
     MtDNA phylogeny and phylogeography 

of Atlantic-Mediterranean species 

of genus Felimare (Chromodorididae, 

Nudibranchia) and obtainance of genomic 

markers from RNA-seq data 

 

 

Cristina P. Rodrigues 
Mestrado em Biodiversidade, Genética e Evolução 
Departamento de Biologia, Universidade do Porto 
Centro de Investigação em Biodiversidade e Recursos Genéticos (CIBIO)  
2016 

Orientadora 
Sara Rocha, Post-Doc Researcher, Department of Biochemistry, Genetics and 

Immunology 
School of Biology, Universidade de Vigo 

Co-orientador 

David Posada, Full Professor, Department of Biochemistry, Genetics and Immunology 

School of Biology, Universidade de Vigo 
 

 

 

30 de Maio de 2016 

 

 

 



 
ii 

Relatório da Unidade Curricular de Dissertação do 2º ano do Mestrado em Biodiversidade, 

Genética e Evolução 

 

Candidato: Cristina Polónia Rodrigues, 200906162, @fc.up.pt 

Orientação Científica: Sara Rocha 

 

 

 

 

 

 

 

 

 

Mestrado em Biodiversidade, Genética e Evolução 

Departamento de Biologia/Centro de Investigação em Biodiversidade e Recursos Genético 

Faculdade de Ciências da Universidade do Porto/ CIBIO 

 

  

 



 

 

 

Todas as correções determinadas pelo 

júri, e só essas foram efetuadas. 

O Presidente do Júri,  

 

                                                                                                                Porto,        /        /          

 





FCUP  

MtDNA phylogeny and phylogeography of Atlantic-Mediterranean species of genus Felimare (Chromodorididae, 

Nudibranchia) and obtainance of genomic markers from RNA-seq data 

VII 

 

 
vii 

Agradecimentos 

A realização deste trabalho é o resultado de um fantástico esforço colaborativo, envolvendo 

cientistas de diversas áreas de estudo, e mergulhadores profissionais/não profissionais e voluntários, 

e sem os quais não teria as oportunidades nem os devidos recursos para abordar os principais temas 

do meu trabalho. 

Passo a citar e a agradecer todos aqueles sem os quais este trabalho não teria sido possível.  

Em primeiro lugar gostaria de deixar um especial agradecimento á minha orientadora, Sara 

Rocha, pela escolha deste tema de Tese, que me possibilitou o contacto com o trabalho de campo e 

o tratamento de dados NGS. Devo realçar também toda a disponibilidade, paciência, dedicação e 

profissionalismo, ao logo de todo o trabalho. Sara, obrigada por seres tão paciente comigo, e não me 

deixares desistir! Obrigada por trabalhares comigo e me ensinares a fazê-lo também. Obrigada por 

partilhares sempre bons conselhos!  

Gostaria, também, de agradecer o contributos do meu co-orientador, David Posada, e 

professores Carlos Canchaya e Jesus Troncoso, da Universidade de Vigo. Ao David, que me facultou 

todas as ferramentas logísticas, materiais e bioinformáticas, bem como a oportunidade de integrar 

uma equipa de profissionais entusiastas, que partilhavam as suas competências e participavam 

ativamente nos trabalhos do grupo! Obrigada David, pelo curso de mergulho, por um espaço no teu 

laboratório, pelas sugestões, e pela tua paciência comigo! 

Carlos tenho que dizer-te que os teus alunos têm muita sorte! Nunca esquecerei a tua boa-

disposição, o facto de interromperes o teu trabalho para me acudires quando eu não compreendia 

os comandos. Obrigada pelas opiniões, e por te preocupares comigo tantas vezes! 

Jesus, foi uma honra trabalhar com tão prestigiado ecologista e apaixonado dos 

Opistobranchios. Sempre ocupado, mas sempre disponível!  

Não poderia esquecer o Miguel. Foi o Miguel quem me sugeriu acrescentar o capítulo do 

genoma mitocondrial. E muito nos ajudaste (a mim e á Sara) com a árdua tarefa da contaminação! 

Quero também agradecer a toda a equipa (Merche, Ramón, Maria, Leonardo, e Diego) porque 

me receberam tão bem, e me apoiarem nas mais diversas dificuldades! 



 
viii 

Gostaria ainda de reconhecer e agradecer o trabalho de todos os mergulhadores que, 

voluntariamente e dedicadamente, se predispuseram a recolher, preparar e enviar, com descrições 

detalhadas dos mergulhos, organismos para este trabalho, ao longo da costa Espanhola. Fizeram-

no somente em nome da ciência, e na espectativa de que estudos como este contribuam para a 

expansão do conhecimento e proteção das espécies marinhas. Bem sei que para eles não foi fácil o 

sacrifício de todos os pequenos seres, mas é louvável a sua compreensão. São eles Enric Madrenas, 

sócio fundador do grupo GROC (Opisthobranchs Research Group) e VIMAR (Marine Life), bem como 

mergulhador/fotógrafo experiente no grupo OPK-Opistobranquis; Luis Naya Garmendia, instrutor de 

mergulho em San Sebastián (Espanha), e autor do livro “Nudibranquios de la Costa Vasca: el 

pequeño Cantábrico multicolor”; José Acuesta e amigos de Andalucía, José e David, pelas 

amostragens de Felimare no Sul de Espanha; e finalmente Carlos Fernandez Cid (médico 

oftalmologista de profissão), mergulhador/fotógrafo amador, que nos apresentou os principais 

mergulhadores acima mencionados, bem como a sua abertura em projetos deste tipo. Um muito 

obrigado por terem sido tão pacientes á chegada destes resultados.  

Não menos importante foi o contributo do Professor Lucas Cervera, professor na Universidade 

de Cadiz (Espanha), que nos cedeu amostras essenciais do Atlântico Ibérico e costas de Marrocos; 

e de investigadores das zonas centro e este do mar Mediterrânio, favorecendo a minha base de 

dados com valiosíssima informação genética proveniente das costas de Itália, Montenegro e Grécia. 

Refiro-me a Giulia Furfaro e Paolo Mariottini, ambos investigadores na Universidade de estudos de 

Roma (Itália), e Dimitris Poursanidi, investigador no Instituto de Matemáticas Aplicadas de Creta 

(Grécia). 

Termino agradecendo aos meus Pais, Rosa e Laurindo, que tiveram um papel fundamental 

na minha educação. Apesar de todas as minhas incertezas e fraquezas foram perseverantes e 

acreditaram sempre em mim, e nas minhas capacidades, e nunca permitiram que eu desistisse fosse 

do que fosse! 

 



FCUP  

MtDNA phylogeny and phylogeography of Atlantic-Mediterranean species of genus Felimare (Chromodorididae, 

Nudibranchia) and obtainance of genomic markers from RNA-seq data 

IX 

 

 
ix 

Acknowledgments 

This work has resulted from collaboration among scientist of distinct areas of research, and 

professional divers, who kindly enriched my work by gathering fresh/preserved material around 

Iberian, African and Italian coasts. Without these people this work would not be possible.  

I now cite and show my gratitude to all these effortless people: 

First and foremost I thank my adviser, Sara Rocha, for her guidance, support, professionalism 

and patience during my graduate internship at Vigo University. It was Sara who first suggested that I 

considered to focus my research of these beautiful and enigmatic gastropods, always with the best 

interest in mind. The choice of this work allowed me to combine the contact with field work and the 

bioinformatics data analyses from NGS technologies. Sara, thank You very much for always being so 

tolerant, and never letting me quit! Thank You for working late with me, e to teach me to be persistent. 

I will always remember your good advises! 

I would like to thank the contribution of my co-adviser, David Posada (Leader of the 

Phylogenomics lab), and Professors Carlos Canchaya and Jesus Troncoso, from University of Vigo. 

To David, who’s hosted me for one year, provided me with all the logistic, material and bioinformatics 

tools, and gave me the opportunity of being part of his team! Thank you, David for the Diving course, 

for a seat in your lab and all your comments and suggestions regarding my work, and also for being 

patient. 

Carlos, I must tell your students are very lucky! I will never forget your gaiety, the fact that for 

many times you have interrupted your deeds to help me with the command lines and my doubts. 

Thank You for your wise opinions and good advises. 

Jesus, it has been an honour to work with such respected ecologist and affectionate of the 

Opisthobranchs. Always so busy, yet always available! 

I could not forget Miguel. It was Miguel whom suggested the chapter of the mitochondrial 

genome. I very much appreciate your availability with the laborious task of contamination. 

I am also very thankful to the remaining elements of the Phylogenomic’s team, Merche, 

Ramón, Maria, Leonardo martins, e Diego Mallo, whohave received me so friendly, and supported 

me with the most diverse difficulties or doubts. 



 
x 

Additionally, I must recognize and express my gratitude to all those people that had 

volunteered and dedicated their time to the collection, preparation, and send the samples many times 

with detailed descriptions of each dive session. Most of the times, they didn’t have any monetary 

remuneration, and did it in the name of science, and expecting that studies like this will make a 

difference headed for the knowledge and protection of marine species. I am very much aware that 

scarifying these little animals is not easy, and therefore I appreciate Your comprehension on such 

delicate subject. I am referring to Enric Madrenas, founder partner at GROC (Opstobranchs Research 

Group) and VIMAR (Marine Life), expert diver and Photographer at OPK-Opistobranquis; Luis Naya 

Garmendia, (autor do livro “Nudibranquios de la Costa Vasca: el pequeño Cantábrico multicolor”) ; 

José Acuesta and friends from Andalucía, José e David, for all the sampling efforts on Felimare, at 

the South of Spain; and finally to Carlos Fernandez Cid (professional as an ophthalmologist) an 

amateur diver who introduce us to the previously mentioned divers, as all his openness to projects of 

this kind. Thank You all, also for your patience to the arrival of these results. 

Not of inferior relevance was the contribution of professor Lucas Cervera, professor at the 

University of Cadiz (Spain), and proficient at the study of Opisthobranchs, for providing us with 

important samples from the Atlantic (Iberia Peninsula and coasts of Morocco); and researchers from 

central and eastern sides of the Mediterranean Sea, contributing in the same way with precious 

genetic information from coasts of Italy, Montenegro and Greece. I am referring to investigators Giulia 

Furfaro e Paolo Mariottini, both at the University di Studi di Roma (Italy), ans Dimitris Poursanidi, 

researcher at the Institute Applied and Computational Maths of Crete (Greece). 

I end this section by acknowledging my gratitude to my parents, Rosa and Laurindo, who had a crucial 

role during the course of my education. Regardless all my uncertainties and weakness, they stood 

firm and believed me and my aptitudes, without ever letting me give up! 

 



FCUP  

MtDNA phylogeny and phylogeography of Atlantic-Mediterranean species of genus Felimare (Chromodorididae, 

Nudibranchia) and obtainance of genomic markers from RNA-seq data 

XI 

 

 
xi 

Resumo 

Os Opistobranquios pertencentes ao género Felimare são facilmente reconhecidos pelos 

seus padrões característicos de coloração: fundo azul, marcado por um ou mais linhas/manchas que 

variam entre o branco e o laranja. Contudo, a diversidade destes padrões e também a semelhança 

entre várias espécies dificultam sua identificação no campo e geram suspeitas da existência de 

espécies crípticas. Urge, então, uma melhor compreensão dos padrões filogeográficos e evolutivos 

deste grupo, tarefa dificultada pela falta de marcadores moleculares específicos. 

Na primeira parte deste trabalho, eu inicio o estudo filogeográfico de sete espécies descritas 

do género Felimare, no Este Atlântico, (EA) com o objectivo de (i) descrever os padrões espaciais 

de distribuição da variação genética e (ii) identificar possíveis barreiras oceanográficas e os seus 

efeitos na diversidade genética de diferentes espécies co-distribuídas.  

Os padrões de diversidade genética mitocondrial revelaram uma aparente ausência de 

estrutura nas espécies F. cantábrica, ao longo da costa Atlântica, e F. tricolor, desde a costa Atlântica 

ao interior do mar Mediterrânico. Por outro lado, as restantes cinco espécies compõem potenciais 

complexos de espécies. As barreiras marinhas a atuar nestas espécies são na maior parte dos casos 

comuns, quer para espécies de desenvolvimento direto (F. villafranca), ou planktotróficas (F. picta, 

F. fontandraui, F. orsinii, F. bilineata). As barreiras incluem o Estreito de Gibraltar, a frente de Alborán-

Orán, e possivelmente a frente Balear. A diferenciação intraespecífica mais alta foi encontrada em 

F. picta, entre populações Atlânticas/Mediterrânicas e de Cabo Verde, coincidindo com outros 

resultados recentes que argumentam esta espécie ser de facto de um complexo de espécies. 

Possíveis casos de hibridação são discutidos em detalhe. 

Quanto às relações filogenéticas entre as espécies, inferidas a partir de um marcador 

mitocondrial, a maioria, sobretudo ao nível basal, é pouco suportada. Contudo, foram identificados 

12 clados bem suportados (PP> 0.90) e diferenciados. Foi consistente a divisão do género Felimare 

em dois grupos, o primeiro incluindo espécies oriundas do Oceano Pacífico (EP) e Caraíbas; F. 

porterae e F. kempfi, e um segundo grupo, que inclui todas as outras espécies do EP e EA. Usando 

uma taxa de evolução calculada para o fragmento aqui usado noutros grupos de gastrópodes, 

estima-se que a origem do grupo remonta ao Oligoceno. No entanto, grande parte da diversificação 

interespecífica parece ter lugar durante o Mioceno, e apenas a divergência entre F. fontandraui and 

F. tricolor, data do Pleistoceno. Pelo menos duas colonizações transatlânticas necessitam ser 
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invocadas para explicar a distribuição atual das espécies deste género, mas uma maior 

representação das espécies do Oceano Pacífico será necessária para uma melhor compreensão da 

biogeografia deste grupo. 

A aplicação de técnicas de ultra-sequenciação (NGS) têm vindo progressivamente a ganhar 

destaque, nomeadamente em estudos de filogenia. Mais recentemente, dados de transcriptoma 

provaram a sua utilidade para a inferência de filogenias de gastrópodes. Ao mesmo tempo também 

as NGS se têm demonstrado úteis para estudos de reconstrução dos mitogenomas, de forma rápida 

e mais facilitada.  

Na segunda parte deste trabalho procurei (i) caracterizar os transcriptomas de duas espécies 

do género Felimare, o que englobou a sua reconstrução e anotação, e a procura de fragmentos 

ortólogos entre os mesmos, e (ii) reconstruir os genomas mitocondriais respetivos (F. cantabrica e F. 

villafranca). Uma das finalidades do transcriptoma será a identificação de uma bateria de novos 

marcadores moleculares que possam ser usados em futuros estudos filogenéticos. Conjuntamente, 

e uma vez que a problemática da contaminação afetou os dados obtidos, eu avalio e discuto a 

mesma, sugerindo passos adicionais para a sua prevenção. 

Para ambas as espécies (F. cantabrica F. villafranca, respectivamente) obtive 38 e 35 milhões 

de pequenos fragmentos RNA-seq (reads) de alta qualidade a partir de tecnologia de 

sequenciamento Illumina HiSeq. Depois de filtrados, os mesmos eram compostos por 54.6K e 58.5K 

transcritos, sendo que 16,915 e 18,664 de pelo menos 500 pares de base (bp) respectivamente. 

Desses, 4,275 e 2,952 transcritos, respetivamente, foram atribuídas diferentes funções biológicas 

(GO terms) de modo similar a estudos recentes de RNA-seq de outros gastrópodes. 

Durante o processo de “assembly” dos mitogenomas detectei a existência de transcritos com 

alta percentagem de identidade com DNA mitocondrial de anfíbios, o que se confirmou como 

resultado de uma contaminação laboratorial. De um modo exploratório, e após filtrar os conjuntos de 

contigs devido à contaminação detectada, foi possível ainda a obtenção de 728 putativos ortólogos 

entre as duas espécies. Estes fragmentos são um ponto de partida para o desenvolvimento de novos 

marcadores nucleares, úteis não só para o género Felimare, mas também para outros 

Heterobrânquios/Opistobrânquios. 

Os genomas mitocôndriais foram reconstruidos em cerca de 14Kb, tendo uma organização génica 

idêntica á de outros nudibrânquios. Porém, em nenhuma das espécies o genoma mitocondrial foi 

completamente assemblado, independentemente da metodologia adoptada (alinhamento manual de 

transcritos, ou pelo assembly directo dos “reads” usando o programa MITObim). 
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Abstract 

Opisthobranchs from the genus Felimare are easily recognized for their dark-bluish 

background with one or more white or yellow lines and/or dots. Nevertheless, the diversity of these 

patterns together with morphologic similarities between species makes their identification in the field 

often challenging and casts doubts respect to the existence of cryptic species. A comprehensive 

understanding of the biogeography and evolutionary patterns in the genus is hindered by the lack of 

detailed molecular studies between and within species. 

In the first part of this thesis I assessed the genetic structure of seven described species of 

the genus Felimare in the East Atlantic (EA), aiming to (i) describe the spatial patterns of the 

distribution of genetic diversity and, (ii) identify potential marine barriers and their effects on the 

genetic diversity of co-distributed species. 

Patterns of mitochondrial genetic diversity showed the absence of genetic structure in F. 

cantabrica throughout the Atlantic coast, and in F. tricolor from the Atlantic coast to the inner 

Mediterranean Sea. Conversely, the remaining five species seem to represent potential species-

complexes. Most of the marine barriers acting on these species seem to be common regardless of 

the direct (F. villafranca) or planktotrophic (F. picta, F. fontandraui, F. orsinii, F. bilineata) mode of 

development. These barriers include the Strait of Gibraltar, the Alboran-Oran Front, and possibly the 

Balearic Front. The highest intraspecific differentiation was found between F. picta from 

Iberian/Mediterranean and Cabo Verde/S. Tomé islands, in agreement with recent studies that argue 

F. picta to be in fact a complex of cryptic species. Potential cases of hybridization are discussed in 

detail.  

The phylogenetic relationships between species, inferred from a single mitochondrial marker, 

are poorly supported, especially at the basal level. Nonetheless, twelve well-supported (PP>0.90) and 

highly differentiated clades were identified. Felimare was consistently divided into two groups; one 

containing species from the Eastern Pacific (EP), F. porterae and Caribbean F. kempfi, and another 

including species inhabiting the EP and Eastern Atlantic (EA). Divergence time estimates, obtained 

using a rate of evolution for the COI gene estimated from other gastropods, date the origin of the 

group in the Oligocene. Yet, most diversification within the genus seems to occur in the Miocene, and 

only the divergence between F. fontandraui and F. tricolor, was estimated as Pleistocenic. At least 

two transatlantic colonisations must be invoked to explain the present distribution of the genus. 
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However, and for a better comprehension of the biogeography of the group, more species from the 

EP and Western Atlantic should be included in the analyses. 

The application of high throughput sequencing has been progressively increasing, with next 

generation sequencing data being recently used to infer gastropod phylogenies. At the same time, 

NGS techniques are proving useful when applied to mitogenome reconstruction studies. In the second 

part of my thesis I aimed at (i) characterize the transcriptomes of two Felimare species, by assembling 

and annotating them, as well as using them to search for potential molecular marker fragments, and 

(ii) assemble their mitochondrial genomes. One of the main goals of obtaining transcriptomic data 

was to obtain a battery of molecular markers to support future phylogenetic studies. Additionally, I 

discuss the problematic of contamination in high throughput datasets, and recommend additional 

cleaning steps to be included in any type of workflow. 

For both species (F. cantabrica F. villafranca, respectively) I obtained 38 and 35 million high-

quality RNA-seq reads using Illumina HiSeq. After filtering, the assembly was composed of 54.6K and 

58.5K transcripts, being 16,915 and 18,664 of at least 500bp long, respectively. From those, biologic 

functions (GO terms) were assigned to 4,275 and 2,952 transcripts respectively, similarly to recent 

RNA-seq studies in other gastropods. During the process of assembling the mitochondrial genomes 

of the two species, I detected sequences from amphibian origin, later confirmed as contamination 

from the laboratory. After filtering the detected contamination from both assemblies I could still obtain 

a total of 728 potential ortholog fragments both studied species. These fragments represent a starting 

point for the development of nuclear markers not only for studies in the genus Felimare, but also in 

Heterobranchia/Opisthobranchia. 

The two reconstructed mitochondrial genomes were approximately 14Kb long, with the same 

arrangement of genes seen in other nudibranchs. However, none of the two mitochondrial genomes 

was completely assembled regardless of the methodology (contigs manual alignments or from the 

algorithm MITObim). 

Keywords 

Heterobranchia, Opisthobranchia, Chromodorididae, phylogeography Felimare, phylogeny Felimare, 

transcriptome, NGS molluscs, NGS contamination, mitogenome molluscs. 

