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Abstract 

Parkinson’s disease is a neurologic disease characterized by both motor and non-motor 

symptoms, but also by nerve cell loss in the brain. A hallmark characteristic of Parkinson’s 

disease is the presence of Lewy bodies which are abnormal aggregates of protein in nerve 

cells, and which major component is the α-synuclein. It is believed that this protein plays a 

crucial role in Parkinson’s disease development. Alzheimer’s disease is the most common 

cause of dementia in the elderly, affecting more than 24 million people around the globe. 

The initial symptoms of this disease include loss of memory and orientation, as well the 

presence of two pathological features: the presence of neurofibrillary tangles and amyloid 

plaques, which major component is the amyloid-β peptide. Despite the advances in the 

investigation of new therapies for this disease, current treatment available continues focusing 

on reducing the symptoms of the patient and not on the reversal of the disease. Moreover, 

the blood-brain barrier remains the major obstacle to the development of new therapies due 

to its restrictions, limiting approximately 98% of the small molecules. Through the use of 

nanoparticles targeted to the brain and where the drug can be encapsulated, the crossing of 

the blood-brain barrier becomes possible by drugs that otherwise were not able. Therefore, 

the drug is slowly released in the brain, increasing the efficiency of the therapeutic drug and 

decreasing peripheral and/or systemic toxicities that could arise from its systemic use.  

This study aimed to develop a targeted therapeutic system for intravenous 

administration, using solid lipid nanoparticles, a biocompatible and biodegradable colloidal 

delivery system, widely researched for medical applications, with a propose of drug delivery 

system. The nanoparticles were encapsulated with resveratrol and grape’s extracts, the main 

source of natural resveratrol, to be used as therapeutic agents in the combat against 

Parkinson’s disease and Alzheimer’s disease. The lipid nanoparticles were also functionalized 

with an OX-26 antibody that specifically targets the transferrin. The nanoparticles where 

characterized morphologically by size, zeta potential and entrapment efficiency. Particle size 

was in the desired range (150-200nm), their entrapment efficiency percentage achieved the 

90%, but the zeta potential was lower than expected, still the nanoparticles remain stable for 

at least 2 months. When conjugated with the antibodies, the nanoparticles lost their stability, 

aggregating and resulting in a higher nanoparticle size.  

Furthermore, nanoparticle morphology was analysed by transmission electron microscopy, 

allowing the observation of the spherical shape of the nanoparticles, but also small 

aggregates in some of the samples. The interaction with α-synuclein and amyloid-β peptides 
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was also studied with Thioflavin T fluorescent assays and the ability of delaying the 

aggregation of these peptides could be confirmed, demonstrating that the nanoparticles 

synthesized are promising candidates for the treatment of both Parkinson’s and Alzheimer’s 

disease.  
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Resumo 

A doença de Parkinson é uma doença neurológica caracterizada tanto por sintomas 

motores como não motores, mas também pela perda de células nervosas no cérebro. A 

característica principal desta doença é a presença de corpos Lewy que são agregados 

anormais de proteínas nas células nervosas, e cujo principal componente é a α-sinucleína. 

Pensa-se que esta proteína desempenha um papel crucial no desenvolvimento da doença de 

Parkinson. A doença de Alzheimer é a causa mais comum de demência na idade avançada, 

afetando mais de 24 milhões de pessoas em todo o mundo. Os sintomas iniciais da doença 

incluem perda de memória e dificuldade na orientação, bem como a presença de duas 

características patológicas: a presença de emaranhados neurofibrilares e placas de amilóide, 

cujo principal componente é a amilóide-β. Apesar dos avanços na investigação de novas 

terapias, os tratamentos atuais continuam a focar-se na redução dos sintomas do paciente e 

não na reversão da doença. Além disso, a barreira hematoencefálica continua a ser o maior 

obstáculo ao desenvolvimento de novas terapias devido às suas características limitantes, 

bloqueando aproximadamente 98% das moléculas pequenas. Através do uso de nanopartículas 

direcionadas para o cérebro onde o fármaco possa ser encapsulado, a passagem através da 

barreira hematoencefálica torna-se possível para fármacos que de outra forma não seriam 

capazes de o fazer. Desta forma, o fármaco é libertado lentamente no cérebro, aumentando 

a sua eficiência e diminuindo efeitos tóxicos periféricos e/ou sistémicos que poderiam ocorrer 

do seu uso sistémico. 

Este estudo teve como objetivo o desenvolvimento de um sistema terapêutico direcionado 

para administração intravenosa utilizando nanopartículas lipídicas sólidas, que consiste num 

sistema coloidal biocompatível e biodegradável de entrega de fármacos e que é amplamente 

estudado para aplicações médicas com o objetivo de entregar fármacos. Resveratrol e 

extratos de uva, a fonte natural principal de resveratrol, foram encapsulados nestas 

nanopartículas para serem utilizados como agentes terapêuticos no combate contra as 

doenças de Parkinson e Alzheimer. As partículas foram também funcionalizadas com o 

anticorpo OX-26 que se liga especificamente à transferrina. As nanopartículas foram 

caracterizadas morfologicamente pelo tamanho, potencial zeta e eficiência de 

encapsulamento. O tamanho das nanopartículas estava dentro da escala desejada (150-200 

nm) e a sua eficiência de encapsulação alcançou os 90%, mas o seu potencial zeta foi mais 

baixo que o esperado, mas mesmo assim, as partículas continuaram estáveis pelo menos 

durante 2 meses. Quando conjugadas com os anticorpos, as nanopartículas a sua estabilidade 

diminuiu, agregando e resultando em nanopartículas de maior tamanho. 
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Além disso, a morfologia das nanopartículas foi analisada por microscopia eletrónica de 

transmissão, permitindo a observação da sua forma esférica, mas também de pequenos 

agregados em algumas amostras. A interação com os péptidos α-sinucleína e amilóide-β foi 

estudada com ensaios de fluorescência de Tioflavina T e a capacidade de atrasar a agregação 

destes péptidos foi confirmada, demonstrando que as nanopartículas sintetizadas são 

candidatos promissores para o tratamento das doenças de Parkinson e Alzheimer. 
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Chapter 1  

Introduction 

1.1 - Motivation 

Over the last years, the world’s population has been aging at an accelerating rate. 

Combining this with the increase of the life expectancy in industrialized countries, it is 

possible to understand the burden of neurodegenerative diseases today.  

Parkinson’s disease (PD) is the second most common neurodegenerative disorder [1]. It is 

characterized by both motor and non-motor symptoms, but also by nerve cell loss in the 

brain. A hallmark characteristic of Parkinson’s disease is the presence of Lewy bodies which 

are abnormal aggregates of protein in nerve cells, and which major component is the α-

synuclein [2]. It is believed that this protein plays a crucial role in Parkinson’s disease 

development. Another neurodegenerative disease is the Alzheimer’s disease (AD), the most 

common cause of dementia in the elderly, affecting more than 24 million people around the 

globe. As PD, the most influential risk factor is the age. The initial symptoms of AD involve 

loss of memory and orientation, as well the presence of two pathological features: the 

presence of neurofibrillary tangles and amyloid plaques, which major component is the 

amyloid-β peptide [3]. 

Even though the advances in the investigation of new therapies for PD and AD, current 

treatments available continues focusing on reducing the symptoms of the patient and not on 

the reversal of the disease. One factor for this to happen it the existence of the blood-brain 

barrier (BBB), which is responsible for the restriction of the majority of therapeutic drugs, 

when intravenously administrated, to the central nervous system (CNS). It is also responsible 

for the dropout of relatively new drugs that have a good efficacy in vitro but cannot pass this 

strict barrier [4]. 

Nanomedicine was born from the fusion of nanotechnology with the need of drug delivery 

and studies how the drug administration, pharmacokinetics and pharmacodynamics are 

affected by the use of nano-sized materials [5]. The role of nanotechnology in the treatment 

of neurodegerative disease arises from the necessity to mask the physicochemical properties 

of the therapeutic drugs in order to have a longer blood-stream life and to be able to cross 

the BBB into the CNS. This can be achieved by encapsulation of the drug in a nanoparticle 

which can be made of different kinds of biomaterials. Lipid and polymeric nanoparticles are 

the two most used classes of nanoparticles used for drug delivery across the BBB, due to their 
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ability to reduce the common side effects of the current drugs through their encapsulation 

[4]. 

1.2 - Main objective 

In this context, the aim of the present work is to develop lipid nanoparticles loaded with 

therapeutic compounds for the treatment of PD and AD. The therapeutic compound chosen 

was the resveratrol, which is a biologically active substance found in plants and exhibits 

several health beneficial effects. One of these effects is neuroprotection in 

neurodegenerative disease, such as PD and AD [6]. Since it is present mainly in grapes, its 

extracts are a natural alternative to resveratrol, so they were also encapsulated into lipid 

nanoparticles. 

1.3 - Thesis organization 

The present dissertation is organized into five different chapters. The first chapter is the 

Introduction, and it is where the motivation and main objective of this research work are 

stated. The second chapter, State of the art, carries out an overview of the Parkinson’s and 

Alzheimer’s disease, the blood brain barrier and lipid nanoparticles, and also a review of the 

last studies on nanoparticles used for the treatment of both Parkinson’s disease and 

Alzheimer’s disease. The Materials and Methods chapter describes the list of materials used 

and all the methodologies applied during this work. Results and respective discussion are 

described in the Results and Discussion chapter. The last chapter, Concluding Remarks and 

Future Perspectives summarizes the work developed, presenting the main conclusions based 

on the results obtained, but also suggestions of possible future work that can be useful for the 

present project. Finally, in the Annex are included all the supplementary results.  

 

 

 

 

 

 

 

 

 

 

 



 
 

 
 

Chapter 2  

State of the Art  

2.1 - Parkinson’s disease 

Parkinson’s disease (PD) is the second most common neurodegenerative disorder, after 

Alzheimer’s disease. It is estimated to affect 10-18% of the world population and has an 

annual incidence of 0.4-2%. There is also a rising prevalence with age and a higher incidence 

in the male population [1]. PD is an incurable and progressive disorder that is characterized 

by a chronic and progressive movement disorder with pigmented neuron degeneration in the 

substantia nigra, resulting in a decrease in nigrostriatal availability of the neurotransmitter 

dopamine [7]. In most cases, PD occurs as a sporadic type of disease (90-95%) with no 

apparent genetic linkage, but can also appear as a rare familial form (5-10%) [8, 9]. The 

average age of disease onset in PD is around 60 years, with a life expectancy of about 15 

years since diagnosis. Furthermore, the majority of early-onset patients (diagnosed under 40 

years old) have a positive family history of PD and long disease duration, while older patients 

(over the age of 70 years) tend to have shorter disease durations ( approximately 5 to 10 

years) and more rapid and severe disease progression [10, 11]. 

PD has two main neuropathological hallmarks. The first one is the degeneration of basal 

ganglia neurons, predominantly pigmented dopaminergic neurons of the substantia nigra pars 

compact of the midbrain [12, 13], and the second is the presence of α-synuclein positive 

intracytoplasmatic inclusions and axons known as Lewy bodies and Lewy neurites that are 

formed in the survival dopaminergic neurons [14]. Lewy bodies are cytoplasmic inclusions 

constituted by aggregated proteins. As mentioned before, the major component of Lewy 

bodies in sporadic PD is the α-synuclein, a 140 amino acid presynaptic protein. It is thought 

that this protein plays a crucial role in PD development [15]. Moreover, examination of PD 

brains identified the presence of neurofilaments and ubiquitin, changes in mitochondrial 

function, increased oxidative stress, lysosomal dysfunction, protein aggregation and impaired 

degradation, deposition of iron as well inflammation and glial activation [16, 17]. 

