative gel electrophoresis after ion-exchange chromatography.  

 Protein concentration was determined using the Lowry method (Lowry et al., 

1951).  

  

 GST-RAP expression and purification   

 Expression of the plasmid pGEX-2T with RAP cDNA fused with GST [kindly 

provided by Dr. Joaquin Herz, Department of Molecular Genetics, University of Texas, 

United States of America (Herz et al., 1991)] was induced by treating an Escherichia 

coli BL21 culture in the exponential phase of growth (A600nm 0.8 –2) with 0.5mM 

isopropyl-D-thiogalactoside (BIORON) for 30 min at 30°C. To extract and purify the 

protein, with an apparent molecular mass of 62 kDa in a SDS PAGE gel, an affinity 

chromatography on glutathione Sepharose 4B (GE Healthcare) was used. Cleared 

bacterial extract was applied in the pre-rinsed column with PBS. After several washes, 

5mM reduced glutathione in Tris-HCl, pH 8.0 was used to elute GST-RAP. In order to 

use the recombinant protein in neuronal cultures, a protocol for bacterial endotoxins 

removal was performed. 
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Endotoxin removal  

 To remove endotoxins from recombinant proteins, a polymixin B column 

(Thermo Scientific) was used. Briefly, the  column  was  regenerated  with  1%  sodium  

deoxycholate  (Sigma)  and  washed  with  pyrogen-free buffer to remove detergent. 

Recombinant TTR and GST-RAP were individually applied to the column and 

incubated during 1 hour at room temperature. Aliquots of pyrogen-free buffer were 

added and the flow-through was collected. Protein concentration was determined by 

the Bradford method (Hammond and Kruger, 1988). 

  

 Primary neuronal cultures 

 Primary cultures of mouse hippocampal neurons were prepared from the 

hippocampus of E17-E18 Wt and TTR KO mice embryos. The hippocampi were treated 

with trypsin (1.5mg/mL, 10 minutes at 37ºC) in Ca2+ and Mg2+ free HBSS (Hank’s 

Balanced Salt Solution).  After washes in HBSS supplemented with 10% FBS and 

HBSS only, cells were mechanically dissociated. Hippocampal cultures  were  

maintained  in  serum-free Neurobasal  medium  supplemented  with  B27,  glutamate  

(25  mM),  glutamine  (0.5mM)  and  gentamicin  (0.12mg/ml).  All culture media and 

supplements used were from GIBCO (Life Technologies, USA). 

 Cells were cultured at a density of 85 000 cells/cm2 and 53 000 cells/cm2 on 

poly-D-lysine-coated (Sigma, 150k-300k MW) six-well microplates (MW6) or glass 

coverslips. For Western blot and neuroprotection experiments a density 85 000 

cells/cm2 was used. Neurite outgrowth experiments were performed with less density 

(53 000 cell/cm2) to allow a clear trace of the neurites of each neuron. Cells used to 

western blot and neuroprotection experiments  were  kept  at  37ºC  in  a  humidified  

incubator  of  5%  CO2/95%  air,  for  7–8 days in vitro (DIV),  the  time  required for  

maturation  of  hippocampal  neurons  (Brewer et al., 1993) 

  

 Neurite outgrowth assay  

 Hippocampal neurons from Wt, TTR KO and Meg+/- TTR KO embryos were 

cultured at a density of 53 000 cells/cm2 on poly-D-lysine-coated (Sigma) glass 

coverslips. Recombinant mouse TTR (55 µg/ml or 300 µg/ml) with or without RAP (350 

µg/mL) or K252a (200nM, Enzo Life Sciences) were added to cell culture medium 

immediately after plating. Cells were kept  at  37ºC  in  a  humidified  incubator  of  5%  

CO2/95%  air  for 24hours. Cells were fixed with 4% paraformaldehyde/4% sucrose; 

immunofluorescence was performed, using as primary antibody anti-Map-2 (1:700, 

Abcam). 
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 Neuroprotection assay  

 Hippocampal neurons from TTR KO and Meg+/- TTR KO embryos were cultured 

at a density of 90 000 cells/cm2 and 80 000 cells/cm2 on poly-D-lysine-coated (Sigma) 

six-well microplates(MW6) for Western blot or on glass coverslips, respectively and 

maintained at 37ºC  in  a  humidified  incubator  of  5%  CO2/95%  air  for 7-8 DIV. 

Cultured hippocampal neurons were subjected to excitotoxic stimulation with glutamate 

(125 µM glutamate, 20 min) and further incubated in culture conditioned medium with 

recombinant mouse TTR (55µg/mL or 300µg/mL) during 14 hours after toxic stimulus 

for immunocytochemistry assay or only 4 hours for western blot analysis.  