 

 

 



FCUP  

MtDNA phylogeny and phylogeography of Atlantic-Mediterranean species of genus Felimare (Chromodorididae, 

Nudibranchia) and obtainance of genomic markers from RNA-seq data 

XVII 

 

 
xvii 

Contents 

AGRADECIMENTOS ........................................................................................................................................ VII 

ACKNOWLEDGMENTS..................................................................................................................................... IX 

RESUMO ............................................................................................................................................................ XI 

ABSTRACT ....................................................................................................................................................... XV 

LIST OF FIGURES ........................................................................................................................................... XXI 

LIST OF TABLES ......................................................................................................................................... XXVII 

LIST OF ABREVIATIONS ............................................................................................................................. XXIX 

CHAPTER 1 GENERAL INTRODUCTION ................................................................................................... 1 

1.1 GENETIC STRUCTURE OF MARINE POPULATIONS....................................................................................... 3 

1.1.1 Life strategies and dispersal in the ocean ................................................................................... 3 

1.1.2 Cryptic speciation ........................................................................................................................ 4 

1.2 THE NORTH-EASTERN ATLANTIC OCEAN AND THE MEDITERRANEAN SEA .................................................. 5 

1.2.1 Mediterranean Sea ...................................................................................................................... 6 

1.2.2 Northeastern Atlantic Ocean........................................................................................................ 7 

1.2.3 The Macaronesian archipelagos ................................................................................................. 8 

1.2.4 Seamounts ................................................................................................................................... 8 

1.2.5 Northeastern Atlantic Ocean currents ....................................................................................... 10 

1.3 BIOGEOGRAPHIC PATTERNS OF MARINE BIOTA IN THIS REGION ................................................................ 12 

1.4 “OPISTHOBRANCHS” DIVERSITY AND PHYLOGENETIC RELATIONSHIPS ...................................................... 16 

1.4.1 Opisthobranchia: a convoluted taxonomic history ..................................................................... 16 

1.4.2 Opisthobranchs diversity and ecology ....................................................................................... 18 

1.4.3 Chromodorididae ....................................................................................................................... 20 

1.4.4 Genus Felimare ......................................................................................................................... 22 

1.5 THE LACK OF GENOMIC RESOURCES FOR MOLLUSCA ............................................................................. 25 

1.5.1 The need of multiple markers for phylogenetic / phylogeographic inference ............................ 26 

1.5.2 Next-Generation sequencing for phylogenetics and phylogeography ....................................... 27 

1.5.3 Transcriptome sequencing and marker obtainance .................................................................. 27 

1.5.4 Optimizing de-novo assembly of short-read RNA-seq data for phylogenomics ........................ 28 

1.6 THESIS AIMS ........................................................................................................................................ 30 

CHAPTER 2 MATERIAL & METHODS ...................................................................................................... 32 



 
xviii 

2.1 MITOCHONDRIAL DNA PHYLOGENY AND PHYLOGEOGRAPHY OF ATLANTIC-MEDITERRANEAN SPECIES OF 

FELIMARE ........................................................................................................................................................ 33 

2.1.1 Sample collection, DNA extraction, amplification and sequencing ........................................... 33 

2.1.2 Phylogenetic analyses: gene-tree and species-tree inference .................................................. 34 

2.1.3 Intraspecific DNA variability and genetic structure .................................................................... 36 

2.2 TRANSCRIPTOME ASSEMBLY FOR MARKERS SURVEY IN TWO NON-MODEL SPECIES: F. VILLAFRANCA AND F. 

CANTABRICA .................................................................................................................................................... 36 

2.2.1 RNA extraction ........................................................................................................................... 36 

2.2.2 QC and filtering of sequencing data .......................................................................................... 37 

2.2.3 Transcriptome assembly and post-processing .......................................................................... 37 

2.2.4 Annotation .................................................................................................................................. 39 

2.2.5 Mitochondrial genome reconstruction ........................................................................................ 40 

2.2.6 Detection of mtDNA contamination and further contamination filtering ..................................... 41 

2.2.7 Identification of polymorphic orthologs for future PCR primer design ....................................... 43 

CHAPTER 3 RESULTS .............................................................................................................................. 44 

3.1 PHYLOGEOGRAPHY AND PHYLOGENY OF SEVEN EA AND MEDITERRANEAN SPECIES OF FELIMARE ............ 45 

3.1.1 Sampling .................................................................................................................................... 45 

3.1.2 Phylogeny .................................................................................................................................. 46 

3.1.3 Intraspecific variability and genetic structure ............................................................................. 49 

3.1.4 F. tricolor and F. cantabrica COI variability ............................................................................... 49 

3.1.5 F. villafranca COI variability ....................................................................................................... 49 

3.1.6 F. fontandraui COI variability ..................................................................................................... 50 

3.1.7 F. bilineata COI variability .......................................................................................................... 53 

3.1.8 F. picta COI variability ................................................................................................................ 53 

3.1.9 F. orsinii COI variability .............................................................................................................. 53 

3.1.10 Species-Tree Inference and Divergence Times Estimates ....................................................... 56 

3.2 TRANSCRIPTOME ASSEMBLY FOR MARKERS SURVEY IN F. CANTABRICA AND F. VILLAFRANCA ................... 57 

3.2.1 Quality control (QC) and filtering of raw sequence data; transcriptome assembly; and post-

processing ................................................................................................................................................. 57 

3.2.2 Transcriptome annotation .......................................................................................................... 62 

3.3 MTDNA RECOVERY AND RECONSTRUCTION .......................................................................................... 68 

3.3.1 Recovery through BLAST and alignment to a reference genome ............................................. 68 

3.3.2 Protein-coding regions ............................................................................................................... 68 

3.3.3 Transfer and ribosomal RNAs ................................................................................................... 69 

3.4 MTDNA ASSEMBLY DIRECTLY FROM READS USING MITOBIM .................................................................. 72 

3.4.1 Protein–coding regions .............................................................................................................. 72 

3.4.2 Transfer and ribosomal RNAs ................................................................................................... 72 

3.5 DETECTION AND FILTERING OF AMPHIBIAN MTDNA CONTAMINATION ....................................................... 78 

3.5.1 Battery of orthologs .................................................................................................................... 85 



FCUP  

MtDNA phylogeny and phylogeography of Atlantic-Mediterranean species of genus Felimare (Chromodorididae, 

Nudibranchia) and obtainance of genomic markers from RNA-seq data 

XIX 

 

 
xix 

CHAPTER 4 DISCUSSION ........................................................................................................................ 87 

4.1 PHYLOGEOGRAPHY AND PHYLOGENY OF SEVEN EA AND MEDITERRANEAN SPECIES OF FELIMARE ............ 90 

4.1.1 Sampling and species abundance ............................................................................................. 90 

4.2 INTERSPECIFIC RELATIONSHIPS WITHIN FELIMARE .................................................................................. 90 

4.3 DIVERGENCE TIME ESTIMATES ............................................................................................................. 92 

4.4 INCONGRUENCES BETWEEN MORPHOLOGY AND MOLECULAR DATA .......................................................... 94 

4.4.1 F. fontandraui and F. tricolor...................................................................................................... 94 

4.4.2 F. bilineata and F. cantabrica .................................................................................................... 95 

4.5 INTRA-SPECIFIC VARIABILITY AND GENETIC STRUCTURE .......................................................................... 97 

4.5.1 Genetic differentiation ................................................................................................................ 97 

4.5.2 Species without signs of population structure ........................................................................... 98 

4.5.3 Species with signs of population structure ................................................................................ 98 

4.6 ATLANTIC AND MEDITERRANEAN BARRIERS TO GENE-FLOW .................................................................. 101 

4.7 TRANSCRIPTOME ASSEMBLY............................................................................................................... 102 

4.7.1 Sequence analysis and assembly ........................................................................................... 102 

4.8 FUNCTIONAL ANNOTATION .................................................................................................................. 103 

4.9 DETECTION OF CONTAMINATION .......................................................................................................... 104 

4.10 PRELIMINARY ORTHOLOG SEARCH...................................................................................................... 106 

4.11 MITOGENOME ASSEMBLIES ................................................................................................................. 106 

4.11.1 Genome composition and arrangement .................................................................................. 106 

4.11.2 Coding regions ......................................................................................................................... 107 

4.11.3 ND5-like case .......................................................................................................................... 108 

4.11.4 RNAs ........................................................................................................................................ 108 

CHAPTER 5 CONCLUSIONS & FUTURE PROSPECTS ........................................................................ 111 

5.1 CONCLUSIONS ................................................................................................................................... 113 

5.2 FUTURE WORK .................................................................................................................................. 114 

BIBLIOGRAPHY ............................................................................................................................................. 115 

SUPPLEMENTARY MATERIAL ………………………………………………………...…………………………. 135 





FCUP  

MtDNA phylogeny and phylogeography of Atlantic-Mediterranean species of genus Felimare (Chromodorididae, 

Nudibranchia) and obtainance of genomic markers from RNA-seq data 

XXI 

 

 
xxi 

List of Figures 

Figure 1 Hydrography, bathymetry major sub-divisions of the Mediterranean Sea. The 200m and 1000m 

contours are shown and areas in between shaded from lighter to darker grey. Present patterns of surface 

water circulation are shown in blue (adapted from Rohling et al. 2009). .................................................... 7 

Figure 2 Distribution of principal seamounts (red dots) in the Northeast Atlantic and Mediterranean (adapted 

from Schmidt & Christiansen 2004). ............................................................................................................ 9 

Figure 3 Northeastern Atlantic area and Macaronesian Archipelagos. Schematic representation of the North 

Atlantic gyre and major surface currents throughout the area. Major extant currents are represented by the 

blue arrows, from their average position and direction: AC – Azores current, CaC – Canaries current, PC 

– Portugal current, NEC – North equatorial current; NECC – North equatorial counter current. NACW – 

North-Atlantic central waters, SACW – South-Atlantic central waters (adapted from Roura 2013; Isabel & 

Pinto 2008). ............................................................................................................................................... 12 

Figure 4 Atlantic and Mediterranean major biogeographic discontinuities and biogeographic sectors (following 

Bianchi & Morri, 2000; Johanneson & André 2006; Nikula & Väinölä 2003). Biogeographic sectors within 

the Mediterranean appear in blue on the map (in Green the respective sub-regions). Thick black lines 

represent major well-defined historical and present day discontinuities (Flst-Trmd – Falsterbo-

Travemunde, GS – Gibraltar Strait, AOF – Almeria-Oran Front, STS – Siculo-Tunisian Strait, PS – 

Peloponnese Strait, DS – Dardanelles Strait, BS – Bosphorus Strait) while dashed lines represent weaker 

but potential discontinuities (BF – Balearic Front, IC – Ibiza Channel). .................................................... 16 

Figure 5 a) Cladogram of the most recent deep Molluscan relationships, based on transcriptomic data, as 

inferred by Kocot et al. 2011; b) Phylogenetic relationships within Gastropoda. Euthyneura is here 

represented within a major group Heterobranchia (adapted from Kocot et al. 2011); c) (Wägele et al. 2014) 

presents a consensus tree for Heterobranch’s clades, with special focus in traditional Opisthobranch 

clades. In green are groups traditionally known as the Opisthobranchs, while in blue and yellow are the 

lower Heterobranch and Panpulmunata, respectively. Recently the rise of Euopisthobranchia (by Jorger et 

al. 2010) includes five (Cephalaspidae, Pteropoda, Anaspidae, Runcinacea and Umbraculoidea) of the 

traditional Opisthobranchia groups (in green). Numbers indicate important putative apomorphies (see 

Wägele et al. 2014 for detailed descriptions of apomorphic characters). ................................................. 17 

Figure 6 Most recent phylogenetic status of Nudibranchia sea slugs based on morphology data (cladogram 

with higher taxa names used) (adapted from Wägele & Willan 2000; Wollscheid-Lengeling et al. 2001). 19 

file:///C:/Users/cristina/Documents/MEGA/Mestrado-2016/Tese_F1_DV_CR2204.doc%23_Toc449431687
file:///C:/Users/cristina/Documents/MEGA/Mestrado-2016/Tese_F1_DV_CR2204.doc%23_Toc449431687
file:///C:/Users/cristina/Documents/MEGA/Mestrado-2016/Tese_F1_DV_CR2204.doc%23_Toc449431687


 
xxii 

Figure 7 Current phylogenetic relationships within Chromodorididae (tree from Johnson & Gosliner, 2012). 

Felimare is now the monophyletic group highlighted in blue, while remaining Hypselodoris (on the right) 

are clearly not their sister-taxa. Alternating greys remaining Hypselodoris (on the right) are clearly not their 

sister-taxa. Alternating greys represent distinct genera within Chromodorididae, with the current genera.

 ................................................................................................................................................................... 21 

Figure 8 a) Morphologic characterization of six adult species of “blue” Felimare (from Calado & Silva, 2012). 

For each species distinctive characters such as the rhinophores, dorsum, lateral banding and branchias 

are shown (adapted from (Calado & Silva, 2012). .................................................................................... 23 

Figure 9 Approximate distribution (blue line) of the seven EAM species of the genus Felimare (based on Ortea 

et al. 1996; Sanchez & Tocino, 2014; Crocetta et al. 2015; Oskars et al. 2015). ..................................... 25 

Figure 10 Map showing the sampling localities. Black dots represent localities where samples were collected: 

1 San Sebastián; 2 Ferrol; 3 Vigo; 4 Sesimbra; 5 Alentejo; 6 Sagres; 7 Ria Formosa; 8 Cádiz; 9 Gibraltar, 

10 Chafarinas; 11 Menorca island; 12 Barcelona; 13 Girona; 14 SW France; 15 - 20 Italy; 21 Kotor bay, 

Montenegro; 22-24 Greece; 25 Morocco; 26 Madeira; 27 Cabo Verde; 28 S. Tomé e Príncipe. In some 

localities more than one sampling point exists (see details in Supplementary Table 1). .......................... 33 

Figure 11 Trinity workflow. Trinity is comprised of four modules: Jellyfish (a fast and memory-efficient counting 

of k-mers, also known as substrings of length k), Inchworm (reads k-mers, constructs a k-mer dictionary 

and sorts k-mers by abundance, extending sequences until dictionary is exhausted), Chrysalis (clusters 

minimally overlapping contigs into sets of components, and constructs de Bruijn graphs for each 

component) and Butterfly (reconstructs feasible transcripts which in most cases will correspond to 

alternative splicing of the gene product). Image adapted from Haas et al., (2013). Butterfly (reconstructs 

feasible transcripts which in most cases will correspond to alternative splicing of the gene product, 

sometimes giving rise to additional divisions of components, i.e., subcomponents). ............................... 39 

Figure 12 Distribution of the individuals captured at each sampling site (plus Genbank sequances. With 

exception of  two individuals of F. tricolor (from Cádiz), F. tricolor (Barcelona), and F. cantabrica (Morocco), 

individuals are here labeled according their mtDNA (see below). Black dots represent localities where 

samples were collected: 1 San Sebastián; 2 Ferrol; 3 Vigo; 4 Sesimbra; 5 Alentejo; 6 Sagres; 7 Ria 

Formosa; 8 Cádiz; 9 Gibraltar, 10 Chafarinas; 11 Menorca island; 12 Barcelona; 13 Girona; 14 SW France; 

15-20 Italy; 21 Kotor Bay, Montenegro; 22-24 Greece; 25 Morocco; 26 Madeira; 27 Cabo Verde; 28 S. 

Tomé e Príncipe. In some localities more than one sampling point exists (see details in Supplementary 

Table 1). ..................................................................................................................................................... 46 

Figure 13 Phylogenetic relationships between Eastern Atlantic Felimare inferred from mtDNA COI partial 

sequence. The tree shown is a 50% majority rule consensus of the BI gene-tree distributions. Posterior 

probabilities (PP), and bootstrap values (grey, in parethesis) are given in percentages, for values over 

50%. Branches with posterior probabilities equal or greater than 90% are in bold. Outgroup (Roboastra 



FCUP  

MtDNA phylogeny and phylogeography of Atlantic-Mediterranean species of genus Felimare (Chromodorididae, 

Nudibranchia) and obtainance of genomic markers from RNA-seq data 

XXIII 

 

 
xxiii 

europea) was removed for graphical purposes. The genus Felimare is highlighted with a grey box. Scale 

is in mean substitutions per site. ............................................................................................................... 48 

Figure 14 Median-joining networks representing mtDNA (COI, 605 bp) variation within Eastern Atlantic Felimare 

species. For each species, the sampled sites and known distribution range (light blue) are shown. Circle 

sizes are proportional to haplotype frequencies. Missing haplotypes (unsampled or extinct) are represented 

by small black circles along the branches (for long branched the total number of substitutions is indicated). 

The asterisk in F. cantabrica, F. fontandraui and F. tricolor represent the haplotypes exhibited by the 

specimens with distinct morphological identification mentioned previously. These are here indicated but 

were not considered for the summary statistics or for any further analyses. ............................................ 52 

Figure 15 Median-joining networks representing mtDNA (COI, 605 bp) variation within two Eastern Atlantic 

Felimare species. For each species, the sampled sites and known distributions (light blue) are shown. 

Circle sizes are proportional to haplotype frequencies. Missing haplotypes (not sampled or extinct) are 

represented by small black circles along the branches (for long branched the total number of substitutions 

is indicated). ............................................................................................................................................... 55 

Figure 16 Maximum clade credibility COI tree with median estimates used for node heights. Posterior 

probabilities above 80% are given above the branches (in %). 95% HPD of node heights is also given. 

Horizontal axis corresponds to time before present in million years (MY). Geographic category of species 

distribution is given: IP- Indo-Pacific; EP- Eastern Pacific; WA- Western Atlantic; EA- Eastern Atlantic.. 57 

Figure 17 Distribution of transcript length. Histograms show the number of transcripts per size category for F. 

cantabrica and F. villafranca transcriptomes. Each bar/ column, represents 100bp range (starting at 200 

bp). Circa of 61% of the transcripts of F. cantabrica and 60% of the transcripts of F. villafranca are ≤500bp.

 ................................................................................................................................................................... 59 

Figure 18 Plots of transcripts length vs. isoform percentage (IsoPct) for each assembly. Each transcript is a dot 

and the graphs reflect each dataset before and after filtering them by selecting the isoform present in higher 

percentage (i.e., the most abundant one) in each subcomponent. ........................................................... 61 

Figure 19 Best hits e-value distribution for F. cantabrica (above) and F. villafranca (below)........................... 62 

Figure 20 GO Level distribution’s chart. Histogram representing the distribution of the multi-level function in the 

annotated sequences. GO terms representation for Biological Process (P), Molecular Function (F) and 

Cellular Component (C). ............................................................................................................................ 64 

Figure 21 Paired comparison of the sequences mapped to a given gene ontology (GO) term in level 3. For each 

category (BP, CC, and MF) the top 20 GO terms for each species are represented (Blue – F. cantabrica, 

green – F. villafranca). ............................................................................................................................... 65 

file:///C:/Users/cristina/Documents/MEGA/Mestrado-2016/Tese_F1_DV_CR2204.doc%23_Toc449431700
file:///C:/Users/cristina/Documents/MEGA/Mestrado-2016/Tese_F1_DV_CR2204.doc%23_Toc449431700
file:///C:/Users/cristina/Documents/MEGA/Mestrado-2016/Tese_F1_DV_CR2204.doc%23_Toc449431700
file:///C:/Users/cristina/Documents/MEGA/Mestrado-2016/Tese_F1_DV_CR2204.doc%23_Toc449431700
file:///C:/Users/cristina/Documents/MEGA/Mestrado-2016/Tese_F1_DV_CR2204.doc%23_Toc449431700
file:///C:/Users/cristina/Documents/MEGA/Mestrado-2016/Tese_F1_DV_CR2204.doc%23_Toc449431700
file:///C:/Users/cristina/Documents/MEGA/Mestrado-2016/Tese_F1_DV_CR2204.doc%23_Toc449431700


 
xxiv 

Figure 22 Paired comparison of the sequences mapped to a given gene ontology (GO) term in level 3. For each 

category (BP, CC, and MF) the top 20 GO terms for each species are represented (Blue – F. cantabrica; 

Green – F. villafranca). The five most represented categories are present for both species, and the remaing 

inlcude all common categories between the two transcriptomes. ............................................................. 66 

Figure 23 Best-hit species distribution for F. cantabrica (above) and F. villafranca (below). ........................... 67 

Figure 24 Putative tRNAs cloverleaf secondary structures for F. cantabrica. Sixteen (black) and nine (orange) 

tRNAs were identified, respectively, from blast of transcriptome contigs and reads assembly (MITObim) of 

F. cantabrica using C. magnifica mitogenome as reference. tRNAs were inferred with the Internal software 

module, which is part of the MITOS annotation pipeline. .......................................................................... 76 

Figure 25 Putative tRNAs cloverleaf secondary structures for F. villafranca eighteeb (black) and eight (orange) 

tRNAs were identified, respectively, from blast of transcriptome contigs and reads assembly (MITObim) of 

F. villafranca using C. magnifica mitogenome as reference. tRNAs were inferred with the Internal software 

module, which is part of the MITOS annotation pipeline. .......................................................................... 77 

Figure 26 Number of hits per sequence for blastn (nucleotide) analyses against nuclear and mtDNA coding 

regions across molluscs and other invertebrate and vertebrate species for each transcriptome. (graph 

truncated as blastp returned hits can be much higher – as they may include several hits in the same target 

sequence). ................................................................................................................................................. 79 

Figure 27 Number of hits per sequence for blastx (protein) analyses against nuclear and mtDNA coding regions 

across molluscs and other invertebrate and vertebrate species for each transcriptome (graph truncated as 

blastp returned hits can be much higher – as they may include several hits in the same target sequence).