Until a few years ago, the aggregation of α-synuclein protein was thought to be 

modulated by point mutations associated with familial PD, various environmental factors, 

posttranslational modifications, and interaction with cellular membranes and different 

proteins [18]. Nevertheless, it was not known if genetic or epigenetic factors might perturb 

the metabolism, solubility, or interactions of the α-synuclein in sporadic PD and synuclein in 
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dystrophic neurites [13]. Nowadays, PD is considered to have a complex multi-hit etiology 

involving multiple influences including lifestyle, genetics (e.g. α-synuclein mutations) and 

environment (e.g. insecticide exposure) [19, 20]. In 2007, a dual-hit hypothesis for the 

progression of PD was proposed, suggesting that an external factor could initiate this 

pathogenesis by induction of the α-synuclein pathology, which moves along two potential 

paths to the midbrain. One of these paths begins due to the exposure in the olfactory bulb, 

while the other is caused by the exposure in the gastrointestinal tract. At some point, both of 

these pathways result in damage to the nervous system [21]. The progression of the PD is 

hypothesized to occur in a predictable pattern that begins in the caudal brainstem (dorsal 

motor nucleus of glossopharyngeal and vagal nerves) and olfactory bulb (anterior olfactory 

nucleus) (stage I), ascending to the pontine tegmentum (stage II), midbrain (stage III), 

mesocortex and allocortex (stage IV) and finally culminating in widespread neocortical 

involvement (stages V and VI) [22]. This progression is represented in Table 2.1. 

 

Table 2.1 - Parkinson’s disease stages by Braak (I to VI), and respective pathological disease’s 
progress and symptoms (emphasis on non-motor symptoms). Adapted from [23]. 

Stage I II III IV V and VI 

Pathology 

Enteric plexus, 

olfactory bulb, 

vagus nerve, 

cardiac 

sympathetic 

neurons, 

parasympathetic 

cholinergic 

dysfunction 

Locus 

coeruleus, 

reticular 

formation 

Amygdala, 

Meynert’s 

nucleus 

Substantia 

nigra 

Temporal 

mesocortex, 

allocortex, 

limbic 

circuit 

Widespread 

neocortical 

involvement 

Symptoms 

Constipation, 

dysautonomia, 

hyposmia,  

anxiety, 

urinary and 

erectile 

dysfunction 

Sleep 

disturbances, 

depression 

Unilateral tremor and 

bradykinesia,  

subclinical gait dysfunction, 

behavioural memory 

disorder 

Impulse 

control 

disorders, 

memory and 

emotional 

impairment 

Motor 

symptoms 

2.2.1 - α-Synuclein and Parkinson’s disease 

The α-synuclein protein is encoded by a single gene, the SNCA gene, which consists on 

seven exons located at the chromosome 4, and lacks both cysteine and tryptophan residues 

[18, 19]. Moreover the α-synuclein protein is small, soluble and highly conserved, with the 

predominant isoform being 140 amino acids long [24]. 

In 1997, after a mutation in α-synuclein gene was found to be associated with the familial 

cases of early-onset PD, and its aggregates were found to accumulate in  components of the 

neural perikaryal (Lewy bodies) and neuronal processes (Lewy neuritis), the interest of study 

this protein increased [18, 25].  
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A major effect of the α-synuclein mutation that leads to an alanine to threonine 

substitution at position 53 (A53T), is thought to be the promotion of the aggregation of α-

synuclein into fibrillar assemblies in nerve cells [13], resulting in the formation of Lewy 

bodies and Lewy neurites [26]. Due to this, the α-synuclein aggregation and Lewy bodies’ 

formation could be important in the etiology and pathogenesis of all cases of PD [13, 16].  

The abnormal accumulation of α-synuclein insoluble aggregates in neuronal cells that 

characterizes PD, is also related with other neurodegenerative conditions which are 

collectively termed as synucleinopathies, such as dementia with Lewy bodies and multiple 

system atrophy, as well as rare disorders such as various neuroaxonal dystrophies [11, 27].  

 

Localization of α-synuclein 

α-Synuclein in its native, aggregated and supposed pathological (oligomeric, 

phosphorylated) form has been found in a variety of tissues from both living and deceased PD 

patients including cerebrospinal fluid (CSF), blood (erythrocytes and platelets), urine, saliva, 

gastrointestinal tract, vagus nerve, sympathetic and stellate ganglia, cutaneous autonomic 

nerves, and submandibular gland [19, 24, 28]. 

Thus, this protein is abundantly expressed in the nervous system, comprising 1% of total 

cytosolic protein. In presynaptic terminals α-synuclein is present in high concentration in 

close proximity, but no within, synaptic vesicles, and it is found in both soluble and 

membrane-associated fractions of the brain [29].  

 

Structural properties and function of α-synuclein 

The α-synuclein protein, in aqueous solution, does not have a defined structure, being an 

intrinsically disordered protein (hence the term natively unfolded protein) at neutral pH, but 

compacter than a random coil (Figure 2.1: left image). The intrinsically disordered proteins 

are characterized by a unique combination of low overall hydrophobicity, low sequence 

complexity and high net charge. Thus existing as dynamic and highly flexible structural 

ensembles, either at the secondary or at the tertiary structure level [18]. 

The structure of α-synuclein (Figure 2.1: right image) can be divided into three different 

regions: an amino terminus (residues 1–60) which contain four 11-amino acid imperfect 

repeats (coding for amphipathic α-helices) with a conserved motif (KTKEGV), a central 

hydrophobic region (residues 61–95), containing the hydrophobic and highly amyloidogenic 

Non-beta-amyloid component (NAC) region and three additional KTKEGV repeats, which 

confers the β-sheet potential, and finally, a carboxyl terminus (residues 96–140), containing 

the highly enriched in acidic residues and the prolines C-terminal region, that confers an 

highly negative charge. While, the first two regions comprise a membrane-binding domain, 

the C-terminal tail is thought to contain protein–protein and protein–small molecule 

interaction sites [18, 27].  

The α-synuclein protein is a member of the synuclein family of proteins, which also 

include β- and γ-synuclein. What structurally differentiates α-synuclein from the other family 

members is the NAC region. All three members of the family are predominantly neuronal 

proteins that under physiological conditions localize preferentially to presynaptic terminals 

[30]. 

The α-synuclein might have several functions, which include synaptic vesicle release and 

trafficking, fatty acid binding and physiological regulation of certain enzymes, transporters, 
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and neurotransmitter vesicles, as well as roles in neuronal survival. Moreover, α-, β-, and γ-

synucleins are important contributors to long-term operation of the nervous system. 

Furthermore, α-synuclein can interact with at least 30 proteins, having and important role in 

cell signalling [18]. 

 

 
Figure 2.1 – Representation of the α-synuclein structure taken from the Protein Databank ID: 1XQ8 
(left), and schematic structure of α-synuclein protein (right) [27]. 

Conformational behaviour of α-synuclein 

The α-synuclein protein has the ability to adopt different conformations depending on the 

environment, and interacts easily with others ligands, such as lipids [31]. Thus, the 

conformational behaviour of the α-synuclein protein is determined by its relatively low 

hydrophobicity and high net charge nature. Therefore, alterations in the environment can 

lead to an increase in its hydrophobicity and/or decrease in the net charge, inducing a partial 

folding of the protein [18].  

As a result, α-synuclein can adopt a number of different conformational states that 

depends on several conditions and cofactors. These conformational states include the 

formation of α-helical structures by binding to negatively charged lipids such as phospholipids 

present on cellular membranes, and it consists in a partially-folded state that is crucial in the 

aggregation and fibrillation, formation of various oligomeric species, and fibrillar and 

amorphous aggregates; and of β-sheet-rich structures on prolonged periods of incubation [27]. 

Furthermore, the partial folding might lead to α-synuclein self-association into 

amyloidogenic conformations, which is facilitated by the formation of solvent-exposed 

hydrophobic clusters on the surface of a partially folded protein as a consequence of an 

increase in concentration, a decrease in pH, an increase in temperature, an addition of 

amphipathic molecules (e. g. various agrochemicals, such as herbicides or pesticides), an 

addition of metal ions and other small charged molecules, interaction with charged 

biopolymers, interaction with other proteins, interaction with membranes, and immersion of 

a protein into a crowded environment [18]. 

Aggregation potential of α-synuclein 

The α-synuclein protein forms amyloid fibrils which can be divided in two structural 

classes: fibrils derived from folded proteins (β-sheet rich), and fibrils derived from 
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intrinsically disordered proteins. Amyloid fibrils are formed from folded proteins by either the 

refolding mechanism or by a gain-of-interaction model. In the refolding mechanism, proteins 

are converted from native structures to fibrils by initially unfolding, and then refolded into a 

secondary structure that is rich in β-sheets. The fibrils that are formed in this way are stable 

due to backbone hydrogen bonding, rather than side chain-side chain interactions. All of 

these native-like proteins are rich in β-structure, and as a result form fibrils with minimal 

alterations to their native structures [18].  

The formation of α-synuclein fibrils occurs in a nucleation-dependent manner, where the 

rate-limiting step is the spontaneous formation of small metastable oligomeric intermediates 

that results from partial folding and aggregation of unstructured α-synuclein, and exists in 

rapid equilibrium with its monomeric form. After, fibrils grow by a “dock and lock” 

mechanism, where monomers initially bind to the exposed regions of a fibril in a reversible 

manner. This is followed by an irreversible re-organization of the fibril surface, which 

generates the most optimal surface area for further fibril growth. Thus, the formation of 

oligomers is also a highly ordered process that involves an intrinsic rate-limiting lag phase. 

Nevertheless, a wide range of amyloidogenic proteins have been shown to assemble into 

common oligomeric and fibrillar conformations. This fact suggests that amyloid misfolding is 

largely mediated by peptidebackbone interactions, and not by interactions of the side groups 

[18]. 

The α-synuclein protein aggregation can take place e in the cytoplasm or inside the 

neurons, in association with the cellular membrane, and it is represented in Figure 2.2.  

 

 
Figure 2.2 – Mechanisms of α-synuclein aggregation and propagation. Image from [32]. 

Structure of the oligomers formed 
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There is at least three structural classes of amyloid oligomers (prefibrillar, fibrillar and 

annular) that are formed depending on the environmental conditions. Since α-synuclein 

belongs to a class of intrinsically disordered amyloid proteins it forms fibrils by converting 

either all or part of the previously unstructured polypeptide into well-defined, β-sheet rich 

secondary structures. The α-synuclein fibrils are composed of several protofilaments 

containing a cross-β structure in which β-strands are arranged in parallel, and the β-sheets 

are in-register with highly ordered amino acid side chain patterns exposed on the surface of 

the β-sheets. Furthermore, the side-chains protruding from the two β-sheets of the cross-β 

spine interdigitate in a self-complementary manner to give rise to highly ordered structures 

known as steric zippers [18].  

The α-synuclein fibrils can exhibit differences in the structure in consequence of 

variations in the folding of the β-sheets, differences in the molecular packing between sheet 

interfaces, or interactions of side chains with the environment. However, at the molecular 

level, fibrils and aggregates of α-synuclein have a five-layered parallel, inregister β-sheets 

core that consists of a five-layered β-sandwich [33]. Still, it is not clear whether they are 

parallel or antiparallel sheets (i.e. the initial α-synuclein oligomers may adopt an antiparallel 

structure whereas the fibrils are mostly parallel β-sheets) [34].  

The structural of the oligomers is translated to variability in cytotoxicity and biological 

activity [18]. Moreover, their ability to induce aggregation provides a molecular basis for the 

heterogeneous group of synucleinopathies caused by α-synuclein aggregation [35].  