  

 Immunocytochemistry 

 Cells were fixed in 4% paraformaldehyde/4% sucrose and permeabilized with 

0.3% Triton X-100 in PBS. Neurons were then incubated with 5% BSA in PBS 0.1% 

Tween 20, for 1h at 37°C, to block nonspecific staining, and then incubated with 

primary antibody anti-Map-2 (1:700, Abcam), overnight at 4°C. Cells were then washed 

five times with PBS 0.1% Tween 0.5% BSA and incubated with secondary antibody, 

anti-rabbit Alexa Fluor 488 (1:1000, Life Technologies), for 1h at 37°C and protected 

from light. After washing, cells were stained with the fluorescent dye Hoeschst 33342 

(0.5µg/mL) during 10 minutes at room temperature.  Coverslips  were  mounted  on  

glass  slides  with  Dako  fluorecescent mounting  medium  (Dako)  and  visualized  by  

a  Widefield  Fluorescent  Microscope  (Zeiss  Axio Imager Z1). Photos were taken 

randomly with the objective of 20x, in order to cover the whole coverslip and have 

isolated neurons. 

  

 Neurite measure analysis  

 Morphological measurements of neuronal neuritis were performed using the 

plugin NeuronJ from the ImageJ software (Meijering et al., 2004). Number, sum, 

minimum, mean and maximum length of neurites per cell were the analyzed 

parameters. At least 50 cells were counted in each condition of each experiment and 

the experiments were repeated at least 4 times.  

 

 Western blot 

 Hippocampal neuron cultures were washed twice with ice-cold PBS.  Cells were 

then lysed with lysis  buffer  containing  20 mM MOPS, 2mM EGTA, 5mM EDTA, 

30mM sodium fluoride, 60mM β-glycerophosphate, 20mM sodium pyrophosphate, 

1mM sodium orthovanadate ,  1%  Triton  X-100  and supplemented with  1mM DTT, 

1mM PMSF and  1x  protease  inhibitors  mixture  (GE  Healthcare). 
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 After centrifugation at 16,100 x g for 10 min at 4°C, protein in the supernatants 

was quantified using the Bradford method, and samples were denatured with 4x 

concentrated denaturing buffer (227.8mM Tris-HCl, pH 6.8, 10% β-mercaptoethanol, 

4.4% SDS, 200mM DTT, 44.4% glycerol, 3mM sodium orthovanadate, and 0.02% 

bromophenol blue) and boiled for 5 minutes.  

 Protein samples were separated by SDS-PAGE in 7.5% or 12% polyacrylamide 

gels, except samples where megalin was the target, 6% tris-acetate gels were used. 

The proteins were transferred to a nitrocellulose Hybond-C membrane (GE 

Healthcare), using a wet system Mini Trans-Blot® Cell (BioRad).  

 Membranes were incubated 1 hour  at  room  temperature  in  blocking  buffer,  

10%  BSA  in  tris-buffered  saline Tween-20 (TBS-T), and then incubated overnight a 

4ºC with primary antibodies diluted in  5%  BSA  in TBS-T, namely rabbit polyclonal 

Erk1/2 (1:1000, Cell Signaling), p-Erk1/2 (Thr202/Tyr204) (1:1000, Cell Signaling), Akt 

(1:1000, Cell Signaling), p-Trk (Tyr490) (1:1000, Cell Signaling),  Map-2 (1:1000, 

Abcam), mouse TTR antibody (produced against recombinant mouse TTR, 1:500), 

rabbit monoclonal p-CREB (Ser133) (1:1000, Cell Signaling), p-Akt (Ser473) (1:1000, 

Cell Signaling), p-Src family (Tyr416) (1:1000, Cell Signaling), TrkB (1:1000, Cell 

Signaling), mouse monoclonal Tau (1:1000, Cell Signaling), and mouse polyclonal α-

tubulin (1:10000, Sigma). Membranes were then incubated with anti-rabbit IgG-HRP 

(1:5000; Binding Site) or anti-mouse IgG-HPR (1:2500; Binding Site), during 1 hour at 

room temperature.  Blots were  developed  using  Immun-Star  WesternC 

Chemiluminescent  kit  (BioRad)  and  exposed  to either  ECL  Hyperfilm  (GE  

Healthcare) or ChemiDoc™ XRS+ System (BioRad) using Image Lab™ Software.  

 Quantitative analyses were performed using the Quantity one or Image Lab™ 

software (BioRad). 

 

 Conditioned medium concentration 

 Conditioned medium from a hippocampal neuron culture at density of 90 000 

cells/cm2 on poly-D-lysine-coated (Sigma) six-well microplates (MW6) was centrifuged 

at 16,100 x g for 10 min at 4°C and the supernatant was collected for a dialysis 

membrane with 6-8 K molecular weight cutoff (MWCO). The sample was dialyzed 

overnight at 4°C and lyophilized until it reached a volume of approximately 80µL. The 

lyophilized product was denatured with 4x concentrated denaturing buffer and 

incubated for 5 min at 95°C. The sample was separated by SDS-PAGE in 12% 

polyacrylamide and a western blot was performed with a primary antibody against 

mouse TTR (produced against recombinant mouse TTR, 1:500). 
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 Immunoprecipitation 

 Hippocampal neuron cultures from TTR KO were washed twice with ice-cold 

PBS.  The cells were then lysed with IPB buffer  containing  20mM Tris (pH 7.0), 

100mM NaCl, 2mM EDTA, 2mM EGTA, 50mM sodium fluoride, 60mM β-

glycerophosphate, 20mM sodium pyrophosphate, 1mM sodium orthovanadate,  1%  

Triton  X-100  and supplemented with 1mM PMSF and  1x  protease  inhibitors  mixture  

(GE  Healthcare). 

