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Resumo 

Os Opistobranquios pertencentes ao género Felimare são facilmente reconhecidos pelos 

seus padrões característicos de coloração: fundo azul, marcado por um ou mais linhas/manchas que 

variam entre o branco e o laranja. Contudo, a diversidade destes padrões e também a semelhança 

entre várias espécies dificultam sua identificação no campo e geram suspeitas da existência de 

espécies crípticas. Urge, então, uma melhor compreensão dos padrões filogeográficos e evolutivos 

deste grupo, tarefa dificultada pela falta de marcadores moleculares específicos. 

Na primeira parte deste trabalho, eu inicio o estudo filogeográfico de sete espécies descritas 

do género Felimare, no Este Atlântico, (EA) com o objectivo de (i) descrever os padrões espaciais 

de distribuição da variação genética e (ii) identificar possíveis barreiras oceanográficas e os seus 

efeitos na diversidade genética de diferentes espécies co-distribuídas.  

Os padrões de diversidade genética mitocondrial revelaram uma aparente ausência de 

estrutura nas espécies F. cantábrica, ao longo da costa Atlântica, e F. tricolor, desde a costa Atlântica 

ao interior do mar Mediterrânico. Por outro lado, as restantes cinco espécies compõem potenciais 

complexos de espécies. As barreiras marinhas a atuar nestas espécies são na maior parte dos casos 

comuns, quer para espécies de desenvolvimento direto (F. villafranca), ou planktotróficas (F. picta, 

F. fontandraui, F. orsinii, F. bilineata). As barreiras incluem o Estreito de Gibraltar, a frente de Alborán-

Orán, e possivelmente a frente Balear. A diferenciação intraespecífica mais alta foi encontrada em 

F. picta, entre populações Atlânticas/Mediterrânicas e de Cabo Verde, coincidindo com outros 

resultados recentes que argumentam esta espécie ser de facto de um complexo de espécies. 

Possíveis casos de hibridação são discutidos em detalhe. 

Quanto às relações filogenéticas entre as espécies, inferidas a partir de um marcador 

mitocondrial, a maioria, sobretudo ao nível basal, é pouco suportada. Contudo, foram identificados 

12 clados bem suportados (PP> 0.90) e diferenciados. Foi consistente a divisão do género Felimare 

em dois grupos, o primeiro incluindo espécies oriundas do Oceano Pacífico (EP) e Caraíbas; F. 

porterae e F. kempfi, e um segundo grupo, que inclui todas as outras espécies do EP e EA. Usando 

uma taxa de evolução calculada para o fragmento aqui usado noutros grupos de gastrópodes, 

estima-se que a origem do grupo remonta ao Oligoceno. No entanto, grande parte da diversificação 

interespecífica parece ter lugar durante o Mioceno, e apenas a divergência entre F. fontandraui and 

F. tricolor, data do Pleistoceno. Pelo menos duas colonizações transatlânticas necessitam ser 
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invocadas para explicar a distribuição atual das espécies deste género, mas uma maior 

representação das espécies do Oceano Pacífico será necessária para uma melhor compreensão da 

biogeografia deste grupo. 

A aplicação de técnicas de ultra-sequenciação (NGS) têm vindo progressivamente a ganhar 

destaque, nomeadamente em estudos de filogenia. Mais recentemente, dados de transcriptoma 

provaram a sua utilidade para a inferência de filogenias de gastrópodes. Ao mesmo tempo também 

as NGS se têm demonstrado úteis para estudos de reconstrução dos mitogenomas, de forma rápida 

e mais facilitada.  

Na segunda parte deste trabalho procurei (i) caracterizar os transcriptomas de duas espécies 

do género Felimare, o que englobou a sua reconstrução e anotação, e a procura de fragmentos 

ortólogos entre os mesmos, e (ii) reconstruir os genomas mitocondriais respetivos (F. cantabrica e F. 

villafranca). Uma das finalidades do transcriptoma será a identificação de uma bateria de novos 

marcadores moleculares que possam ser usados em futuros estudos filogenéticos. Conjuntamente, 

e uma vez que a problemática da contaminação afetou os dados obtidos, eu avalio e discuto a 

mesma, sugerindo passos adicionais para a sua prevenção. 

Para ambas as espécies (F. cantabrica F. villafranca, respectivamente) obtive 38 e 35 milhões 

de pequenos fragmentos RNA-seq (reads) de alta qualidade a partir de tecnologia de 

sequenciamento Illumina HiSeq. Depois de filtrados, os mesmos eram compostos por 54.6K e 58.5K 

transcritos, sendo que 16,915 e 18,664 de pelo menos 500 pares de base (bp) respectivamente. 

Desses, 4,275 e 2,952 transcritos, respetivamente, foram atribuídas diferentes funções biológicas 

(GO terms) de modo similar a estudos recentes de RNA-seq de outros gastrópodes. 

Durante o processo de ñassemblyò dos mitogenomas detectei a existência de transcritos com 

alta percentagem de identidade com DNA mitocondrial de anfíbios, o que se confirmou como 

resultado de uma contaminação laboratorial. De um modo exploratório, e após filtrar os conjuntos de 

contigs devido à contaminação detectada, foi possível ainda a obtenção de 728 putativos ortólogos 

entre as duas espécies. Estes fragmentos são um ponto de partida para o desenvolvimento de novos 

marcadores nucleares, úteis não só para o género Felimare, mas também para outros 

Heterobrânquios/Opistobrânquios. 

Os genomas mitocôndriais foram reconstruidos em cerca de 14Kb, tendo uma organização génica 

idêntica á de outros nudibrânquios. Porém, em nenhuma das espécies o genoma mitocondrial foi 

completamente assemblado, independentemente da metodologia adoptada (alinhamento manual de 

transcritos, ou pelo assembly directo dos ñreadsò usando o programa MITObim). 
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Abstract 

Opisthobranchs from the genus Felimare are easily recognized for their dark-bluish 

background with one or more white or yellow lines and/or dots. Nevertheless, the diversity of these 

patterns together with morphologic similarities between species makes their identification in the field 

often challenging and casts doubts respect to the existence of cryptic species. A comprehensive 

understanding of the biogeography and evolutionary patterns in the genus is hindered by the lack of 

detailed molecular studies between and within species. 

In the first part of this thesis I assessed the genetic structure of seven described species of 

the genus Felimare in the East Atlantic (EA), aiming to (i) describe the spatial patterns of the 

distribution of genetic diversity and, (ii) identify potential marine barriers and their effects on the 

genetic diversity of co-distributed species. 

Patterns of mitochondrial genetic diversity showed the absence of genetic structure in F. 

cantabrica throughout the Atlantic coast, and in F. tricolor from the Atlantic coast to the inner 

Mediterranean Sea. Conversely, the remaining five species seem to represent potential species-

complexes. Most of the marine barriers acting on these species seem to be common regardless of 

the direct (F. villafranca) or planktotrophic (F. picta, F. fontandraui, F. orsinii, F. bilineata) mode of 

development. These barriers include the Strait of Gibraltar, the Alboran-Oran Front, and possibly the 

Balearic Front. The highest intraspecific differentiation was found between F. picta from 

Iberian/Mediterranean and Cabo Verde/S. Tomé islands, in agreement with recent studies that argue 

F. picta to be in fact a complex of cryptic species. Potential cases of hybridization are discussed in 

detail.  