Propagation of α-synuclein aggregates 

Recent findings hypothesize that amyloids associated with neurodegenerative diseases 

spread in a prion-like fashion [35]. Similarly to the self-propagating mechanism of infectious 

prion proteins, misfolded α-synuclein assemblies seed the aggregation of monomeric α-

synuclein in vitro and spread in a nucleation-dependent seeding mechanism from one cell to 

another in cell cultures and animal models. Furthermore, Lewy bodies and Lewy neurites 

have been shown to spread from the brain of patients developing PD to grafted neuronal cells 

[18]. The mechanism of α-synuclein oligomers and monomers propagation between cells is 

represented on Figure 2.2 and it can occur via endocytosis, direct penetration, trans-synaptic 

transmission or through membrane receptor [36].  It has been verified that Lewy bodies and 

Lewy neurites first appear in the dorsal motor of the vagal nerve in the brainstem and 

anterior olfactory structures, then spread stereotypically to large parts of the brain, following 

defined patterns as referred before. Thus, it is considered that the pathology begins first at 

the olfactory bulb and the dorsal vagal nucleus and gradually follows an ascending course, 

culminating in widespread α-synuclein pathology at the later stages, involving cortical 

regions, whereas the substantia nigra is only affected in stage 3 of this scheme [22]. Despite 

this hypothesis does not explain the absence of clinical symptoms in subjects who on autopsy 

have widespread α-synuclein pathology, it appears to hold up for the majority, but not all, of 

cases examined [37]. 

The potential pathogenic effects of α-synuclein 
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During the aggregation of the α-synuclein occurs the formation of metastable oligomer 

intermediates of α-synuclein that are considered to be the disease-associated species of the 

protein [18]. However, there is some inconsistency about which is the major neurotoxic 

species, the oligomers and/or the fibrils [18, 38]. 

There are three major classes of the neurotoxic mechanisms of α-synuclein and its 

aggregates: mechanical disruption of cellular compartments/processes, toxic gain of function, 

and toxic loss of function. Permeation of cellular membranes is considered to be the main 

neurotoxic mechanism, and it is based on the capacity of α-synuclein oligomers binding to 

lipid membranes and to disrupt membrane bilayers, but also because certain oligomeric forms 

were shown to penetrate membranes, leading or not to the formation of pore-like channels, 

and consequently cell death. Moreover, the impairment of α-synuclein degradation via 

proteasome inhibition by the aggregated species and copper-dependent generation of 

reactive oxygen species (ROS) have also been proposed as possible neurotoxic mechanisms of 

the α-synuclein aggregates. It is hypothesized that the α-synuclein-related neurotoxicity 

might arise from a loss of function [18]. On Figure 2.3 is represented both mechanism of α-

synuclein aggregation and toxicity model, where both oligomers and amyloid fibrils contribute 

to neurotoxicity (e.g. oxidative stress, protein sequestration, disruption of axonal transport, 

synaptic dysfunction, inhibition of ubiquitin-dependent proteasome (UPS) system and 

mitochondrial dysfunction). Here it is also represented the control systems (phagosomes, 

lysosomes and proteasomes) that prevent or reverse protein misfolding or eliminate misfolded 

proteins which, at some point of the disease, are overwhelmed by α-synuclein oligomers, thus 

contributing the toxicity effects [38].  

 

 
Figure 2.3 – Mechanism of α-synuclein aggregation and hypothetical model of the α-synuclein toxicity. 
Image from [38]. UPS: ubiquitin-dependent proteasome system. 

Interaction of α-synuclein with membranes 

The α-synuclein protein has several structural features that allows binding with synthetic 

vesicles containing acidic phospholipids and to cellular membranes. These features comprises 

several class A2 lipid-binding helices contained in the α-synuclein (distinguished by clustered 
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basic residues at the polar–apolar interface that are positioned ±100° from the centre of 

apolar face), a predominance of lysines relative to arginines among the basic residues, and 

several glutamate residues at the polar surface [18]. 

In presynaptic termini, monomeric α-synuclein exists in a tightly regulated equilibrium 

between free and membrane- or vesicle-bound states, being estimated that approximately 

15% of α-synuclein is membrane-bound within the synaptic termini. Thus, the inhibition of 

lipid oxidation by α-synuclein may be a physiological function of the protein [18]. 

2.2.2 - Parkinson’s disease-related mutations 

There is a small fraction of PD patients who have a familial form of PD with an autosomal-

dominant pattern of inheritance. Furthermore, it has been identified three point mutations in 

the SNCA gene encoding for α-synuclein on patients with familiar PD, leading to A53T, A30P, 

and E46K amino acid changes (Figure 2.1: right image). These mutations are all associated 

with autosomal-dominant PD, however, the distribution of the pathology at the cellular and 

molecular level is different in each case [27].  

These three PD-related point mutations do not affect the global structure of human α-

synuclein monomer. While the A30P mutation strongly attenuates the helical propensity that 

is found in the N-terminal region of the wild type α-synuclein, the A53T mutation applies a 

more modest influence on local structural propensity, resulting in a slightly enhanced 

preference for extended conformations in a small region around the site of mutation. The 

E46K mutation resulted in subtle changes in the conformation of the monomeric protein and 

enhanced the contacts between N- and C-termini of the protein. Moreover, the A30P 

mutation promoted α-synuclein oligomer formation, while A53T and E46K mutations promoted 

fibrillation. Thus, all three PD-related mutations of α-synuclein alter its secondary structure 

and promote its aggregation [18]. 

2.2.3 - Classic Parkinson’s disease therapy challenges 

Over the years, there has been a massive progress in the treatment of PD, however 

Levodopa (L-dopa) still is the gold standard for controlling PD symptoms. The therapy of each 

patient is individualized and several drugs are currently available. Besides L-dopa, there are 

other compounds that can substitute the L-dopa treatment or be simultaneous administered 

for an efficient therapy, like dopamine (DA) agonists, catechol-o-methyl-transferase (COMT) 

inhibitors, nondopaminergic agents, between others.  

However, oral L-dopa therapy can be affected by several interfering processes, leading to 

dose failures and long-term complications. The main situations interfering with the optimal 

delivery are the necessity to compete with ingested proteins for the amino acid transporters 

in the gastrointestinal tract and BBB, and the short half-life of L-dopa which is around 36 to 

96 minutes. In an advance stage of the disease, this can lead to fluctuating L-dopa 

concentration levels, and eventually, to fluctuations levels of DA derived from L-dopa. In an 

attempt to avoid these fluctuations, L-dopa must be administered as multiple doses, however 

this may not be enough [39]. Furthermore, a continuous intravenous infusion of L-dopa or DA 

is, at the moment, the only clinical method to abolish the motor fluctuations [40]. But the 

use of intravenous infusions is not practicable for a chronic therapy [39]. Currently, none of 



Parkinson’s Disease 11 
 

 
 

the available treatments has been able to modify the natural neurodegenerative course of PD 

[41, 42]. On Table 2.2 are represented the main current drugs used for PD therapy, their 

clinical use as a monotherapy or adjuvant therapy and their advantages and disadvantages. 

Recent studies are focused on optimizing the delivery of L-dopa and other therapeutic 

drugs so the treatment of PD can be more efficient (more details in the further chapters). 

These studies are investigating how the BBB compromises the PD treatment and new drug 

delivery methods [7, 43].   

Two examples of new therapeutic compounds are the glial-derived neurotrophic factor 

(GDNF) and the urocortin. Both have a potential role in the PD treatment due to their 

neuroprotective and cytoprotectant effect, respectively. However, they have poor 

penetration of BBB and rapid blood clearance [44]. 

 
Table 2.2 – Current therapeutic approaches used in clinical [45]. 

Drug Class Drug Name Clinical Use Advantages Disadvantages 

Levodopa 
Sinemet, Parcopa, 

Atamet 
Monotherapy 

Increase levels of 
endogenous DA 

Motor fluctuations, 
dyskinesias 

Continuous 
Levodopa 

Intravenous bolus, 
Intravenous infusion, 
Intestinal L-dopa gel 

Monotherapy 

Decrease pulsatile 
DA levels, increase 

control on/off 
periods, decrease 
dyskinesia severity 

and duration, 
decrease non-

motor symptoms 

Large volumes 
required 

(intravenous), 
requires surgery 
and prosthetic 

device, mechanical 
problems 

Dopamine 
Agonists 

Piridedil, 
Pramipexole, 
Ropinirole, 
Rotigotine, 

Cabergoline, 
Pergolide 

Bromocriptine 

Monotherapy (on 
young patients), 
adjuvant therapy 

Increase levels of 
endogenous DA, 
decrease motor 

symptoms in early 
stages of disease 

Sedation, impulse 
control disorder, 

somnolence, 
edema 

MAO B Inhibitors 
Rasagiline, 
Selegiline, 
Safinamide 

Initial 
monotherapy, 

adjuvant therapy 

Well tolerated, 
decrease 

catabolism of DA 

Mild nausea, 
constipation, 

confusion 

COMT Inhibitors 
Entacapone, 
Tolcapone 

Adjuvant therapy 

Decrease 
metabolism of L-
dopa, decrease in 
daily dose of L-
dopa required, 

increase daily on 
time 

Dyskinesias, 
diarrhea, hepatic 

toxicity, dizziness, 
insomnia, nausea 

2.2 - Alzheimer’s disease 

Alzheimer’s disease (AD) is classified as the most common form of dementia, accounting 

with more than 80% of dementia cases worldwide [46]. The initial symptoms of AD are barely 

imperceptible since it is characterized by impaired short term memory and difficulties in 

acquiring new information [47]. As time goes by, the patient starts losing some cognitive 

functions, exhibit special disorientation and apathy and demonstrates difficulties in 

performing daily-basic activities, such as walking and dressing up. At the end, the patient 

experiences intense memory and cognition losses, leading to the immobility of the patient, 

who eventually succumb to respiratory difficulties (4-6 years after the initial diagnosis) [48]. 
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The advanced age is the major risk factor for developing AD, however the disease can also 

occur in very rare patients with 20-30 years old who have genetic mutations resulting in the 

formation of abnormal amyloid precursor protein (APP), presenilin 1, and presenilin 2 genes. 

Other factors that can influence the occurring of sporadic late-onset AD include mitochondrial 

defects, apolipoprotein genotype (ApoE4), insulin-dependent diabetes, environmental 

conditions, and diet [49, 50].  

The pathophysiological hallmarks that characterize AD are the presence of neurofibrillary 

tangles of hyperphosphorylated tau proteins and extracellular amyloid-β plaques (senile 

plaques) in the cortex and hippocampus, which are important areas for memory and learning 

[51]. Anatomically, AD begins in the entorhinal cortex of the brain and progresses to the 

hippocampus, posterior temporal and parietal neocortex, culminating with diffuse atrophy 

through the cerebral cortex due to the loss of neurons [50]. 

 

2.3.1 -  Amyloid-β and Alzheimer’s disease 

Amyloid-β is a 4 kDa amphiphilic peptide of 39 to 43 amino acids residues long and it is 

encoded by a gene localizes in chromosome 21 [52]. In AD patient’s brains, amyloid-β peptide 

is in a fibrillary state organized in a β-sheet structure and it is the main constituent of the 

plaque deposits, extracellular deposits of fibrils and amorphous aggregates of amyloid-β [53]. 

Moreover, there is evidence that the concentration amyloid-β aggregates has a direct relation 

with the degree of dementia of patients [54]. It is known that amyloid-β is localized in 

compartmental cellular organelles such as the endoplasmic reticulum and lysosomal network, 

however it has also been localized in the cytoplasm of brains of AD patients [55].  