 After centrifugation at 16,100 x g for 10 min at 4°C, the supernatant was 

collected, pre-rinsed in IPB buffer protein-A sepharose beads (GE Healthcare) for 1h at 

4°C and centrifuged again to collect the supernatant. The sample was incubated with 

2µL of megalin antibody (Abcam) at 4°C overnight and then pre-rinsed in IPB buffer 

protein-A sepharose beads for 2h at 4°C. The resin with the immunoprecipitate was 

then washed 5 times with IPB buffer at 1,000 x g for 5 min, denatured with 4x 

concentrated denaturing buffer and incubated for 5 min at 95ºC. After centrifugation at 

16,100 x g for 10 min, the supernatant was collected and separated in a 6% Tris-

acetate gel and western blot performed using a primary antibody anti-megalin (1:1000, 

Abcam). 

 

 Statistical analysis  

 Quantitative data are presented as Mean ± SEM. Statistical analysis was 

carried out using Graphpad Prism 6 software. Differences among groups were 

analyzed by one-way ANOVA (followed by Bonferroni's Multiple Comparison Test), 

comparisons between two groups were made by Student’s t test.  P values of lower 

than 0.05 were considered significant. ****p<0.0001, ***p < 0.001, ** p <0.01, and * p < 

0.05. 
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 Results 

 Different cell morphology between genetic models 

 Cognitive performance studies showed that TTR null mice have impaired spatial 

learning and memory as compared to Wt animals (Sousa et al., 2007b; Brouillette and 

Quirion, 2008; Buxbaum et al., 2008). The difference between these strains was also 

observed in motor studies, wherein TTR KO mice displayed less immobility and 

increased activity in the forced swim and in the locomotor activity test, when compared 

to WT animals, suggesting that lack of TTR is associated with increased exploratory 

activity and reduced signs of depressive-like behavior (Sousa et al., 2004) . 

 These observations lead us to search for neuronal morphological changes 

between TTR KO and Wt mice, in serum free primary neuronal cultures.    

 In physiological conditions, after 1 day in vitro, hippocampal neurons from TTR 

KO mice exhibit similar neurite outgrowth as Wt mice. Nevertheless TTR KO mice 

seem to have a tendency for low number of neuritis (figure 1A), followed by significant 

increase in the minimum length parameter of the neurites (figure 1C).  

 In addition to these strains, another genetic model was included, a megalin 

deficient mice model with TTR null background, since megalin is a known receptor for 

TTR. Because megalin knockout mice are not viable due to problems associated with 

brain malformation, only heterozygotes for megalin were used.  

We observed that hippocampal neuronal cultures from Meg+/- TTR KO display a 

significant reduction of sum length and neurites number when compared to TTR KO 

and Wt (figure 1A and 1B). However, Meg+/- TTR KO has a significant increase in the 

minimum length parameter of neurites in relation to TTR KO and Wt (figure 1C). These 

results suggest that cultures with less neurite number are followed by a bigger 

minimum length of the neurites, revealing a weaker neural network and less extensive 

neurite sprouting. 

 So, TTR absence in neuronal cultures, leads to a less developed neuronal 

network, that is even more acute when there is also a megalin deficiency. 
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Figure 1. Different cell morphology between genetic models.  A, Neurite number, B, sum length and C, 

minimum length of Wt, TTR KO and Meg
+/- 

TTR KO hippocampal neuronal cultures in physiological conditions (24h in 

vitro). D, Representative images of Wt, TTR KO and Meg
+/-

 TTR KO hippocampal neuronal cultures in physiological 

conditions. Data represents the means +- SEM of five independent experiments.  ns, not significant; *p< 0.05 ; **p<0.01; 

***p< 0.001; ****p<0.0001 in  one-way  ANOVA,  with  Bonferroni’s post test. 

 

 TTR is not synthetized by hippocampal neuronal cultures  

 Since the presence of TTR has been reported in diverse brain areas, such as 

cortex, hippocampus or cerebellum (Carro et al., 2002; Stein and Johnson, 2002; 

Buxbaum et al., 2008; Li et al., 2011), several authors proposed that these tissues 

synthetized TTR. Although other authors shown these to be false positive results by 

contamination from adjacent choroid plexus cells and meninges (Sousa et al., 2007a), 

as TTR is absent in the brain parenchyma. 

 To address the difference of observed phenotype in physiological conditions 

between TTR KO and Wt cultures, we hypothesized that Wt hippocampal neurons 

cultures could produce TTR. To evaluate this hypothesis, we checked whether 

hippocampal cultures in the absence of serum have endogenous TTR, either 

intracellularly or in the conditioned medium. So, cells lysates with increasing 

concentrations and concentrated conditioned medium were assayed by western blot for 

TTR. In the tested conditions, the TTR presence was not observed (figure 2) and 

recombinant TTR and serum mouse and human were used as positive control.  
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Figure 2. TTR in not synthesized in cultured hippocampal neurons. Western blot image of conditioned media 

and cells lysates from TTR KO and Wt hippocampal neurons (7-8 DIV) with increasing concentrations. Recombinant 

TTR and serum of mouse were used as positive controls and serum of human as negative control. 