 ................................................................................................................................................................... 80 

Figure 28 Number of sequences with best hits against genomes in the database (blastn). ............................ 82 

Figure 29 Number of sequences with best hits against genomes in the database (blastx). ............................ 83 

Figure 30 Plots of frequency, % identity and alignment length per class of e-value of F. cantabrica contigs with 

all nucleotide hits. ...................................................................................................................................... 84 

Figure 31 Plots of frequency, % identity and alignment length per class of e-value of F. cantabrica contigs with 

all protein hits. ............................................................................................................................................ 84 

Figure 32 Distribution of the number of putative ortholog transcritps after reciprocal blast between clean contigs 

of F. cantabrica and F. villafranca. ............................................................................................................ 85 

Figure 33 Specimen from Barcelona originally identified as F. tricolor but harbouring F. fontandraui mtDNA (and 

thus re-assigned to this species). This photo was kindly handed by Enric Madrenas from Cataluña. ..... 95 



FCUP  

MtDNA phylogeny and phylogeography of Atlantic-Mediterranean species of genus Felimare (Chromodorididae, 

Nudibranchia) and obtainance of genomic markers from RNA-seq data 

XXV 

 

 
xxv 

Figure 34 Felimare individual collected at Anza, Morocco (a), first identified as F. bilineata (c), and which 

exhibits a mtDNA haplotype shared with many F. cantabrica (b) individuals. ........................................... 95 

Figure 35 Images taken from http://seaslugforum.net/showall/hypsmala. Specimens in the image have been 

suggested to be F. malacitana by experts on nudibranch’s taxonomy (Bill Rudman). On the left: a specimen 

from El Hierro Island (Canary). On the right: a specimen from “Grand Turiba”, Dakar, Senegal. ............ 97 

 

Supplementary Figure 1 Maximum likelihood phylogeny of mtDNA COI partial sequence. It includes seven 

species of the Eastern Atlantic and Mediterranean Sea, and Genbank sequences from the Eastern Pacific 

and Western Atlantic Felimare species. Outgroup species include two Hypselodoris from Indo-Pacific 

Ocean (H. zephyra and H. whitei), two Mexichromis, from Eastern Pacific (M. antonii) and Indo-Pacific (M. 

multituberculata), and the more distant Roboastra europea, from Eastern Atlantic. Bootstrap values above 

50% (from 1000) are indicated. Branches with support equal or greater than 95% are bolded. ............ 151 

Supplementary Figure 2 – Consensus phylogeny resulting from Bayesian and ML analyses of mtDNA COI 

partial sequence. Analysis includes 7 species of the Eastern Atlantic and Mediterranean Sea, and 

Genebank sequences from the Eastern Pacific and Western Atlantic oceans of the genus Felimare. Other 

species include two Hypselodoris from Indo-Pacific Ocean (H. zephyra and H. Whitei), two Mexichromis 

from Eastern Pacific (M. antonii) and Indo-Pacific (M. multituberculata), one Chromodrid from Indo-Pacific 

(Chromodoris magnifica. The tree has been rooted with Roboastra europea (not visivel in the image), from 

Eastern Atlantic. This is a majority-rule of 11 Million generation (MCMC) with 2 runs. Posterior probabilities 

(above) and bootstrap values above 50, in percentage, from 1000 bootstrap of ML tree (below) are 

indicated as the support for each node. Branches for probabilities equal or greater than 95% are bolded

 ................................................................................................................................................................. 152 

Supplementary Figure 3 Plots of frequency, % identity and alignment length per class of e-value of F. 

cantabrica against A. californica contigs with only the best nucleotide (above) and protein (below) hits 

considered. .............................................................................................................................................. 154 

Supplementary Figure 4 Plots of frequency, % identity and alignment length per class of e-value of F. 

villafranca against A. californica contigs with only the best nucleotide (above) and protein (below) hits 

considered. .............................................................................................................................................. 155 

Supplementary Figure 5 Plots of frequency, % identity and alignment length per class of e-value of F. 

cantabrica against X. silurana contigs with only the best nucleotide (above) and protein (below) hits 

considered. .............................................................................................................................................. 156 



 
xxvi 

Supplementary Figure 6 - Plots of frequency, % identity and alignment length per class of e-value of F. 

villafranca against X. silurana contigs with only the best nucleotide (above) and protein (below) hits 

considered. .............................................................................................................................................. 157 

Supplementary Figure 7 - Plots of frequency, % identity and alignment length per class of e-value of F. 

cantabrica against nudibranchs contigs with only the best nucleotide (above) and protein (below) hits 

considered. .............................................................................................................................................. 158 

Supplementary Figure 8 - Plots of frequency, % identity and alignment length per class of e-value of F. 

villafranca against nudibranchs contigs with only the best nucleotide (above) and protein (below) hits 

considered. .............................................................................................................................................. 159 

Supplementary Figure 9- Plots of frequency, % identity and alignment length per class of e-value of F. 

cantabrica against Bufo species contigs with only the best nucleotide (above) and protein (below) hits 

considered. .............................................................................................................................................. 160 

Supplementary Figure 10 - Plots of frequency, % identity and alignment length per class of e-value of F. 

villafranca against Bufo species contigs with only the best nucleotide (above) and protein (below) hits 

considered. .............................................................................................................................................. 161 

Supplementary Figure 11 - Plots of frequency, % identity and alignment length per class of e-value of F. 

cantabrica against H. sapiens contigs with only the best nucleotide (above) and protein (below) hits 

considered. .............................................................................................................................................. 162 

Supplementary Figure 12 - Plots of frequency, % identity and alignment length per class of e-value of F. 

villafranca against H. sapiens contigs with only the best nucleotide (above) and protein (below) hits 

considered. .............................................................................................................................................. 163 

 



FCUP  

MtDNA phylogeny and phylogeography of Atlantic-Mediterranean species of genus Felimare (Chromodorididae, 

Nudibranchia) and obtainance of genomic markers from RNA-seq data 

XXVII 

 

 
xxvii 

List of tables 

Table 1 List of species and respective markers used to evaluate the existence/absence of contamination on the 

assembled transcriptomes. ........................................................................................................................ 42 

Table 2 Summary diversity statistics, neutrality tests and indexes of population growth for the seven EAM 

Felimare species, based on mtDNA variation. .......................................................................................... 56 

Table 3 Main assembly results for both transcriptomes. ................................................................................... 58 

Table 4 Completeness report of the percentage of the eukaryotic core genes present in both datasets (CEGMA).

 ................................................................................................................................................................... 60 

Table 5 Assembly statistics after filtering the dataset to a single transcript per subcomponent....................... 61 

Table 6 Number of sequences at different annotation stages. ......................................................................... 63 

Table 7 Mitochondrial genome regions recovered by a BLAST search of the transcriptome of F. cantabrica 

against available mollusc mtDNA genomes. Reference is C. magnifica mitochondrial genome. ............. 70 

Table 8 Mitochondrial genome recovered by blasting the transcriptome of F. villafranca against available 

mollusc mtDNA genomes. ......................................................................................................................... 71 

Table 9 Assembled regions of mitochondrial genomes of F. cantabrica using MITObim. ................................ 74 

Table 10 Assembled regions of mitochondrial genome of F. villafranca using MITObim. ................................ 75 

Table 11 Number of sequences of transcritpomes with hits, as well as the best-hit distribution across nuclear 

and mtDNA coding regions of molluscs and other invertebrate and vertebrate species .......................... 81 

 

file:///C:/Users/cristina/AppData/Local/Temp/Temp1_Tese_F2_0707_SR.doc.zip/Tese_final_CR_SR.doc%23_Toc447197760
file:///C:/Users/cristina/AppData/Local/Temp/Temp1_Tese_F2_0707_SR.doc.zip/Tese_final_CR_SR.doc%23_Toc447197760




FCUP  

MtDNA phylogeny and phylogeography of Atlantic-Mediterranean species of genus Felimare (Chromodorididae, 

Nudibranchia) and obtainance of genomic markers from RNA-seq data 

XXIX 

 

 
xxix 

List of Abreviations 

AC – Azores Current 

AOF – Alboran-Oran Front 

BI – Bayesian Inference 

BF – Balearic Front 

CaC – Canary Current 

Cegma – Core Eucaryotic Genes Mapping Approach 

EAM – Eastern Atlantic and Mediterranean 

IC – Ibiza Channel 

ITCZ – Tropical Convergence Zone 

LGM – Last Glacial Maximum 

MCC – Aximum Clade Credibility Tree 

MSC – Messian Salinity Crisis 

MDFs – Mantle Dermal Formations 

ML – Maximum Likilihood 

MAW - Modified Atlantic Waters 

MY - Million years  

NAC – North Atlantic Current 

NADC – North Atlantic Drift Current 

NACW – North Atlantic Central Water 

NEC – North Equatorial Current 

NECC - North Equatorial Counter Current 

NE - North Eastern 



 
xxx 

NGS – Next Generation Sequencing 

PC – Portugal Current 

PP – Posterior Probability 

QC - Quality Control 

SACW – South Atlantic Central Water 

SE – South Eastern 

SEC – South Equatorial Current 

SST – Sea Surface Temperature 

SE - South Eastern 

SG – Strait Gibraltar 

 



FCUP  

MtDNA phylogeny and phylogeography of Atlantic-Mediterranean species of genus Felimare (Chromodorididae, 

Nudibranchia) and obtainance of genomic markers from RNA-seq data 

1 

 

 
1 

Chapter 1 General Introduction  

 





FCUP  

MtDNA phylogeny and phylogeography of Atlantic-Mediterranean species of genus Felimare (Chromodorididae, 

Nudibranchia) and obtainance of genomic markers from RNA-seq data 

3 

 

 
3 

1.1 GENETIC STRUCTURE OF MARINE POPULATIONS 

1.1.1 Life strategies and dispersal in the ocean 

For decades the ocean realm was considered a vast and homogeneous system, with no 

obvious barriers to organisms’ dispersal (McGowan 1971; Benzie 1999; Finlay 2002). Additionally, 

marine organisms often present large effective population sizes, high fertility, high dispersal abilities 

at least in their pelagic forms (larvae and eggs), and high levels of gene flow (Hedgecock, 1986; 

Palumbi, 1994; Palumbi, 1996). Under such conditions, high connectivity among geographically 

separated populations was predicted, and opportunities for allopatric divergence, i.e., divergence due 

to extrinsic barriers (de Queiroz 2005), were considered to be rare. However, some marine species 

exist that are widely distributed and exhibit genetic homogeneity (Pujolar et al. 2002; Gilbert-Horvath 

et al. 2006). Importantly, recent research has been leading to a distinct perception of global open-

water population structure, dominated by isolation-by-distance patterns (e.g. Viñas et al. 2004; 

Sherman et al. 2008) or even sharp genetic breaks (i.e., areas of restricted gene-flow) between 

populations (Barber et al. 2002; Lourie et al. 2005; Mantelatto et al. 2014). 

Connectivity patterns, seem to be, at a great extent, species-specific. Marine organisms 

display a wide range of reproductive strategies, which may give us some clues about their dispersal 

abilities and the spatial scale at which gene flow occurs (Palumbi & Warner 2003). Consequently, by 

studying species’ life history traits (such as spawning and egg type, larval duration and behaviour, 

type and period of development, etc) together with recent and historical oceanographic features of 

the region (e.g. short tidal currents, jets, gyres; rafting) (Leis & Fisher 2006; Diehl et al. 2007; Nikula 

et al. 2010; Fraser et al. 2011) one might hypothesize on species’ phylogeographic structure, as well 

as macro evolutionary patterns (Hedgecock 1986; Arndt & Smith 1998; Pechenik 1999; Collin 2001; 

Jeffery et al. 2003). 

Benthic species, and particularly those with sedentary life-style or limited mobility (e.g. marine 

invertebrates and some non-migratory fishes) (e.g. Shulman & Bermingham 1995; Thorpe et al. 2000) 

may disperse large distances as adults by rafting, drifting or even human mediated-transport (Martel 

1991; Sherman et al. 2008; Rastorgueff et al. 2014). However the main dispersal mechanisms are 

still their early life pelagic stages (gametes, larvae, eggs, or propagules) (Gopurenko & Hughes 2002; 

Jeffery & Emlet 2003; Thiel & Gutow 2005). 

The majority of the sedentary or sessile marine organisms produce long-living and free-

swimming larvae (plankthotrophic), or short-living (lecithotrophic) veliger larvae (Castelin et al. 2012), 

expected to behave as passive, long distance, dispersers (e.g. Grosberg & Cunningham 2001; 
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Cárdenas et al. 2009). Nonetheless the broad geographic ranges that characterize such populations 

separated by hundreds of kilometres often reveal areas of restricted gene-flow (Palumbi 2003; Sotka 

et al. 2004).  

The diversity of genetic patterns regarding planktonic dispersers is highly variable and genetic 

breaks are often congruent with present-day barriers to dispersal. Factors such as larvae retention 

through vertical movements and habitat preferences (Hohenlohe 2003); high mortality (Todd et al. 

1998; Sanford et al. 2006; Weiss et al. 2007), presence of significant oceanographic barriers that 

retain the offspring near their natal habitats (Hoffman et al. 2011) or strong local adaptation (Sotka 

2005; Levin 2006; Marshall et al. 2010), limit connectivity in planktonic dispersers. Other organisms 

lack the larval stage and produce reduced forms of adults, often from brood pouches or benthic egg 

capsules (direct development). In these cases juveniles persist in the parental environment most of 

their time, decreasing dispersal and promoting local adaptation (reviewed in Bohonak, 1999; Sanford 

& Kelly, 2011). Direct developers have generally smaller distribution ranges (Soares et al. 2006) and 

more marked genetic structure than planktonic organisms (Collin 2001; Teske et al. 2007; Pelc et al. 

2009; Kelly & Palumbi 2010). Their phylogeographic patterns generally show more structured 

populations, although without necessarily resulting in their complete isolation (e.g. Bohonak, 1999; 

Collin, 2001; Bell, 2008), neither completely preventing ranges as wide as species with pelagic larvae. 

Exceptions exist, with some direct developers showing widespread populations without apparent 

genetic structure (Oosthuizen et al. 2004; Zealand 2004; Teske et al. 2007). 

As barriers shift, species with low dispersal are expected to reflect historical patterns over long 

time-scales, because low levels of gene flow allow the signal of historical separation to persist for 

many generations (Hellberg et al. 2002; Pelc et al. 2009). On the other hand phylogeographic breaks 

regarding planktonic dispersers are usually congruent with contemporary oceanographic features 

(Pelc et al. 2009). 

1.1.2 Cryptic speciation 

Cryptic species can be defined as discrete species that are difficult, or sometimes impossible, 

to distinguish morphologically and thus have been incorrectly classified as a single taxon 

(Beheregaray & Caccone 2007). Recently, Pante et al. (2014) proposed a distinction between cryptic 

species and pseudo-cryptic species. The former refers to two or more species that are taxonomically 

classified as one single nominal species and lack obvious morphological features that diagnose 

differentiation, while the latter refers to situations where there are subtle morphological differences, 

but calls upon other lines of evidence (such as DNA) to show what morphology could not easily 

discriminate. Obviously, their existence has implications on the estimation of biodiversity. 
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Morphological characters are generally the first elements to be considered in studies of 

taxonomy and systematics (e.g. Gosliner et al. 1999; Pola et al. 2008). Nevertheless characters 

related to mating behaviour, chemical signals, physiology or habitat preferences are equally important 

(Bickford et al. 2007; Vrijenhoek 2009): i) species may recognize themselves by nonvisual mating 

signals, such as chemical recognition (Malenke et al. 2009; Stanhope et al. 1992; Landry et al. 2003) 

or mating calls (Henry 1994; Kingston et al. 2001; Amorim et al. 2010); ii) strong selection or 

settlement in severe environments (e.g. deep sea, under-water karst, glacial shelters) may have 

strong effects on both behavioural and physiological patterns, without necessarily implying the 

evolution of morphologic distinctive characters (de Vargas et al. 1999; Rothschild & Mancinelli 2001; 

Lefébure et al. 2006; Maan & Cummings 2012), and iii) morphological identification is often lagging 

and requires technologic sophisticated anatomical studies (Jörger et al. 2012). 

The boost of molecular markers (alloenzymes, nucleotide sequences) has challenged previous 

morphology/ecology based assumptions on both population structure and species boundaries in the 

ocean (Knowlton 2000), fostering the knowledge in this field. Over the past two decades research on 

cryptic species has largely interested the scientific community, fuelled in large part by the increasing 

availability of DNA sequences (Bickford et al. 2007). Molecular phylogenies are often used together 

with morphological characters in taxonomic studies (Knowlton 2000; Blanquer & Uriz 2007). As a 

result several marine species previously considered cosmopolitan have shown to be in fact 

cryptic/pseudo-cryptic species complexes of a wide range of organisms including algae (Wolf et al. 

2012), crustaceans (Cook et al. 2008; Trontelj et al. 2009; Mantelatto et al. 2014), molluscs (Carmona 

et al. 2011), bryozoans (McGovern & Hellberg 2003; Nikulina et al. 2007), ascidians, sponges (Solé-

Cava et al. 1991) and fishes (von der Heyden et al. 2011; Thomas et al. 2014). 

 

1.2 THE NORTH-EASTERN ATLANTIC OCEAN AND THE MEDITERRANEAN SEA 

The North-eastern Atlantic Ocean and the Mediterranean Sea are interesting areas where to 

study the differentiation of marine organisms. Overall, in these areas, genetic differentiation can be 

studied across apparently continuous coastal habitats, such as the Iberian shores, across habitats 

separated by deep water extents, like the African shores or the Macaronesia (and other) islands, 

across areas separated by ocean fronts (like Almeria-Oran), or by major topographic features (as the 

Gibraltar and Sicily Straits). 
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1.2.1 Mediterranean Sea 

The current configuration of the Mediterranean Sea results from the collision of two major 

continental plates, the Eurasian (Laurasia) and the African plates (Gondwana), and further African 

microplates; the Iberia, Apulia and Arabia. The western side of the Mediterranean basin was formed 

by the collision of the Iberian and Apulian plates with Eurasia in the early Tertiary (Eocene to early 

Miocene). The eastern side basin was formed later, from the collision of the Arabian Promontory with 

Eurasia, around 16 MY (Sá-Pinto 2008). At this point the Mediterranean becomes an enclosured sea 

that communicates with the Atlantic Ocean by two narrow connections: the Betic and the Rifian 

corridors, in southern Iberia and northern Morocco, respectively (Rögl 1999; Carminati & Doglioni 

2004). Their later closure triggered the Messinian salinity Crisis that started around 5.96 MY 

(Krijgsman et al. 1999), and lasted about 0.5 million years, during which the Mediterranean Sea turned 

into a shallow hyper saline basin. After that period Atlantic waters flooded again the Mediterranean 

basins, through the Strait of Gibraltar, allowing contact with the North Atlantic, as we know it 

(Krijgsman et al. 1999). In its current configuration, the Mediterranean further contacts with the Black 

Sea through the Marmara Sea, with the Adriatic Sea through the Pelagosa archipelago and with the 

Red Sea through the Suez channel. Separating the western and eastern sides of the Mediterranean 

Sea are the Strait of Sicily (average depth of 330 m and 130 km wide) and the narrow and shallow 

(300 m wide and average depth 80m) Strait of Messina, between Calabria and Sicily (Billard 1974; 

Battaglia et al. 2010). Both sides can be further subdivided into smaller regions based on distinct 

oceanographic features (e.g. depth, currents, and gyres). 

Water mass circulation in the Mediterranean Sea occurs through eastward surface and 

westward subsurface currents. Circulation is driven by winds stress, and the balance between 

evaporation loss and net cooling (Billard 1974). When the West Atlantic current enters the 

Mediterranean Sea dense waters it forms what‘s called the Modified Atlantic Waters (MAW) and 

further originates the formation of two anti-cyclonic gyres, west and east of the Alboran Sea (Figure 

1). The MAW may then either re-enter in the Alboran Sea gyres or rather move in the Algerian Current, 

eastward to the African coast towards the Sicily Strait. In the northern area of the western 

Mediterranean the Algerian Current forms part of larger-scale cyclonic gyres dominating the surface 

circulation, between Majorca islands and Sardinia Island, as well as above the coast of Sicily. At the 

coasts of Sicily the MAW currents split and continue eastwards, increasing in salinity, and flowing 

through the Ionian Sea and Levantine basin respectively. Generally such increase in salinity is 

correlated with higher temperatures in the summer. Several cyclonic and anti-cyclonic gyres existing 

in eastern basins result from currents bifurcations and are interconnected by several jets. During the 

winter season extreme cooling causes surface water to sink and spread westwards by Levantine 

Intermediate waters. This Mediterranean outflow is constituted by deep and intermediate depth mixing 
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waters, which return back to the Atlantic Ocean through the Gibraltar Strait as the Western 

Intermediate Waters, with colder temperatures around 13.0–13.5 ◦C and salinity of 38.0–38.5 psu 

(Millot & Taupier-Letage 2005). Once released in the Atlantic Ocean the Mediterranean outflow 

descends below 1000m in the Gulf of Cadiz, and can be traced as discrete subsurface “lenses” of 

salty and warmer water, named “Meddies”. The Meddies are polarized northward, with a portion 

forming a poleward undercurrent along the slope of Iberian Peninsula (Mason et al. 2006). 

 

 

 

1.2.2 Northeastern Atlantic Ocean 

The eastern boundary of the North Atlantic subtropical gyre spreads from the northern tip of the 

Iberian Peninsula at 43°N to south of Senegal at 10ºN (Chen 2007). Within this area, this work covers 

also the islands of Madeira and Cabo Verde, from the Macaronesian region. The area of study 

includes additionally the islands of São Tomé e Príncipe, located southwards, at the Eastern central 

Atlantic region.  

Figure 1 Hydrography, bathymetry major sub-divisions of the Mediterranean Sea. The 200m and 1000m contours are shown and areas in 
between shaded from lighter to darker grey. Present patterns of surface water circulation are shown in blue (adapted from Rohling et al. 
2009). 
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1.2.3 The Macaronesian archipelagos 

Macaronesia comprises five archipelagos, located off the western coasts of Europe and Africa. 

These insular landmasses include the archipelagos of the Azores, Madeira and Selvagens, the 

Canary Islands and finally the archipelago of Cabo Verde. They are the result of distinct hotspots of 

volcanic activity, and have strong ontogenetic affinities with the Atlantic coast of the Iberian Peninsula 

and the north-western fringes of Africa; nonetheless they were never in contact with any of the 

continental landmasses. 

The archipelago of Madeira comprises three islands located between 33º06’ and 32º22’N and 

between 16º17’ and 17º15’W, 635 kms away from the nearest continental coast (western Morocco). 

Porto Santo is the oldest island, with an estimated age of 14.3 MY (Mitchell-Thomé 1985; Geldmacher 

et al. 2001). 

Cabo Verde is southernmost archipelago, located 570 km away from the nearest mainland point 

(distance from the island of Boavista to Dakar, Senegal) and site between 17°13’ and 14°46’N and 

between 25°21’ and 22°40’W. Within it, Sal is the most ancient island with an estimated age of 25.6 

MY (Mitchell-Thomé 1985; Cunha et al. 2005), and Brava and Santo Antão, at its easternmost region, 

are the most recent, with estimated ages of 5.9 MY and 7.6 MY, respectively (Cunha et al. 2005). 

1.2.4 Seamounts 

Seamounts (Figure 2) are upward projections of the deep sea floor, with elevations of 100 m or 

more (Hillier & Watts 2007), and important at geological, oceanographic, and biological levels. 

Biologically these underwater features are considered as hotspots of pelagic biodiversity and 

endemism (de Forges et al. 2000; Samadi et al. 2006), showing consistently higher species richness 

than shore bathymetric clines or open oceanic areas (Morato et al. 2010), and are at some extent 

important aggregating locations for migratory fishes (e.g. Klimley et al. 2005; Rodríguez-Cabello et 

al. 2009).  

Recent studies contest the validity of these submerged mountains as biodiversity hotspots. 

Despite several studies advocating that seamounts can have distinct composition of species from the 

continental slope, it is equally true that they harbour comparable levels of faunal composition, with 

strong affinities with the continental slopes (Samadi et al. 2006; Hall-Spencer & Rogers 2007; McClain 

et al. 2009; Howell et al. 2010; Pollock et al. 2014). Furthermore, levels of endemism in these places 

are highly variable: for example, data for South Pacific seamounts indicates > 30% of the species are 

potentially endemic (Parin et al. 1997; de Forges et al. 2000) while < 3% has been estimated for North 

Eastern (NE) Atlantic seamounts (Hall-Spencer & Rogers 2007). 
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Seamounts are also thought to play important roles on the biogeography of species, acting either as 

‘stepping stones’ (Rowden et al. 2010; Packmor et al. 2014), or ‘‘trapping stones’’ for dispersal 

(George 2013) of small benthic organisms (Packmor et al. 2014). Genetic structure of populations of 

distinct seamounts in the world (including in the NE Atlantic), such as ophiuroids, corals, and 

symphurine tonguefish (Cho & Shank 2010; Miller et al. 2010; Tunnicliffe et al. 2010) demonstrate 

that different patterns of dispersal and migration can exist, with different seamount populations acting 

either as ‘sources’ or as ‘sinks’ depending on the species studied, and the interaction between 

physical factors and life-history traits. 