Amyloid-β derives from the APP by sequential activities of β- and γ-secretases, and it is 

explained by the cascade hypothesis (Figure 2.4) [56]. The final products of this cascade are 

two sequences with a length of 40 or 42 amino acids [57]. Usually, the first one is produced 

more abundantly by cells and its aggregation kinetic rate is much lower than the other 

(amyloid-β(1-40) at 20 μM is stable for 8 days or more whereas amyloid-β(1-42) aggregates 

immediately) [58, 59]. The amyloid-β(1-42) is associated with AD due to have the most 

fibrillogenic sequence, having the ability of aggregating in a β-sheet conformation. However, 

there are other hypotheses that explain the molecular mechanism of AD, such as the 

cholinergic hypothesis. 

 

Amyloid cascade hypothesis 

The amyloid cascade hypothesis was formulated more than 20 years ago, and states that 

the amyloid-β fibril deposited in amyloid plaques initiates the formation of neurofibrillary 

tangle formation and several toxic events, leading to neuronal dysfunction, the main 

pathological effect of AD [60]. However, nowadays it is believed that amyloid-β oligomers, 

including protofibrils and prefibrillar aggregates, are the major toxic species in AD [61]. 

The APP is an integral transmembrane protein consisting in a single membrane-spanning 

domain, a large extracellular glycosylated N-terminus and a shorter cytoplasmic C-terminus, 

which is expressed in several tissues, however its concentration is higher in the synapses of 

neurons [62]. APP can be processed by two main pathways: non-amyloidogenic or 

amyloidogenic (Figure 2.4). The APP is normally cleaved by α-secretase on the non-
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amyloidogenic pathway and processed by β- and γ-secretases on the amyloidogenic pathway. 

This results in an imbalance between production and clearance of amyloid-β peptide. Then, 

amyloid-β spontaneously aggregate into soluble oligomers, fibrils and are eventually 

deposited in neurotoxic amyloid plaques. The formation of these toxic aggregates induce 

oxidative damage, promote tau hyperphosphorylation, results in toxic effects on synapses and 

mitochondria, and consequently causes the neuronal loss characteristic of AD [46, 63]. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.4 – Production of amyloid-β peptides. The APPP is cleaved by the β-secretase resulting on a 
secreted fragment if APP (sAPPβ) and a C-terminal fragment of APP (CTFβ). This last one is then cleaved 
by γ-secretase giving origin to a C-terminal fragment (CTFγ) and amyloid-β of various lengths (Aβ40 and 
Aβ42). The cleavage by α-secretase is not shown, however it cleaves the amyloid- β domain resulting in 
the production of amyloid-β. Image from [64]. 

 

Cholinergic hypothesis 

The cholinergic hypothesis defends that a dysfunctional cholinergic system is enough to 

result in memory deficit, a classical symptom of AD [65]. Moreover, AD patient’s brains 

exhibit degeneration of cholinergic neurons of the basal forebrain and a decline in cholinergic 

markers (choline acetyltransferase and acetyl cholinesterase) [66]. This hypothesis cannot 

explain the overall neuropathological features of AD, however it can elucidate an important 

part of AD’s cause.   

 

Aggregation process of amyloid-β 

Amyloid-β aggregates in a nucleation-dependent mechanism where partially folded forms 

of the peptide associate to each other, forming a stable nucleus. Other partially folded 

intermediates attach to this nucleus, and the aggregated peptide starts to form protofibrils. 

This chain process continues until the formation of highly structured and insoluble amyloid 

fibrils occurs. Mainly, the peptide’ transition process into fibrils consists of three phases: lag 

phase, elongation phase and plateau phase. The first one, the lag phase, consists in the 

unfolding of amyloid-β and in the formation of oligomers that include species with β-sheet 

structures which act as nucleus for the formation of mature fibrils. On the elongation phase, 

the fibril growths through the addition of monomers or oligomers to the nucleus. Finally, on 

the plateau phase, the maximum fibril growth is achieved [67, 68]. 

 

β-secretase 

γ-secretase 
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Figure 2.5 – Process of protein misfolding and fibrillization. The three phases of the transition process 
are also represented. Image from [64]. 

 

2.3.2 -  Alzheimer’s disease-related mutations 

There are three genes associates with early onset familial AD, as stated before: amyloid 

precursor protein (APP), presenilin 1, and presenilin 2. Studies have found several causative 

mutations of AD in the DNA of subjects who inherited AD, all of them were localized closely 

to the cleavage sites of β- or γ-secretases and lead to the production of amyloid-β(1-42) or to a 

change in the aggregation properties of amyloid-β [69, 70]. Mutations in presenilin 1 gene are 

responsible for the majority of the reported cases of familial AD (FAD), while presenilin 2 

gene mutations are relatively rare [69]. 

 

2.3.3 -  Current therapy  

Currently, no therapies have been clinically proven to effectively prevent the progression 

of AD yet, and the actual treatments do not affect the progression of the disease but only 

attenuate the symptoms of the disease, such as memory and cognitive function. The current 

therapies are based on cholinergic agents, namely inhibitors of acetylcholinesterase, due to 

the loss of cholinergic neurons [71]. These agents increase the acetylcholine’ levels to 

prevent the degradation of neurons, however with time the therapy becomes ineffective and 

the progressive loss of cholinergic neurons continues [49]. Furthermore, a vast majority of 

other potential AD targets are nearly unaffected by this treatment. The first drug based on 

this therapy was tacrine (Cognex®), but since it presented hepatotoxic effects, other drugs 

were developed, such as donepezil (Aricept®), rivastigme (Exelon®) and galantamine 

(Razadyne®, Reminyl®) [72]. 

Another therapeutic strategy includes the use of memantine, an N-methyl D-aspartate 

(NMDA) receptor antagonist. This drug acts by antagonizing glutamate at the NMDA receptor, 

improving the signal transmission, thus protecting against toxic damage in cholinergic 

 

     Lag Phase Elongation Phase 
Plateau 
Phase 
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neurons. This was the first drug to be approved by FDA for treatment in later stages of the 

disease [50]. 

Nevertheless, probably the best approach to overcome AD, it to reduce amyloid-β levels 

in the brain. Thus, several therapeutic strategies have been developed, and they aim to 

reduce or modulate amyloid-β production, including secretase inhibition and increase of 

amyloid-β clearance with amyloid vaccines, or to block the aggregation of amyloid-β with 

different agents, such as antibodies, breaker peptides, or small organic and natural molecules 

that selective bind and inhibit amyloid-β aggregation, consequently the inhibition of fibril 

formation is achieved [56, 73]. However, none of them have demonstrated an overall 

efficiency in stopping the disease progression or reverting the disease state and most of small 

molecules studied are weekly potent and poorly bioavailable, particularly to the brain. 

 

2.3 -   The blood brain barrier 

Brain drug delivery is still a challenge for the treatment of neurodegenerative diseases. 

The presence of the blood-brain barrier (BBB) prevents the delivery of most therapeutic 

agents, thus impeding an effective therapy.  

The BBB is an organized interface between peripheral circulation and the central nervous 

system (CNS) that is capable of responding to local changes and requirements and has a dual 

function as a barrier and a carrier. It protects the microenvironment of the CNS of fluctuation 

in the blood composition by blocking the transport of potentially toxic or harmful substances 

from the blood circulation to the brain, but it allows the crossing of energy substrates and 

nutrients by specific transport systems. Thus, this interface maintains the CNS homeostasis 

through the regulation of the ion balance and metabolites influx/efflux [74, 75]. 

The BBB is present in all brain regions expect in the regions that regulate autonomic 

nervous system and endocrine glands of the body [76]. 

2.4.1 - Structure and composition 

The BBB is composed by different cell types such as endothelial cells, perycites, 

astrocytes and microglial cells [77]. It consists of two membranes, the luminal and abluminal 

membranes of the capillary endothelium, which are separated by the endothelial cytoplasm 

(~200 nm) [78].  

Thigh junctions are present within the brain capillary endothelium, connecting adjacent 

endothelial cells, physically restricting the paracellular diffusion of ions and other polar 

solutes between endothelial cells [74]. Thus, limiting the passive diffusion to the brain of 

small lipophilic compounds of molecular weights bellow to 400 Da. Furthermore, the selective 

influx transport of hydrophilic compounds is permitted by transport proteins [4, 7]. 

The basal lamina is composed of type IV collagen, fibronectin, heparine sulfate and 

laminine. It functions as a charge and molecular weight barrier and interacts in complex ways 

with intergins to regulate permeability and cellular transport across the BBB. Pericytes are 

macrophage-like cells with smooth muscle properties that are embedded in the basal lamina 

around the blood vessels. They regulate permeability by release of vasoactive substances. As 

they decrease with age, there is an increase in the BBB permeability [79]. 
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2.4.2 - Transport mechanisms 

The transportation of molecules across the BBB can occur through different influx 

pathways. The transport mechanism by which a molecule is allowed to cross the BBB is 

dependent of its physicochemical properties. 

Lipid-mediated free diffusion 

A wide range of lipid-soluble molecules are capable of diffusion through the BBB, entering 

into the brain passively. This capability is correlated with the lipid solubility of the molecule. 

Base compounds (with a positive charge) are able to cross the BBB due to the interaction with 

negatively charged glycocalyx and phospholipid head groups of the membrane. Also, blood 

gases like oxygen and carbon dioxide diffuse across the BBB dependent of the concentration 

gradient [74]. Thus, the restriction of entry into the CNS is dependent on the molecule 

structural physicochemical properties, such as size (< 400-500 Da), charge, hydrogen bounding 

potential (< 8-10 hydrogen bonds with water) and lipophilicity [77, 78]. 

Carrier- or receptor-mediated transport 

Since the majority of the polar molecules cannot diffuse through cell membranes, cells 

express a large number of solute carriers, like choline and amino acid transporters, in the cell 

membrane. The orientation of these transporters results in preferential transport of 

substrates into or across the cell. Thus, the direction of the transport may be from blood 

circulation to the CNS or vice-versa [74]. 

Essential large molecules for the brain homeostasis, such as amino acids, hexoses, 

neuropeptides and proteins, cross the BBB through endocytotic mechanisms involving either 

receptor-mediated transcytosis (RMT) or adsorptive-mediated trancytosis (AMT).  RMT 

requires the binding of macromolecules to specific receptor on the cell, inducing endocytosis 

and subsequent transcytosis. On the other hand, AMT depends on the ligand electrostatic 

interaction with the surface charge of the endothelial cells for triggering endocytosis 

followed by transcytosis [74]. The main targets for RMT are transferrin receptor (also highly 

expressed in the liver, heart and other cells), insulin receptor (also highly expressed in 

adipose tissue, liver and muscle cells) and low-density lipoprotein (also highly expressed in 

the liver) [80]. 

 

ATP-binding cassette transporters 

The main role of the ATP-binding cassette transporters (ABC transporters), such as p-

glycoprotein (P-gp), is to function as an active flux pump that consumes ATP and transports 

potentially neurotoxic endogenous or xenobiotic molecules out of the CNS. Thus, these 

receptors have a vital neuroprotective and detoxifying function [74].  
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2.4.3 - A barrier to conventional therapy – methods to increase the 

transport 

The majority of the therapeutic drugs are not capable to reach the CNS in a 

therapeutically relevant concentration due to the relative impermeability of the BBB. 

Therefore,  BBB is the major impediment in the treatment of CNS disorders [81]. Nowadays, 

most of the new drug candidates to treatment of CNS disorders are large molecules that have 

poor pharmacokinetics and cannot cross the BBB. Additionally, approximately 98% of all small 

molecules are not transported across the BBB [78].  

Briefly, the restrict access to the brain is due to several characteristics of BBB, the 

existence of tight junctions that block the passage through the intercellular gap, the reduced 

rate of pinocytosis on the luminal side, the nonexistence of fenestrations, the enzymatic 

barrier (considered a second line of protection) and, finally,  due to the efflux transport 

system [80]. 