 

 Transthyretin promotes neurite outgrowth in hippocampal neurons 

cultures 

 Transthyretin neuritogenic activity was previously demonstrated on PC12 cells 

and dorsal root ganglion (DRG) of PNS (Fleming et al., 2007). Taken these findings 

and the fact that TTR can also have an important role in neuroprotection of CNS, the 

study of TTR neuritogenic effect in hippocampal neurons was addressed.   

 Primary cultures of hippocampal neurons from TTR KO were prepared and after 

plating, recombinant mouse TTR at 55µg/mL and 300µg/mL were added to the culture 

conditioned medium. After 24 hours, cells were fixed and several neurite outgrowth 

parameters were measured.  

 We verified that in both concentrations, TTR increases total neurite length and 

neurite number, in relation to the control situation (figure 3). Therefore, TTR seems to 

induce neurite outgrowth, contributing to the development of the neuronal network, 

corroborating previous findings (figure 1) of neuronal morphological analyses from Wt 

and TTR KO animals. 
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Figure 3. TTR promotes neurite outgrowth in hippocampal neurons. A, neurite number and sum length of TTR 

KO hippocampal neurons in the presence or absence of TTR at 55µg/mL and 300µg/mL, for 24h. . B, Representative 

images of TTR KO hippocampal neurons in the presence or absence of TTR at 300µg/mL . Data represents the means 

+- SEM of four independent experiments.  ns, not significant; *p< 0.05 ; **p  <0.01; ***p< 0.001 in  one-way  ANOVA,  

with  Bonferroni’s post test. 

 

 

 RAP blocks TTR induced neurite growth  

 Despite the fact that TTR does not have any specific described receptor, 

studies report that TTR has been shown to interact with different cellular receptors like 

an unidentified receptor associated protein (RAP)-sensitive receptor in hepatomas 

(Sousa and Saraiva, 2001) and megalin in renal proximal tubule epithelial cells (Sousa 

et al., 2000b) and DRG neurons (Fleming et al., 2009). 

 To understand if neurite outgrowth promoted by TTR is mediated by LDL-

receptor family proteins, TTR KO hippocampal neurons were co-incubated with TTR 

and RAP at 350µg/mL for 24 hours. In this condition, neurite outgrowth promoted by 

TTR was abolished (figure 4), as reflected in the decrease of neurite number and sum 

length. Accordingly, this result demonstrates that TTR exerts its neuritogenic activity in 

hippocampal neuronal cultures through the LDL-receptor family.  
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Figure 4. RAP blocks neurite growth promoted by TTR in hippocampal neurons .  Neurite number and sum 

length of TTR KO hippocampal neurons in the presence or absence of TTR 300µg/mL and TTR + RAP for 24h. Data 

represents the means +- SEM of four independent experiments.  ns, not significant; *p< 0.05 ; **p  <0.01; ****p< 0.0001 

in  one-way  ANOVA,  with  Bonferroni’s post test. 

 Megalin is expressed in hippocampal neuronal cultures and is essential to 

TTR neuritogenic activity   

 In the literature, megalin, a member of the LDL receptor family and one that 

binds the receptor-associated protein (RAP), has been identified as a endocytic TTR 

receptor (Sousa et al., 2000b) and associated with enhancement of neurite size 

promoted by TTR in DRG neurons (Fleming et al., 2009). Furthermore, in the nervous 

system, megalin has been described as an important protein for the development of the 

forebrain (Willnow et al., 1996; Spoelgen et al., 2005) and spinal cord (Wicher and 

Aldskogius, 2008).   

 After these evidences, megalin standout as a possible receptor mediating the 

neurite outgrowth, promoted by TTR. To explore this question, we used hippocampal 

neuronal cultures from TTR null and megalin heterozygous mice.  Neurons from 

megalin knockout mice are not viable, since these embryos have extensive phenotypic 

changes, due to progressive neuronal cell death after day 9.5. This phenotype 

suggests that megalin is required for the normal viability and development of the 

neuroepithelium (Willnow et al., 1996). 

 To confirm that hippocampal neurons from TTR KO express megalin, western 

blot and immunoprecipitation experiments, using an anti-megalin antibody, were 

performed. As shown in Figure 5, in both methodologies, a band appears at 

approximately 600 kDa that corresponds to megalin. However, the band presence is 

more evident by immunoprecipitation method, as expected. 
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Figure 5. Hippocampal neuronal cultures from TTR KO mice express megalin. Western blot (Wb) and 

immunoprecipitation (IP) image immunostained against megalin from TTR KO hippocampal neuronal cultures. 

 

 When Meg+/- TTR KO hippocampal neurons were incubated with TTR at 

55µg/mL and 300µg/mL during 24 hours, improvement of neurite number and size, 

seen on TTR KO neuronal cultures, was no longer observed in both concentrations 

(Figure 6A), showing that TTR activity is megalin-dependent.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Neurite outgrowth promoted by TTR is megalin-dependent. A, neurite number and sum length of 

Meg
+/-

 TTR KO hippocampal neurons in absence/presence of TTR at 55µg/mL and 300µg/mL for 24h. B, 

Representative images of Meg
+/-

  TTR KO hippocampal neurons  in the absence and presence of TTR at 300µg/mL . 