 

Figure 2 Distribution of principal seamounts (red dots) in the Northeast Atlantic and Mediterranean (adapted from Schmidt & Christiansen 
2004). 
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1.2.5 Northeastern Atlantic Ocean currents 

The gradual closure of the Panama seaway, around 4.5 – 2.8 MY (Schmittner et al. 2004), 

considerably shaped the present day sea-currents in the Northeastern Atlantic, with the interruption 

of the communication between the Pacific and Atlantic Oceans. In the eastern region of the Atlantic 

Ocean, surface water circulation to both Poles is largely driven by wind regimes (van Aken 2002; 

Huthnance et al. 2002), while subsurface currents, like poleward flows, may be regulated by larger-

scale mechanisms, such as the decline of the sea level (poleward), the sea level rising toward the 

coast, but also from regional buoyancy-driven coastal currents (Mason et al. 2006). Surface currents 

in the Northeastern Atlantic region are to a large extent dominated by the North Atlantic Current (NAC) 

and the Azores Current (AC) (Figure 3), which are formed between the Grand Banks and the Mid 

Atlantic Ridge by the branching of the Gulf Stream (Mason et al. 2006). The NAC then splits to form 

the North Atlantic Drift current (NADC), spreading between Iceland and the British Islands, while the 

remainder continues to east and northern Europe (Mason et al. 2006). In turn, the AC, at first flowing 

south and then eastwards, then splits in two branches: 1) northern flowing towards the gulf of Cádiz, 

and posteriorly feeding Canary Current (CaC), and 2) southern flowing south-eastwards, passing west 

of Madeira, towards the Canary islands (Johnson & Stevens 2000; Barton et al. 2007; Pingree 2009). 

The CaC then flows southwards along the African coast, from where it separates in the region of Cap 

Blanc, and at the proximity of Cabo Verde all the flow then turns westwards, supplying the North 

Equatorial Current (NEC, Mason et al. 2005). Also relevant to the understanding of the circulation 

patterns, is to consider the two Atlantic water fronts: the North Atlantic Central Water (NACW), 

dominated by high rates of salinity above the 600m, and the South Atlantic Central Water (SACW), a 

southward current slightly warmer and driven by the CaC, at south of Cap Blanc (Figure 3). 

The surface currents at western and northwestern coasts of the Iberia Peninsula are dominated by 

the Portugal Current (PC), which flows south during all the year, between Azores and continental 

Portugal, in between the North Atlantic current and the Canary current (Peliz & Fiuza 1999). The 

circulation pattern close to the continental platform is much more complex, exhibiting a marked 

seasonality defined by topography and coastal wind regimes (Huthnance et al. 2002; van Aken 2002). 

During spring and summer seasons, winds predominate from northeast giving rise to the Portuguese 

Coastal Current flowing southward on surface (<100m) and to the Portuguese Coastal Underwater 

Current, flowing northward by the coastal platform (Wooster et al. 1976; Bakun & Nelson 1991). On 

the other way, during the rest of the year, winds from southeast predominate, causing the inversion 

of the direction of the surface current, originating the Portuguese Coastal Counter Current (also known 

as Iberian Poleward Current), a water mass of 1500m deep, which also leads to the spread of 

Mediterranean waters to the west and north of the Iberian Peninsula (Wooster et al. 1976; Frouin & 

Fiúza 1990; Haynes & Barton 1990; Relvas et al. 2007). 
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Contrary to the Iberian coast, the Northeastern African littoral, from Mauritania to Cap Blanc, 

receives great influence from the CaC. This current flows towards the Ecuador through coastal line 

until Cabo Blanco, and thereafter sorts out in to the ocean towards west of Cabo Verde islands 

(Hughes & Barton 1974). 

The region of the Gulf of Guinea, on its turn, is subject to seasonal upwelling, influenced by local and 

remote trade winds and thermocline oscillations that come from the West Atlantic Ocean, and South 

and Northeastern Atlantic Ocean (Merle & Arnault 1985; Andrié et al. 1986; Fontaine et al. 1999; 

Wiafe et al. 2008). Two main coastal upwelling areas, at the northern and eastern boundaries of the 

Gulf, and one equatorial upwelling area, approximately south from the equator line and extending out 

to the Atlantic occur in this region from July to September, because the winds are more intense 

(Lefèvre 2009). The equatorial upwelling brings cold water, rich in nutrient and carbon, to the surface 

(Andrié et al. 1986). The rest of the year is a non-upwelling season, also known as the minor 

hydrographic season (Wiafe et al. 2008). This period is characterized by the low salinity due to the 

presence of the Inter Tropical Convergence Zone (ITCZ), high precipitations and a surface layer of 

warm fresh water mass, coming from NECC (Merle et al. 2013) which flows westwards, through the 

South Equatorial Current (SEC) (Andrié et al. 1986; Wiafe et al. 2008). The separation of both the low 

salinity Guinean water and the northern high salinity equatorial undercurrent cold water (Picaut 1983) 

is marked by a frontal area dominated by the South Equatorial Current. 
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Figure 3 Northeastern Atlantic area and Macaronesian Archipelagos. Schematic representation of the North Atlantic gyre and major surface 
currents throughout the area. Major extant currents are represented by the blue arrows, from their average position and direction: AC – 
Azores current, CaC – Canaries current, PC – Portugal current, NEC – North equatorial current; NECC – North equatorial counter current. 

NACW – North-Atlantic central waters, SACW – South-Atlantic central waters (adapted from Roura 2013; Isabel & Pinto 2008). 

 

1.3 BIOGEOGRAPHIC PATTERNS OF MARINE BIOTA IN THIS REGION 

Biogeographic regions are often described based on the overlapping ranges of many species. 

The boundaries between these regions are usually the result of historical discontinuities (such as the 

ones caused by events like the Messinian salinity crisis or the Pleistocene glaciations cycles) 

(Krijgsman et al. 1999; Lambeck et al. 2002) or present-day environmental differences (such as 

currents, temperature or salinity) (Riginos & Nachman 2001). The analysis of the patterns of diversity 

and population structure of marine taxa allows the distinction between the effects of historic and 

present-day processes (e.g. Avise 1992; Grant & Bowen 1998; Provan & Bennett 2008). In the 

Northeastern Atlantic and Mediterranean regions there are several patterns emerging regarding the 

biogeographic affinities of their taxa. 

The closure of the Tethys Sea, around 20 MY (Steininger & Rögl 1984), isolating the Atlantic 

and Indo-Pacific realms, as well as the one of the Isthmus of Panama (2.7–3.5 MY) (Keigwin 1982; 



FCUP  

MtDNA phylogeny and phylogeography of Atlantic-Mediterranean species of genus Felimare (Chromodorididae, 

Nudibranchia) and obtainance of genomic markers from RNA-seq data 

13 

 

 
13 

Coates et al. 1992; Collins et al. 1996) were the main events that started shaping the biogeography 

of this region (Avise 2000). This area became thus a transitional region between the tropics and boreal 

regions, whose climate has been very dynamic since the Pleistocene. While to a great extent it 

harbours warm and cold temperate species, it is also the northern limit of some tropical species and 

the southern limit of some boreal species (Pontarotti 2014). 

More than 8500 species of macroscopic organisms have been reported for the semi-enclosed 

Mediterranean Sea (Bianchi & Morri 2000), representing 4-8% of the world’s marine biodiversity – a 

value which is rather high for a basin representing only 0.82% and 0.32% of surface area and volume, 

respectively, of the world’s oceans (Patarnello et al. 2007). The root of this high biodiversity is certainly 

in big part due to its complex geological history. Its present day biota is largely the result of 

colonization, mostly from the Atlantic Ocean (Almada et al. 2001; Domingues et al. 2005) and to a 

minor extent from the Red Sea. In fact, after an isolation and desiccation period that lasted about 0.5 

million years – the Messinian salinity crisis (MSC) - re-flooding of the Mediterranean basin was 

possible because of the inflow of Atlantic waters through the newly opened Strait of Gibraltar. The 

MSC (5.96–5.33 MY) (Krijgsman et al. 1999) was characterized by the evaporation and subsequent 

increased salinity of very large parts of the Mediterranean Sea, which turned into shallow, hypersaline, 

isolated lakes, causing a mass extinction among its marine species, as well as many marine taxa 

speciation events (e.g. Duggen et al. 2003; Carreras-Carbonell et al. 2005; Palero et al. 2008). It thus 

drove the pre-existing Indo-Pacific biota to extinction, with the few exceptions of taxa of Miocene origin 

that have survived in shallow-water refuges, like for example killifishes (Hrbek & Meyer 2003). 

Interestingly, in these surviving older taxa, it is still possible to see the genetic signatures of the first 

events shaping the Mediterranean basin, such as the generation of the Siculo-Tunisian Strait, which 

separated Western and Eastern Mediterranean lineages coalescing back in the Mesozoic period 

(Rastorgueff et al. 2014). This shallow saddle between Sicily and Tunisia, has been proposed to be 

a major historical barrier (Nikula 2003; Rastorgueff et al. 2014).  

The geographic history of the Mediterranean Sea suggests that species communities 

contemporarily inhabiting the Mediterranean waters can be divided into the following biogeographical 

categories: (i) temperate Atlantic-Mediterranean species;                                         (ii)  

cosmopolitan/panoceanic species; (iii) endemic species, including palaeo-endemic (Miocenic) and 

neo-endemic (Pliocenic) species; (iv) subtropical Atlantic species (interglacial remnants); (v) boreal 

Atlantic species (glacial remnants); (vi) Red Sea invasive (Lessepsian) species entering through the 

Suez Canal; and (vii) eastern Atlantic invasive species (Bianchi & Morri 2000) identified 10 

biogeographical regions in the Mediterranean according to the relative abundance of each of the 

aforementioned categories. Transition from one biogeographical zone to another results from a 



 
14 

combination of geological (orogenesis and hydrogeology), physical (present-day hydrography, 

coastal and seabed profile) and biological factors (species biology and evolutionary history), all 

contributing to shape the intra- and interspecific diversity (Figure 4).  

As well as other areas of the globe, the late Pliocene and Pleistocene glaciations – the 

occurrence of major ice-ages interleaved with short and warmer interglacial periods - largely affected 

this northern hemisphere area and shaped the current’s biogeographic patterns of its biota (Hewitt 

2000; Hewitt 2011). The first major northern hemisphere glaciation probably occurred around 2.37 

MY (Shackleton et al. 1984), and subsequent glacial cycles played an important role in shaping the 

geographic distribution of intraspecific diversity and promoting population divergence in both marine 

and terrestrial taxa. Sea-level changes were one of the most obvious impacts: during cold periods 

great quantities of water became trapped in the Polar Regions, causing major sea-level drops around 

the world. (Record & Change 2005) reports sea levels lower than 120m below present sea-level during 

LGM. These sea-level drops caused the emergence of land masses that in some cases 

(Mediterranean area) restricted or totally prevented the gene-flow between previously connected 

areas, causing population divergence. Further, glacial cycles also deeply changed sea surface water 

temperatures causing great changes in intertidal habitats and shifting species distributions, by locally 

extinguishing and/or deeply reducing many populations. The lowering of the sea-level deeply changed 

the Atlantic and Mediterranean shorelines configuration, exposing shallow areas of (nowadays) 

underwater seamounts as well as the English Channel, the North Sea, the Messina Strait, and the 

northern area of the Adriatic Sea. Slightly deeper, Gibraltar (248m) and the Sicily (330m) Straits 

remained opened waterways during glacial periods, allowing water exchanges between the Atlantic 

and the two Mediterranean basins, although through a much-reduced cross-section. During these 

glacial cycles, the Mediterranean presented a milder environment with colder (but ice-free) conditions 

and even warmer water pockets, especially in the south (Thiede 1978; Francisco et al. 2014a). Hence, 

the role of the Mediterranean as a potential glacial refugia has been profusely suggested and reported 

(Olsen et al. 2004; Maggs et al. 2008), although it’s far from consensual (Patarnello et al. 2007). 

In the Atlantic shore, these climate oscillations led to drastic changes in sea surface temperature 

(SST) (Lambeck et al. 2002) and in the location of the polar front at the Western Portuguese coast 

during glaciations. At the last glacial maximum (LGM), the European ice sheet extended southwards 

with the polar front being at the Bay of Biscay (Zaragosi et al. 2001), or even far south at the latitude 

of Lisbon, according to more conservative works (CLIMAP Project Members et al. 1984; Dias 1997). 

Species ranges became fragmented, with the populations of some species driven south and being 

restricted to isolated refugia during glacial maxima (Hewitt 2000). Although these refugia were 

predominantly located in the south, where the climate was relatively buffered against glacial cycles, 

some populations are thought to have persisted in northern refugia (for a review see Maggs et al. 
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2008). Populations of different species vary in their phylogeographic patterns, and the picture of how 

European marine fauna evolved during the Pleistocene is still incomplete. Yet, in a recent review 

based on the teleost fishes and crustaceans inhabiting Northeastern Atlantic and adjacent seas, 

(Francisco et al. 2014b) a third of the fish species analysed had a peak of genetic diversity at their 

southern distribution limit and a substantial fraction of the species showed little or no latitudinal genetic 

variation. Further, genetic structure varied widely among species, from cases where Atlantic, North 

Sea and Mediterranean seem to correspond to distinct populations, to cases where no structure could 

be detected across their entire range. Regarding the putative age of the faunal assemblies, the origin 

of populations (especially in the Atlantic) was dated mainly from the Lower to Middle Pleistocene. 

Populations with origin estimated after the LGM occur primarily in the North Sea (for cold water 

species) and Macaronesia, particularly Azores (for warm water species) (Francisco et al. 2014b). For 

thermophilic species, data seems to support the Azores colonization from Madeira (e.g. Santos et al. 

1995) with more migrants detected in this than in the reverse direction (Domingues et al. 2008). 

Madeira is in turn biogeographically connected in the Canaries, and the Canaries to Mauritania, and 

it is argued that this colonization route (together with SST) could explain why there are several fish 

species present in the tropics and in the Macaronesia islands, but not in Europe (Francisco et al. 

2014a). Actually, it is known that despite the fact that dominant average circulation reaches the 

Macaronesian archipelagos from the west, their marine littoral fauna share affinities with the 

Mediterranean and western European and African coasts (Francisco et al. 2014a). This is probably 

related to the fact that this multi-branch oceanographic system also contains coastal upwelling, 

filaments and eddies, and seasonal variations in the mean directions adding even more complexity to 

the system (Santos et al. 1995). Further, for some taxa, Azores also seems to have acted as a glacial 

refugium (Chevolot et al. 2006; Domingues et al. 2007; Maggs et al. 2008). According to several 

authors, the drop in SST throughout glaciations in the Azorean archipelago was only moderate 

(Morton & Britton 2000), allowing for the survival of temperate organisms. 

For long, the Atlantic-Mediterranean seaway was thought to be a potential barrier for gene-flow. 

However, as phylogeographic studies accumulate, it is showing to be effective only for some species, 

while others, often closely related, apparently cross it without restrictions (for reviews see (Patarnello 

et al. 2007; Kettle et al. 2011; Francisco et al. 2014a). 

Overall, if one is to sum current evidences for major phylogeographic breaks throughout this 

area (and in their border regions), they would be: 1) the separation from the Atlantic and 

Mediterranean (occurring either at the Gibraltar Strait and/or at the Almeria-Oran Front – which per-

se define an additional area); 2) the one between the Baltic and the North seas (Olsen et al. 2004); 

3) the Siculo-Tunisian Strait (separating West and East Mediterranean); 4) the Bosphorus-
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Dardanelles sill (separating the Black Sea from the Mediterranean); 4) the Pelagosa sill (dividing the 

central Adriatic Sea from the Eastern Mediterranean) and 5) the Peloponnese Peninsula, acting as a 

barrier between the Aegean-Ionian Sea and adjacent Mediterranean waters (Patarnello et al. 2007). 

The temporal Balearic Front (BF), and the Ibiza channel (IC) have only recently been studied, but 

have shown to be potential barriers for genetic flow in littoral fish species and the red gorgonian 

(Galarza et al. 2009; Schunter et al. 2011; Mokhtar-Jama et al. 2011). 

 

 

Figure 4 Atlantic and Mediterranean major biogeographic discontinuities and biogeographic sectors (following (Bianchi & Morri 2000; Nikula 
2003; Johannesson & André 2006). Biogeographic sectors within the Mediterranean appear in blue on the map (in Green the respective 
sub-regions). Thick black lines represent major well-defined historical and present day discontinuities (Flst-Trmd – Falsterbo-Travemunde, 
GS – Gibraltar Strait, AOF – Almeria-Oran Front, STS – Siculo-Tunisian Strait, PS – Peloponnese Strait, DS – Dardanelles Strait, BS – 
Bosphorus Strait) while dashed lines represent weaker but potential discontinuities (BF – Balearic Front, IC – Ibiza Channel). 

 

1.4  “OPISTHOBRANCHS” DIVERSITY AND PHYLOGENETIC RELATIONSHIPS 

1.4.1 Opisthobranchia: a convoluted taxonomic history 

Opisthobranchs are a large and diverse group of specialized complex gastropods (Figure 5) 

within Heterobranchia. “Opisthobranch” means "gills behind" (the heart), in contrast 

to Prosobranch (gills in front of the heart), as these animals are characterized by two pairs of tentacles 

https://en.wikipedia.org/wiki/Gastropod
https://en.wikipedia.org/wiki/Gill
https://en.wikipedia.org/wiki/Heart
https://en.wikipedia.org/wiki/Tentacle
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and a single gill behind and to the right of the heart. Previously united in the subclass Opisthobranchia 

(in green in Figure 5), these are now known to be paraphyletic respect to the land snails and slugs 

(Pulmonata) plus a few other groups (Bouchet et al. 2005; Schrodl et al. 2011, Jorger et al. 2011; 

Wagele et al. 2014). It is now clear that both Opistobranchia and Pulmonata (in yellow in Figure 5) 

are informal and obsolete groups. Traditional Opisthobranchia have been allocated with Lower 

Heterobranchia, lower Euthyneura, Euopistobranchia, and Panpulmonata (Dinapoli & Klussmann 

2010). 

 

 

Figure 5 a) Cladogram of the most recent deep Molluscan relationships, based on transcriptomic data, as inferred by Kocot et al. (2011); 
b) Phylogenetic relationships within Gastropoda. Euthyneura is here represented within a major group Heterobranchia (adapted from Kocot 
et al. 2011); c) (Wägele et al. 2014) presents a consensus tree for Heterobranch’s clades, with special focus in traditional Opisthobranch 
clades. In green are groups traditionally known as the Opisthobranchs, while in blue and yellow are the lower Heterobranch and 
Panpulmunata, respectively. Recently the rise of Euopisthobranchia (by Jörger et al. 2010) includes five (Cephalaspidae, Pteropoda, 
Anaspidae, Runcinacea and Umbraculoidea) of the traditional Opisthobranchia groups (in green). Numbers indicate important putative 

apomorphies (see Wägele et al. 2014 for detailed descriptions of apomorphic characters). 

 

Heterobranchia are characterized by absence of shell (or presence of a reduced one), allowing 

elaborate forms of other body parts like the head, foot or the mantle (Grande et al. 2008; Schrödl et 

al. 2011). It is further supported by other autopomorphies such as pigmented mantel organ, a medial 

position of the eyes, lack a true ctenidium, simple esophagus, distinctive sperm ultrastructure and the 

most important, a sinistral larval shell at their planktotrophic veliger stages (Haszprunar 1985; Ponder 

& Lindberg 1997). The phylogenetic relationships within the group only now start to become more 

consistent (Jörger et al. 2010; Schrödl et al. 2011; Wägele et al. 2014). Within Heterobranchia, the 

clade Euthyneura (Figure 5) includes the “traditional” groups “Opisthobranchia” and “Pulmonata” 

(Grande et al. 2004; Klussmann-Kolb et al. 2008), and has consistently been supported by ‘standard 

markers’ such as nuclear 18S and 28S rRNA and mitochondrial 16S rRNA and COI (Klussmann-Kolb 
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et al. 2008; Dinapoli & Klussmann-Kolb 2010; Jörger et al. 2010; Dinapoli et al. 2011). Nonetheless 

Euthyneura has recently been rejected by new transcriptomic data (Zapata et al. 2014). 

Euopistobranchia (group 5 in Figure 5) defines now the group of five monophyletic Opistobranch 

lineages, leaving out some "traditional" Opisthobranchs including the Nudipleura, Sacoglossa and the 

Acochlidiacea (Schrödl et al. 2011; Zapata et al. 2014).  

According to Jörger et al. (2010) Euthyneura already occurred in the Palaeozoic, with major 

radiations occurring throughout the early Mesozoic. 

To facilitate references to older works I’ll still use throughout this thesis the term Opistobranchia 

in its “broad sense”. 

1.4.2 Opisthobranchs diversity and ecology 

The origin of the Opisthobranchia is estimated between the Permian and the Triassic, with a 

rapid radiation of the higher taxa in the early to mid-Mesozoic (Klussmann-Kolb et al. 2008; Jörger et 

al. 2010; Stöger & Schrödl 2013). This is probably the case of Nudipleura, a group including 

Nudibranchia sea slugs. Yet, as the fossil record of Nudipleura is problematic due to lacking hard 

body parts, no reliable fossil record for Nudibranchia (true sea slugs) (Schrödl et al. 2011) is yet 

known. Opisthobranchs have a great diversity of body shapes and striking colour patterns, being great 

models for some topics of biological research (Todd et al. 2001) including neurophysiology (Gosliner 

et al. 2008), life-history traits (Wagner et al. 2009), ecology (Wägele & Klussmann-Kolb 2005; da Cruz 

et al. 2011), chemo-ecology (Avila 1995; Fontana et al. 2001; Blunt et al. 2012), pharmacology (Kijjoa 

& Sawangwong 2004; Fontana et al. 1999), foraging and/or defence adaptive mechanisms 

(Greenwood & Mariscal 1984; Rumpho et al. 2001; Frick 2003; Martin 2003; Aguado & Marin 2007), 

feeding adaptations and evolutionary trends (e.g. Wagner et al. 2004). 

Opisthobranchs lack structural defences (i.e. shell), and live in habitats full of potential 

predators. Despite their apparent fragility, they take advantage on sophisticated defence and feeding 

mechanisms that allow them to exploit prey hardly used by other species, while at the same time 

predators learn to avoid them (Tullrot, 1994; Wagner & Daniel, 1998). Such mechanisms include 

functional hard structures (eg. gizzard plates); physiological (such as the incorporation and usage of 

intact chloroplasts from algal cells, in Sacoglossans, or as the storage of intact cnidocysts - cells with 

one giant secretory organelle from Cnidarians by Aeolidoidea); but also biochemical, such as 

synthesizing or transforming ingested toxic compounds (Faulkner & Ghiselin 1983; Wägele 2004; 

Wägele et al. 2006; Cortesi & Cheney 2010). They feed on a wide variety of prey such as tunicates, 

bryozoans, hydrozoans, sponges, crustacean and other Opisthobranchs (McDonald & Nybakken 

1997; Wollscheid-Lengeling et al. 2001; Carriglio et al. 2004) and their diet has long been discussed 

http://www.biolbull.org/content/224/1/35.full#ref-55
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as a factor leading to adaptive radiation and speciation in many groups (Rizzuti et al. 2004; Cimino & 

Ghiselin 1999; Mikkelsen 2002; Wägele 2004; Wägele & Klussmann-Kolb 2005). 