In order to overcome the limited access of therapeutic drugs to the brain, there are 

several methods to increase the transport from blood into the CNS [40, 82]. The most 

accepted is the physiological approach which takes advance of the receptor transcytosis 

capacity. In this non-invasive approach, drugs are modified to be recognizable by the nutrient 

transport system of BBB or are conjugated with ligands that recognize expressed receptors at 

the BBB. However, it can have some disadvantages, for instance the possible non-specific 

drug-receptor interactions in peripheral organs. Meaning that an high concentration of the 

drug with these target molecules can bound in other organs before they can reach the BBB 

[80]. Also, drugs can be modified to reduce the relative number of polar groups and increase 

the cross of it through the BBB. But, this can lead to loss of desired activity of modified drugs 

and extrusion of the drug outside with efflux pump due to increased drug lipophilicity [7]. 

Moreover, the inhibition of the efflux transporters can improve the treatment efficacy, but it 

can also result in intolerable adverse side effects after efflux inhibition [77].  

Other method is the invasive approach, which include several expensive technology that 

involve a high risk complications, such as intracerebroventricular infusion, convection 

enhanced delivery, disruption of BBB and polymeric or microchip systems. This method 

breaches the BBB mechanically in order to deliver drug to the brain [7, 77]. 

However, there is a promising way to cross the BBB and deliver drugs to targets within 

the CNS through the use of nanoparticles. It has already been demonstrated that the 

nanoparticles with their surface modified are capable to cross the BBB into the brain after 

intravenous administration via receptor-mediated pathways. 

2.4 - Nanoparticles as drug delivery systems for 

neurodegenerative disease’ therapy 

Nanoparticles are a class of drug delivery system which are able to target a certain part of 

the body for delivery of the therapeutic drug. The nanoparticle size vary in a range of 10 to 

1000 nm and can be constructed from various materials and carry an extensive variety of 

active compounds, such as chemotherapeutics, contrast agents, proteins and nucleic acids 

[7].   
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Nanoparticles allow the transportation of therapeutic drugs for PD and AD across the BBB, 

that otherwise was not possible, by masking the limiting physicochemical properties of these 

molecules through their encapsulation. Thus, it does not require the modification of the drug 

molecule, because the ability to cross the BBB is only dependent of nanoparticle’s properties 

[77]. Furthermore, the use of nanoparticles allows a reduction of the required doses by 

improving of the pharmacological and therapeutic properties of the drug, as well as a 

decrease peripheral and/or systemic toxicity [4, 7, 40].  

This system can be administered directly into the brain or they can be systemic delivery 

with a target action in the central nervous system [40]. The delivery across the BBB is mostly 

achieved through receptor-mediated endocytosis of the nanoparticles by brain capillary 

endothelial cells followed by transcytosis. The receptors available for targeting are, for 

example, lipoprotein, scavenger transferrin and insulin receptors [77].  

Since the ability to cross the BBB is not dependent of the chemical structure of the drug 

encapsulated, but of the physicochemical and biomimetic features of the nanoparticle, they 

must have several properties that make them suitable to be used for drug delivery across the 

BBB. These properties include nontoxicity, biodegradability, biocompatibility, non-

immunogenicity (unless it is targeting the monocytes/macrophages), stability in blood (no 

aggregation and dissociation), capacity of interacting with receptors present at the BBB, 

controllable drug releasing profiles, and ability to carry small molecules, proteins, peptides or 

nucleic acids [83, 84]. The nanoparticle must have a controlled size in order to have its 

properties uniform and consistent, but also to have to control of its biological fate [83]. 

Moreover, the nanoparticle size have influence on the endocytotic uptake mechanism. 

Commonly, nanoparticles with a size below to 200 nm are up taken by clathrin-mediated 

endocytosis, whereas nanoparticles with a size up to 500 nm are uptaken caveolae-mediated 

endocytosis [77]. However, they can also enter in the cells through a passive mechanism, by 

direct plasma membrane penetration [80]. 

The nanoparticle surface charge and hydrophobicity have influence on the nanoparticle 

uptake and/or the rate of transyctosis due to their influence on the pattern of proteins 

adsorbed from plasma. It is known that hydrophobic surfaces are rapidly opsonized followed 

by recognition by the reticuloendothelial system (RES), and higher internalization rates are 

usually associated with positively charged nanoparticles due to the negatively charged 

composition of the biological membranes. However, negatively charged nanoparticles can 

achieve efficient uptake rates after the adsorption or covalently coupling of targeting ligands. 

Still, the nanoparticle surface is not the only one to have influence on the successful brain 

delivery, but all the materials used in the nanoparticle formulation may influence their ability 

to deliver drugs across the BBB [77]. Thus, when designing the nanoparticle it is essential to 

give attention the surface materials chosen, but also to the core materials. 

In Table 2.3 are resumed some of the studies of encapsulation of therapeutic drugs in 

nanoparticles for targeted brain delivery, mainly for the treatment of PD and AD. The 

majority is trying to encapsulate drugs that are already used in the treatment, however some 

recent studies are using antioxidants and growth factors as new rising therapies that can 

prevent the progress of the disease or even reverse it.  
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Table 2.3 – Studies published using drug brain delivery systems, mainly for the treatment of 
PD and AD. The studies are divided by type of therapeutic drug used, material, targeting 
ligand and administration route (systemic or local). GDNF: Glial cell line-derived neurotrophic 
factor, BDNF: Brain-derived neurotrophic factor, VEGF:  Vascular endothelial growth factor.  

Therapeutic Drug Material 
Targeting 

Ligand 
Administration 

Route 
Model Ref. 

Dopamine 

Chitosan nanoparticle - Intraperitoneal In vitro [85] 

Molecular carrier 
Amino acid 
derivates 

Intraperitoneal - [86] 

Alginate scaffold 
embedding stable D-

loaded celulose acetate 
phthalate nanoparticle 

- Local 
Healthy 

Sprague-Dawley 
rats 

[87] 

Liposome - - In vitro [88] 

Succinyl Dopamine 
Quantum 

rods/amphiphilic 
polymer/PEG 

Galactose Local In vitro [89] 

GDNF 

PLGA nanoparticle - Local 
6-OHAD rat 

model 
[90] 

Lactoferrin-modified 
nanoparticle 

- -  [44] 

PAMAM/PEG nanoparticle Lactoferrin Intravenous 
Rotenone rat 

model 
[91] 

GDNF fused with 
collagen binding 

peptide 

PLGA/Collagen 
nanoparticle 

- Local In vitro [92] 

GDNF and BDNF 
PLGA microparticle within 

a PEG-based hydrogel 
- Local In vitro [93] 

GDNF and VEGF PLGA nanoparticle - Local 
6-OHAD rat 

model 
[94] 

Neurotrophin-3 and 
MIAMI stem cells 

PLGA microparticle with a 
biomimetic surface 

- Local 
6-OHAD rat 

model 
[95] 

Plasmic GDNF 
DNA compacted by 
polycations to form 
colloidally stable NP 

- Local 
6-OHAD rat 

model 
[96] 

Sialic acid 
Poly(N(2-hydroxypropyl) 

methacrylamide) 
- Local 

6-OHAD rat 
model 

[97] 

Levodopa-α-lipoic 
acid 

PLGA microparticle - Subcutaneous - [98] 

Levodopa methyl 
ester and 

benserazide 
(decarboxylase 

inhibitor) 

PLGA nanoparticle - Subcutaneous 
6-OHAD rat 

model 
[99] 

Polymeric nanoparticle - - 
LDA-stimulated 
dyskinetic rat 

model 
[100] 

Levodopa 

Chitosan nanoparticle 
thermoreversible to gel 

- Intranasal - [101] 

Liposome-PEG Chlorotoxin - In vitro [102] 

Rotigotine (agonist) PLGA microparticle - Intramuscular 
6-OHAD rat 

model 
[103] 

Apomorphine 
(agonist) 

PLGA microparticle - - - [104] 

Tripalmitin hydrogenated 
soybean 

phosphatidylcholine solid 
lipid nanoparticle 

- Oral 
6-OHAD rat 

model 
[105] 

Ropinirole (agonist) Nanoemulsion - Transdermal 
6-OHAD rat 

model 
[106] 

Bromocriptine 
(agonist and 
antioxidant) 

Chitosan nanoparticle - Intranasal 
Haloperidol rat 

model 
[107] 

Solid lipid nanoparticle - - - [108] 

Tempol 
(antioxidant) 

PLGA microparticle 
Ab OX-26 

Transferrin 
receptor 

- In vitro [109] 



20 State of the Art 
 
 

 

Rasagiline (MAO B 
inhibitor) 

PLGA nanoparticle - Intraperitoneal 
Rotenone rat 

model 
[110] 

Urocortin 

PEG-PLGA nanoparticle Lactoferrin Intravenous 
6-OHAD rat 

model 
[111] 

Lactoferrin-modifed 
nanoparticle 

- - - [44] 

PEG-PLGA nanoparticle Odorranalectin Intranasal 
6-OHAD rat 

model 
[112] 

Nerve growth 
factor 

Poly butylcyanocrylate 
nanoparticle 

Polysorbate-80 Intravenous MPTP rat model [113] 

Chelating ligands 
(CuAC, EDTA, 

histidine and ZnAc) 
Nanoliposome - - In vitro [114] 

Curcumine PLGA nanoparticles Tet-1 protein - - [115] 

Bromocriptine 
Tristearin/tricaprin 

nanostructures-solid lipid 
nanoparticle 

- - 

6-
hydroxydopamin
e hemilesioned 

rat model 

[116] 

Phosphatidic acid Nanoliposome Apoliprotein E - hCMEC/D3 cells [117] 

 

2.4.1 - Solid lipid nanoparticles 

Solid lipid nanoparticles (SLN) are a stable lipid-based nanoparticles composed by a solid 

hydrophobic lipid core where the therapeutic drug can be dissolved or dispersed (Figure 2.6). 

However, SLN are also feasible of incorporating hydrophilic drugs on their surface. These 

nanoparticles are made of an oil/water emulsion with lipids that are solid at room 

temperature and body temperature [118]. Their size is between 40 to 200 nm providing them 

the ability to cross tight endothelial cells of the BBB, escape from the reticulo-endothelial 

system (RES), and thus bypass liver and spleen filtration. In addition, the synthesis of these 

nanoparticles is cost effective, have excellent reproducibility and avoid the use of organic 

solvents [36].  

Besides having all the requirements described on the last section, SLN formulations are 

stable for approximately 3 years and the controlled drug release can be made to last several 

weeks. Triglycerides, fatty acids and waxes are examples of lipid used in the synthesis of SLN 

[84, 108]. 

Figure 2.6 – Schematic representation of a solid lipid nanoparticle. 

 

2.4.2 - Functionalization 

After intravenous injection, the nanoparticles are rapidly opsonized and cleared from the 

blood stream by the macrophages of the RES which are mainly localized in the liver and 

spleen [77, 82]. However, the blood circulation time of the nanoparticle can be prolonged by 

modification of the nanoparticle surface with surfactants or by covalent attachment of 

hydrophilic surfactants, such as polysorbates or polyethylene glycol (PEG) chains to the core 

polymer. Thus, the mass of drug delivered to the brain is proportional to the BBB 

permeability coefficient and the area under curve plasma concentration versus time [77]. 
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Besides increasing the blood circulation time, PEG grants steric stabilization of the 

nanoparticle surface, allowing the attachment of ligands (e.g. antibodies, proteins or 

aptamers) capable of binding to BBB nutrient transport systems or internalizing receptors 

[84]. It is known that the ligands attached to the nanoparticle may increase the elimination 

rate by the RES, however the coverage of the nanoparticle with PEG reduces this effect [83]. 