The phylogenetic relationships between species, inferred from a single mitochondrial marker, 

are poorly supported, especially at the basal level. Nonetheless, twelve well-supported (PP>0.90) and 

highly differentiated clades were identified. Felimare was consistently divided into two groups; one 

containing species from the Eastern Pacific (EP), F. porterae and Caribbean F. kempfi, and another 

including species inhabiting the EP and Eastern Atlantic (EA). Divergence time estimates, obtained 

using a rate of evolution for the COI gene estimated from other gastropods, date the origin of the 

group in the Oligocene. Yet, most diversification within the genus seems to occur in the Miocene, and 

only the divergence between F. fontandraui and F. tricolor, was estimated as Pleistocenic. At least 

two transatlantic colonisations must be invoked to explain the present distribution of the genus. 
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However, and for a better comprehension of the biogeography of the group, more species from the 

EP and Western Atlantic should be included in the analyses. 

The application of high throughput sequencing has been progressively increasing, with next 

generation sequencing data being recently used to infer gastropod phylogenies. At the same time, 

NGS techniques are proving useful when applied to mitogenome reconstruction studies. In the second 

part of my thesis I aimed at (i) characterize the transcriptomes of two Felimare species, by assembling 

and annotating them, as well as using them to search for potential molecular marker fragments, and 

(ii) assemble their mitochondrial genomes. One of the main goals of obtaining transcriptomic data 

was to obtain a battery of molecular markers to support future phylogenetic studies. Additionally, I 

discuss the problematic of contamination in high throughput datasets, and recommend additional 

cleaning steps to be included in any type of workflow. 

For both species (F. cantabrica F. villafranca, respectively) I obtained 38 and 35 million high-

quality RNA-seq reads using Illumina HiSeq. After filtering, the assembly was composed of 54.6K and 

58.5K transcripts, being 16,915 and 18,664 of at least 500bp long, respectively. From those, biologic 

functions (GO terms) were assigned to 4,275 and 2,952 transcripts respectively, similarly to recent 

RNA-seq studies in other gastropods. During the process of assembling the mitochondrial genomes 

of the two species, I detected sequences from amphibian origin, later confirmed as contamination 

from the laboratory. After filtering the detected contamination from both assemblies I could still obtain 

a total of 728 potential ortholog fragments both studied species. These fragments represent a starting 

point for the development of nuclear markers not only for studies in the genus Felimare, but also in 

Heterobranchia/Opisthobranchia. 

The two reconstructed mitochondrial genomes were approximately 14Kb long, with the same 

arrangement of genes seen in other nudibranchs. However, none of the two mitochondrial genomes 

was completely assembled regardless of the methodology (contigs manual alignments or from the 

algorithm MITObim). 

Keywords 

Heterobranchia, Opisthobranchia, Chromodorididae, phylogeography Felimare, phylogeny Felimare, 

transcriptome, NGS molluscs, NGS contamination, mitogenome molluscs. 
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1.1 GENETIC STRUCTURE OF MARINE POPULATIONS 

1.1.1 Life strategies and dispersal in the ocean 

For decades the ocean realm was considered a vast and homogeneous system, with no 

obvious barriers to organismsô dispersal (McGowan 1971; Benzie 1999; Finlay 2002). Additionally, 

marine organisms often present large effective population sizes, high fertility, high dispersal abilities 

at least in their pelagic forms (larvae and eggs), and high levels of gene flow (Hedgecock, 1986; 

Palumbi, 1994; Palumbi, 1996). Under such conditions, high connectivity among geographically 

separated populations was predicted, and opportunities for allopatric divergence, i.e., divergence due 

to extrinsic barriers (de Queiroz 2005), were considered to be rare. However, some marine species 

exist that are widely distributed and exhibit genetic homogeneity (Pujolar et al. 2002; Gilbert-Horvath 

et al. 2006). Importantly, recent research has been leading to a distinct perception of global open-

water population structure, dominated by isolation-by-distance patterns (e.g. Viñas et al. 2004; 

Sherman et al. 2008) or even sharp genetic breaks (i.e., areas of restricted gene-flow) between 

populations (Barber et al. 2002; Lourie et al. 2005; Mantelatto et al. 2014). 

Connectivity patterns, seem to be, at a great extent, species-specific. Marine organisms 

display a wide range of reproductive strategies, which may give us some clues about their dispersal 

abilities and the spatial scale at which gene flow occurs (Palumbi & Warner 2003). Consequently, by 

studying speciesô life history traits (such as spawning and egg type, larval duration and behaviour, 

type and period of development, etc) together with recent and historical oceanographic features of 

the region (e.g. short tidal currents, jets, gyres; rafting) (Leis & Fisher 2006; Diehl et al. 2007; Nikula 

et al. 2010; Fraser et al. 2011) one might hypothesize on speciesô phylogeographic structure, as well 

as macro evolutionary patterns (Hedgecock 1986; Arndt & Smith 1998; Pechenik 1999; Collin 2001; 

Jeffery et al. 2003). 

Benthic species, and particularly those with sedentary life-style or limited mobility (e.g. marine 

invertebrates and some non-migratory fishes) (e.g. Shulman & Bermingham 1995; Thorpe et al. 2000) 

may disperse large distances as adults by rafting, drifting or even human mediated-transport (Martel 

1991; Sherman et al. 2008; Rastorgueff et al. 2014). However the main dispersal mechanisms are 

still their early life pelagic stages (gametes, larvae, eggs, or propagules) (Gopurenko & Hughes 2002; 

Jeffery & Emlet 2003; Thiel & Gutow 2005). 

The majority of the sedentary or sessile marine organisms produce long-living and free-

swimming larvae (plankthotrophic), or short-living (lecithotrophic) veliger larvae (Castelin et al. 2012), 

expected to behave as passive, long distance, dispersers (e.g. Grosberg & Cunningham 2001; 
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Cárdenas et al. 2009). Nonetheless the broad geographic ranges that characterize such populations 

separated by hundreds of kilometres often reveal areas of restricted gene-flow (Palumbi 2003; Sotka 

et al. 2004).  

The diversity of genetic patterns regarding planktonic dispersers is highly variable and genetic 

breaks are often congruent with present-day barriers to dispersal. Factors such as larvae retention 

through vertical movements and habitat preferences (Hohenlohe 2003); high mortality (Todd et al. 

1998; Sanford et al. 2006; Weiss et al. 2007), presence of significant oceanographic barriers that 

retain the offspring near their natal habitats (Hoffman et al. 2011) or strong local adaptation (Sotka 

2005; Levin 2006; Marshall et al. 2010), limit connectivity in planktonic dispersers. Other organisms 

lack the larval stage and produce reduced forms of adults, often from brood pouches or benthic egg 

capsules (direct development). In these cases juveniles persist in the parental environment most of 

their time, decreasing dispersal and promoting local adaptation (reviewed in Bohonak, 1999; Sanford 

& Kelly, 2011). Direct developers have generally smaller distribution ranges (Soares et al. 2006) and 

more marked genetic structure than planktonic organisms (Collin 2001; Teske et al. 2007; Pelc et al. 

2009; Kelly & Palumbi 2010). Their phylogeographic patterns generally show more structured 

populations, although without necessarily resulting in their complete isolation (e.g. Bohonak, 1999; 

Collin, 2001; Bell, 2008), neither completely preventing ranges as wide as species with pelagic larvae. 