Data  represents  the  means +-  SEM  of  four independent  experiments.  ns, not significant in  one-way  ANOVA,  with  

Bonferroni’s post test. 
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 TTR promotes neuroprotection through megalin 

 TTR also demonstrated to have a neuroprotective effect in pathological 

conditions, since TTR can accelerate and enhance nerve regeneration when the sciatic 

nerve is submitted to injury (Fleming et al., 2007) and TTR null mice have bigger infarct 

area than wild type mice (Santos et al., 2010) in a model of ischemic stroke.  

 So, to study whether TTR can be neuroprotective in in-vitro ischemic conditions 

we simulated cultures hippocampal neurons from KO TTR mice with 125µM glutamate, 

during 20 minutes. This excitotoxic stimulus leads to an apoptotic neuronal death of 

about 40% of the neurons, mimicking the penumbra in stroke. After the toxic stimulus, 

TTR KO hippocampal neurons were incubated with TTR at 300µg/mL during 14 hours. 

Immunocytochemistry was performed with anti-Map-2 antibody. We observed a clear 

rise in the number of neuritis and its total length (figure 7A), indicating that TTR 

administration after excitotoxic stimulus was neuroprotective since more neurites were 

preserved and/or grown back. 

 

   

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

Figure 7. TTR promotes neuroprotection. A, Neurite number and sum length and B, its respective representative  

images  of TTR KO hippocampal neurons (7-8 DIV) incubated with TTR at 300µg/mL for 14hours after 125µM glutamate 

stimulus during 20min. Data represents the means +- SEM  of four independent experiments.  ns, not significant; *p< 

0.05 ; **p  <0.01 in Student’s t test. 
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 In physiological conditions, megalin has been shown as a receptor responsible 

for neuritogenic activity of TTR in PNS and in hippocampus (see above). To 

understand if the neuroprotective activity promoted by TTR was also mediated through 

megalin receptor, Meg+/- TTR KO primary neuronal cultures were used. When neurons 

were incubated with TTR during 14 hours after a toxic glutamate stimulus, the increase 

of both neurite number and sum length parameters promoted by TTR were not 

observed (figure 8A). Therefore, this result shows that neuroprotection performed by 

TTR is megalin-dependent. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. TTR promotes neuroprotection through megalin. A, Neurite number and sum length and B, its 

respective representative  images  of Meg
+/- 

TTR KO hippocampal neurons incubated with TTR at 300µg/mL for 14hours 

after 125µM glutamate stimulus during 20min. Data represents the means +- SEM of five independent experiments.  ns, 

not significant in Student’s t test. 

  

 TTR protects dendrites in hippocampal neurons 

 To describe if this neuroprotective action is performed over dendrites and/or 

axons, western blot from TTR KO neurons incubated with TTR at 55µg/mL during 4 

hours after glutamate stimulus were performed. Using antibodies against Map-2 

(dendritic marker) and Tau (axonal marker), we saw that when TTR was added after 

glutamate stimulus, Map-2 levels were enhanced, comparatively to the glutamate 

condition (figure 9A), but Tau levels were not affected (figure 9B).  These results 
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confirm the neuroprotective action observed by immunocytochemistry; furthermore, 

they show that this effect is specifically over dendritic extensions and not axons. 

 In addition, since in physiological conditions TTR KO and Wt neuronal cultures 

exhibit phenotypic differences, changes between the cultures in pathological conditions 

were also addressed. TTR KO neurons incubated with its conditioned medium during 

14 hours after glutamate stimulus showed to have lower Map-2 and Tau levels than Wt 

(figure 10). This difference reveals that TTR KO surviving neurons (after toxic stimulus) 

have an impaired recovery and/or a weak neuronal network, comparatively to Wt 

cultures. 

  

 

 

 

 

 

 

 

 

 

 
 

Figure 9. Neuroprotective activity of TTR is performed over dendrites. Western blot quantification of A, Map-2 

and B, Tau from TTR KO hippocampal neurons incubated with TTR at 300µg/mL for 14hours after 125µM glutamate 

stimulus during 20min. Data represents the means +- SEM  of four independent experiments.  ns, not significant; 

*p<0.05 in  one-way  ANOVA,  with in Student’s t test. 

  

 

 

 

 

 

 

 

 

 

Figure 10. Different levels of Map-2 and Tau between Wt and TTR KO neurons. Western blot quantification of 

Map-2 and Tau levels from Wt and TTR KO hippocampal neurons in the presence or absence of glutamate stimulus. 