The particular ability to predate upon chemically defended species, and efficiently storing secondary 

metabolites in special organs (mantle dermal formations; MDFs) located in the mantle characterizes 

the most speciose family of Nudibranch dorids, the Chromodorididae (Figure 6). These Nudibranchs 

are highly stenophagus – they specialize on feeding on particular species or groups, and are capable 

of biotransformation (Cimino et al. 1993; Fontana et al. 1999) and de novo synthesis of the ingested 

toxic compounds (Cimino et al. 1983; Cimino & Ghiselin 1999). While some authors render MDFs the 

role of storage of biochemical compounds from sponges in Chromodorids, and further claim them as 

key characters in their evolution and clues to their ecologic adaptive radiation (Gosliner 2001; Wägele 

2004), others show evidence that this apparent synapomorphy is widely spread in other 

Opistobranchs, with distinct diet preferences (Wagele, 1997; Wagele, 2004, Wägele et al. 2006). 

Characteristic of this family, and resulting from storage of toxic substances, are the conspicuous 

patterns and bright aposematic colours, which are interesting models for co-evolutionary studies on 

predator-prey associations (Gosliner & Behrens 1990; Rudman 1991; Pfennig et al. 2007; Pfennig & 

Mullen 2010). Nevertheless it is still uncertain if the use of new sources of food, followed by 

morphological adaptations, was the key factor in Opisthobranchs radiation or vice versa. 

 

 

Figure 6 Most recent phylogenetic status of Nudibranchia sea slugs based on morphology data (cladogram with higher taxa names used) 
(adapted from Wägele & Willan 2000; Wollscheid-Lengeling et al. 2001). 
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1.4.3 Chromodorididae 

The colourful Chromodorids are soft-bodied marine gastropods that completely lost their shell in the 

adult stage and accumulate chemical (mostly toxic) products obtained from their prey (e.g. cnidarians and 

sponges), in a series of defensive mantle glands, as their defence mechanisms (Conabio 2006). 

Chromodorids now include 16 genera and stand for the most speciose family within Nudibranchia, with 

over 300 described species (Gosliner & Draheim 1996). The group has representatives across nearly all 

world’s oceans, with the highest diversity in the Indo-Pacific basins (Turner & Wilson 2008). 

The family Chromodorididae was first described by Bergh (1891) based on the denticulate radicular 

teeth and unarmed penis. The first comprehensive revision of the family, though, was performed by 

Rudman (1984), using reproductive characters, external colouration and radular morphology. 

For many years relationships within Chromodorididae were controversial (Rudman 1984; Rudman 

1991; Ortea 1996; Valdés & Gosliner 1999; Gosliner & Johnson 1999; Turner & Wilson 2008; Rudman 

& Bergquist 2007). Several studies focused on exploring the monophyly of Chromodorididae, their 

sister group, mainly respect to Cadlina spp., as well as the relationships within. The majority of the 

molecular evidence and re-evaluated morphological data suggests Cadlina spp. should not be 

considered a member of the Chromodorididae (Turner & Wilson 2008; Johnson 2010), and they are 

now considered to be a separate family (Cadlinidae), remaining Chromodorididae being 

monophyletic. Recent studies using mtDNA data (Johnson & Gosliner 2012) and including several 

representatives of all currently described genera (14) within Chromodorididae, confirmed its 

monophyly and its sister group relationship with the Actinocyclidae. They further indicate that all the 

traditional Chromodorididae genera are either non-monophyletic, or render another genus 

paraphyletic, and that a few monotypic genera were nested within other clades, leading to a major re-

organization of species-level relationships within this group, which is now considered to be composed 

of 17 lineages (genera), 13 of which are very well supported (Figure 7). 
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Figure 7 Current phylogenetic relationships within Chromodorididae (tree from Johnson & Gosliner, 2012). Felimare is now the 
monophyletic group highlighted in blue, while remaining Hypselodoris (on the right) are clearly not their sister-taxa. Alternating greys 
remaining Hypselodoris (on the right) are clearly not their sister-taxa. Alternating greys represent distinct genera within Chromodorididae, 
with the current genera. 

 

This new phylogeny strongly supports a biogeographic scenario where Chromodorids diversified 

rapidly from the tropical Thethyan realm, a pattern that has also been found in other gastropod groups 

(Schmittner et al. 2004; Latiolais et al. 2006; Malaquias & Reid 2009; Johnson & Gosliner 2012). The 

Chromodorids were likely widely distributed and different lineages diversified in isolation following 

vicariant events. Most of the members of the group are still found in the Indo-Pacific region, while 

some diversified both in the Atlantic-Mediterranean and eastern Pacific regions. Evidences for some 

trans-Pacific dispersals, and from there to Western Atlantic exist, but need to be looked into in more 

detail. Yet, overall, relationships between Chromodorididae clades are unresolved, and current 

phylogenetic estimates are based only on mitochondrial genes. The addition of slowly evolving 

nuclear genes is fundamental in helping to resolve poorly supported nodes. 
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1.4.4 Genus Felimare 

One of the genera that was found to be paraphyletic within Chromodorididae was Hypselodoris 

(sensu), now subdivided in Hypselodoris and Felimare (Johnson & Gosliner 2012). The Felimare 

clade now includes all eastern Pacific, Atlantic and Mediterranean species of Hypselodoris and two 

species of Mexichromis - M. porterae and M. kempfi from the eastern Pacific and Caribbean 

respectively, and was found not to be sister taxa of remaining Hypselodoris (Johnson & Gosliner 

2012). There are thus two eastern Pacific and Atlantic splits in this clade: the eastern Pacific F. 

porterae and Caribbean F. kempfi are potentially sister species, and are sister to another larger clade 

of eastern Pacific, Caribbean and eastern Atlantic (and Mediterranean) Felimare species. This pattern 

seems to suggest that Felimare represents an invasion of eastern Pacific from the Indo-Pacific region, 

and that species within Felimare result from eastern Pacific – Atlantic vicariance and transatlantic 

colonization(s), but further sampling is needed to further disentangle biogeographic patterns within 

this clade (molecular data is available for less than 10 species of the 42 described. 

In the Atlantic-Mediterranean region a group of species within the genus Felimare: F. villafranca, 

F. cantabrica, F. tricolor, F. fontandraui, F. bilineata, F. orsinii and F. picta which are known as the 

‘blue mimetic circle’ (Haber et al. 2010; Blunt et al. 2012). These species have attracted interest as 

models to study colour evolution, aposematic mimetism (Lindström et al. 2004); predator-prey 

interactions (da Cruz et al. 2011); biotransformation of prey toxic compounds (Cimino et al. 1993; 

Feliciano 2009) and reproductive ecology (e.g. Sánchez-Tocino, 2003; Coelho & Calado, 2010). The 

“blue mimetic circle” is an example of Müllerian mimicry (where all the mimic species have a defense 

mechanism). Underlying the obvious aposematism, is the presence of food-derived, feeding-deterrent 

terpenes in the mantle formation glands (MDFs), or simply in the mantle border of some species, most 

probably derived from sponges of the genus Dysidea, upon which they feed (Haber et al. 2010). 

Felimare species are characterized by their dark-bluish background dyed by one or more lines 

and/or dots of white and/or yellow colours (Ortea 1996; Sánchez-Tocino 2003) (Figure 8). 
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Figure 8 a) Morphologic characterization of six adult species of “blue” Felimare (from Calado & Silva, 2012). For each species distinctive 
characters such as the rhinophores, dorsum, lateral banding and branchias are shown (adapted from (Calado & Silva 2012). 

 

Exceptions to the typical coloration patterns are not rare in this group, generally varying with size of 

the individual and geographic location (Sánchez-Tocino 2003). For instance, F. picta from the 

Mediterranean coasts are light-blue pale, while F. picta from Azores islands are of dark-green and 

violet background (Ortea et al. 1996). Additionally, ontogenetic changes occur, for example in F. 

fontandraui, with colours becoming more intense, from white, to yellow and in some exemplars even 

orange, as the individual becomes more mature (Ortea 1996; Sánchez-Tocino 2003). Additional 

morphological aspects, such as the size and distribution of the mantle glands, and their large seminal 

receptacle (Gosliner & Johnson 1999) are also useful to distinguish these species from their Western-

Atlantic congeners (Ortea 1996; Sánchez-Tocino 2003).  

These species inhabit in partial sympatry and are typically found in the rocky bottoms (up to 

30m bellow sea-level but mostly at shallow depths) of the Atlantic and Mediterranean marine coasts, 

including the Macaronesian archipelagos.  

Little is known about the ecology of these organisms, except that they feed mainly upon sponges of 

genus Dysidae (the only exception being F. orsinii, which feeds upon the sponge Cacospongia 

mollior) (Ortea 1996; Sánchez-Tocino 2003). Similarly to other nudibranchs, these organisms are 
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simultaneous hermaphrodites with internal fertilization, releasing large amounts of benthic egg strings, 

with a general slow embryonic development (Rudman & Willan 1998) and short term free swimming 

veliger larvae (Coelho & Calado 2010). Exceptions are F. villafranca, which is a direct developer 

(Coelho & Calado 2010), and F. orsinii, whose reproductive strategy is still unknown.  

The distribution of these species varies, from widely distributed - F. picta; inhabiting both sides of the 

Atlantic plus the Macaronesian islands - to more restricted ranges - F. orsinii; only present in the 

Mediterranean. Their approximate distributions are shown in Figure 9. Especially concerning some 

most widely distributed species (e.g. F. picta and F. bilineata), it has been hypothesized that they may 

in fact harbour distinct, cryptic species (eg. Felimare lajensis) described like F. picta lajensis by 

Troncoso et al. 1998 for Southwest Atlantic),  (Ortea et al. 1996, Sánchez-Tocino, 2003). Additionally, 

some phenotypes of unclear affinities have been observed such as F. malacitana – a species 

described from Southwest Spain by Ortea et al. (1996), proposed to be related to F. cantabrica but 

bearing also resemblances to F. bilineata. Further, these species constitute interesting models for 

studies of phylogeography in marine waters as they 1) have limited mobility as adults, and therefore 

potential factors affecting patterns of genetic structure will be expected to partially act upon larval 

dispersal; 2) despite limited dispersal abilities, species are capable of colonizing vast areas and 

apparently cross major oceanographic barriers; 3) they present both planktonic and direct 

development reproductive strategies; 4) they are found conspicuously in the East Atlantic and 

Mediterranean rocky habitats inhabiting from shallow shores to deeper areas; 5) they have largely 

sympatric distributions, allowing for multiple comparisons across main biogeographic barriers. 
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Figure 9 Approximate distribution (blue line) of the seven EAM species of the genus Felimare (based on (Ortea 1996; Sánchez-Tocino et 
al. 2014) Crocetta et al. 2015; Oskars et al. 2015). 

 

1.5 THE LACK OF GENOMIC RESOURCES FOR MOLLUSCA 

Over 95% of metazoan species are invertebrates and yet, few invertebrate genomes have been 

sequenced. For molluscs, a major invertebrate group, there is a surprising lack of genomic resources. 

In fact, non-insect, non-nematode (which have their own dedicated genome sequencing consortiums) 

invertebrates are recently being paid more attention (GIGA community of scientists, 2013), 

highlighting the fact that only a few genomes from a few groups are available. Gastropod molluscs, 

with approximately 62 000 listed species (the highest diversity Mollusca clade), and very old 

divergences are surprisingly under-represented. There are five currently finished/ongoing mollusc 

genome projects, mostly bivalves. Aplysia californica, the single gastropod genome sequenced, may 

be more than 250 MY old divergent from Chromodorid Nudibranchs such as our study group (Jörger 

et al. 2010). Thus, genomic data is a valuable tool to foster exploration and comparative analyses 

within this group. 
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1.5.1 The need of multiple markers for phylogenetic / phylogeographic inference 

A major step for accurate delimitation of species and correct estimation of phylogeny is the 

choice of a useful marker or set of markers. Mitochondrial markers are classically the first to be used, 

because of their easy amplification and because they provide insights into species or populations 

relationships, as their maternal inheritance results in smaller effective population sizes and hence a 

faster fixation of neutral mutations, generally telling a recent dispersal history. At the same time 

mitochondrial DNA can also be useful at deeper phylogenies, because it’s assumed lack of 

recombination (Ballard & Whitlock 2004). On the other hand nuclear markers represent independent 

(unlinked), not sex biased, and recombining sites; which provide powerful information respect to 

population sizes, ages of divergence, and speciation history (Edwards & Beerli 2000).  

Phylogeneticists and phylogeographers have been working to collect multilocus data ever since 

a series of theoretical papers demonstrated that estimates of key demographic parameters improve 

as the number of loci increases (Edwards & Beerli 2000; Hey & Nielsen 2004; Felsenstein 2006; 

Carling & Brumfield 2007; Ilves et al. 2010). Also in phylogenetics, where the tradition of equating an 

estimated gene tree with the history of species divergence has for long predominated, the lessons 

learned in phylogeography about the inherent benefits of explicitly considering the stochasticity of 

genetic processes, led to the development of coalescent based approaches (Liu & Pearl 2007; Heled 

& Drummond 2008; Kubatko et al. 2009), with the focus changing to obtain data from multiple loci and 

multiple individuals per species or population, and using this data to obtain a direct estimate of the 

history of divergence - the species-tree – as opposed to focusing on the idiosyncrasies of individual 

gene trees (Carstens & Knowles 2007; Carstens & Richards 2007; Belfiore et al. 2008; Brumfield et 

al. 2008; Kubatko et al. 2009). Multigene analyses have now become the baseline in phylogeny and 

phylogeography, with both the number of loci and individuals dramatically increasing over the past 

few years (Garrick et al. 2010).  

Yet, phylogenetic (and many phylogeographic) studies in molluscs are still mainly based on single or 

a few set of mtDNA and nuclear (mostly COI, 16S rDNA, trnL and trnV for mtDNA and 18S, 28S, and 

H3-histon for nuclear) (Grande et al. 2004; Malaquias & Reid 2009; Schrödl et al. 2011) while a few 

(mostly recent) studies include complete mitochondrial genomes (Medina et al. 2011) and RNA-seq 

data (Kocot et al. 2013; Zapata et al. 2014; Williams et al. 2014). In fact, recent analyses of multiple 

nuclear protein-coding genes yielded well-supported topologies, and further convincing frameworks 

of mollusc evolution, development and anatomy (Kocot et al. 2011; Smith et al. 2011; Vinther et al. 

2012). A major pitfall in these studies is that only deep molluscan relationships are reviewed, and yet 

no study has focused on resolving relationships between lower-level taxa. 
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1.5.2 Next-Generation sequencing for phylogenetics and phylogeography 

Next Generation Sequencing (NGS) is nowadays the standard technology for the obtention of 

large-scale data for comparative genomic analysis (Künstner et al. 2010), and has made the 

acquisition of multi-marker datasets highly feasible (Thomson et al. 2010). New approaches allow 

highly covered, fast and easy reconstruction of small genomes (Groenenberg et al. 2012), as well as 

a representative part of whole genomes and transcriptomes (e.g. Hou et al. 2011; Zhang et al. 2012), 

overcoming laborious techniques in the laboratory (J. A. Terrett et al. 1996; Grande et al. 2008; 

Medina et al. 2011). Moreover high throughput sequencing allows us to obtain all kinds of molecular 

markers, and in a large number (e.g. SNPs, SSRs, coding and non-coding regions) (Davey & Blaxter 

2010; Hohenlohe et al. 2010; Hou et al. 2011; Zhang et al. 2012). Techniques of genome reduction, 

such as restriction-based, target enrichment or transcriptome sequencing are particularly useful when 

the goal is a matrix of loci/variable positions for phylogenetic and phylogeographic studies 

(Mccormack et al. 2013). Choosing a suitable technique though, highly depends on the number of loci 

desired, bioinformatic capability available, and whether a specific set of loci of known function is 

desired (Rocha et al. 2013). 

In molluscs the application of high throughput sequencing has been progressively increasing, with 

next generation sequencing data being recently used to confirm both old (Euthyneura) and newer 

(e.g., Nudipleura, Tectipleura) groups (Zapata et al. 2014). At the same time, Williams et al. (2014) 

challenged the idea that mitochondrial genome data was unable to resolve deep relationships within 

Mollusca (e.g. Stöger & Schrödl 2013), using powerful new models of amino acid evolution, and 

increased taxon sampling, from high throughput data. 

1.5.3 Transcriptome sequencing and marker obtainance 

Transcriptome sequencing is an efficient means of genome reduction, and especially useful in 

groups where other “genomic” information is inexistent (McCormack et al. 2013). As the name 

indicates, RNA-seq is a next-generation sequencing technique that only targets transcripts. It begins 

with RNA extraction, followed by reverse transcription of RNA into cDNA, and DNA sequencing for 

the organisms/group/tissue of interest (Rocha et al. 2013). It offers notorious advantages over 

genome data, from their tractable size (significantly smaller than genomes) to facile assembly with 

intuitive software (Zerbino & Birney 2008; Simpson et al. 2009; Shipp 2010; Henschel et al. 2012). 

Moreover, the presence of fewer repetitive elements in transcripts, and the availability of functional 

information at public databases makes their assembly easier (Grabherr et al. 2011). 
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Hundreds of orthologous genes can thus be recovered without necessarily having an available 

genome of a closely-related species, enabling robust phylogenomic analysis. Loci matrixes built 

directly from RNA-seq data have been used to resolve deep mollusc phylogenies (Kocot et al. 2011; 

Smith et al. 2011) and the enigmatic position of Myzostomida in the tree of life (Hartmann et al. 2012), 

for example. They have also been used for lower‐level phylogenies, either using assembled 

transcripts directly (Hittinger et al. 2010), or for development of population-level amplicon markers 

(Schultheis et al. 2014), as well as having being mined for SNP’s in a wide variety of species (e.g. 

Barbazuk & Schnable 2011; Geraldes et al. 2011). On the other side, the applicability of using directly 

the transcripts for inference of shallow phylogenies seems not so well explored. 

Further, transcriptomes also potentiate analyses at functional level, such as gene discovery and 

expression (Domingues et al. 2008; Clark et al. 2010), microRNA and piRNA detection (Martin & 

Wang 2011), detection of loci under selection (Elmer & Meyer 2010), and their functional annotation 

(Schwarz et al. 2009; Rocha et al. 2013), with important downstream implications. For example, by 

sequencing ten transcriptomes across five invertebrate phyla, Riesgo et al. (2012) recently shown 

how effectively low coverage transcriptome data can recover gene-sequences, compared to available 

genomes of closely related species, and further provided evidence for the existence of multiple 

paralogues in all phyla and in nearly all gene pathways, including in housekeeping genes that are 

traditionally used in phylogenetics for their purported single-copy nature. 

1.5.4 Optimizing de-novo assembly of short-read RNA-seq data for 

phylogenomics 

Using short-read RNA-seq data either directly for phylogenomic inference, or for marker survey, 

has its unique challenges, both analytical and computational: error, incompleteness and redundant 

assembled transcripts (due to skewed expression and/or the assembly of different isoforms of the 

same gene) cause large amounts of missing data in any aligned matrix (Zhao et al. 2011; Yang & 

Smith 2013).  

As the study of non-model organisms becomes more and more popular, de novo transcriptome 

assemblers are also becoming more common, and exist on a variety of software packages, each one 

with their own particularities for assembling and filtering data (Robertson et al. 2010; Yang & Smith 

2013). Choosing the best assembler for the intended downstream applications is thus of utmost 

importance (Yang & Smith 2013). Trinity, for example, is a de novo assembly package for short-read 

RNA-seq data that is user-friendly, and works well both on small and large datasets across various 

conditions, recovering full-length transcripts with good statistical confidence. Conversely it has been 

found to be time- and memory-consuming, and standard parameters cannot be changed when 

compared to other assemblers like Oases or Trans-ABySS (Zhao et al. 2011). 
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Several steps are to be taken for preparing short read RNA-seq data to phylogenomic inference. 

Besides the standard pre-assembly steps (to eliminate low quality reads and remainder primer and 

barcodes from flanking regions), some post-assembly filtering steps are needed, especially focused 

on diminishing the amount of redundancy in the assembly. The required post-processing may differ 

depending on the assembly methodology used (Yang & Smith 2013). 

Basically, most transcriptome assemblers are “hierarchical”, resulting in a set of “loci” or 

“components”, consisting of one or more “transcripts” or “isoforms”. Biologically a locus or a 

component can each contain one gene or several paralogs, and a single gene can have fragments 

distributed among multiple loci or components. All published de novo transcriptome assemblers are 

optimized for building references for comparing gene expression levels, identifying splice variants, 

and determining gene-fusion events (Robertson et al. 2010; Grabherr et al. 2013). For phylogenomic 

purposes however, only one representative transcript per gene is required. Splice variants are not 

only unused as they complicate the detection of true paralogs for the construction of the phylogenomic 

matrix (Yang & Smith 2013). Common strategies to deal with this problem are choosing the isoform 

with the highest geometric mean read coverage (Smith et al. 2011), the highest (overall) coverage or 

the longest one (trinity online material). Another issue in de novo transcriptome assembly is the 

creation of chimeras (either resulting from the misassembly of short-reads or PCR-induced 

recombination during library preparation – false chimeras – or being real biological products from 

gene-fusion or trans-splicing events). 

Yang & Smith (2013) recently examined the extent of these problems in several de novo 

assemblers, providing some strategies for optimizing transcript choice for phylogenomic analyses, 

that were mostly followed along this work. Shortly, they involve: 1) selecting highly covered isoforms 

for reducing redundancy; 2) further merge “loci” based on overlap and percentage of identity; and 3) 

blast against reference coding sequences for chimera removal. The importance of this last step 

depends on the assembler used, as the type and frequency of chimeras varies dramatically among 

assembly strategies.Overall, at current standard sequencing depths, de novo assembly of short read 

RNA-seq data is shown to be capable of recovering up to half of the total expressed genes to more 

than 200 bp, and that after appropriate filtering steps, the products of most of the currently used 

assemblers result in clean assemblies with lower redundancy and chimera rates. 
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1.6 THESIS AIMS 

A group of Chromodorididae sea slugs, recently rised to the genus level - Felimare - inhabits 

the Eastern Pacific, Atlantic and Mediterranean waters being particularly abundant and known for 

their chemical defensive strategies and beautiful coloration patterns that fascinate the curious divers. 