Exceptions exist, with some direct developers showing widespread populations without apparent 

genetic structure (Oosthuizen et al. 2004; Zealand 2004; Teske et al. 2007). 

As barriers shift, species with low dispersal are expected to reflect historical patterns over long 

time-scales, because low levels of gene flow allow the signal of historical separation to persist for 

many generations (Hellberg et al. 2002; Pelc et al. 2009). On the other hand phylogeographic breaks 

regarding planktonic dispersers are usually congruent with contemporary oceanographic features 

(Pelc et al. 2009). 

1.1.2 Cryptic speciation 

Cryptic species can be defined as discrete species that are difficult, or sometimes impossible, 

to distinguish morphologically and thus have been incorrectly classified as a single taxon 

(Beheregaray & Caccone 2007). Recently, Pante et al. (2014) proposed a distinction between cryptic 

species and pseudo-cryptic species. The former refers to two or more species that are taxonomically 

classified as one single nominal species and lack obvious morphological features that diagnose 

differentiation, while the latter refers to situations where there are subtle morphological differences, 

but calls upon other lines of evidence (such as DNA) to show what morphology could not easily 

discriminate. Obviously, their existence has implications on the estimation of biodiversity. 
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Morphological characters are generally the first elements to be considered in studies of 

taxonomy and systematics (e.g. Gosliner et al. 1999; Pola et al. 2008). Nevertheless characters 

related to mating behaviour, chemical signals, physiology or habitat preferences are equally important 

(Bickford et al. 2007; Vrijenhoek 2009): i) species may recognize themselves by nonvisual mating 

signals, such as chemical recognition (Malenke et al. 2009; Stanhope et al. 1992; Landry et al. 2003) 

or mating calls (Henry 1994; Kingston et al. 2001; Amorim et al. 2010); ii) strong selection or 

settlement in severe environments (e.g. deep sea, under-water karst, glacial shelters) may have 

strong effects on both behavioural and physiological patterns, without necessarily implying the 

evolution of morphologic distinctive characters (de Vargas et al. 1999; Rothschild & Mancinelli 2001; 

Lefébure et al. 2006; Maan & Cummings 2012), and iii) morphological identification is often lagging 

and requires technologic sophisticated anatomical studies (Jörger et al. 2012). 

The boost of molecular markers (alloenzymes, nucleotide sequences) has challenged previous 

morphology/ecology based assumptions on both population structure and species boundaries in the 

ocean (Knowlton 2000), fostering the knowledge in this field. Over the past two decades research on 

cryptic species has largely interested the scientific community, fuelled in large part by the increasing 

availability of DNA sequences (Bickford et al. 2007). Molecular phylogenies are often used together 

with morphological characters in taxonomic studies (Knowlton 2000; Blanquer & Uriz 2007). As a 

result several marine species previously considered cosmopolitan have shown to be in fact 

cryptic/pseudo-cryptic species complexes of a wide range of organisms including algae (Wolf et al. 

2012), crustaceans (Cook et al. 2008; Trontelj et al. 2009; Mantelatto et al. 2014), molluscs (Carmona 

et al. 2011), bryozoans (McGovern & Hellberg 2003; Nikulina et al. 2007), ascidians, sponges (Solé-

Cava et al. 1991) and fishes (von der Heyden et al. 2011; Thomas et al. 2014). 

 

1.2 THE NORTH-EASTERN ATLANTIC OCEAN AND THE MEDITERRANEAN SEA 

The North-eastern Atlantic Ocean and the Mediterranean Sea are interesting areas where to 

study the differentiation of marine organisms. Overall, in these areas, genetic differentiation can be 

studied across apparently continuous coastal habitats, such as the Iberian shores, across habitats 

separated by deep water extents, like the African shores or the Macaronesia (and other) islands, 

across areas separated by ocean fronts (like Almeria-Oran), or by major topographic features (as the 

Gibraltar and Sicily Straits). 
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1.2.1 Mediterranean Sea 

The current configuration of the Mediterranean Sea results from the collision of two major 

continental plates, the Eurasian (Laurasia) and the African plates (Gondwana), and further African 

microplates; the Iberia, Apulia and Arabia. The western side of the Mediterranean basin was formed 

by the collision of the Iberian and Apulian plates with Eurasia in the early Tertiary (Eocene to early 

Miocene). The eastern side basin was formed later, from the collision of the Arabian Promontory with 

Eurasia, around 16 MY (Sá-Pinto 2008). At this point the Mediterranean becomes an enclosured sea 

that communicates with the Atlantic Ocean by two narrow connections: the Betic and the Rifian 

corridors, in southern Iberia and northern Morocco, respectively (Rögl 1999; Carminati & Doglioni 

2004). Their later closure triggered the Messinian salinity Crisis that started around 5.96 MY 

(Krijgsman et al. 1999), and lasted about 0.5 million years, during which the Mediterranean Sea turned 

into a shallow hyper saline basin. After that period Atlantic waters flooded again the Mediterranean 

basins, through the Strait of Gibraltar, allowing contact with the North Atlantic, as we know it 

(Krijgsman et al. 1999). In its current configuration, the Mediterranean further contacts with the Black 

Sea through the Marmara Sea, with the Adriatic Sea through the Pelagosa archipelago and with the 

Red Sea through the Suez channel. Separating the western and eastern sides of the Mediterranean 

Sea are the Strait of Sicily (average depth of 330 m and 130 km wide) and the narrow and shallow 

(300 m wide and average depth 80m) Strait of Messina, between Calabria and Sicily (Billard 1974; 

Battaglia et al. 2010). Both sides can be further subdivided into smaller regions based on distinct 

oceanographic features (e.g. depth, currents, and gyres). 

Water mass circulation in the Mediterranean Sea occurs through eastward surface and 

westward subsurface currents. Circulation is driven by winds stress, and the balance between 

evaporation loss and net cooling (Billard 1974). When the West Atlantic current enters the 

Mediterranean Sea dense waters it forms whatós called the Modified Atlantic Waters (MAW) and 

further originates the formation of two anti-cyclonic gyres, west and east of the Alboran Sea (Figure 

1). The MAW may then either re-enter in the Alboran Sea gyres or rather move in the Algerian Current, 

eastward to the African coast towards the Sicily Strait. In the northern area of the western 

Mediterranean the Algerian Current forms part of larger-scale cyclonic gyres dominating the surface 

circulation, between Majorca islands and Sardinia Island, as well as above the coast of Sicily. At the 

coasts of Sicily the MAW currents split and continue eastwards, increasing in salinity, and flowing 

through the Ionian Sea and Levantine basin respectively. Generally such increase in salinity is 

correlated with higher temperatures in the summer. Several cyclonic and anti-cyclonic gyres existing 

in eastern basins result from currents bifurcations and are interconnected by several jets. During the 

winter season extreme cooling causes surface water to sink and spread westwards by Levantine 

Intermediate waters. This Mediterranean outflow is constituted by deep and intermediate depth mixing 
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waters, which return back to the Atlantic Ocean through the Gibraltar Strait as the Western 

Intermediate Waters, with colder temperatures around 13.0ï13.5 ǓC and salinity of 38.0ï38.5 psu 

(Millot & Taupier-Letage 2005). Once released in the Atlantic Ocean the Mediterranean outflow 

descends below 1000m in the Gulf of Cadiz, and can be traced as discrete subsurface ñlensesò of 

salty and warmer water, named ñMeddiesò. The Meddies are polarized northward, with a portion 

forming a poleward undercurrent along the slope of Iberian Peninsula (Mason et al. 2006). 