Data represents the means +- SEM of five independent experiments.  *p<0.05 in one-way ANOVA, with Bonferroni’s 

post test. 
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 TTR induces Erk1/2, Akt and CREB phosphorylation through LDL-

receptors 

 Since TTR leads to a change in the neurite phenotype of neurons, it should be 

activating a series of signaling pathways. So, the signaling pathways involved in 

neuritogenic action like as Erk1/2 (Perron and Bixby, 1999), Akt (Read and Gorman, 

2009) and CREB (Redmond et al., 2002) were  investigated. It was observed that TTR 

stimulus at the concentration 55µg/mL in TTR KO neurons with 7-8 DIV induce a 

statistically significant increase of Erk1/2 and CREB phosphorylation at 30minutes 

(Figure 11A and 11B). Besides this, it was also observed that p-Akt was upregulated in 

the same conditions (Figure 11C). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11. TTR activates p-Erk1/2, p-Akt and p-CREB in TTR KO hippocampal neurons. Western blot 

quantification of A, p-Erk1/2; B, p-CREB and C, p-Akt from TTR KO hippocampal neurons (7-8 DIV) incubated with TTR 

at 55µg/mL during 30min, 60min and 3hours.  Data represents the means +- SEM of five independent experiments.  ns, 

not significant; *p< 0.05 ; **p  <0.01; in  one-way  ANOVA,  with  Bonferroni’s post test or in Student’s t test. 
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 To understand if the activation of these pathways by TTR stimulation is 

mediated through LDL receptor family, TTR KO neurons were co-incubated with TTR 

at 300µg/mL and RAP (LDL-receptor family inhibitor) at 350µg/mL for 30 minutes. In 

this condition, the Erk1/2 and CREB activation by phosphorylation was blocked (figure 

12A and 12B), suggesting that TTR neuritogenic activity may occur through the 

megalin receptor, a member of LDL-receptor family. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12. TTR activates p-Erk1/2 and p-CREB through LDL-receptors. Western blot quantification of A, p-

Erk1/2 and B, p-CREB from TTR KO hippocampal neurons in the presence of TTR and TTR + RAP for 30 minutes. 

Data represents the means +- SEM of four independent experiments.  ns, not significant; *p< 0.05 ; **p  <0.01; in  one-

way  ANOVA,  with  Bonferroni’s post test 

 

 Trk transactivation by Src-family mediated by TTR 

 In PC12 cells, α-2-macroglobulin binding to LRP1, other member of LDL-family 

receptor, was shown to transactivate Trk receptors and promote neurite outgrowth (Shi 

et al., 2009). 

  Consequently, we tested the hypothesis of neurite outgrowth triggered by TTR, 

through the megalin receptor, could follow the same mechanism action. A western blot 

experiment showed that TTR at 55µg/mL stimulus activates Trk receptors by 

phosphorylation, preferentially at 3 hours in TTR KO hippocampal neuronal cultures 

(figure 13A). 

 However, to clarify if neurite outgrowth promoted by TTR is Trk pathway-

dependent, primary neurons were treated with TTR at 300µg/mL and K252a (Trk 

inhibitor) at 200nM. Apart from Trk inhibitor, K252a is also a potent inhibitor of other 

protein kinases including Protein kinase A (PKA), Protein kinase C (PKC) and Protein 

A B 
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kinase G (PKG) (Kase et al., 1987). K252a inhibited the sum length and the maximum 

length parameter of the neurites induced by TTR stimulus (figure 14). However, with 

this concentration, the inhibitor alone could also significantly inhibit the neurite 

extension (sum and maximum length) compared to control. So, no clear result can yet 

be taken. 

  Since in PC12 cells, Trk transactivation is Src family kinase-dependent pathway 

(Shi et al., 2009), we considered pertinent to search the effect of TTR in these kinases. 

We found that the phospho-Src family was significantly activated by TTR at 3 hours 

(figure 13B), like it was observed for the Trk receptor   

   

 

 

 

 

 

 

 

 

 

 

Figure 13. TTR activates p-Trk and p-Src. Western blot quantification of A, p-Trk and B, p-Src from TTR KO 

hippocampal neurons in the presence or absence of TTR at 55µg/mL during 30 min, 60min and 3hours. Data represents 

the means +- SEM of four independent experiments.  *p< 0.05 in one-way ANOVA, with Bonferroni’s post test or in 

Student’s t test. 

 

 

 

 

 

 

 

 

 

 

 

Figure 14. The effect of Trk receptor inhibitor (K252a) in the neurite outgrowth promoted by TTR. Sum 

length and maximum length of TTR KO hippocampal neurons incubated with TTR at 300µg/mL and TTR + K252a for 30 

minutes. Data represents the means +- SEM of three independent experiments.   **p  <0.01; ***p<0.001; ****p<0.0001 

in  one-way  ANOVA,  with  Bonferroni’s post test 
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 Discussion and Perspectives   

 In this work, we show for the first time that TTR promotes neurite outgrowth in 

hippocampal neurons by activating several signaling pathways through the megalin 

receptor, a member of LDL-receptor family. In the literature, TTR neuritogenic activity 

has been reported in DRG neurons from the peripheral nervous system (PNS) and  

megalin was also suggested as the receptor mediating this action (Fleming et al., 

2009).  