The functionalization of the nanoparticle by covalent conjugation of various ligands can 

be used to target specific tissues, like the brain, enhancing the bioavailability of a drug, that 

otherwise was not able to cross the BBB, in that specific locus. Moreover, the 

functionalization of the nanoparticle surface can improve the crossing through the BBB by 

allowing an electrostatic interaction with the luminal surface of the BBB. This can be 

achieved by conferring a positive charge to the nanoparticles surface through 

functionalization with positively charges molecules. Thus, nanoparticles can be 

multifunctional and have several properties like drug delivery, targeting and diagnosing 

capabilities [7]. 

The selection of the ligands is extremely critical since the receptor should be 

preferentially expressed at the BBB, but ideally it should be brain specific in order to reduce 

potential side-effects and increasing transport efficiency [83]. Also, the natural saturation of 

the receptor must be considered to avoid competition with the natural ligand [84].  Some 

possibilities of molecular and cellular targets that can be focus for drug delivery therapy for 

PD are α-synuclein protein, leucine-rich repeat serine/threonine protein kinase 2 and the 

parkin protein, and for AD could be for example molecular targets that can act on α-, β-, and 

γ-synuclein peptides [40]. 

If a fluorescent probe is conjugated with the nanoparticle targeted to a PD or an AD 

biomarker it is possible to diagnose and follow the progress of these diseases. The copulation 

of this property with the simultaneous ability of delivering drugs is denominated theranostic 

[7]. 

Figure 2.7 is a representation of a nanoparticle where the drug is both encapsulated in 

the core and conjugated at the surface. Here are represented the vast kind of molecules that 

can be functionalized at the nanoparticle surface with the objective of targeting the brain 

(antibody, peptide, aptamers and cationic molecules), avoid the RES (PEG) and imaging 

purposes (fluorescent probe) [84].  

 
Figure 2.7 – Representation of a multifunctionalized nanoparticle with drugs (encapsulated in 
the core or conjugated at the surface), brain targeting molecules (antibodies, peptides, 
aptamers and cationic molecules), PEG and a fluorescent probe. Adapted from [84].   
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2.6.1 - Monoclonal antibodies 

The transferrin receptor (TfR) is expressed at a high level in the brain capillary 

endothelium, thus the targeted delivery of therapeutic compounds to it allows a greater 

therapeutic outcome [109]. However, transferrin is not an ideal TfR-targeting ligand due to 

the competition with the transferrin present in the bloodstream, leading to the saturation of 

these receptors [119, 120]. In order to overcome this problem, antibodies against the 

transferrin were developed, such as the OX-26 antibody [121].  

2.5 - Resveratrol as a potential therapy for neurologic diseases 

Resveratrol (3,5,4’-trihydroxystilbene) is a natural polyphenolic flavonoid, which can be 

found in nature as both cis and trans isomers, being the last considered to be the most 

abundant and biologic active. Several effects have been related with the intake of 

resveratrol, such as anti-carcinogenic, anti-inflammatory, anti-obesity and heart/brain 

protective effects (modulation of nitric oxide biosynthesis and activity) [6]. The 

neuroprotective effects of resveratrol in neurological disease, such as AD and PD, is related to 

the protection of neurons against oxidative damage and toxicity (due to ROS production), and 

to the prevention of apoptotic neuronal death [6, 51]. 

Figure 2.8 – Chemical structure of resveratrol. 

 

However, after intravenous injection, resveratrol is rapidly absorbed, metabolized into 

both glucuronic acid and sulfate conjugations of the phenolic groups in the liver and intestinal 

epithelial cells (within less than 2 hours), which are eliminated posteriorly [49].Thus, 

resveratrol has low bioavailability, limiting its biological and pharmacological benefits. It also 

has poor water solubility and is chemical instable, being degraded by isomerization when 

expose to elevated temperatures, pH changes, UV light or certain types of enzymes [6]. 

Furthermore, resveratrol has the ability of mimicking the healthy benefits of calorie 

restriction, also called dietary restriction, which is known that it leads to the stimulation of 

stress proteins and to the increase of the organism’s defense mechanisms [51]. 

Consequentially, this effect enhances the longevity of the organisms, but also protects the 

organism from stress. However, long-term effects of this treatment on neurodegenerative 

diseases were not studied yet, and the short-term adverse effects includes infertility, 

menstrual irregularities, hypertension, loss of libido, loss of strength and stamina, slower 

wound healing, depression and even irritability [49].  

Resveratrol can be found in the seeds and skins of grapes, red wine, mulberries, peanuts, 

rhubarb and in several other plants [51]. It’s concentration in the skin and seeds of grapes is 

approximately 50-100 ug per gram, corresponding to 5-10% of their biomass, nonetheless it 

varies considerably on different grape vine cultivars [6, 51]. This fact is associated with the 

French Paradox, which is refers to the beneficial effects of a moderate consumption of red 
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wine. Besides resveratrol, both red wine and purple grapes (specially the skin and seeds) 

contain several flavonoids, such as quercetins, catechins, gallocatechins, procyanidins, and 

prodelphidins [49]. 
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Chapter 3  

Materials and methods 

3.1 - Materials 

For the nanoparticles synthesis, trans-resveratrol (more than 99% pure) and polysorbate 

80 (Tween® 80) were purchased from Sigma-Aldrich (St Louis, MO, USA), the solid lipid 

cetylpalmitate was provided by Gattefossé (Nanterre, France). The grape’s skin and seed 

extracts were provided by BioPolyphenols (DoisPortos, Portugal) and Monteloeder (Elche, 

Spain), respectively. 

For the nanoparticle functionalization, 1,2-Distearoyld-sn-Glycero-3-

Phosphoethanolamine -N-maleimide(polyethylene Glycol)2000 was purchased from Avanti 

Polar Lipids (Alabaster, Alabama, USA), and the monoclonal antibodies for transferrin BBB 

receptors, OX-26 mAb, were purchased from AbD Serotec (Kidlington, UK). For the ELISA assay 

the human transferrin receptor peptide was bought from Abcam® (Cambridge, UK) and the 

secondary antibody, Goat anti-mouse IgG (H+L), was purchased from Thermo Fisher Scientific 

(Waltham, MA USA). 

For the grids preparation for morphological analysis on TEM, uranyl acetate was 

purchased from Electron Microscopy Sciences (Hatfield, PA, USA). 

The α-synuclein human and the β-amyloid (1-42) human, for the kinetics studies were 

purchased from Sigma-Aldrich (St Louis, MO, USA) and GenScript (Piscataway, NJ, USA), 

respectively. Moreover, the Thioflavin T was provided by Sigma-Aldrich (St Louis, MO, USA). 

The water used in all experiments during this project was purified water by Ultra-pure 

water system (Milli-Q RG), and was obtained from a reverse osmosis process. 

3.2 - Methods 

3.2.1 -  Solid lipid nanoparticles preparation 

The method used for the nanoparticle synthesis is a compromise between the high shear 

homogenization method and the ultrasonication method, and it is represented in Figure 3.1. 

Hence, it is possible to produce particles with a micrometer size by the first method, and 

then, reduce their size to the nanometer size range by the second method. 
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Figure 3.1 - Scheme of the preparation method of the solid lipid nanoparticles. 

  

The lipid phase, containing DSPE-PEG(2000)maleimide, the cetylpalmitate (solid lipid), 

the stabilizer polysorbate 80 and the drug to be encapsulated (0, 2, 5, 10 or 15 mg) was 

melted at 70ºC, which is above the lipid’s melting point. The melted lipid was then dispersed 

in ultrapure water, at the same temperature, by high-speed stirring in an Ultra-Turrax T25 

(Janke and Kunkel IKA-Labortechnik, Staufen, Germany) followed by sonication (70% 

amplitude) using a Sonics and Materials Vibra-CellTM CV18 (Newton, CT, USA). The 

nanoemulsion was let cooling at room temperature to allow the crystallization of the lipid and 

consequent formation of the solid lipid nanoparticles. 

 

 
Table 3.1 – Chemical structure of the lipids used for the synthesis of the solid lipid nanoparticles. 

Name Structure 

Cetylpalmitate 

 

Polysorbate 80 

 

DSPE-PEG(2000) 

Maleimide:  

1,2-distearoyl-sn-

glycero-3-

phosphoethanolamine-N-

(maleimide(polyethylene

glycol)-2000) 

 

 

 

 

 

Resveratrol 
loaded lipid 

nanoparticles 
Sonication 

Pre-imulsion 
by ultra-
turrax 

Adition to a 
hot aqueous 
surfactant 
mixture 

Melting of the 
mixture lipid 

plus the 
resveratrol 
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The parameters of both techniques were previously optimized to establish the best 

conditions for the production of a stable formulation with an average size of less than 200 

nm. The final parameters chosen were a high shear homogenization of 2 minutes at 12000 

rpm, and a 15 minutes sonication at intensity of 70%.  

Three different compounds were encapsulated on the lipid nanoparticles: pure 

resveratrol, grape’s seeds and skin (with and without centrifugation).  

The formulations were storage for at least 1 month protected from light, at room 

temperature, and they were characterized periodically in order to access the stability of the 

nanoparticles. Moreover, the effect of different drug/lipid ratio was assessed. 

 

 

3.2.2 - Conjugation of the antibodies 

Covalent coupling methods for attaching the antibodies at the PEG terminus by using 

functionalized PEG with a chemically reactive end-group were applied. For the maleimide-

mAb conjugation, the target was activated by a twenty times molar excess of Traut’s reagent 

(2-iminothiolane hydrochloride, MW 137.73, Sigma-Aldrich). Moreover, a drop of EDTA 

(ethylenediaminetetraacetic acid, MW 292.40, Sigma-Aldrich) 0.28 M was added to prevent 

metal catalysed oxidation of sulfhydryl groups. The unreacted EDTA/2-iminothiolane 

complexes were removed through application of a size exclusion chromatography using a 

Sephadex column PD-Minitrap G25 (GE Healthcare). After the conjugation with the 

antibodies, samples were incubated at room temperature for 1 hour and then at 4 ºC 

overnight. The antibodies were added to the solid lipid nanoparticles at a molar ratio of 1:1 

between antibodies and functionalized PEG. 

The affinity of the conjugated solid lipid nanoparticles for transferrin (TfR) was analysed 

by ELISA. For this, the surface of a 96-well plate (flat-bottom Nunc MaxiSorp®) was coated 

with TfR during 1 hour at 37 ºC. The plate was then blocked with BSA (bovine serum albumin, 

~66 kDa) and incubated for another hour at 37 ºC, followed of addition of the nanoparticles to 

each well. After incubation and subsequent washing, the secondary antibody, which was 

conjugated with peroxidase, was let react during 45 minutes at room temperature. The 

reveal solution was composed by citric acid (MW 210.14, Sigma-Aldrich), ABTS (2,2′-azino-

bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt, MW 548.68, Sigma Aldrich) and 

H2O2 (hydrogen peroxide solution, MW 34.02, Sigma Aldrich), and the absorbance spectrum of 

each well was read at 405 nm using a Biotek Synergy 2 spectrometer. Furthermore, 

nanoparticles without being conjugated were used as a negative control. 

 

3.2.3 - Nanoparticles size 

The nanoparticles size was measured by dynamic light scattering (DLS). DLS allows the 

determination of particle size and size distribution in dispersions (polydispersity index, PI). 

The results are based on fluctuations of the light scattered intensity as a function of time, 

which are directly related to the Brownian motion of the solute and can be related with their 

diffusion coefficient [122].  Therefore, the SLN size of monodisperse nanoparticles can be 

calculated using the Stokes-Einstein equation [123]: 

𝑅𝐻 =
𝑘𝑇

6𝜋𝜂𝐷
                     (3.1) 
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where, RH is the hydrodynamic radius, k is the Boltzman constant, T is the temperature, η is 

the viscosity of the solvent and D is the diffusion coefficient of the nanoparticles. 