 

 

 

1.2.2 Northeastern Atlantic Ocean 

The eastern boundary of the North Atlantic subtropical gyre spreads from the northern tip of the 

Iberian Peninsula at 43°N to south of Senegal at 10ºN (Chen 2007). Within this area, this work covers 

also the islands of Madeira and Cabo Verde, from the Macaronesian region. The area of study 

includes additionally the islands of São Tomé e Príncipe, located southwards, at the Eastern central 

Atlantic region.  

Figure 1 Hydrography, bathymetry major sub-divisions of the Mediterranean Sea. The 200m and 1000m contours are shown and areas in 
between shaded from lighter to darker grey. Present patterns of surface water circulation are shown in blue (adapted from Rohling et al. 
2009). 
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1.2.3 The Macaronesian archipelagos 

Macaronesia comprises five archipelagos, located off the western coasts of Europe and Africa. 

These insular landmasses include the archipelagos of the Azores, Madeira and Selvagens, the 

Canary Islands and finally the archipelago of Cabo Verde. They are the result of distinct hotspots of 

volcanic activity, and have strong ontogenetic affinities with the Atlantic coast of the Iberian Peninsula 

and the north-western fringes of Africa; nonetheless they were never in contact with any of the 

continental landmasses. 

The archipelago of Madeira comprises three islands located between 33Ü06ô and 32Ü22ôN and 

between 16Ü17ô and 17Ü15ôW, 635 kms away from the nearest continental coast (western Morocco). 

Porto Santo is the oldest island, with an estimated age of 14.3 MY (Mitchell-Thomé 1985; Geldmacher 

et al. 2001). 

Cabo Verde is southernmost archipelago, located 570 km away from the nearest mainland point 

(distance from the island of Boavista to Dakar, Senegal) and site between 17Á13ô and 14Á46ôN and 

between 25Á21ô and 22Á40ôW. Within it, Sal is the most ancient island with an estimated age of 25.6 

MY (Mitchell-Thomé 1985; Cunha et al. 2005), and Brava and Santo Antão, at its easternmost region, 

are the most recent, with estimated ages of 5.9 MY and 7.6 MY, respectively (Cunha et al. 2005). 

1.2.4 Seamounts 

Seamounts (Figure 2) are upward projections of the deep sea floor, with elevations of 100 m or 

more (Hillier & Watts 2007), and important at geological, oceanographic, and biological levels. 

Biologically these underwater features are considered as hotspots of pelagic biodiversity and 

endemism (de Forges et al. 2000; Samadi et al. 2006), showing consistently higher species richness 

than shore bathymetric clines or open oceanic areas (Morato et al. 2010), and are at some extent 

important aggregating locations for migratory fishes (e.g. Klimley et al. 2005; Rodríguez-Cabello et 

al. 2009).  

Recent studies contest the validity of these submerged mountains as biodiversity hotspots. 

Despite several studies advocating that seamounts can have distinct composition of species from the 

continental slope, it is equally true that they harbour comparable levels of faunal composition, with 

strong affinities with the continental slopes (Samadi et al. 2006; Hall-Spencer & Rogers 2007; McClain 

et al. 2009; Howell et al. 2010; Pollock et al. 2014). Furthermore, levels of endemism in these places 

are highly variable: for example, data for South Pacific seamounts indicates > 30% of the species are 

potentially endemic (Parin et al. 1997; de Forges et al. 2000) while < 3% has been estimated for North 

Eastern (NE) Atlantic seamounts (Hall-Spencer & Rogers 2007). 
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Seamounts are also thought to play important roles on the biogeography of species, acting either as 

óstepping stonesô (Rowden et al. 2010; Packmor et al. 2014), or óótrapping stonesôô for dispersal 

(George 2013) of small benthic organisms (Packmor et al. 2014). Genetic structure of populations of 

distinct seamounts in the world (including in the NE Atlantic), such as ophiuroids, corals, and 

symphurine tonguefish (Cho & Shank 2010; Miller et al. 2010; Tunnicliffe et al. 2010) demonstrate 

that different patterns of dispersal and migration can exist, with different seamount populations acting 

either as ósourcesô or as ósinksô depending on the species studied, and the interaction between 

physical factors and life-history traits. 

 

Figure 2 Distribution of principal seamounts (red dots) in the Northeast Atlantic and Mediterranean (adapted from Schmidt & Christiansen 
2004). 
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1.2.5 Northeastern Atlantic Ocean currents 

The gradual closure of the Panama seaway, around 4.5 ï 2.8 MY (Schmittner et al. 2004), 

considerably shaped the present day sea-currents in the Northeastern Atlantic, with the interruption 

of the communication between the Pacific and Atlantic Oceans. In the eastern region of the Atlantic 

Ocean, surface water circulation to both Poles is largely driven by wind regimes (van Aken 2002; 

Huthnance et al. 2002), while subsurface currents, like poleward flows, may be regulated by larger-

scale mechanisms, such as the decline of the sea level (poleward), the sea level rising toward the 

coast, but also from regional buoyancy-driven coastal currents (Mason et al. 2006). Surface currents 

in the Northeastern Atlantic region are to a large extent dominated by the North Atlantic Current (NAC) 

and the Azores Current (AC) (Figure 3), which are formed between the Grand Banks and the Mid 

Atlantic Ridge by the branching of the Gulf Stream (Mason et al. 2006). The NAC then splits to form 

the North Atlantic Drift current (NADC), spreading between Iceland and the British Islands, while the 

remainder continues to east and northern Europe (Mason et al. 2006). In turn, the AC, at first flowing 

south and then eastwards, then splits in two branches: 1) northern flowing towards the gulf of Cádiz, 

and posteriorly feeding Canary Current (CaC), and 2) southern flowing south-eastwards, passing west 

of Madeira, towards the Canary islands (Johnson & Stevens 2000; Barton et al. 2007; Pingree 2009). 

The CaC then flows southwards along the African coast, from where it separates in the region of Cap 

Blanc, and at the proximity of Cabo Verde all the flow then turns westwards, supplying the North 

Equatorial Current (NEC, Mason et al. 2005). Also relevant to the understanding of the circulation 

patterns, is to consider the two Atlantic water fronts: the North Atlantic Central Water (NACW), 

dominated by high rates of salinity above the 600m, and the South Atlantic Central Water (SACW), a 

southward current slightly warmer and driven by the CaC, at south of Cap Blanc (Figure 3). 

The surface currents at western and northwestern coasts of the Iberia Peninsula are dominated by 

the Portugal Current (PC), which flows south during all the year, between Azores and continental 

Portugal, in between the North Atlantic current and the Canary current (Peliz & Fiuza 1999). The 

circulation pattern close to the continental platform is much more complex, exhibiting a marked 

seasonality defined by topography and coastal wind regimes (Huthnance et al. 2002; van Aken 2002). 