Problems of identification in this group exist potential cryptic species have been suggested based on 

morphological data, although have never been confirmed. Moreover, no reliable estimate exists of 

their phylogenetic relationships. Because to resolve phylogenetic relationships between closely 

related species most often requires a considerable amount of multilocus data, goals of this thesis 

were two-folded: 

1) to obtain and use mtDNA data to infer their mtDNA phylogeny and explore phylogeographic 

patterns of the Eastern Atlantic-Mediterranean species of the genus, and; 

2) to generate RNA-seq data and perform de novo transcriptome assembly of representative 

species within the genus, so they can be later mined for nuclear markers to be employed on future 

phylogenetic inferences.  

 

More specifically, goals of this work were: 

1) To Characterize these species phylogeographic patterns;  

2) To use mtDNA to infer the phylogeny of the group;  

3) To access the quality of these newly obtained transcriptomes, annotate them, and compare 

them with published ones of other mollusc species; 

4) To obtain a set of ortholog loci that can be further used for nuclear markers development. 
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Chapter 2 Material & Methods 
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2.1    MITOCHONDRIAL DNA PHYLOGENY AND PHYLOGEOGRAPHY OF ATLANTIC-

MEDITERRANEAN SPECIES OF FELIMARE 

2.1.1 Sample collection, DNA extraction, amplification and sequencing 

Sample collection was conducted by standard scuba diving in open sea between 2008 and 

2014, both by our team and collaborators, across different seasons. Samples were collected at 

several points along the Iberian and Mediterranean shores, plus some Atlantic islands, trying to cover 

as much as possible the distribution of the species of interest in this region (Figure 10). Specimens 

were identified by external morphological characters (mainly dorsal coloration patterns), in agreement 

with Ortea et al. (1996). Dorsal and dorso-lateral photos of all individuals were taken whenever 

possible. All specimens were preserved in RNAlater and 99% ethanol (a tissue aliquot). 

 

 

Figure 10 Map showing the sampling localities. Black dots represent localities where samples were collected: 1 San Sebastián; 2 Ferrol; 3 
Vigo; 4 Sesimbra; 5 Alentejo; 6 Sagres; 7 Ria Formosa; 8 Cádiz; 9 Gibraltar, 10 Chafarinas; 11 Menorca island; 12 Barcelona; 13 Girona; 
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14 SW France; 15 - 20 Italy; 21 Kotor bay, Montenegro; 22-24 Greece; 25 Morocco; 26 Madeira; 27 Cabo Verde; 28 S. Tomé e Príncipe. 
In some localities more than one sampling point exists (see details in Supplementary Table 1). 

 

DNA was isolated from a small piece of muscle tissue using the NZY Tissue gDNA isolation kit 

(NZYTech) following manufacturer's instructions. A 658 bp fragment of mtDNA cytochrome oxidase I 

(COI) was initially targeted using universal primers LCO1490 and HCO2198 (Yao et al. 2010). 

However, the resulting amplification products were not always specific, so a new set of internal 

primers (605 bp) were designed specificcally for F. cantabrica and F. villafranca (LCO-Fel 5' GCT 

TYT KGG TAT RTG GTG TGG and HCO-Fel 5' AAATCA AAA CAG ATG TTG RTA RAG AA). These 

primers also worked well across all the Felimare species included in our study. 

PCR amplifications were carried out with an initial denaturation step at 95 ºC for 5 min, followed 

by 35 cycles of denaturation at 95 ºC for 30s; annealing at 50 ºC (“old” primers) or 54 ºC (“new” 

primers) for 30s; extension at 72 ºC for 45s; and a final extension step at 72 ºC for 5 min. Amplification 

products were directly purified using a standard enzyme procedure and sequenced on an ABI 3130xL 

automated capillary DNA sequencer. DNA extractions, amplifications and sequencing were 

outsourced to AllGenetics laboratory SA (Coruña, Spain). Amplified fragments were sequenced in 

both strands, and electroferograms were checked by eye, in Chromas 2.22 (Technelysium Pty. Ltd., 

Helensvale, Australia), edited and manually aligned using GeniousPro v.6.0.8 

(http://www.geneious.com, Kearse et al. 2012). Sequences were translated to confirm the absence of 

premature stop-codons that could indicate nuclear copies or erroneous sequencing. 

2.1.2 Phylogenetic analyses: gene-tree and species-tree inference 

The 605bp COI fragment was amplified for a total of 302 individuals. Sequences from our newly 

sampled specimens were aligned with seven more sequences of WA Felimare species and eight 

more from Hypselodoris, Mexichromis, and Roboastra (outgroups), already available on GenBank 

(Supplementary Table 2). The final dataset yielded 317 individuals. 

Two representatives of genera Mexichromis and Hypselodoris, (sensu Johnson & Gosliner 

2012) plus Roboastra europea were included in the analyses (See Supplementary Table 2), as 

outgroups.  

For COI gene-tree inference, the dataset was collapsed to haplotypes using ALTER (Glez-Peña 

et al. 2010). PartitionFinder (Lanfear et al. 2012) was used to choose the optimum partitioning scheme 

scheme  - using codon positions as possible data-blocks - and substitution models with, under the 

AICc criterion. Maximum-likelihood (ML) and Bayesian (BI) phylogenetic analyses were conducted in 

PhyML (Guindon & Gascuel, 2003) and MrBayes v.3.2.2 (Ronquist et al. 2012) respectively. A single 
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model was applied to the whole alignment (GTR+I+G) according to PartitionFinder results. ML was 

carried out with 1000 bootstrap replicates, and BI markov chains were run for 11 million generations. 

In both analyses model parameter values were treated as unknown and estimated along the runs. 

Two runs with four independent chains (with default heating values) were implemented, and checked 

for convergence and consistency using AWTY (Nylander et al. 2008). The analysis of clade’s posterior 

probabilities (PP) across generations was used to decide the appropriate burn-in, and both runs were 

summarized in a single 50% majority-rule consensus tree. 

I also estimated a species-tree after removal from the whole dataset of a few individuals (marked with 

asterisk, at Supplementary Table 2) for which mtDNA did not match morphology plus the outgroup 

species, Roboastra europea, in order to avoid out-group rooting. The species-tree was estimated 

under the multispecies-coalescent model as implemented in the module *BEAST (Star-Beast) (Heled 

& Drummond 2010) of the BEASTv.2.1.3 package (Bouckaert et al. 2014). *BEAST estimates jointly 

the gene and species-trees, and even for single-gene analyses it can provide an accurate assessment 

of uncertainty in the species-tree estimate, including better estimates of species divergence times, 

than the gene-tree itself (Drummond et al. 2012). The model of sequence substitution used was the 

same estimated for the dataset of haplotypes. Divergence times were estimated assuming an 

uncorrelated lognormal relaxed molecular clock model (Drummond et al. 2006), a Yule tree prior on 

the species-tree, as well as a population size model of continuous growth with a constant root. 

Because no specific mitochondrial molecular clock estimate exists for nudibranch molluscs (Hallas & 

Gosliner 2015), I obtained rough estimates of divergence times between sister groups in years using 

a teguline gastropod COI molecular clock calibrated upon the Isthmus of Panama (Hellberg & 

Vacquier 1999). The mtDNA substitution rate was thus set to a normal distribution of mean 1% and 

standard deviation of 0.1%. Default values were used for all other parameters. Two runs of 50 million 

generations each were performed, sampled each 5000. To test the influence of the priors on the 

posterior estimates, an additional run of identical length was made without data, sampling only from 

the prior. Tracer v1.6 was used to visualize the results of each run, to check the effective sample size 

of each parameter and to choose appropriate burn-in values. After discarding 10% of burn-in samples, 

a consensus species-tree (Maximum Clade Credibility tree), with median node heights was obtained 

using TreeAnnotator v1.8.2 (from the BEAST package) and visualized using FigTree v1.4.2 (Rambaut 

2009). Species-tree distributions were also visualized using Densitree (Bouckaert 2010). 
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2.1.3 Intraspecific DNA variability and genetic structure 

Because the level of divergence within each species was generally low, intra-specific diversity 

for the Atlantic-Mediterranean species was represented using median-joining (MJ) haplotype 

networks (Bandelt et al. 1999) obtained with the NETWORK software (Fluxus Engineering, Suffolk, 

UK). Networks of interconnected haplotypes represent the evolutionary relationships and gene 

genealogies within species usually better than the bifurcating patterns usually recovered by methods 

of phylogenetic inference (Posada & Crandall 2001).  

Additionally, DnaSP (Rozas et al. 2003) was employed to calculate genetic variability across 

and within species, following geographic criteria, when more than two sequences were present, 

regarding each partition. Samples from Morroco and Menorca 

 A series of summary statistics were calculated: haplotype and nucleotide diversity, number of 

segregating sites, and population mutation parameter θw, for each geographic partition of the data. I 

also tested for non-neutral evolution by computing Tajima’s D (Tajima 1989), as well as signals of 

demographic expansions by calculating (Fu 1997) and R2 (Ramos-Onsins & Rozas 2002), regarding 

each geographic partition. Their significance was accessed with 10.000 coalescent simulations, under 

the hypothesis of selective neutrality and population equilibrium.  

The average distance between geographic partitions (Dxy) was calculated within species, 

when more than two sequences were present in each partition. The uncorrected p-distance was 

applied every time the minimum genetic distance between two species had to be estimated. These 

analyses were performed in  MEGA v.6.0 (Tamura et al. 2013). 

 

2.2 TRANSCRIPTOME ASSEMBLY FOR MARKERS SURVEY IN TWO NON-MODEL 

SPECIES: F. VILLAFRANCA AND F. CANTABRICA 

Transcriptomes were obtained from single F. cantabrica (OP0014) and F. villafranca (OP0031) 

individuals. 

2.2.1 RNA extraction  

Individuals were frozen after collection, and small pieces of the foot (muscle) were cut about 0.5 

cm of length and stored in RNAlater according to manufacturer’s instructions. 
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RNA extractions and cDNA library construction were outsourced to AllGenetics & Biology 

laboratory SL (A Coruña, Spain). In short, total RNA was extracted from each sample, using the 

TRIzol method (Gayral et al. 2011), according to the manufacturer’s instructions. Samples were 

separately disrupted using a mortar and a pestle under liquid nitrogen, and 1 mL of TRIzol solution 

was added to the ground sample. 200 μL of chloroform were then added and the suspension 

centrifuged at 12000 rpm for 15 min. The upper phase containing the RNA was recovered, mixed with 

cold isopropanol and centrifuged at 12000 rpm for 10 min. The supernatant was discarded and the 

pellet washed with 75% ethanol. Finally, the pellet was re-suspended in 25 μL of nuclease-free water 

and incubated at 58ºC for 15 min to facilitate re-suspension. The RNA solution was treated with 

DNase and samples were run on an Agilent 2100 Bioanalyzer to check for RNA integrity and 

concentration. 

cDNA libraries were constructed for each individual using the Illumina TruSeq RNA Sample 

Preparation v2 Kits following the manufacturer instructions. The procedure includes the purification of 

the mRNA of the mRNA by oligo-dT hybridization, fragmentation and reverse-transcriptase (RT) PCR. 

The new cDNA strands were then subjected to an end repair process, with the addition of single “A” 

nucleotide to which Illumina’s specific adaptors and indexes were added.  cDNA libraries (300 bp) 

were amplified and sequenced at Macrogen Inc. on the Illumina HiSeq 2000 platform, for around 70M 

of 150bp lenght paired-end reads each sample. The paired-end reads were obtained through the 

Illumina Pipeline (CASA-VA) v1.8.2. The Fastq quality encoding method used was Sanger Quality 

(ASCII Character Code = Phred Quality Value + 33). 

2.2.2 QC and filtering of sequencing data 

The quality of the reads generated by Illumina sequencing was assessed with the FastQC 

software v.0.10.1 (Andrews 2010). Based on a visual inspection of the FASTQ files (two per sample), 

raw reads were then cleaned using Trimmomatic v. 0.27 (Bolger et al. 2014) removing left-over 

adaptors and primers and reads smaller than 65 bp. After the quality control step, only paired reads 

were maintained for subsequent analyses. 

2.2.3 Transcriptome assembly and post-processing 

For each species de novo assembly of the transcriptome was carried out with the Trinity 

software v.1.7.1.14 beta (Grabherr et al. 2011), using default parameters and the protocol from Haas 

et al. (2013). Trinity was specially developed for de novo transcriptome assembly of short-read RNA-

seq data, with or without reference genome. This assembler is comprised of four consecutive modules 

(or software programs), respectively: Jellyfish, Inchworm, Chrysalis and Butterfly (Figure 11), running 
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in series through a single Perl script (Trinity.pl, by Yang & Smith, 2013), and efficiently recovering 

transcripts (=”contigs”), clustered in “components” (Grabherr et al. 2011; Zhao et al. 2011). 

Components can thus contain more than one transcript (or contig) which may represent allelic 

variation, paralogs and/or isoforms. 

Trinity stat’s script (Grabherr et al. 2011) was used to report the number of transcripts, number of 

components, the transcripts average contig length and the N50 value (defined as the maximum lenght 

whereby at least 50% of the total assembled sequence is equal of bigger than that). The largest and 

smallest transcripts, as well as the total, median and average sizes were also calculated. 

As a proxy to access the quality and completeness of the transcriptome assembly, CEGMA 

(Core Eukaryotic Genes Mapping Approach) (Parra et al. 2007) was applied. This procedure identifies 

a protein set consisting of 248 core proteins that generally lack paralogs in eukaryotes (Parra et al. 

2007; Tatusov et al. 2003). Default CEGMA parameters were used for the analysis.  

To reduce the redundancy of the dataset and to identify representative isoforms within each 

component (~loci), I mapped the raw reads to the assembled transcripts using RSEM (RNA-seq by 

Expectation Maximization) (Li & Dewey 2011). From the transcripts coverage by raw reads, RSEM 

can accurately estimate the relative abundances of isoforms within single genes (here equivalent to 

components) (Li & Dewey 2011). Following Yang & Smith (2013), only the isoforms with the highest 

coverage (highest IsoPct) within each sub-component were retained. These are the ones that better 

correlate with real transcripts, with the longest ones often being chimeras (Yang & Smith 2013). A 

combination of supplied (Trinity-pickH.pl; by Yang & Smith, 2013) and in-house scripts were used to 

estimate these sequences and collect them into a single fasta file. 
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Figure 11 Trinity workflow. Trinity is comprised of four modules: Jellyfish (a fast and memory-efficient counting of k-mers, also known as 
substrings of length k), Inchworm (reads k-mers, constructs a k-mer dictionary and sorts k-mers by abundance, extending sequences until 
dictionary is exhausted), Chrysalis (clusters minimally overlapping contigs into sets of components, and constructs de Bruijn graphs for 
each component) and Butterfly (reconstructs feasible transcripts which in most cases will correspond to alternative splicing of the gene 
product). Image adapted from Haas et al. (2013). Butterfly (reconstructs feasible transcripts which in most cases will correspond to 
alternative splicing of the gene product, sometimes giving rise to additional divisions of components, i.e., subcomponents). 

 

2.2.4 Annotation 

Accessing the validity, coverage and quality of transcriptomes requires the comparison of the 

assembled contigs to other genomes. Contigs of all sizes from each assembly were first blasted 

against the NCBI nr database, with a threshold E-value of 1e-6. Contigs with blast hits were then 

functionally annotated using Blast2GO v.2.5.0 (Conesa et al. 2005). Because reliable inference of 

function depends on the length and quality of the query sequence, only sequences over 200bp and 

with an Isoform percentage (IsoPct) over 15% were considered. The maximum length allowed by 

Blast2GOv.2.5.0 is 8000 bp, so sequences above this size were translated into all 6 possible reading 

frames, and consequently blasted by hand. 
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2.2.5 Mitochondrial genome reconstruction 

I attempted to recover and fully assemble the mitochondrial genome of both species after the 

main assembly by Trinity using two approaches: 1) blast to other mollusc mitochondrial genomes to 

recover relevant contigs followed by their “manual” assembly and 2) using MITObim (Hahn et al. 

2013).  

 For the manual assembly in-house scripts were used to collect a list of all existing mollusc 

complete mitochondrial genomes available in Genbank. The resulting fasta file was used to build a 

(target) database to which the assembled contigs of both transcriptomes were blasted (blastn;             

E-value threshold of 10-6). Positive hits were first separated into tRNAs and coding regions, and 

aligned to the complete mitochondrial genome of Chromodoris magnifica, using GeniousPro v.6.0.8 

(http://www.geneious.com, Kearse et al. 2012). The MITOS web server (Bernt et al. 2013) was used 

in all contigs with hits to transfer RNAs (tRNAs) regions, and for some unspecific alignments of genes, 

in order to confirm their annotation as tRNAs. The MITOS web server (Bernt et al. 2013) was used in 

all contigs with hits to transfer RNAs (tRNAs) regions, and for some unspecific alignments of genes, 

to confirm their annotation as tRNAs. Nucleotide alignments were generated using the amino acid 

alignment as a template in GeniousPro v.6.0.8 (http://www.geneious.com, Kearse et al. 2012). The 

nucleotide and amino acid composition were also estimated in GeniousPro v.6.0.8 

(http://www.geneious.com, Kearse et al. 2012). 

For the MITObim assembly QC filtered read pools were used, converted to “interleaved” format 

(where forward and reverse reads appear successively in the same file) and partitioned into smaller 

files of 10 million reads each. For each species, 3 files of 10 million reads were randomly chosen and 

used, at a time, to automatically reconstruct the mitochondrial genomes. As part of the MITObim 

pipeline both transcriptomes were used independently as inputs to MIRA v.4.0.2 (Chevreux et al. 

1999) with C. magnifica mitochondrial genome as reference. Default parameters were used. The 

Tablet (Milne et al. 2013) software was used to check the read coverage along the assembled 

mitogenome. Coding and non-coding regions matching the C. magnifica reference genome were 

consequently confirmed with the MITOS web server (Bernt et al. 2013). 

The assembled mitogenome was then manually inspected for repeats at the beginning and end 

of the assembly to infer circularity. 
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2.2.6 Detection of mtDNA contamination and further contamination filtering 

In the process of recovering and assembling mitochondrial contigs, Amphibian (Epidalea 

calamita) mtDNA was detected (see Results). In order to determine the extent of the contamination 

in the RNA-seq data, and (tentatively) filter it out, a series of blasts searches and filters were applied. 

Based on the blast hits species distribution from the Blast2GO analyses (see Results) a 

database was built (Table 1) comprising the coding regions of the genomes of species for which a 

high number of hits existed in both Felimare transcriptomes (which were largely the same), the 

complete genome of the Amphibian Xenopus laevis, two complete mitochondrial genomes of genera 

closely related to Felimare (genera Notodoris and Chromodoris), and also two species of Bufo (now 

subdivided in several genera, including Epidalea – Frost et al., 2006), as well as several 18S and 28S 

sequences of representatives of Euthyneura (18S) and Opistobranchia (28S). Unpublished 

housekeeping (Beta-actin; Elongation-factor-2; Annexin-2 and GAPDH) and 18S sequences of E. 

calamita (Ylenia Chiari and Nina Séren, pers. comm.) were also included in the database, as well as 

Homo sapiens complete coding regions. Additionally, mitochondrial contigs from Felimare (OP0014) 

and Epidalea (both recovered from the Felimare transcriptome assemblies) were used as controls. 

All data was downloaded from NCBI or Ensemble on July 2014, and the most recent available coding 

regions annotations were used in the case of genomes. 

Both blastN (against nucleotide databases) and tblastX (translated queries against protein databases) 

searches were performed, using both transcriptomes separately as queries, recovering all hits of each 

query sequence. Minimum E-values were set to 1e-6 for both analyses. The number of hits per query 

sequence was analyzed, as well as the distribution of the hits per species and taxa group. Contigs 

with blast hits unique to mollusc/non-vertebrata species were recovered from the assemblies to be 

used for marker survey. 
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Table 1 List of species and respective markers used to evaluate the existence/absence of contamination on the assembled transcriptomes. 

 

a: refers to sequence ID from current assembly, GenBank or Ensembl accession numbers 
b: refers to annotation release version (NCBI) of RNA files used 
c: In the case of Brachiostoma floridae only aminoacids (predicted coding regions) fasta was available at the time. 

 

 

 

 

 

Genetic marker Genus Species Genome ID/ Genbank Acession Number 

Contig (control)   

Epidalea E. calamita OP14_35204_c0_seq2 

Felimare F. cantabrica OP14_61774_c0_seq1 

Felimare F. villafranca NCBI ARb 100 

Genome (cDNA)  

Aplysia A. californica NCBI ARb 100 

Saccoglossus S. kowallevski NCBI ARb 101 

Lottia gigantea L. gigantea GCA _000327385.1 (Ensembl) 

Crassostrea gigas C. gigas GCA_000297895.1 (Ensembl) 

Capitella C. teleta GCA_000328365.1 (Ensembl) 

Strongylocentrotus S. purpuratus GCA_000002235.2 (Ensembl) 

Danio D. rerio NCBI ARb 103 

Oreochromis O. niloticus NCBI ARb 101 

Chrysemis Chrysemis picta NCBI ARb 100 

Branchiostoma B. floridae NCBI NZ_ABEP00000000c 

Xenopus X. tropicalis NCBI ARb 101 

Homo H. sapiens NCBI ARb 100 

Complete 
mitochondrial 

genomes 
  

Chromodoris C. magnifica DQ991931 

Notodoris N. gardineri NC_015111 

Bufo B. japonicus NC_009886 

Bufo B. melanocosticus NC_005794 

Housekeeping genes 

Elongation factor 2 
Epidalea E. calamita   

Annexin 2 Epidalea E. calamita   

GAPDH Epidalea E. calamita   

rRNA 
18S 

Epidalea E. calamita  

Chromodoris C. magnifica  

28S Chromodoris C. magnifica  
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2.2.7 Identification of polymorphic orthologs for future PCR primer design 

As much as a conservative method to exclude potential contamination off both datasets, I 

reserved all the contigs which mapped only to molluks, and excluded all the remaining dubious ones. 