 Since our focus is the role of TTR as a neuroprotective protein in cerebral 

ischemia, hippocampal neuronal cultures from different genetic models were used, 

namely wild type (Wt), TTR KO and Meg+/- TTR KO mice. We observed differences in 

cell morphology in these several genetic models, since TTR knockout mice exhibit a 

weak neural network as compared to Wt neurons (figure 1A and 1C). In the literature, 

several studies have shown that Wt and TTR KO mice present some differences, such 

as motor  (Sousa et al., 2004) and cognitive performance (Sousa et al., 2007b; 

Brouillette and Quirion, 2008; Buxbaum et al., 2008) and nerve regeneration (Fleming 

et al., 2007).  

 Some authors have claimed that TTR can be synthesized by neurons (Carro et 

al., 2002; Stein and Johnson, 2002; Buxbaum et al., 2008; Li et al., 2011), these could 

explain the phenotypic differences in physiological conditions observed in TTR KO 

mice, compared to Wt; however we observed that TTR is not produced by hippocampal 

neuronal cultures (figure 2). Therefore, the endogenous TTR could not explain the 

results observed. Meg+/- TTR KO showed to have an even weaker neuronal network 

compared to the TTR KO mice (figure1), so there seems to be a synergetic effect 

between TTR absence and megalin deficiency. We can speculate that TTR KO mice 

could also have different megalin expression levels compared to Wt mice. Therefore, 

as future experiments, the study of the megalin expression levels in the different 

cultures will be pertinent as it can possibly explain the diverse cell morphology. It will 

be also interesting to verify if TTR regulates megalin expression. 

 When cultured neurons were stimulated with TTR in physiologic conditions, 

there was a clear enhancement of neurite outgrowth in hippocampal neurons (figure 3). 

This result is in accordance with the observed in DRG neurons, from the PNS (Fleming 

et al., 2009). In addition, the literature reports non-identified secretory factors from 

choroid plexus epithelial cells promoted neurite outgrowth in hippocampal neurons 

(Watanabe et al., 2005), which is in agreement with our finding since the choroid 

plexus is a major source of TTR in brain (Aleshire et al., 1983). 



74 FCUP/ICBAS 
Discussion and Perspectives 

 

 Moreover, neurite outgrowth induced by a TTR stimulus is blocked in the 

presence of a LRP-family protein inhibitor (RAP) (figure 4), indicating that LRP 

receptors are mediators. To clarify if megalin is the member of the LRP receptor family 

responsible for TTR action, we used neurons from Meg+/- TTR KO embryos, and we 

verified that the neuritogenic effect was also abolished (figure 6). So, we clarified that 

neurite outgrowth induced by TTR is megalin-dependent in the hippocampus.    

 In the nervous system, megalin has been described as an important protein for 

the development of the forebrain (Willnow et al., 1996; Spoelgen et al., 2005) and 

spinal cord (Wicher and Aldskogius, 2008). In the last years, it was discovered that 

megalin is not only expressed in epithelium cells as described initially, but is also 

expressed in other cell types, namely oligodendrocytes (Wicher et al., 2006), 

astrocytes (Bento-Abreu et al., 2008), and neurons, including retinal ganglion cells 

(Fitzgerald et al., 2007), cortical neurons (Chung et al., 2008), cerebellar granule 

neurons (Ambjorn et al., 2008) and DRG neurons (Fleming et al., 2009). We now 

describe that hippocampal neurons also express megalin (figure 5) and that the 

neuritogenic function of TTR depend on this receptor. 

 Regarding the role of TTR in pathological conditions, TTR levels increase 

following traumatic brain injury in mouse hippocampus (Long et al., 2003), after 

transient focal cerebral ischemia in CNS (Suzuyama et al., 2004), in patients with 

severe closed head injury (Young et al., 1996) and it is secreted in the urine of stroke-

prone rats (Sironi et al., 2001). Previous work on TTR null mice indicated that in 

conditions of nerve injury, TTR deletion delays nerve regeneration (Fleming et al., 

2007), and using a permanent middle cerebral artery occlusion (pMCAO), TTR null 

mice and heterozygous for the heatshock transcription factor 1 (TTR-/-HSF1+/- mice) 

showed a significant increase in cortical infarction, cerebral edema and the microglial-

leukocyte response compared with TTR+/+HSF1+/-mice. Moreover, silencing of TTR 

synthesis in the liver by RNAi had no effect on TTR distribution in the infarct, indicating 

that the observed TTR infiltration derived from CSF and not from the serum. (Santos et 

al., 2010). 

 A clinical study confirms these results, showing that serum pre-albumin 

(transthyretin) levels were significantly lower in young acute ischemic stroke patients 

than normal control groups and that elevated levels of serum pre-albumin are indicative 

of a good prognosis in cerebral infarction (Gao et al., 2011). 

 These findings raise the putative neuroprotective role of TTR and so we used 

an in-vitro ischemic model (excitotoxic insult over hippocampal neurons) to try to 

dissect the molecular basis of this neuroprotection. In cultured neurons from TTR null 

mice, transthyretin reveals neurite protection through total length and neurite number 



FCUP/ICBAS 
Discussion and Perspectives 

75 

 

following an excitotoxic insult (figure 7) and this effect is mediated by megalin, since 

the neuroprotection of TTR is abolished in TTR null mice megalin deficient (figure 8). 

 Additionally, we show that transthyretin exerts its neuroprotection on dendrites 

and not in axons (figure 9). These results point that TTR preserves some of the 

neuronal functionality, after an excitotoxic insult, played by the neuronal dendrites. 