During spring and summer seasons, winds predominate from northeast giving rise to the Portuguese 

Coastal Current flowing southward on surface (<100m) and to the Portuguese Coastal Underwater 

Current, flowing northward by the coastal platform (Wooster et al. 1976; Bakun & Nelson 1991). On 

the other way, during the rest of the year, winds from southeast predominate, causing the inversion 

of the direction of the surface current, originating the Portuguese Coastal Counter Current (also known 

as Iberian Poleward Current), a water mass of 1500m deep, which also leads to the spread of 

Mediterranean waters to the west and north of the Iberian Peninsula (Wooster et al. 1976; Frouin & 

Fiúza 1990; Haynes & Barton 1990; Relvas et al. 2007). 
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Contrary to the Iberian coast, the Northeastern African littoral, from Mauritania to Cap Blanc, 

receives great influence from the CaC. This current flows towards the Ecuador through coastal line 

until Cabo Blanco, and thereafter sorts out in to the ocean towards west of Cabo Verde islands 

(Hughes & Barton 1974). 

The region of the Gulf of Guinea, on its turn, is subject to seasonal upwelling, influenced by local and 

remote trade winds and thermocline oscillations that come from the West Atlantic Ocean, and South 

and Northeastern Atlantic Ocean (Merle & Arnault 1985; Andrié et al. 1986; Fontaine et al. 1999; 

Wiafe et al. 2008). Two main coastal upwelling areas, at the northern and eastern boundaries of the 

Gulf, and one equatorial upwelling area, approximately south from the equator line and extending out 

to the Atlantic occur in this region from July to September, because the winds are more intense 

(Lefèvre 2009). The equatorial upwelling brings cold water, rich in nutrient and carbon, to the surface 

(Andrié et al. 1986). The rest of the year is a non-upwelling season, also known as the minor 

hydrographic season (Wiafe et al. 2008). This period is characterized by the low salinity due to the 

presence of the Inter Tropical Convergence Zone (ITCZ), high precipitations and a surface layer of 

warm fresh water mass, coming from NECC (Merle et al. 2013) which flows westwards, through the 

South Equatorial Current (SEC) (Andrié et al. 1986; Wiafe et al. 2008). The separation of both the low 

salinity Guinean water and the northern high salinity equatorial undercurrent cold water (Picaut 1983) 

is marked by a frontal area dominated by the South Equatorial Current. 
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Figure 3 Northeastern Atlantic area and Macaronesian Archipelagos. Schematic representation of the North Atlantic gyre and major surface 
currents throughout the area. Major extant currents are represented by the blue arrows, from their average position and direction: AC ï 
Azores current, CaC ï Canaries current, PC ï Portugal current, NEC ï North equatorial current; NECC ï North equatorial counter current. 

NACW ï North-Atlantic central waters, SACW ï South-Atlantic central waters (adapted from Roura 2013; Isabel & Pinto 2008). 

 

1.3 BIOGEOGRAPHIC PATTERNS OF MARINE BIOTA IN THIS REGION 

Biogeographic regions are often described based on the overlapping ranges of many species. 

The boundaries between these regions are usually the result of historical discontinuities (such as the 

ones caused by events like the Messinian salinity crisis or the Pleistocene glaciations cycles) 

(Krijgsman et al. 1999; Lambeck et al. 2002) or present-day environmental differences (such as 

currents, temperature or salinity) (Riginos & Nachman 2001). The analysis of the patterns of diversity 

and population structure of marine taxa allows the distinction between the effects of historic and 

present-day processes (e.g. Avise 1992; Grant & Bowen 1998; Provan & Bennett 2008). In the 

Northeastern Atlantic and Mediterranean regions there are several patterns emerging regarding the 

biogeographic affinities of their taxa. 

The closure of the Tethys Sea, around 20 MY (Steininger & Rögl 1984), isolating the Atlantic 

and Indo-Pacific realms, as well as the one of the Isthmus of Panama (2.7ï3.5 MY) (Keigwin 1982; 
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Coates et al. 1992; Collins et al. 1996) were the main events that started shaping the biogeography 

of this region (Avise 2000). This area became thus a transitional region between the tropics and boreal 

regions, whose climate has been very dynamic since the Pleistocene. While to a great extent it 

harbours warm and cold temperate species, it is also the northern limit of some tropical species and 

the southern limit of some boreal species (Pontarotti 2014). 

More than 8500 species of macroscopic organisms have been reported for the semi-enclosed 

Mediterranean Sea (Bianchi & Morri 2000), representing 4-8% of the worldôs marine biodiversity ï a 

value which is rather high for a basin representing only 0.82% and 0.32% of surface area and volume, 

respectively, of the worldôs oceans (Patarnello et al. 2007). The root of this high biodiversity is certainly 

in big part due to its complex geological history. Its present day biota is largely the result of 

colonization, mostly from the Atlantic Ocean (Almada et al. 2001; Domingues et al. 2005) and to a 

minor extent from the Red Sea. In fact, after an isolation and desiccation period that lasted about 0.5 

million years ï the Messinian salinity crisis (MSC) - re-flooding of the Mediterranean basin was 

possible because of the inflow of Atlantic waters through the newly opened Strait of Gibraltar. The 

MSC (5.96ï5.33 MY) (Krijgsman et al. 1999) was characterized by the evaporation and subsequent 

increased salinity of very large parts of the Mediterranean Sea, which turned into shallow, hypersaline, 

isolated lakes, causing a mass extinction among its marine species, as well as many marine taxa 

speciation events (e.g. Duggen et al. 2003; Carreras-Carbonell et al. 2005; Palero et al. 2008). It thus 

drove the pre-existing Indo-Pacific biota to extinction, with the few exceptions of taxa of Miocene origin 

that have survived in shallow-water refuges, like for example killifishes (Hrbek & Meyer 2003). 

Interestingly, in these surviving older taxa, it is still possible to see the genetic signatures of the first 

events shaping the Mediterranean basin, such as the generation of the Siculo-Tunisian Strait, which 

separated Western and Eastern Mediterranean lineages coalescing back in the Mesozoic period 

(Rastorgueff et al. 2014). This shallow saddle between Sicily and Tunisia, has been proposed to be 

a major historical barrier (Nikula 2003; Rastorgueff et al. 2014).  

The geographic history of the Mediterranean Sea suggests that species communities 

contemporarily inhabiting the Mediterranean waters can be divided into the following biogeographical 

categories: (i) temperate Atlantic-Mediterranean species;                                         (ii)  

cosmopolitan/panoceanic species; (iii) endemic species, including palaeo-endemic (Miocenic) and 

neo-endemic (Pliocenic) species; (iv) subtropical Atlantic species (interglacial remnants); (v) boreal 

Atlantic species (glacial remnants); (vi) Red Sea invasive (Lessepsian) species entering through the 

Suez Canal; and (vii) eastern Atlantic invasive species (Bianchi & Morri 2000) identified 10 

biogeographical regions in the Mediterranean according to the relative abundance of each of the 

aforementioned categories. Transition from one biogeographical zone to another results from a 
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combination of geological (orogenesis and hydrogeology), physical (present-day hydrography, 

coastal and seabed profile) and biological factors (species biology and evolutionary history), all 

contributing to shape the intra- and interspecific diversity (Figure 4).  