Samples were diluted (1:200) in ultrapure water to achieve a suitable scattering 

intensity, which is translated into an average count rate between 100 and 500 kcps. The 

formulations were analysed at 25ºC and both size and PI were calculated through the average 

of 10 runs, in triplicate.  

 

3.2.4 - Zeta potential 

Zeta potential of the lipid nanoparticles was measured by electrophoretic light scattering 

(ELS). It is known that nanoparticles in suspension attract ions to their surface, forming an 

electrical double layer at the nanoparticle surface (an inner layer where ions are strongly 

adsorbed to the surface, and an outer layer where ions diffuse more freely). Zeta potential is 

defined as the electric potential that exists in the diffuse boundary of the nanoparticle 

(boundary of the outer layer with the bulk solution). It can be calculated using Henry’s Law  

[124]: 

𝑈𝐸 =
2𝜀𝑧𝑓(𝑘𝑎)

3𝜂
                  (3.2) 

where, UE is the electrophoretic mobility, z is the zeta potential, f(ka) is the Henry’s function 

and η is the viscosity coefficient. Zeta potential is an indicator of the stability of the 

nanoparticle suspension [125]. 

Samples were diluted (1:200) in ultrapure water, transferred to folded capillary cells from 

Malvern (Worcestershire, UK) and their zeta potential was obtained by the average of 3 

measurements (each one with 12 runs) using a ZetaSizer Nano ZS (Malvern Instruments, 

Worcestershire, UK). 

 

3.2.5 - Morphologic analysis 

The nanoparticle morphology was characterized by transmission electron microscopy 

(TEM). In this technique, an electron beam hits the sample and part of it is transmitted 

through the sample, reaching to a phosphor screen where the image is formed. The 

differences on the image contrast are dependent of the amount of electrons that did not 

interacted with the sample and were able to pass through it. Therefore, darker regions are 

due to the few electrons that were transmitted as a result of higher thickness or density of 

the sample, and brighter regions results of a higher electron transmission [122]. 

Nanoparticles samples were prepared on 400 mesh Formvar/Carbon copper grids (Agar 

Scientific, Essex, UK). For this, 5 µL of each sample was placed on the mesh and let to absorb 

for five minutes. The negative staining (2% filtered aqueous solution of uranyl acetate) was 

let react for 45 seconds, the excess was removed and the grid was let drying. The 

morphological analysis was accessed on a JEOL JEM-1400 TEM at an accelerating voltage 80kV 

(Tokyo, Japan). 
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3.2.6 - Determination of entrapment efficiency 

The entrapment efficiency (EE) of the compounds was determined through the difference 

between the amount used in the formulation synthesis and the amount that remained free in 

the aqueous phase, as follows: 

%𝐸𝐸 = 1 −
𝑈𝑛𝑒𝑛𝑡𝑟𝑎𝑝𝑝𝑒𝑑 𝑑𝑟𝑢𝑔

𝑇𝑜𝑡𝑎𝑙 𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑑𝑟𝑢𝑔
× 100                    (3.3) 

Samples of the different formulations were diluted in ultrapure water (1:200), transferred 

into Amicon® Ultra Centrifugal Filters (Merck Millipore, Billerica, MA, USA), and centrifuged 

using a Allegra® X-15R Centrifuge (Beckman Coulter, Pasadena, CA, USA) during 25 minutes at 

4300 rpm. Afterward, the free drug present in the supernatant was collected and quantified 

using a V-660 spectrophotometer (Jasco, Easton, MD, USA) at 200-600 nm.  

 

3.2.7 - Determination of the yield  

The yield was determined by calculating the weight difference of the samples before and 

after filtration (Equation 3.4). In order to do this, two set of samples, one filtrated and the 

other non-filtrated, were let dry out and the remaining lipid was weighted. This assay allows 

knowing an approximation of the quantity of nanoparticles lost with filtration. 

𝑌𝑖𝑒𝑙𝑑 (%) =
𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝑙𝑖𝑝𝑖𝑑 𝑎𝑓𝑡𝑒𝑟 𝑓𝑖𝑙𝑡𝑟𝑎𝑡𝑖𝑜𝑛

𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝑙𝑖𝑝𝑖𝑑 𝑏𝑒𝑓𝑜𝑟𝑒 𝑓𝑖𝑙𝑡𝑟𝑎𝑡𝑖𝑜𝑛
× 100         (3.4) 

     

3.2.8 - Fluorescence measurements and Thioflavin T binding assay 

Interaction of the nanoparticles with α-synuclein and amyloid-β was evaluated through 

the Thioflavin T (ThT) binding assay. ThT is a common amyloid dye, which binds rapidly to to 

amyloid fibril structures, have a strong fluorescence emission. Furthermore, the intensity of 

the fluorescence is proportional to the quantity of amyloid fibrils [126].  

A ThT sock solution was prepared in phosphate buffer saline (PBS) or sodium phosphate 

buffer at the concentration of 0.8mg/mL, and a ThT working solution was prepared by 

diluting 1mL of the stock solution in 50mL of buffer. Samples containing α-synuclein (final 

concentration of 20 µM) in sodium phosphate buffer, and samples containing amyloid-β (final 

concentration of 25 µM) in PBS, were filtered, diluted and added to the ThT working solution 

immediately after preparation. The samples were placed on a 96-well plate (Nunclon Delta 

Surface) and the intensity was measured on a Biotek Synergy 2 fluorescence spectrometer 

(Winooski, USA) after stirring 30 seconds every 15 minutes during 10 days. The temperature 

was maintained constant at 37ºC.  

 

 

3.2.9 - Statistical analysis 

The statistical analysis was performed using SigmaPlotTM software (v 13.0; Systat 

Software, CA, USA). The measurements were at least three times and data were expressed as 

mean ± SD. Data were analysed using two-way analysis of variance (two-way ANOVA), 

followed by Holm-Sides and Tukey tests. A P value of 0.05 was considered statistically 

significant. 
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Chapter 4  

Results and discussion 

4.1 - Physicochemical characterization of solid lipid 

nanoparticles  

Unloaded solid lipid nanoparticles were synthesized by the hot homogenization technique 

and characterized.  The mean size of the unloaded nanoparticles measured by DLS was 142 ± 

10 nm. This size corresponds to the required size for brain drug delivery [127].  

The PDI of the unloaded SLN was 0.12 ± 0.04 showing that the formulation has a 

monodisperse population.  

The zeta potential of the nanoparticles was -0.08 mV. In this case, the nanoparticles 

exhibited low electrostatic stabilization, but they still are stable. 

In order to choose the more favourable drug concentration for SLN, formulations with 

different concentrations of grape’s extracts (2, 5, 10 and 15 mg) were prepared and 

characterized according to their entrapment efficiency, average size and zeta potential. 

The grape’s extracts loaded-nanoparticles mean size is presented in Figure 4.2. All 

formulations showed a homogeneous size distribution with a mean diameter between 150 nm 

and 200 nm, except the nanoparticles loaded with centrifuged grape’s seeds, which achieve a 

mean size higher than the required size range. Although there was no statistically difference 

(P>0.05). 

 

 
Figure 4.1 – Mean size of the nanoparticles (skin, centrifuged skin, seeds and centrifuged seeds). All 
values represent the average and the standard deviation (n=3).  
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As the unloaded SLN, the zeta potential of the different extracts-loaded nanoparticles 

was almost neural, meaning that the encapsulation of these compounds did not have impact 

on the zeta potential (Table 4.1) as no statistically significance differences where observed 

between any of the formulations (P > 0.05). 

 
Table 4.1 - Zeta potential of the nanoparticles (skin, centrifuged skin, seeds and centrifuged seeds). All 
values represent the average (n=2).  

SLN 
Quantity of drug (mg) 

2  5 10 15 

Skin 0.07 0.18 -0.07 -0.34 

Centrifuged Skin -0.11 -0.16 -0.09 0.01 

Seeds -0.17 -0.06 0.35 -0.21 

Centrifuged Seeds -0.06 0.05 0.02 -0.02 

 

The encapsulation efficiency of each of these formulations is shown of Figure 4.2. 

Generally, the percentage of encapsulation was higher than 60%. It is also possible to observe 

that increasing the extract concentration, the entrapment efficiency decreases as it would be 

expected. However, these differences on the percentage of drug encapsulated were not 

significant (P>0.05). The main natural resource of resveratrol is the grape, but its 

concentration present on the extracts is very low (20 mg/kg of dry skin and 6.8 mg/kg of dry 

seed) [128]. Therefore, calibration curves (Annex A) were made for all the compounds used, 

since the percentage of resveratrol present in the grape’s extracts is too low to be detected 

by absorbance without being affected by others compounds present in the extracts that also 

can absorb at the same wavelength [128].  

 

 
Figure 4.2 – Entrapment efficiency of the nanoparticles (skin, centrifuged skin, seeds and centrifuged 
seeds) in percentage of compound encapsulated (calculated through the calibration curve of each drug: 
Annex A). All values represent the average and the standard deviation (n=2). 

 

Taking the previous results in account, the final drug concentration chosen was 10 mg. 

The next step was to synthetize resveratrol-loaded nanoparticles and proceed to their 

characterization and other studies. 
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In Table 4.2 are presented the average size, polidispersity index, zeta potential and 

entrapment efficiency of the nanoparticles synthetised with 10 mg of drug and of the 

unloaded nanoparticles. The formulations appeared white (unloaded and resveratrol), beige 

(seeds and centrifuged seeds) or pink (skins and centrifuged seeds) and had low viscosity. 

All of the formulation showed a homogeneous size distribution, with a a size inferior to 

200 nm with the PI inferior to 0.2, indicating that the formulations have a good 

monodispersity distribition, with low variability and no aggregation.  

 
Table 4.2 – Characterization of the lipid nanoparticles (10mg of drug). All values represent the average 
and the standard deviation (n=3).  

SLN 10mg Size (nm) 
Polidispersity 

Index 

Zeta 

Potential 

(mV) 

Entrapment 

Efficiency 

(%) 

Unloaded 142 ± 10 0.12 ± 0.04 -0.08 - 

Resveratrol 176 ± 24 0.16 ± 0.10 0.17 94 ± 9 

Grape’s skin 182 ± 6 0.11 ± 0.04 -0.07 93 ± 6 

Centrifuged grape’s skin 178 ± 13 0.11 ± 0.04 -0.09 86 ± 5 

Grape’s seeds 188 ± 11 0.13 ± 0.04 0.34 95 ± 2 

Centrifuged grape’s seeds 194 ± 21 0.11 ± 0.04 0.02 94 ± 6 

 

There was no significative differences on the zeta potential of all formulations, also 

meaning that the encapsulation of the different compounds did not altered the surface 

charge of the nanoparticles. 

The entrapment efficiency of all the formulations synthesized achieved an high 

percentage value around 90%, suggesting that the lipid nanoparticles are a suitable system for 

the incorporation of both resveratrol and grape’s extracts. This is confirmed by the fact of 

that resveratrol has a lipophilic nature, thus its preferential localization should be in the 

nanoparticle’s core. The same happens with the grape’s extracts, even though they are 

constituted by hydrophilic and lipophilic compounds, the extracts were successfully  

encapsulated in the SLNs. Furthermore, no significant differences were found between the 

different nanoparticles (P > 0.05). 

4.1.1 - Morphology 

The morphology of the lipid nanoparticles was observed by TEM (Figure 4.3). The images 

revelled that generally the nanoparticles were almost spherical and with an uniform shape 

with smooth surfaces. TEM allowed confirming the sizes previously measured by DLS. 