Berliocchi et al have shown that there are different degenerative programs in the cell 

body and in neurites (Berliocchi et al., 2005), so it would be interesting to study if the 

neuroprotection promoted by TTR also protects the cell body. Nevertheless, the best 

neuroprotective strategy is the one that preserves the functional neurons and not just 

the one that keeps the cell body alive.   

 Once again, TTR KO mice exhibited differences as compared to Wt, since Map-

2 and Tau levels were lower in TTR KO neurons after endotoxic conditions (figure 10). 

This difference corroborates the weak neuronal network of TTR KO neurons observed 

in physiological conditions (figure 1A and 1C) and/or reveals impaired recovery 

comparatively to Wt cultures.  

 To promote the phenotypic changes observed in hippocampal neurons, TTR 

has to activate signaling pathways. In literature, several signaling pathways have been 

associated with neuritogenic action, such as Erk1/2 (Perron and Bixby, 1999), Akt 

(Read and Gorman, 2009) and CREB (Redmond et al., 2002). We show that TTR 

upregulates the levels of p-Erk1/2, p-Akt and p-CREB (figure 11), indicating that these 

will be the signaling pathways probably involved in neurite enhancement. We also 

observed that activation of Erk1/2 and CREB is mediated by LDL-receptors (figure 12). 

These pathways also mediate the neuritogenic and neuroprotective action promoted by 

α2-macroglobulin through LRP-1, another member of LDL-receptor family (Yamauchi et 

al., 2013). In other cases, the molecular mechanisms involved for neurite outgrowth are 

also associated to neuroprotection (Ditlevsen et al., 2007; Liu et al., 2014) . For this 

reason, signaling molecules activated through TTR stimulus could be responsible for 

the neuritogenic activity, but also to the neuroprotective properties. However, to verify 

the possible involvement of these pathways in neuroprotection, the study of TTR 

signaling pathways activated after ischemic conditions is required. 

 It is described in the literature that Trk receptors when activated by neurotrophic 

factors are responsible for inducing downstream pathways as p-MAPK and CREB, and 

consequently, promoting neurite outgrowth, nerve regeneration and cell survival 

(Heumann, 1994; McAllister et al., 1999). In primary cortical neurons was shown that 

Fyn tyrosine kinase, a member of Src family, is associated with TrkB (Iwasaki et al., 

1998) and it was already reported to be involved in neurite outgrowth (Beggs et al., 

1994). In addition, studies showed that Reelin induces dendrite outgrowth through a 
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lipoprotein receptor-Dab1 signaling pathway (Niu et al., 2004), which is known to 

activate a nonreceptor tyrosine kinase of the src family (Arnaud et al., 2003; Bock and 

Herz, 2003). 

 We observed that TTR stimulus promotes Trk and Src phosphorylation (figure 

13), but the hypothesis that TTR binding to megalin transactivates Trk receptors by a 

Src family kinase-dependent, like Yang Shi et al proposed to LRP1 with its ligands (Shi 

et al., 2009) was not clarified. In the future, to verify the transactivation of Trk receptors 

by Src-kinase family, Src inhibitors should be used, to see whether TTR can still 

activate or not the Trk receptor. 

 Interestingly, it was described that calcium influx actives Src and Ras and, 

consequently, Map-kinases resulting in the neurite growth in PC12 cells (Rusanescu et 

al., 1995). The megalin contains potentially functional motifs including several Src-

homology recognition motifs in the cytoplasmic tail (Songyang et al., 1993; Yu et al., 

1994). More recently, it was reported that α-2-macroglobulin binding to LRP mediates 

neurite outgrowth through the effects on intracellular calcium homeostasis and p44/42 

MAP kinase activation, leading to the effects on CREB transcription regulation (Qiu et 

al., 2004).   

 As mentioned above, we saw that TTR can induce these downstream pathways 

through the megalin receptor. Given the evidences, another interesting approach study 

besides the transactivation hypothesis is whether this response is followed by a change 

of intracellular Ca2+ (figure 15). For that, the use of camaleon calcium sensitive probes 

(Horikawa et al., 2010), through a FRET assay, could be an interesting way to observe 

changes in intracellular Ca2+ after a TTR stimulus. This will also allow to see the 

kinetics and the place where it occurs (dendrites, axons and/or cell body). 

 In conclusion, hippocampal neuronal cultures from TTR KO and double TTR 

and megalin deficient mice exhibit different cell morphology as compared to wild type 

neurons. Neuritogenic and neuroprotective effects of TTR are megalin-dependent and 

involve Erk 1/2, Akt and CREB, signaling pathways possibly through a Src/TrK 

transactivation mechanism. 
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Figure 15. Schematic representation of the possible molecular mechanism induced by TTR.   TTR binding 

to megalin activates Erk 1/2, Akt and CREB, possibly through a Trk receptors transactivation mechanism mediated by a 

Src family kinase.  Increase of Ca
2+

 influx through the activation of Ca
2+

 channels can also be a signaling pathway 

responsible for neurite outgrowth and neuroprotection promoted by TTR. 
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