As well as other areas of the globe, the late Pliocene and Pleistocene glaciations ï the 

occurrence of major ice-ages interleaved with short and warmer interglacial periods - largely affected 

this northern hemisphere area and shaped the currentôs biogeographic patterns of its biota (Hewitt 

2000; Hewitt 2011). The first major northern hemisphere glaciation probably occurred around 2.37 

MY (Shackleton et al. 1984), and subsequent glacial cycles played an important role in shaping the 

geographic distribution of intraspecific diversity and promoting population divergence in both marine 

and terrestrial taxa. Sea-level changes were one of the most obvious impacts: during cold periods 

great quantities of water became trapped in the Polar Regions, causing major sea-level drops around 

the world. (Record & Change 2005) reports sea levels lower than 120m below present sea-level during 

LGM. These sea-level drops caused the emergence of land masses that in some cases 

(Mediterranean area) restricted or totally prevented the gene-flow between previously connected 

areas, causing population divergence. Further, glacial cycles also deeply changed sea surface water 

temperatures causing great changes in intertidal habitats and shifting species distributions, by locally 

extinguishing and/or deeply reducing many populations. The lowering of the sea-level deeply changed 

the Atlantic and Mediterranean shorelines configuration, exposing shallow areas of (nowadays) 

underwater seamounts as well as the English Channel, the North Sea, the Messina Strait, and the 

northern area of the Adriatic Sea. Slightly deeper, Gibraltar (248m) and the Sicily (330m) Straits 

remained opened waterways during glacial periods, allowing water exchanges between the Atlantic 

and the two Mediterranean basins, although through a much-reduced cross-section. During these 

glacial cycles, the Mediterranean presented a milder environment with colder (but ice-free) conditions 

and even warmer water pockets, especially in the south (Thiede 1978; Francisco et al. 2014a). Hence, 

the role of the Mediterranean as a potential glacial refugia has been profusely suggested and reported 

(Olsen et al. 2004; Maggs et al. 2008), although itôs far from consensual (Patarnello et al. 2007). 

In the Atlantic shore, these climate oscillations led to drastic changes in sea surface temperature 

(SST) (Lambeck et al. 2002) and in the location of the polar front at the Western Portuguese coast 

during glaciations. At the last glacial maximum (LGM), the European ice sheet extended southwards 

with the polar front being at the Bay of Biscay (Zaragosi et al. 2001), or even far south at the latitude 

of Lisbon, according to more conservative works (CLIMAP Project Members et al. 1984; Dias 1997). 

Species ranges became fragmented, with the populations of some species driven south and being 

restricted to isolated refugia during glacial maxima (Hewitt 2000). Although these refugia were 

predominantly located in the south, where the climate was relatively buffered against glacial cycles, 

some populations are thought to have persisted in northern refugia (for a review see Maggs et al. 
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2008). Populations of different species vary in their phylogeographic patterns, and the picture of how 

European marine fauna evolved during the Pleistocene is still incomplete. Yet, in a recent review 

based on the teleost fishes and crustaceans inhabiting Northeastern Atlantic and adjacent seas, 

(Francisco et al. 2014b) a third of the fish species analysed had a peak of genetic diversity at their 

southern distribution limit and a substantial fraction of the species showed little or no latitudinal genetic 

variation. Further, genetic structure varied widely among species, from cases where Atlantic, North 

Sea and Mediterranean seem to correspond to distinct populations, to cases where no structure could 

be detected across their entire range. Regarding the putative age of the faunal assemblies, the origin 

of populations (especially in the Atlantic) was dated mainly from the Lower to Middle Pleistocene. 

Populations with origin estimated after the LGM occur primarily in the North Sea (for cold water 

species) and Macaronesia, particularly Azores (for warm water species) (Francisco et al. 2014b). For 

thermophilic species, data seems to support the Azores colonization from Madeira (e.g. Santos et al. 

1995) with more migrants detected in this than in the reverse direction (Domingues et al. 2008). 

Madeira is in turn biogeographically connected in the Canaries, and the Canaries to Mauritania, and 

it is argued that this colonization route (together with SST) could explain why there are several fish 

species present in the tropics and in the Macaronesia islands, but not in Europe (Francisco et al. 

2014a). Actually, it is known that despite the fact that dominant average circulation reaches the 

Macaronesian archipelagos from the west, their marine littoral fauna share affinities with the 

Mediterranean and western European and African coasts (Francisco et al. 2014a). This is probably 

related to the fact that this multi-branch oceanographic system also contains coastal upwelling, 

filaments and eddies, and seasonal variations in the mean directions adding even more complexity to 

the system (Santos et al. 1995). Further, for some taxa, Azores also seems to have acted as a glacial 

refugium (Chevolot et al. 2006; Domingues et al. 2007; Maggs et al. 2008). According to several 

authors, the drop in SST throughout glaciations in the Azorean archipelago was only moderate 

(Morton & Britton 2000), allowing for the survival of temperate organisms. 

For long, the Atlantic-Mediterranean seaway was thought to be a potential barrier for gene-flow. 

However, as phylogeographic studies accumulate, it is showing to be effective only for some species, 

while others, often closely related, apparently cross it without restrictions (for reviews see (Patarnello 

et al. 2007; Kettle et al. 2011; Francisco et al. 2014a). 

Overall, if one is to sum current evidences for major phylogeographic breaks throughout this 

area (and in their border regions), they would be: 1) the separation from the Atlantic and 

Mediterranean (occurring either at the Gibraltar Strait and/or at the Almeria-Oran Front ï which per-

se define an additional area); 2) the one between the Baltic and the North seas (Olsen et al. 2004); 

3) the Siculo-Tunisian Strait (separating West and East Mediterranean); 4) the Bosphorus-
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Dardanelles sill (separating the Black Sea from the Mediterranean); 4) the Pelagosa sill (dividing the 

central Adriatic Sea from the Eastern Mediterranean) and 5) the Peloponnese Peninsula, acting as a 

barrier between the Aegean-Ionian Sea and adjacent Mediterranean waters (Patarnello et al. 2007). 

The temporal Balearic Front (BF), and the Ibiza channel (IC) have only recently been studied, but 

have shown to be potential barriers for genetic flow in littoral fish species and the red gorgonian 

(Galarza et al. 2009; Schunter et al. 2011; Mokhtar-Jama et al. 2011). 

 

 

Figure 4 Atlantic and Mediterranean major biogeographic discontinuities and biogeographic sectors (following (Bianchi & Morri 2000; Nikula 
2003; Johannesson & André 2006). Biogeographic sectors within the Mediterranean appear in blue on the map (in Green the respective 
sub-regions). Thick black lines represent major well-defined historical and present day discontinuities (Flst-Trmd ï Falsterbo-Travemunde, 
GS ï Gibraltar Strait, AOF ï Almeria-Oran Front, STS ï Siculo-Tunisian Strait, PS ï Peloponnese Strait, DS ï Dardanelles Strait, BS ï 
Bosphorus Strait) while dashed lines represent weaker but potential discontinuities (BF ï Balearic Front, IC ï Ibiza Channel). 

 

1.4  ñOPISTHOBRANCHSò DIVERSITY AND PHYLOGENETIC RELATIONSHIPS 

1.4.1 Opisthobranchia: a convoluted taxonomic history 

Opisthobranchs are a large and diverse group of specialized complex gastropods (Figure 5) 

within Heterobranchia. ñOpisthobranchò means "gills behind" (the heart), in contrast 

to Prosobranch (gills in front of the heart), as these animals are characterized by two pairs of tentacles 

https://en.wikipedia.org/wiki/Gastropod
https://en.wikipedia.org/wiki/Gill
https://en.wikipedia.org/wiki/Heart
https://en.wikipedia.org/wiki/Tentacle
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and a single gill behind and to the right of the heart. Previously united in the subclass Opisthobranchia 

(in green in Figure 5), these are now known to be paraphyletic respect to the land snails and slugs 

(Pulmonata) plus a few other groups (Bouchet et al. 2005; Schrodl et al. 2011, Jorger et al. 2011; 

Wagele et al. 2014). It is now clear that both Opistobranchia and Pulmonata (in yellow in Figure 5) 

are informal and obsolete groups. Traditional Opisthobranchia have been allocated with Lower 

Heterobranchia, lower Euthyneura, Euopistobranchia, and Panpulmonata (Dinapoli & Klussmann 

2010). 