Moreover, it is possible to observe that the nanoparticles shape did not seem to be altered 

when loaded with different compounds. Some aggregation was visible (Figure 4.3: C and E), 

however it could be due to the dilution rate of the formulation. 
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Figure 4.3 – TEM images of unloaded SLN (A, B), SLN resveratrol (C, D), SLN skin (E, F), SLN centrifuged 
skin (G, H), SLN seeds (I, J) and SLN centrifuged seeds (K, L). Samples were diluted at a ratio of 1:100. 
Scale bar: 500 nm.

A B 

C D 

E F 

G H 

I J 

K L 



 Process Yield 35 
 

 
 

4.2 - Process yield 

The process yield of the nanoparticles filtered through a 200 nm filter is 48±6%, which 

means that half of the nanoparticles constituents (lipids and/or drug) were lost during this 

process. 

4.3 - Conjugation of the antibodies  

For this experiment two types of lipid nanoparticles were developed. As a control, 

nanoparticles without conjugation with antibodies (mAb OX-26) were synthetised. 

The binding of the mAb to the nanoparticles was determined by ELISA (Figure 4.4). 

Significantly higher absorbance at 405 nm was observed in the nanoparticles conjugated with 

mAbs when compared with the negative control and the nanoparticles without conjugation. 

Therefore, the antibody used demonstrate bioactivity for the transferrin receptor. 

It is also important to refer that the thiolation of the mAbs does not interfere with their 

binding site [129], however the maleimide group can be hydrolysed when in contact with 

water, so it is highly recommended to conjugate the mAbs immediately after the nanoparticle 

synthesis. 

 

 

 
Figure 4.4 – ELISA assay results of the negative (water) and positive control (OX-26), nanoparticles with 
and without conjugation with OX-26. All values represent the average and the standard deviation (n=2). 

 

After conjugation, the nanoparticles size increased around 60 nm with no significance (P > 

0.05) on the SLN skin, resveratrol and unloaded, and with significance on the SLN centrifuged 

skin, seeds and centrifuged seeds (P < 0.05). The size increase of the nanoparticles is an 

indicator if an efficient conjugation since the diameter of the globular antibody is 

approximately 15 nm [130]. However, and exaggerated increase could mean aggregation of 

the nanoparticles with is not desirable.  
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Figure 4.5 – Comparison between the nanoparticles average size without and with antibodies. There are 
represented the sizes of SLN skin, SLN centrifuged skin, SLN seeds, SLN centrifuged seeds, SLN 
resveratrol and unloaded SLN. All values represent the average and the standard deviation (n=2).  

4.4 - Solid lipid nanoparticle stability 

After synthesis and after each month, the nanoparticle size was determined (Figure 4.6). 

Both average diameter and polidispersity index were used as an indication of nanoparticle 

aggregation and stability. For the majority of the formulations the average diameter 

increased during storage, however this increase was only statistically significant in few 

formulations when compared with the initial size (P < 0.05). Thus, although there was a slight 

increase of the size, it does not imply aggregation of the nanoparticles since the most of the 

nanoparticles still have less than 200 nm. 

  

Figure 4.6 - Effect of the storage (at room temperature) on the nanoparticle size loaded with 10 mg of 
different compounds (grape’s skin, grape’s centrifuged skin, grape’s seeds, grape’s centrifuged seeds or 
resveratrol) and on the unloaded nanoparticles. Both SLN resveratrol and unloaded SLN were only 
studied until 1 month of storage. All values represent the average and the standard deviation (n=3).  
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On Table 4.3 is represented the effect of the storage on the SLN zeta potential of the 

different formulations. Since the values are not significantly different from each other, it is 

possible to affirm that the nanoparticles steric stability has not been affected by the storage 

time neither the storage conditions. This stability is corroborated by the maintenance of the 

nanoparticles size observed before. 

 
Table 4.3 - Effect of the storage (at room temperature) on the nanoparticle zeta potential loaded with 
10 mg of different compounds (grape’s skin, grape’s centrifuged skin, grape’s seeds, grape’s centrifuged 
seeds or resveratrol) and on the unloaded nanoparticles. Both SLN resveratrol and unloaded SLN were 
only studied until 1 month of storage. All values represent the average (n=3).  

SLN 
Time of storage (months) 

0 1 2 

Unloaded -0.08 0.02 -0.07 

Resveratrol 0.19 0.02 -0.06 

Skin -0.07 -0.14 -0.02 

Centrifuged Skin -0.09 -0.04 -0.15 

Seeds 0.34 -0.005 -0.04 

Centrifuged Seeds 0.02 0.06 -0.09 

 

One parameter to access the stability of the different formulations is the entrapment 

efficiency. It is know that SLN have a highly organized matrix with a tendency to from perfect 

crystals over time, which can eventually lead to an expulsion of the drug during the storage. 

However, the results of entrapment efficiency shown on Figure 4.7 contradict this hypothesis, 

demonstrating that the nanoparticles studies were able to retain the initial amount of 

encapsulated drug at least during 2 months. Only in one formulation statistically significance 

differences where observed between the final and initial time of storage (P < 0.05).  

  

Figure 4.7 – Effect of the storage (at room temperature) on the nanoparticle entrapment efficiency 
loaded with 10 mg of different compounds (grape’s skin, grape’s centrifuged skin, grape’s seeds, 
grape’s centrifuged seeds or resveratrol) and on the unloaded nanoparticles. All values represent the 
average (n=3).  

This stability study shows that the lipid nanoparticles synthesized resulted in a stable 

nanocarrier, which can be used as a controlled-release strategy for brain targeted delivery of 

both resveratrol and grape’s extracts (skin and seeds). 
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4.5 - Effect of the loaded solid lipid nanoparticles on the α-

synuclein and amyloid-β aggregation 

In order to know how the different nanoparticles interact with α-synuclein and amyloid-β, 

specifically to know it they are able to prevent and/or reduce the aggregation of these 

peptides, two kinetics studies were made. 

The results of the kinetic studies with amyloid-β are shown on Figure 4.8 (interaction with 

compounds) and Figure 4.9 (interaction with lipid nanoparticles). On Figure 4.8 is clear the 

both resveratrol and grape’s extracts were able to inhibit the aggregation of amyloid-β, being 

the inhibition more accentuated when it interacts with resveratrol. 

On the other hand, when these compounds are encapsulated it seems that the inhibition 

of the aggregation is diminished (Figure 4.9). This could be due to the difference of drug 

concentration on the different assays: the concentration of drug on the first one is the same 

as the theoretical concentration of the drug in the nanoparticles, without taking in account 

the yield of the filtering process. Moreover, is possible that the drug release did not achieve a 

considerable percentage of drug able to get out of the nanoparticles due to low degradation 

of the lipid nanoparticles. These results also shown that the unloaded nanoparticles acted as 

nucleus that promotes the aggregation of the amyloid-β peptide, since when both are 

incubated the value of fluorescence was higher than the amyloid-β incubated alone. 

On Figure 4.10 the results of the interaction of the different lipid nanoparticles with α-

synuclein peptide are presented. Although the formation of aggregates occurred, it is possible 

to notice a diminished fluorescence when the nanoparticles where incubated with the α-

synuclein, leading to the conclusion that the different compound did indeed inhibited the 

aggregation potential of the α-synuclein.  

Several studies indicate that the central region and the C-terminal tail of α-synuclein and 

amyloid-β are considered to have an important modulating role in the formation of pre-

oligomers [131-133], thus peptide binding with these regions can prevent the formation of 

aggregates. Additionally, different mechanisms could be involved in the interaction of 

amyloid aggregates with both resveratrol and grape’s extracts. Properties such as aromatic 

interactions, antioxidative activity, metal chelating and hydrogel binding can contribute to 

the inhibition of aggregates formation [134, 135].  

Furthermore, resveratrol can intervene in the natural development of neurodegenerative 

diseases, preventing further neuronal deterioration [136]. The same applies to the grape’s 

extracts, even if resveratrol is not the main constituent, its action results of synergic action 

of a mixture of many bioactive constituents, essentially polyphenols [134]. 
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Figure 4.8 - Kinetic study of the interaction of the free resveratrol and grape’s extracts with the 
amyloid-β peptide using Thioflavin T. 

Figure 4.9 – Kinetic study of the interaction of the loaded-nanoparticles (resveratrol and grape’s 
extracts) and unloaded-nanoparticles with the amyloid-β peptide using Thioflavin T. 

 

 
Figure 4.10 - Kinetic study of the interaction of the loaded-nanoparticles (resveratrol and grape’s 
extracts) and unloaded-nanoparticles with the α-synuclein peptide using Thioflavin T. 
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Chapter 5  

Concluding remarks and future 

perspectives 

Nowadays, neurodegenerative diseases are one of the major health problems in the world 

and, since there has been an increase of lifetime and aging of population, the number of 

neurodegenerative diseases also expected to increase in the near future. So it is clear the 

necessity of a new therapy for neurodegenerative diseases that affect the disease 

progression, rather than simply treating the symptoms. Nanotechnology has an important role 

on the development of an effective solution for the therapy of neurodegenerative disorders 

such as PD and AD through the drug delivery, neuroprotection or even though the 

regeneration of damaged neurons [7]. 

The use of nanoparticles to transport therapeutic drugs for both PD and AD, through non-

invasive administration by intravenous injection, is an alluring method to avoid the long-term 

side-effects and peripheral toxicity associated to the relatively toxic drugs. Also, the 

effective brain drug delivery by the use of nanoparticles may reduce the necessary drug 

dosage, and will lead to an improvement of the patient’s quality of life. Furthermore, they 

are able to transport a great variety of drugs across the BBB, including therapeutic drugs that 

were not used for treatment of these diseases due to their inability to cross this barrier in 

therapeutically effective concentrations [77]. However, it is necessary to give attention to 

the nanoparticle properties, like size, shape, geometry, charge, structure and composition, in 

order to guarantee the control of their fate in the in vivo environment [7]. 

In this work, the advantageous properties of both resveratrol and grape’s extracts have 

been exploited by its encapsulation in lipid nanoparticles. These nanoparticles were 

functionalized with OX-26 antibodies to target the blood-brain barrier. Stability studies were 

performed to access the use of these SLN as promising future drug delivery systems, and the 

results showed that the nanoparticles are stable for a minimum period of two months without 

functionalization. However, when the coupling of the antibodies happened, the stability of 

the systems was greatly diminished, indicating that the process needs to be optimized to 

avoid the aggregation of the nanoparticles. 

The interaction studies showed that the nanoparticles loaded with resveratrol or grape’s 

extracts delayed and reduce the aggregation of α-synuclein or amyloid-β. Moreover, the 

synthesized nanoparticles exhibit high encapsulation efficiencies of the compounds studied, 

even after storage. Overall, the solid lipid nanoparticles are a promising dynamic system for 

the targeted delivery of grape’s extracts, as a natural substitute of resveratrol, to the brain 
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in order to inhibit the formation of α-synuclein or amyloid-β aggregates, thus preventing, 

lowing the progression or even reverse both PD and AD. 

The next steps involve the study of the release profile of the encapsulated molecules in 

an environment that simulated the blood stream and in vitro studies with BBB-models to 

confirm their ability to cross this barrier. 
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Annex A  

Calibration Curves 

The calibration curves of the grape’s extracts were read at the wavelength of 278.5 nm 

and the extrapolations were made in mg of extract per mL of solution on a V-660 

spectrophotometer (Jasco, Easton, MD, USA). 
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Figure A.2 – Calibration curve of grape’s skin. 

Figure A.1 - Calibration curve of grape’s centrifuged skin. 
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Figure A.3 - Calibration curve of grape’s seeds. 

Figure A.4 - Calibration curve of grape’s centrifuged seeds. 
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The calibration curve for resveratrol was read at the wavelength of 305 nm on a V-660 

spectrophotometer (Jasco, Easton, MD, USA). 
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Figure A.5 - Calibration curve of resveratrol. 