I then used BLAST to compare the F. cantabrica and F. villafranca transcriptomes against each other 

in a reciprocal fashion known as Reciprocal BLAST Hits (RBH) (Wall et al. 2003; Lechner et al. 2011; 

Kristensen et al. 2011). 
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Chapter 3 Results 
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3.1 PHYLOGEOGRAPHY AND PHYLOGENY OF SEVEN EA AND MEDITERRANEAN 

SPECIES OF FELIMARE 

3.1.1 Sampling 

Species of the genus Felimare were surveyed across the Eastern Atlantic and Mediterranean 

(EAM) shores. Our team sampled locations in the Atlantic, across the Iberian Peninsula (Vigo, 

Sesimbra and Faro), Morocco and Cabo Verde, while the remaining samples (=individuals) were 

provided by collaborators. A total of 290 individuals were obtained of which 272 were successfully 

sequenced, and 30 more were added to the dataset from Genbank or from sequences provided by 

collaborators. Their distribution is represented in Figure 12, and numbers are as follows: F. orsinii (9, 

from 2 localities); F. fontandraui (19, from 7 localities); F. tricolor (113, from 10 localities); F. villafranca 

(75, from 12 localities, and including genbank acquisition F. picta elegans); F. picta (14, from 12 

localities); F. bilineata (20 individuals, 3 localities) and F. cantabrica (52 individuals, 7 localities). 

Detailed individual’s information is given in Supplementary Tables 1 and 2. 
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Figure 12 Distribution of the individuals captured at each sampling site (plus Genbank sequances. With exception of  two individuals of F. 
tricolor (from Cádiz), F. tricolor (Barcelona), and F. cantabrica (Morocco), individuals are here labeled according their mtDNA (see below). 
Black dots represent localities where samples were collected: 1 San Sebastián; 2 Ferrol; 3 Vigo; 4 Sesimbra; 5 Alentejo; 6 Sagres; 7 Ria 
Formosa; 8 Cádiz; 9 Gibraltar, 10 Chafarinas; 11 Menorca island; 12 Barcelona; 13 Girona; 14 SW France; 15-20 Italy; 21 Kotor Bay, 
Montenegro; 22-24 Greece; 25 Morocco; 26 Madeira; 27 Cabo Verde; 28 S. Tomé e Príncipe. In some localities more than one sampling 
point exists (see details in Supplementary Table 1). 

 

3.1.2 Phylogeny 

The alignment of the COI sequences was unambiguous and lacked stop-codons, suggesting 

that amplification of nuclear copies did not take place. The 317 sequences corresponded to 174 

unique haplotypes. Identical haplotypes always belonged to individuals of the same species, with only 

four exceptions (see below).  

All currently recognized species defined well-supported clades but there were a few cases for 

which the COI haplotype did not match the clade of the species the individual had been identified as: 

Genbank F. picta elegans sequence (AF249787) was identical to F. villafranca individuals from North 

West (NW) Iberia, and one individual from Morocco identified as F. bilineata had mtDNA of F. 

cantabrica. Additionally, individual OP0131, identified as F. tricolor had F. fontandraui mtDNA, and 
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two individuals identified as F. fontandraui (OP0243 and OP0245) had F. tricolor mtDNA. These 

exceptional cases were excluded from subsequent analyses (but see Discussion). 

The genus Felimare formed a monophyletic group in both ML and BI trees, only differing in their 

support, i.e, the group yielded very high PP – 97.8% - in the BI tree, while in the ML its support was 

less than 50%. For both ML and BI, outgroups genera Mexichromis and Hypselodoris also defined 

well-supported, and separate, clades. Basal relationships within Felimare were unresolved. 

Relationships among species within the genus were poorly supported in most cases in the ML tree, 

and in some cases in the BI tree, but in both estimates some aspects could be noted: the Eastern 

Pacifc F. porterae and the Western Atlantic F. kempfi always formed a clade (PP=98.5%), as well as 

F. picta with the Eastern Pacific F. californiensis (PP=86.8%) plus F. agassizii. Also the Eastern 

Atlantic F. villafranca, F. cantabrica and F. orsinii (PP= 99.95%) formed a clade, although with 

unresolved relationships between them. Deep differentiation within species was present in F. 

villafranca, F. bilineata, as well as in F. picta. 
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Figure 13 Phylogenetic relationships between Eastern Atlantic Felimare inferred from mtDNA COI partial sequence. The tree shown is a 
50% majority rule consensus of the BI gene-tree distributions. Posterior probabilities (PP), and bootstrap values (grey, in parethesis) are 
given in percentages, for values over 50%. Branches with posterior probabilities equal or greater than 90% are in bold. Outgroup (Roboastra 
europea) was removed for graphical purposes. The genus Felimare is highlighted with a grey box. Scale is in mean substitutions per site. 
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3.1.3 Intraspecific variability and genetic structure 

The intraspecific diversity for eastern Atlantic and Mediterranean (EAM) species was 

represented by the COI haplotype median-joining networks in Figures 15 and 16. 

3.1.4 F. tricolor and F. cantabrica COI variability 

Results across species varied considerably. Neither F. tricolor nor F. cantabrica showed any 

signs of population structure, with closely related COI haplotypes distributed and shared across the 

sampled locations (Figure 14).  

F. tricolor was the most abundant species in many sampled sites (Figure 12), both in Atlantic 

and Mediterranean waters. Despite its wide distribution, F. tricolor exhibited a very shallow 

mitochondrial genealogy. The medium-joining network (Figure 14) was star-like. From the 68 COI 

haplotypes observed in this species (F. tricolor), 90% were singletons, what was reflected in a high 

haplotype diversity (Hd=0.97) (Table 2), while the nucleotide diversity was the third lowest of all seven 

species (π=0.0068). There was no evidence of genetic structure, with most central COI haplotypes 

being shared across widespread localities. For example, the same COI haplotype was observed in S. 

Sebastián (north Spain), Ria Formosa and Cádiz (South of Iberian Peninsula), Barcelona 

(Mediterranean, north East Spain) and Italy (central Mediterranean).  

F. cantabrica was sampled across almost all its known geographic distribution, from the 

Cantabrian Sea to Morocco, although it was not possible to collect any individuals from its western 

distribution limit, in the Mediterranean Sea. Most of the observed COI haplotypes diverged from each 

other by only one or two substitutions, and singletons were frequent (Figure 14). Thus, and similarly 

to F. tricolor, there was no evidence of differentiation among localities. Haplotype diversity was 

moderate (Hd= 0.88).  

For both F. tricolor and F. cantabrica neutrality statistics were negative and significant (Fs = -

86.11/ D= -2.43, and Fs= -26.91/ D= -2.35, p < 0.01), while R2 values were significantly low (R2= 

0.0216 and 0.0284, p < 0.01), suggesting past demographic growth (Table 2). 

3.1.5 F. villafranca COI variability 

On the other side, considerable diversity was observed within F. villafranca, with 19 COI 

haplotypes, and a clear differentiation among populations from the east Atlantic (West of Gibraltar), 

West Mediterranean (Barcelona, Girona, France); Central Mediterranean (Italy) and Morocco. 

Individuals from north and Central western Iberian Peninsula (Ferrol, Vigo, Sesimbra) exhibited a 
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group of very closely related haplotypes, and shared the central, more abundant one, which was 

separated from the ones observed in Ria Formosa by at least one mutational step. Similarly, COI 

haplotypes from Cádiz and Gibraltar also diverged from haplotypes from Ria Formosa by a minimum 

of one and a maximum of four mutational steps. Despite this low differentiation, there was no 

haplotype sharing between the northern (Vigo, Ferrol, Sesimbra) and the southern (Ria Formosa, 

Cádiz and Gibraltar) localities. The individual collected in the southernmost sampled locality 

(Taghazout, Morocco) exhibited a COI haplotype that was 15 mutational steps away (uncorrected p-

distance of 2.6% to 3%), which occurred on the Mediterranean localities of Barcelona and Menorca. 

These western Mediterranean localities, respectively Menorca Island, Girona (Spain) and SW France 

(Banylus-sur-mer) exhibited closely related groups of haplotypes, and a single case of haplotype 

share being between Girona and Banylus-de-mer. The average distance (Dxy) between western 

Mediterranean and EA lineages (Morocco not included) was 6%. Finally, one individual from the Italian 

shore was strongly distinct from the rest, with a distance of 38 substitutions to a COI haplotype from 

Menorca, which translates in an uncorrected p-distance of 6.4% up to 7.1%. Its distance to the 

Morocco haplotype was roughly similar (7.4%), as well as to the North and Central Iberian haplotypes 

(7.3% up to 7.6%). Population growth was also inferred for F. villafranca, both when considering the 

species as a single unit (Fs=-2.3649; D=-2.4222, p-value<0.01), as well as when analysing the 

Atlantic A lineage alone (Fs=-5.6317, p<0.05; D=-1.6057, p<0.05) (Figure 14). Growth was not 

detected in the Mediterranean populations when analysed separately. 

3.1.6 F. fontandraui COI variability 

Within F. fontandraui, at least three distinct groups could be inferred, with a clear geographical 

pattern: one at Atlantic + Chafarinas, and two others in the Mediterranean. The genetic distance (Dxy) 

between Atlantic and Mediterranean groups was 3.8%. Despite the low number of individuals sampled 

(19), the number of COI haplotypes was high (13), with a very high allelic diversity (Hd= 0.95 and π= 

0.015). 

The Mediterranean seemed to harbour at least two differentiated lineages (1.8-2.1% 

uncorrected p-distance), without clear geographic structure: COI haplotypes were shared between 

Girona and the west Italian coast, and individuals from Girona and SW (Cap Oullestreil), only 200km 

apart, differed by five mutational steps. Shared haplotypes diverged from an COI haplotype from 

Tavolara (Sardegna, Italy) by at least 10 mutational steps, yet one haplotype was also shared 

between Giglio island (Italy west coast) and Girona. We considered all the haplotypes/individuals from 

the Mediterranean as a single lineage here, for summary diversity statistics calculations, but it they 

could also represent more than one group. 
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Both the Atlantic and Mediterranean lineages as here defined, presented high (Hd ≥ 0.90) haplotype 

diversity. The diversity was observed higher in the Mediterranean (π= 0.012 over π= 0.005). 
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Figure 14 Median-joining networks representing mtDNA (COI, 605 bp) variation within Eastern Atlantic Felimare species. For each species, the sampled sites and known distribution range (light blue) 
are shown. Circle sizes are proportional to haplotype frequencies. Missing haplotypes (unsampled or extinct) are represented by small black circles along the branches (for long branched the total 
number of substitutions is indicated). The asterisk in F. cantabrica, F. fontandraui and F. tricolor represent the haplotypes exhibited by the specimens with distinct morphological identification mentioned 
previously. These are here indicated but were not considered for the summary statistics or for any further analyses. 
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3.1.7 F. bilineata COI variability 

With only a small portion of its distribution sampled, F. bilineata harboured at least two highly 

differentiated COI lineages separated by a minimum of 20 substitutions (4.3%), without a clear 

geographic structure (haplotypes from Ria Formosa and Cádiz are shared by both lineages, Figure 

15). Furthermore, considerable differentiation was found within one of the lineages, with two groups 

of haplotypes separated by a minimum of 7 mutational steps (approximately 1% uncorrected                 

p-distance). The other lineage was represented by a single COI haplotype exhibited by two 

individuals. No relationship between differentiation and geography was found, given that all lineages 

co-occurred in the southern Iberian Peninsula in Ria Formosa and Cadiz, two of the three localities 

sampled. Observed haplotype diversity Hd= 0.884 was high, as well as the nucleotide diversity    (π= 

0.014). 

3.1.8 F. picta COI variability 

Twelve haplotypes, belonging to two very divergent lineages, one present in Atlantic and 

Mediterranean waters and the other in the islands of Cabo Verde and S. Tomé e Príncipe, were 

observed within F. picta (Figure 15). One clade included individuals from the Eastern Atlantic Islands 

of Sal (Cabo Verde) and S. Tomé e Príncipe, while the other harboured individuals from the Atlantic 

localities of Sesimbra, Ria Formosa and Cádiz, as well as several Mediterranean localities across 

Italy (west coast), Montenegro and Greece. These lineages had a pairwise Nei’s Da distance of 9.6% 

(49 substitutions). Within each lineage haplotypes were closely related (differing by one to three 

mutational steps). The overall COI haplotype and sequence diversity within this species was high 

(Hd= 0.99 and π=0.05049). For each lineage separately, the nucleotide diversity is approximately one 

order of magnitude less than its “overall” value (Table 2), due to the limited divergence among 

haplotypes (π=0.004 in the Atlantic A and Mediterranean regions, and π=0,006 for the Atlantic II 

region) (Table 2). For each F. picta clade, Fs and Tajima’s D were also negative although not (or only 

marginally) significant, while R2 values (0.1352 and 0.0809) were significant (p<0.05), suggesting past 

population growth. 

3.1.9 F. orsinii COI variability 

F. orsinii (Figure 15) is distributed across the Mediterranean and reaches slightly west of 

Gibraltar. Again, strong intraspecific divergence was evident, with two divergent (3.6%) COI lineages 

distributed respectively East and West of the Gibraltar Strait. Individuals from the two sampled 

localities (Cádiz - Atlantic Ocean - and Barcelona - East Mediterranean), represented thus two distinct 

lineages, separated by 19 mutational steps. Levels of genetic diversity within this species were high 
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(Hd= 0.944, π= 0.016), with the majority of it existing in the Mediterranean (Hd= 0.922). High 

sequence diversity was mainly attributable to the high distance between the two lineages. 
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Figure 15 Median-joining networks representing mtDNA (COI, 605 bp) variation within two Eastern Atlantic Felimare species. For each species, the sampled sites and known distributions (light blue) 
are shown. Circle sizes are proportional to haplotype frequencies. Missing haplotypes (not sampled or extinct) are represented by small black circles along the branches (for long branched the total 
number of substitutions is indicated). 
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Table 2 Summary diversity statistics, neutrality tests and indexes of population growth for the seven EAM Felimare species, based on 
mtDNA variation. 

 

N, number of individuals (mtDNA); H, number of haplotypes; S, number of (polymorphic) segregating sites; Hd, Haplotype diversity; π, 
nucleotide diversity; θ (from Eta) population mutation parameter (Watterson, 1975). Neutrality test: Tajima’s D. Population growth tests: 
Fu’s Fs (1997) Fs; R2, (Ramos-Onsins and Rozas’, 2002). *p < 0.05; ** p < 0.01.  b Statistics were not computed for F. orsinii and F. 
villafranca populations from Cádiz, Taghazout and Tor Paterno, respectively, as less than 3 individuals were sampled. 

 

3.1.10 Species-Tree Inference and Divergence Times Estimates 

All three independent analyses with *BEAST achieved reasonable ESS values for all 

parameters, but slightly distinct tree topologies. The run with the highest ESS values (and highest 

posterior) is presented here.  

Figure 16 shows a maximum clade credibility (MCC) consensus of the species-trees distribution 

using median node-heights. Support for interspecific relationships was low in most instances, 

although often higher than in the ML/BI gene trees. A clade was recovered containing    F. ruthae and 

F. kempfi, both species from the Caribbean coasts, and F. porterae, from the East Pacific coast. The 

sister-relationship between F. kempfi and F. porterae was very well supported.  Also the clade 

containing F. villafranca, F. orsinii and F. cantabrica was well supported, with a PP=93%, although 

the relationships between these species were not well supported. The remaining six species of 

Felimare defined a clade with a PP= 80%, again, with no internal relationship between these species 

being highly supported. 

Regarding time-estimates, differentiation between species seems to be old, dating mostly to 10 

to 25 MY. Highest posterior density intervals (95% HPD) for most nodes largely overlapped. 

Species Partition N Neutrality

H S Hd π θ (S) D Fs R2

Total 9 7 25 0.944 0.01058 0.01578 -1.6400* -0.7507 0.2362

M editerranean A 8 6 7 0.929 0.00378 0.00446 -0.7298 -2.2767 0.1365*

Total 18 13 35 0.954 0.01528 0.1682 0.3719 -1.8965 0.13443

Atlantic A 7 6 7 0.952 0.00504 0.00472 0.3451 -2.2004* 0.1717

M editerranean AB 11 7 31 0.891 0.01244 0.01749 -1.3404 0.6615 0.1220

F. tricolor Total 111 66 82 0.970 0.00683 0.02618 -2.4329** -86.111** 0.0216**

Total 74 16 60 0.678 0.00608 0.02051 -2.4222** -2.3649 0.0671

Atlantic A 65 10 10 0.583 0.00145 0.00351 -1.6057* -5.6317** 0.0481

M editerranean A 6 4 7 0.867 0.0518 0.00507 0.1284 0.3138 0.1874

F. cantabrica 51 25 28 0.880 0.00295 0.01029 -2.3503** -26.9186** 0.0284**

Total 14 12 66 0.987 0.05049 0.03434 1.9907 0.3330 0.14283

Atl. A  M ed. ABC 8 6 8 0.929 0.00407 0.0051 -0.9735 -2.0860 0.1352*

Atlantic B 6 6 10 1.000 0.00584 0.00724 -1.1605* -2.8976 0.0809**

F. bilineata Total 21 12 40 0.895 0.01438 0.01910 -0.9740 -0.4829 0.1352*

Polimorphism Population growth

F. orsinii

F. fontandraui

F. villafranca

F. picta
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The common ancestor of the genus Felimare was dated 20 - 34 MY (median 27.06 MY), while 

subsequent diversification events followed throughout the Oligocene and Miocene. The most recent 

divergence event inferred was between F. californiensis (EP) and F. tricolor (EA), likely Pleistocenic. 

 

 

Figure 16 Maximum clade credibility COI tree with median estimates used for node heights. Posterior probabilities above 80% are given 
above the branches (in %). 95% HPD of node heights is also given. Horizontal axis corresponds to time before present in million years 
(MY). Geographic category of species distribution is given: IP- Indo-Pacific; EP- Eastern Pacific; WA- Western Atlantic; EA- Eastern Atlantic. 

 

3.2 TRANSCRIPTOME ASSEMBLY FOR MARKERS SURVEY IN F. CANTABRICA AND F. 

VILLAFRANCA 

3.2.1 Quality control (QC) and filtering of raw sequence data; transcriptome 

assembly; and post-processing 

Approximately 38 million (38,323,175 out of 38,648,449) and 35 million (35,125,908 out of 

35,361,951) of 101bp (average length) paired-end reads (PE) obtained for F. cantabrica and                 

F. villafranca, respectively, met the filtering criteria and were used in the de-novo assembly.  
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Table 3 presents statistics relative to each transcriptome assembly. Final assemblies resulted 

in 56,776 and 60,484 components (with 78,546 and 82,456 transcripts each), respectively for the   F. 

cantabrica and F. villafranca individual. Assembled transcript size ranged from 200 bp up to 24,000 

bp (Table 3). In both cases less than 40% of the total transcripts were larger than 500bp (Figure 17). 

 

Table 3 Main assembly results for both transcriptomes. 

 

BT- before trimming; AT- After trimming. The N50 length is the length of the shortest representative contig from which the sum of contigs 
of the genome/transcriptome of equal length or longer represents at least 50% of the total length of all contigs. 

 

ID Reads BT Reads AT Total transcripts
Total 

components
N50 transcripts

Average contig 

length
Length range

F. cantabrica 77,296,898 76,646,350 78,546 56,776 899 625.14 [200, 24,100]

F. villafranca 70,723,902 70,251,816 82,456 60,484 950 651.44 [200, 9,200]

Assembly (Trinity)
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Figure 17 Distribution of transcript length. Histograms show the number of transcripts per size category for F. cantabrica and F. villafranca 
transcriptomes. Each bar/ column, represents 100bp range (starting at 200 bp). Circa of 61% of the transcripts of F. cantabrica and 60% of 
the transcripts of F. villafranca are ≤500bp. 

 

Regarding the quality of the assembled transcriptomes, roughly, more than 50% of the CEGMA 

core set of genes were recovered as “complete” in each transcriptome, while at least 60% for F. 

cantabrica and 65% for F. villafranca were recovered as “partial” (Table 4). 
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Table 4 Completeness report of the percentage of the eukaryotic core genes present in both datasets (CEGMA). 

 

The % of core genes which was found to be “complete” (at least 70% of the original protein size is recovered) or only “partial” 
(less than 70% alignment length but exceeding the minimum alignment score) in each assembly is given. 

 

The presence of redundancy in the assemblies is an important caveat for phylogenomics, as 

redundant and chimeric contigs may lead to erroneous phylogenetic markers. Redundant contigs can 

either be related to paralogs or they can be alleles of the same locus. RSEM was used to measure 

transcripts/isoforms “coverage”, and from each component a single representative transcript (the one 

with the highest “coverage” – here measured by isoform percentage, IsoPct) was chosen (Figure 18). 

Main transcripts characteristics after filtering are given in Table 5. As seen in previous plots, 

most contigs were shorter than 2,000 bp, with 16,915 and 18,664 contigs in F. cantabrica and                 

F. villafranca respectively being equal or longer than 500 bp. Largest contig size varied greatly; from 

24,068 bp to 6,577 bp. None of the three longest (> 8,000 bp) contigs, retrieved a significant hit against 

NCBI nr database. 

 

ID

Partial 61,69

Complete 53,63

Partial 66,94

Complete 54,84

CEGMA (orthologs)

% Completeness

F. cantabrica

F. villafranca
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Figure 18 Plots of transcripts length vs. isoform percentage (IsoPct) for each assembly. Each transcript is a dot and the graphs reflect each 
dataset before and after filtering them by selecting the isoform present in higher percentage (i.e., the most abundant one) in each 
subcomponent. 

 

Table 5 Assembly statistics after filtering the dataset to a single transcript per subcomponent. 

 

 

 

Total Transcripts
Total Transcripts 

IsoPct ≥ 15

Average contig 

length (bp)

Transcripts 

> 500 bp

F. cantabrica 56,776 54,644 516.01 16,734

F. villafranca 60,484 58,554 528.76 18,443

Transcripts characteristics after choosing component representative
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3.2.2 Transcriptome annotation 

Out of the more than 50,000 transcripts of each assembly, 10,005 from F. cantabrica and 11,374 

from F. villafranca had hits against the Genbank nr database (largest protein database available) with 

e-values above the pre-defined threshold (1e-6) (Figure 19). 

 

  

Figure 19 Best hits e-value distribution for F. cantabrica (above) and F. villafranca (below). 
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A summary of the annotation statistics is reported in Table 6. From sequences with positive 

blast hits to the nr database, GO terms were found for 6,620 and 3,871 sequences (mapping), and 

from those 4,275 and 2,952 were successfully annotated, respectively for F. cantabrica and                   

F. villafranca. 

 

Table 6 Number of sequences at different annotation stages. 

 

Blast2GO performance: Percentage of sequences with BLAST hits above 200 bp; percentage of sequences with some functional evidence 
assignment (mapping); mean GO level; and total number of annotated sequences. The number of input sequences includes only s equences 
of length larger than 200 and shorter than 8000 bp, from the originally 54,644 and 58,554 from Table 5. 