 

 

Figure 5 a) Cladogram of the most recent deep Molluscan relationships, based on transcriptomic data, as inferred by Kocot et al. (2011); 
b) Phylogenetic relationships within Gastropoda. Euthyneura is here represented within a major group Heterobranchia (adapted from Kocot 
et al. 2011); c) (Wägele et al. 2014) presents a consensus tree for Heterobranchôs clades, with special focus in traditional Opisthobranch 
clades. In green are groups traditionally known as the Opisthobranchs, while in blue and yellow are the lower Heterobranch and 
Panpulmunata, respectively. Recently the rise of Euopisthobranchia (by Jörger et al. 2010) includes five (Cephalaspidae, Pteropoda, 
Anaspidae, Runcinacea and Umbraculoidea) of the traditional Opisthobranchia groups (in green). Numbers indicate important putative 

apomorphies (see Wägele et al. 2014 for detailed descriptions of apomorphic characters). 

 

Heterobranchia are characterized by absence of shell (or presence of a reduced one), allowing 

elaborate forms of other body parts like the head, foot or the mantle (Grande et al. 2008; Schrödl et 

al. 2011). It is further supported by other autopomorphies such as pigmented mantel organ, a medial 

position of the eyes, lack a true ctenidium, simple esophagus, distinctive sperm ultrastructure and the 

most important, a sinistral larval shell at their planktotrophic veliger stages (Haszprunar 1985; Ponder 

& Lindberg 1997). The phylogenetic relationships within the group only now start to become more 

consistent (Jörger et al. 2010; Schrödl et al. 2011; Wägele et al. 2014). Within Heterobranchia, the 

clade Euthyneura (Figure 5) includes the ñtraditionalò groups ñOpisthobranchiaò and ñPulmonataò 

(Grande et al. 2004; Klussmann-Kolb et al. 2008), and has consistently been supported by óstandard 

markersô such as nuclear 18S and 28S rRNA and mitochondrial 16S rRNA and COI (Klussmann-Kolb 
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et al. 2008; Dinapoli & Klussmann-Kolb 2010; Jörger et al. 2010; Dinapoli et al. 2011). Nonetheless 

Euthyneura has recently been rejected by new transcriptomic data (Zapata et al. 2014). 

Euopistobranchia (group 5 in Figure 5) defines now the group of five monophyletic Opistobranch 

lineages, leaving out some "traditional" Opisthobranchs including the Nudipleura, Sacoglossa and the 

Acochlidiacea (Schrödl et al. 2011; Zapata et al. 2014).  

According to Jörger et al. (2010) Euthyneura already occurred in the Palaeozoic, with major 

radiations occurring throughout the early Mesozoic. 

To facilitate references to older works Iôll still use throughout this thesis the term Opistobranchia 

in its ñbroad senseò. 

1.4.2 Opisthobranchs diversity and ecology 

The origin of the Opisthobranchia is estimated between the Permian and the Triassic, with a 

rapid radiation of the higher taxa in the early to mid-Mesozoic (Klussmann-Kolb et al. 2008; Jörger et 

al. 2010; Stöger & Schrödl 2013). This is probably the case of Nudipleura, a group including 

Nudibranchia sea slugs. Yet, as the fossil record of Nudipleura is problematic due to lacking hard 

body parts, no reliable fossil record for Nudibranchia (true sea slugs) (Schrödl et al. 2011) is yet 

known. Opisthobranchs have a great diversity of body shapes and striking colour patterns, being great 

models for some topics of biological research (Todd et al. 2001) including neurophysiology (Gosliner 

et al. 2008), life-history traits (Wagner et al. 2009), ecology (Wägele & Klussmann-Kolb 2005; da Cruz 

et al. 2011), chemo-ecology (Avila 1995; Fontana et al. 2001; Blunt et al. 2012), pharmacology (Kijjoa 

& Sawangwong 2004; Fontana et al. 1999), foraging and/or defence adaptive mechanisms 

(Greenwood & Mariscal 1984; Rumpho et al. 2001; Frick 2003; Martin 2003; Aguado & Marin 2007), 

feeding adaptations and evolutionary trends (e.g. Wagner et al. 2004). 

Opisthobranchs lack structural defences (i.e. shell), and live in habitats full of potential 

predators. Despite their apparent fragility, they take advantage on sophisticated defence and feeding 

mechanisms that allow them to exploit prey hardly used by other species, while at the same time 

predators learn to avoid them (Tullrot, 1994; Wagner & Daniel, 1998). Such mechanisms include 

functional hard structures (eg. gizzard plates); physiological (such as the incorporation and usage of 

intact chloroplasts from algal cells, in Sacoglossans, or as the storage of intact cnidocysts - cells with 

one giant secretory organelle from Cnidarians by Aeolidoidea); but also biochemical, such as 

synthesizing or transforming ingested toxic compounds (Faulkner & Ghiselin 1983; Wägele 2004; 

Wägele et al. 2006; Cortesi & Cheney 2010). They feed on a wide variety of prey such as tunicates, 

bryozoans, hydrozoans, sponges, crustacean and other Opisthobranchs (McDonald & Nybakken 

1997; Wollscheid-Lengeling et al. 2001; Carriglio et al. 2004) and their diet has long been discussed 

http://www.biolbull.org/content/224/1/35.full#ref-55
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as a factor leading to adaptive radiation and speciation in many groups (Rizzuti et al. 2004; Cimino & 

Ghiselin 1999; Mikkelsen 2002; Wägele 2004; Wägele & Klussmann-Kolb 2005). 

The particular ability to predate upon chemically defended species, and efficiently storing secondary 

metabolites in special organs (mantle dermal formations; MDFs) located in the mantle characterizes 

the most speciose family of Nudibranch dorids, the Chromodorididae (Figure 6). These Nudibranchs 

are highly stenophagus ï they specialize on feeding on particular species or groups, and are capable 

of biotransformation (Cimino et al. 1993; Fontana et al. 1999) and de novo synthesis of the ingested 

toxic compounds (Cimino et al. 1983; Cimino & Ghiselin 1999). While some authors render MDFs the 

role of storage of biochemical compounds from sponges in Chromodorids, and further claim them as 

key characters in their evolution and clues to their ecologic adaptive radiation (Gosliner 2001; Wägele 

2004), others show evidence that this apparent synapomorphy is widely spread in other 

Opistobranchs, with distinct diet preferences (Wagele, 1997; Wagele, 2004, Wägele et al. 2006). 

Characteristic of this family, and resulting from storage of toxic substances, are the conspicuous 

patterns and bright aposematic colours, which are interesting models for co-evolutionary studies on 

predator-prey associations (Gosliner & Behrens 1990; Rudman 1991; Pfennig et al. 2007; Pfennig & 

Mullen 2010). Nevertheless it is still uncertain if the use of new sources of food, followed by 

morphological adaptations, was the key factor in Opisthobranchs radiation or vice versa. 

 

 

Figure 6 Most recent phylogenetic status of Nudibranchia sea slugs based on morphology data (cladogram with higher taxa names used) 
(adapted from Wägele & Willan 2000; Wollscheid-Lengeling et al. 2001). 
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1.4.3 Chromodorididae 

The colourful Chromodorids are soft-bodied marine gastropods that completely lost their shell in the 

adult stage and accumulate chemical (mostly toxic) products obtained from their prey (e.g. cnidarians and 

sponges), in a series of defensive mantle glands, as their defence mechanisms (Conabio 2006). 

Chromodorids now include 16 genera and stand for the most speciose family within Nudibranchia, with 

over 300 described species (Gosliner & Draheim 1996). The group has representatives across nearly all 

worldôs oceans, with the highest diversity in the Indo-Pacific basins (Turner & Wilson 2008). 

The family Chromodorididae was first described by Bergh (1891) based on the denticulate radicular 

teeth and unarmed penis. The first comprehensive revision of the family, though, was performed by 

Rudman (1984), using reproductive characters, external colouration and radular morphology. 

For many years relationships within Chromodorididae were controversial (Rudman 1984; Rudman 

1991; Ortea 1996; Valdés & Gosliner 1999; Gosliner & Johnson 1999; Turner & Wilson 2008; Rudman 

& Bergquist 2007). Several studies focused on exploring the monophyly of Chromodorididae, their 

sister group, mainly respect to Cadlina spp., as well as the relationships within. The majority of the 

molecular evidence and re-evaluated morphological data suggests Cadlina spp. should not be 

considered a member of the Chromodorididae (Turner & Wilson 2008; Johnson 2010), and they are 

now considered to be a separate family (Cadlinidae), remaining Chromodorididae being 

monophyletic. Recent studies using mtDNA data (Johnson & Gosliner 2012) and including several 

representatives of all currently described genera (14) within Chromodorididae, confirmed its 

monophyly and its sister group relationship with the Actinocyclidae. They further indicate that all the 

traditional Chromodorididae genera are either non-monophyletic, or render another genus 

paraphyletic, and that a few monotypic genera were nested within other clades, leading to a major re-

organization of species-level relationships within this group, which is now considered to be composed 

of 17 lineages (genera), 13 of which are very well supported (Figure 7). 
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Figure 7 Current phylogenetic relationships within Chromodorididae (tree from Johnson & Gosliner, 2012). Felimare is now the 
monophyletic group highlighted in blue, while remaining Hypselodoris (on the right) are clearly not their sister-taxa. Alternating greys 
remaining Hypselodoris (on the right) are clearly not their sister-taxa. Alternating greys represent distinct genera within Chromodorididae, 
with the current genera. 

 

This new phylogeny strongly supports a biogeographic scenario where Chromodorids diversified 

rapidly from the tropical Thethyan realm, a pattern that has also been found in other gastropod groups 

(Schmittner et al. 2004; Latiolais et al. 2006; Malaquias & Reid 2009; Johnson & Gosliner 2012). The 

Chromodorids were likely widely distributed and different lineages diversified in isolation following 

vicariant events. Most of the members of the group are still found in the Indo-Pacific region, while 

some diversified both in the Atlantic-Mediterranean and eastern Pacific regions. Evidences for some 

trans-Pacific dispersals, and from there to Western Atlantic exist, but need to be looked into in more 

detail. Yet, overall, relationships between Chromodorididae clades are unresolved, and current 

phylogenetic estimates are based only on mitochondrial genes. The addition of slowly evolving 

nuclear genes is fundamental in helping to resolve poorly supported nodes. 
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1.4.4 Genus Felimare 

One of the genera that was found to be paraphyletic within Chromodorididae was Hypselodoris 

(sensu), now subdivided in Hypselodoris and Felimare (Johnson & Gosliner 2012). The Felimare 

clade now includes all eastern Pacific, Atlantic and Mediterranean species of Hypselodoris and two 

species of Mexichromis - M. porterae and M. kempfi from the eastern Pacific and Caribbean 

respectively, and was found not to be sister taxa of remaining Hypselodoris (Johnson & Gosliner 

2012). There are thus two eastern Pacific and Atlantic splits in this clade: the eastern Pacific F. 

porterae and Caribbean F. kempfi are potentially sister species, and are sister to another larger clade 

of eastern Pacific, Caribbean and eastern Atlantic (and Mediterranean) Felimare species. This pattern 

seems to suggest that Felimare represents an invasion of eastern Pacific from the Indo-Pacific region, 

and that species within Felimare result from eastern Pacific ï Atlantic vicariance and transatlantic 

colonization(s), but further sampling is needed to further disentangle biogeographic patterns within 

this clade (molecular data is available for less than 10 species of the 42 described. 

In the Atlantic-Mediterranean region a group of species within the genus Felimare: F. villafranca, 

F. cantabrica, F. tricolor, F. fontandraui, F. bilineata, F. orsinii and F. picta which are known as the 

óblue mimetic circleô (Haber et al. 2010; Blunt et al. 2012). These species have attracted interest as 

models to study colour evolution, aposematic mimetism (Lindström et al. 2004); predator-prey 

interactions (da Cruz et al. 2011); biotransformation of prey toxic compounds (Cimino et al. 1993; 

Feliciano 2009) and reproductive ecology (e.g. Sánchez-Tocino, 2003; Coelho & Calado, 2010). The 

ñblue mimetic circleò is an example of M¿llerian mimicry (where all the mimic species have a defense 

mechanism). Underlying the obvious aposematism, is the presence of food-derived, feeding-deterrent 

terpenes in the mantle formation glands (MDFs), or simply in the mantle border of some species, most 

probably derived from sponges of the genus Dysidea, upon which they feed (Haber et al. 2010). 

Felimare species are characterized by their dark-bluish background dyed by one or more lines 

and/or dots of white and/or yellow colours (Ortea 1996; Sánchez-Tocino 2003) (Figure 8). 
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Figure 8 a) Morphologic characterization of six adult species of ñblueò Felimare (from Calado & Silva, 2012). For each species distinctive 
characters such as the rhinophores, dorsum, lateral banding and branchias are shown (adapted from (Calado & Silva 2012). 

 

Exceptions to the typical coloration patterns are not rare in this group, generally varying with size of 

the individual and geographic location (Sánchez-Tocino 2003). For instance, F. picta from the 

Mediterranean coasts are light-blue pale, while F. picta from Azores islands are of dark-green and 

violet background (Ortea et al. 1996). Additionally, ontogenetic changes occur, for example in F. 

fontandraui, with colours becoming more intense, from white, to yellow and in some exemplars even 

orange, as the individual becomes more mature (Ortea 1996; Sánchez-Tocino 2003). Additional 

morphological aspects, such as the size and distribution of the mantle glands, and their large seminal 

receptacle (Gosliner & Johnson 1999) are also useful to distinguish these species from their Western-

Atlantic congeners (Ortea 1996; Sánchez-Tocino 2003).  

These species inhabit in partial sympatry and are typically found in the rocky bottoms (up to 

30m bellow sea-level but mostly at shallow depths) of the Atlantic and Mediterranean marine coasts, 

including the Macaronesian archipelagos.  

Little is known about the ecology of these organisms, except that they feed mainly upon sponges of 

genus Dysidae (the only exception being F. orsinii, which feeds upon the sponge Cacospongia 

mollior) (Ortea 1996; Sánchez-Tocino 2003). Similarly to other nudibranchs, these organisms are 


























































































































































































































































