 

The mean GO level (mean number of GO terms between the final GO term to the ontology root 

term) was of approximately 7.1 and 7.6, respectively, similar in both F. cantabrica and F. villafranca 

transcriptomes, with a total of 25,563 and 25,858 sequence annotations assigned, respectively 

(Figure 20). Of these, assignments to the Biological Process category made up the majority 

(14,721/13,106 sequences) followed by Molecular Function in F. cantabrica (7,209 sequences) and 

Cellular Component (6,628 sequences) in F. villafranca for a total of 27,669/25,858 GO assignments 

(F. cantabrica/F. villafranca). 

 

ID Input Sequences Blast Hits
Go evidence       

(Mapping)

Mean GO 

level
Length (min-max) Total Annotated (%)

F. cantabrica 54,644 10,005 6,620 5.65 ±1.89 200 - 7,010 4,275 (7,82)

F. villafranca 58,554 11,376 3,873 5.8±1.82 200 - 6,575 2,952 (5,04)
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Figure 20 GO Level distribution’s chart. Histogram representing the distribution of the multi-level function in the annotated sequences. GO 
terms representation for Biological Process (P), Molecular Function (F) and Cellular Component (C). 

 

Annotation plots were obtained for both individuals for GO levels 2 and 3 for the top 20 GO 

terms (Figures 21 and 22). Within level 2, distributions of sequences across GO terms seem more 

similar across the two individuals, again with Biologic Process being the most common category 

(14,964/14,721 sequence counts, for F. cantabrica/F. villafranca), followed by the Molecular Process 

and Cellular Component categories. Within the category Biological Process (and respectively, for       

F. cantabrica and F. villafranca) “Cellular Process” (18% and 15% of the total sequence counts), 

“Metabolic Process” (16% and 12%) and “Single-Organism Process” (14% and 13%) are the most 

prevalent terms. For Cellular Component “Cell” (22% and 19%), “cell part” (22% and 19%) and 

“organelle” (17% and 16%) were most popular, while for the Molecular Function category most of the 

sequences were represented by the term “binding activity” (45% and 49%), “catalytic activity” (39% 

and 34%) and “structural molecule activity” (5% and 6%). 
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Figure 21 Paired comparison of the sequences mapped to a given gene ontology (GO) term in level 2. For each category (BP, CC, and 
MF) the top 20 GO terms for each species are represented (Blue – F. cantabrica, green – F. villafranca). 

 

For level 3 the Molecular Function (3,073 sequences) and Cellular Component (2,946 

sequences), were the categories with most assigned sequences for both species, and the Biologic 

process the least represented one (1,964/1,508 annotated sequences respectively). Here, the most 

abundant terms were “ATP binding”, “Protein binding” and “structural constituent of ribosome” in 

Molecular Function, and the least ones “ribosome biogenesis”, “translation” and “oxidaction-reduction 

process” in the Biologic Process’s category. Additionally, some GO terms could not be found in both 

transcriptomes. These were “negative regulation of apoptosis process”, extra-celular exosome” and 

“poly (A) RNA binding”. 
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Figure 22 Paired comparison of the sequences mapped to a given gene ontology (GO) term in level 3. For each category (BP, CC, and 
MF) the top 20 GO terms for each species are represented (Blue – F. cantabrica; Green – F. villafranca). The five most represented 
categories are present for both species, and the remaing inlcude all common categories between the two transcriptomes. 

 

Regarding the distribution of hits per species, for both datasets (F. cantabrica and F. villafranca, 

respectively) Aplysia californica and Lottia gigantea were the species with the highest number of 

contig representatives (Figure 23). Most of the top-hit species in both transcriptomes were other 

molluscs (Aplysia, Lottia, Crassostrea), yet, this list also included amphibians (Xenopus sp.), the sea-

urchin S. pupuratus and rice plant (O. sativa). 
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Figure 23 Best-hit species distribution for F. cantabrica (above) and F. villafranca (below). 

 

 

 

 



 
68 

3.3 MTDNA RECOVERY AND RECONSTRUCTION 

3.3.1 Recovery through BLAST and alignment to a reference genome 

The database containing Mollusca mtDNA genomes included, at the time of analysis, a total of 

176 full genomes. From the Chromodorididae family the only mitochondrial genome sequenced so 

far is from C. magnifica, being here used as a reference to our species.  

A total of 34 and 38 contigs were recovered for F. cantabrica and F. villafranca respectively. Of 

those, 20/23 corresponded to 13/13 coding regions, 16/18 tRNA’s, and 2/2 ribossomal RNAs, partially 

or totally recovered for F. cantabrica and F. villafranca. Only tRNAs Asparagine (Asp), Glycine (Gly), 

Histone (His), Serine (L chain), in F. cantabrica and Valine (Val) and Leucine (Leu), in F. villafranca, 

could not be recovered. The remaining 14/15 contigs were more divergent than expected upon first 

examinations, and were later identified as non-Mollusca sequences through additional blastn and 

blastx analyses in the NCBI (see bellow). 

Circularization (full molecule overlap) was confirmed for both mitogenomes. The inferred 

genome organization of the two mitogenomes seemed to be mostly identical to that of C. magnifica, 

as most of the mitogenome could be recovered with only a few contigs. Thus, the mitochondrial gene 

order of F. cantabrica was found to be identical to C. magnifica between 16S and tRNA Ser  (H 

strand), ND3 and tRNA Cysteine (Cys), COX2 and tRNA Asp, and CYT B and tRNA Leu (four contigs); 

whereas for F. villafranca single contigs recovered from COI to ND2, COX3 to tRNA Asp, and CYT B 

to tRNA Proline (Pro). The ID of each region, its strand and length (reference and recovered) are 

given in Tables 7 and 8, for each mitogenome. 

3.3.2 Protein-coding regions 

A total of 13,980 bp and 14,208 bp were recovered by blasting F. cantabrica and F. villafranca 

(filtered) assemblies to a hand-made database of mitochondrial genomes of molluscs. Base 

composition was 36.21% of A’s, 19.5% C’s, 15.4% of G’s, 28.4 T’s and 33.4% of CG content for          

F. cantabrica, and 37.6% of A’s, 18.4% of C’s, 14.4% of G’s, 29.5% of T’s and 31.9% GC content for 

F. villafranca.  

Respectively, 13 and 13 mitochondrial protein coding genes were identified comprising 75.4% 

and 75.3 % of the F. cantabrica and F. villafranca mitogenome alignment. A major fraction of the 

assembled coding regions seemed mostly complete. Comparing to the reference genome (Table 7 

and 8) F. cantabrica assembled mitochondrial genome covers approximately 95.67% of the reference 

genome, with a nucleotide pairwise identity of 71.1%. F. villafranca assembled mitogenome covers 
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96.9% of the reference genome, with 72.7% pairwise identity. The most frequent start and stop 

codons were AUG (Met) and UAA, in both mitogenomes. When COI sequences (obtained by PCR 

amplification and Sanger sequencing) from these same individuals (OP0014 and OP0031) were 

aligned to the contigs recovered from each assembled transcriptome, 99.8% of identical sites were 

recovered for F. cantabrica, and 85.2% for F. villafranca. 

3.3.3 Transfer and ribosomal RNAs 

A total of 20 and 22 mitochondrial RNAs (tRNAs and rRNAs) were recovered by blast 

respectively for F. cantabrica and F. villafranca. Yet, only 18 and 20 of these were later validated by 

the tRNA/rRNA annotation tools implemented in the MITOS webserver. tRNAs were predicted with 

lengths ranging from 61 to 72 bp, for F. cantabrica, and 55 to 71 bp, for F. villafranca. A 166 bp 

sequence aligning to the one annotated as tRNA (Ala) in C. magnifica was recovered for F. cantabrica, 

but only 63 bp of these were validated by MITOS. In fact, this is an homologous size to the tRNA (Ala) 

from Roboastra europea and also, when one examines the published annotation of C. magnifica 

genome, this tRNA (Ala) sequence is found to be overlapping with tRNA(Pro) and part of the ND6 

gene, thus probably being an annotation error. As reflected in Figure 2 of Medina et al. (2011), both 

C. magnifica and R. europea tRNA’s in this region have the same size and order. 

Secondary structures of tRNAs as inferred in MITOS are presented in Figures 22 and 23. For 

most, but not all Felimare tRNA genes can be folded into normal cloverleaf secondary structures. The 

majority of tRNA genes have seven-member aminoacyl stems, four to five member anticodon stems, 

and seven-member anticodon loops. Exceptions are found for Leu 1 (6 aminoacyl stems), and Thr (9 

bp anticodon loops) in F. cantabrica, Cys, Leu 1, Arg and Thr (from 3 to 6 aminoacyl stems), His and 

Thr (9bp anticodon loops) in F. villafranca. These results are in accordance with other heterobranchs 

(Grande et al. 2002). 

All the deduced tRNAs could be folded into a cloverleaf secondary structure with the exception of 

tRNA Ser 2 and tRNA Ser 1 in F. villafranca, that lack the DHU arm (at the left of the tertiary structure, 

D loop contains the base dihydrouracil, for which the arm is named). There were changes from our 

inferred structure to the common secondary cloverleaf structure of tRNAs Val, Tyr, Cys, Gln, Glu, Thr 

for F. cantabrica, and Tyr, Trp, Asp, Arg, Glu, Ser 1 and Thr with regard to F. villafranca. Such 

alterations involve the creation of slight deformations involving from one or two mismatches (e.g. Cys) 

to well-formed loops with no matching base pairs (e.g. Arg). Furthermore, tRNAs Trp and Thr of            

F. cantabrica, and Asp of F. villafranca presented unusual T arms whose stem does not have any pair 

of bases preceding the variable TψC-loop. At the same time, for the two His and Gln tRNAs the 

https://en.wikipedia.org/wiki/Dihydrouracil
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variable TψC-loop does not form with our inferred sequence. If these are real differences or errors 

from assembly needs to be studied further.  

The anti-codons of all tRNAs identified, from both mitogenomes, were all documented previously in 

other Heterobranchia species (e.g. Pupa strigosa, Roboastra europea).  

Ribosomal RNA 16S was assembled with 1,104 bp on F. cantabrica and 1,022 bp on                     

F. villafranca, while the small-subunit (12S), with 728 bp and 727 bp, respectively. 

 

Table 7 Mitochondrial genome regions recovered by a BLAST search of the transcriptome of F. cantabrica against available mollusc mtDNA 
genomes. Reference is C. magnifica mitochondrial genome. 

 

Start and stop codons reference (and Felimare) coding genes are given when found. Reference intergenic regions (and intergenic regions 
recovered) as well as the percentage of differences relative to the reference sequence are also given. Highlighted cells (red) are short (very 
incomplete) fragments. Codons with lowercase TAA’s (in double brackets) are incomplete termination codons, presumably completed by 
polyadenylation. 

From To Ref. (bp)  OP0014 (bp) Start Stop

COI 1 1 533 1 553 1 539 8 (8) AUG (AUG) UAG (UAA) 20 H

tRNA (Val) 1542 1606 65 65 0 (-1) - - 26,9 H

16s rRNA 1608 2698 1 092 1 104 0 - - 28,7 H

tRNA (Leu2) 2699 2763 65 68 -4 (-3) - - 19,7 H

tRNA (Pro) 2706 2924 66 65 -66 (-64) - - 15,2 H

tRNA (Ala) 2830 2895 165 63 41 (41) - - 25,4 H

ND 6 2896 3366 471 468 16 (16) UUG (UUG) UAA (UAA) 29,2 H

ND 5 - like 3383 5007 1 625 1 628 2 (4) - - 25,6 H

ND 1* 5010 5924 915 912 3 (3) GUG (GUG) UAA (UAG) 25,4 H

tRNA (Tyr) 5928 5994 67 65 -1 (3) - - 17,9 H

tRNA (Trp) 5994 6060 67 70 3 (9) - - 24,6 H

ND 4L** 6064 6340 277 277 0 (0) AUA (AUA) UAA (UA(A)) 30,8 H

CYT B** 6341 7454 1 114 1 123 3 (0) AUG (AUA) UAA (U(AA)) 24,7 H

tRNA (Asp) 7455 7525 71 17 -1 - - 35,3 H

tRNA (Phe) 7525 7592 68 42 191 - - 4,7 H

COX 2 7784 8458 675 670 2 AUG (AUG) UAA (-) 19,9 H

tRNA (Gly) 8461 8525 65 - 2 - - - H

tRNA (His) 8529 8547 19 - -2 - - - H

tRNA (Cys) 8595 8658 64 65 29 (77) - - 20 H

tRNA (Gln) 8750 8688 63 61 5 (6) - - 20,3 L

tRNA (Leu1) 8821 8756 66 63 5 (5) - - 18,5 L

ATP 8 8991 8827 165 39 0 (1) AUG (AUG) UAA (-) 17,9 L

tRNA (Asn) 9059 8992 68 67 4 (4) - - 19,1 L

ATP 6* 9726 9064 663 663 0 AUG (AUG) UAA (UAA) 27,3 L

tRNA (Arg) 9789 9727 63 65 2 (1) - - 16,7 L

tRNA (Glu) 9855 9792 64 67 0 - - 16,2 L

12S rRNA 10586 9856 731 728 1 (1) - - 25 L

tRNA (Met) 10652 10588 65 66 -2 (-2) - - 17,6 L

ND 3 11004 10651 354 354 4 (1) AUG (AUG) UAA (UAA) 27,1 L

tRNA (Ser2) 11065 1009 57 - 6 (0) - - - L

tRNA (Ser1) 11072 11134 63 48 0 - - 12,1 H

ND 4** 11135 12483 1 349 1 281 -1 (0) UAC (GUG) UAA ((UAA)) 30,9 H

tRNA (Thr) 12549 12483 67 72 0 (1) - - 23,6 L

COX 3** 13333 12550 784 786 46 (44) AUU (UUG) UAA (UAG) 22,2 L

tRNA (lle) 13380 13445 66 66 0 - - 16,7 H

ND 2 13446 14381 936 830 -1 GUG (AUG) UAG (-) 31,4 H

tRNA (Lys) 14381 14445 65 66 1 (1) - - 25,8 H

Position (Ref) Codon % Differences Strand

F. cantabrica (OP0014)

Intergenic Ref. (OP0014)                          
Size (ungapped)Gene
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Table 8 Mitochondrial genome recovered by blasting the transcriptome of F. villafranca against available mollusc mtDNA genomes. 

 

Reference is C. magnifica mitochondrial genome. Start and stop codons reference (and Felimare) coding genes are given when found. 
Reference intergenic regions (and intergenic regions recovered) as well as the percentage of differences relative to the reference intergenic 
regions (and intergenic regions recovered) Highlighted cells (red) are short (very incomplete) fragments. Codons with lowercase TAA’s (in 
double brackets) are incomplete termination codons, presumably completed by polyadenylation. 

 

 

 

 

 

 

 

From To Ref. (bp) OP0031 (bp) Start Stop

COI 1 1 533 1 553 1 533 8 (5) AUG (-) UAG (UAA) 18,3 H

tRNA (Val) 1 542 1 606 65 - 0 - - - H

16s rRNA 1 608 2 698 1 092 1 022 0 - - 27,5 H

tRNA (Leu2) 2 699 2 763 65 - -3 - - - H

tRNA (Pro) 2 830 2 895 66 29 -64 (-64) - - 16,7 H

tRNA (Ala) 2 706 2 924 165 58 -4 - - 23,7 H

ND 6 2 896 3 366 471 468 16 (16) UUG (UUG) UAA (UAA) 28,9 H

ND 5 - like 3 383 5 007 1 625 1 625 2 (2) - - 24,7 H

ND 1 5 010 5 924 915 735 3 (2) GUG (-) UAA (U(AA)) 25,5 H

tRNA (Tyr) 5 928 5 994 67 65 -1 (1) - - 23,5 H

tRNA (Trp) 5 994 6 060 67 64 3 (9) - - 23,3 H

ND 4L 6 064 6 340 277 279 0 AUA (AUA) UAA (UA(A)) 29,6 H

CYT B** 6 341 7 454 1 114 729 0 AUG (AUG) UAA ((UAA)) 21,8 H

tRNA (Asp) 7 455 7 525 71 62 -1 (2) - - 24,2 H

tRNA (Phe) 7 525 7 592 68 65 191 (0) - - 14,7 H

COX 2 7 784 8 458 675 675 2 (4) AUG (AUG) UAA (UAA) 17,3 H

tRNA (Gly) 8 461 8 525 65 63 2 (3) - - 40,6 H

tRNA (His) 8 529 8 547 69 63 -2 (5) - - 28,1 H

tRNA (Cys) 8 595 8 658 64 67 29 (4) - - 22,1 H

tRNA (Gln) 8 750 8 688 63 55 5 (4) - - 15,2 L

tRNA (Leu1) 8 821 8 756 66 61 4 (5) - - 23,1 L

ATP 8 8 991 8 827 165 39 0 AUG (AUG) UAA (-) 41,5 L

tRNA (Asn) 9 059 8 992 68 68 4 (10) 18,8 L

ATP 6 9 726 9 064 663 672 0 AUG (AUG) UAA (UAA) 25,1 L

tRNA (Arg) 9 789 9 727 63 62 2 (1) - - 20,6 L

tRNA (Glu) 9 855 9 792 64 67 0 (0) - - 13,2 L

12S rRNA 10 586 9 856 731 727 1 (1) - - 22 L

tRNA (Met) 10 652 10 588 65 64 -2 - - 9,1 L

ND 3 11 004 10 651 354 354 4 (4) AUG (GUG) UAA (UAA) 26,3 L

tRNA (Ser2) 11 065 1 009 57 59 6 (4) - - 23,7 L

tRNA (Ser1) 11 072 11 134 63 61 0 - - 14,3 H

ND 4 11 135 12 483 1 349 1 281 -1 UAC (GUG) UAA (-) 30,6 H

tRNA (Thr) 12 549 12 483 67 63 0 - - 30,2 L

COX 3** 13 333 12 550 775 788 46 (41) AUU (-) UAA ((UAA)) 26,1 L

tRNA (lle) 13 380 13 445 66 66 0 - - 18,2 H

ND 2 13 446 14 381 936 843 -1 GUG (AUG) UAG (-) 30,4 H

tRNA (Lys) 14 381 14 445 65 161 1 (1) - - 23,4 H

StrandIntergenic                            

Ref. (OP0031)

F. villafranca (OP0031)

Gene Position (Ref) Size (ungapped) Codon % Differences
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3.4 MTDNA ASSEMBLY DIRECTLY FROM READS USING MITOBIM 

The ten million reads used as input to MITObim correspond to 13% and 14.1% of the initial 

reads of F. cantabrica and F. villafranca, respectively. 

In none of the species was the mitochondrial genome completely assembled (Tables 9 and 10). 

In total, 14,662 bp and 14,520 bp, were recovered for F. cantabrica and F. villafranca, respectively. 

Base composition of the mitogenomes consist of 17.1% of A’s, 9.2% C’s, 11.1% of G’s, 21.7 T’s and 

18.8% of CG content, for F. cantabrica, while F. villafranca has 20.8% of A’s, 10.1% of C’s, 12.5% of 

G’s, 26.1% of T’s and 21.9 % of GC content.  

Circularization was confirmed for F. cantabrica only, by the overlap of the start and end 

mitogenome regions assembled (ND2, tRNA Lysine – Lys - and COI). 

3.4.1 Protein–coding regions 

Respectively, 12 and 11 mitochondrial protein coding genes were identified thus comprising 

68.6% and 57.9% of the F. cantabrica and F. villafranca mitogenomes alignment. These numbers 

include sequences with vast amounts of ambiguities (>50%) and small sparse regions within genes 

(at ND6, ATP6, ND4L and ND4, in F. cantabrica, and ND4 and ND2 in F. villafranca - Tables 9 and 

10). 

For both recovered mitochondrial genomes, ND5 was the longest fragment, with 1,607 and 

1,622 bp, respectively for F. cantabrica and F. villafranca, but it is COI that yields less percentage of 

ambiguities. ATP 8 was the smallest gene of the mitochondrial genomes, and yet it was never 

completely recovered, with 112 and 153 bp (out of 165) respectively. The predominant start/stop 

codons were, respectively, AUG/UAA in both transcriptomes. 

PCR amplified sanger-sequenced COI fragments from OP0014 and OP0031 were 49,2% and 

40,9% identical to these MITObim-assembled regions. 

3.4.2 Transfer and ribosomal RNAs 

For each transcriptome a total of 18/2 and 15/1 tRNA/rRNAs (respectively for F. cantabrica and 

F. villafranca) were fully or partially assembled with MITObim. From these, respectively 9/1 and 8/1 

tRNA/rRNAs were validated by MITOS (Tables 9 and 10). The remaining tRNAs and rRNA could not 

be found or validated independently as their sequences were too short, or had a big amount of 

ambiguities (highlighted in red at Tables 9 and 10). Inferred cloverleaf secondary structures of tRNAs 

are represented in Figures 24 and 25. Inferred secondary structures of tRNAs are presented in 
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Figures 24 and 25. Most of the Felimare tRNAs could be folded into normal cloverleaf secondary 

structures. The few exceptions are Trp, which lacks the variable TψC-loop, and Ser, that lacks the 

DHU arm, in F. villafranca. Again, I found it (lack of DHU arm) recurrent in other heterobranchs (e.g. 

Kurabayashi & Ueshima 2000; Grande et al. 2002; Groenenberg et al. 2012). The majority of tRNA 

genes had seven-member aminoacyl stems, four to five member anticodon stems, and seven-

member anticodon loops. Exceptions are found for Tyrosine (Tyr) (2 aminoacyl stems), in both             

F. cantabrica and F. villafranca, and Thr (9 member anticodon loop). The anti-codons of all tRNAs, 

from both mitogenomes, were all documented previously in other Heterobranchia species (e.g. Pupa 

strigosa, Roboastra europea). The small-subunit rRNA (12S) was recovered for both species, with 

729 bp and 728 bp, respectively in F. cantabrica and F. villafranca, with more than 70% of similarity 

to the reference. 
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Table 9 Assembled regions of mitochondrial genomes of F. cantabrica using MITObim. 

 

Start and stop codons of reference (and Felimare) coding genes are given when found. Reference intergenic regions (and intergenic regions 
recovered) as well as the percentage of differences relative to the reference sequence are also given. Highlighted cells (red) are short (very 
incomplete) fragments. Codons with lowercase TAA’s (in double brackets) are incomplete termination codons, presumably completed by 
polyadenylation. 

 

 

 

 

 

From To Ref. (bp) Op0014 (bp) Start Stop

COI 1 1 533 1 553 1535 8 (0) 16,11 AUG (AUG) UAG (UAA) H

tRNA (Val) 1 546 1 606 65 24 0 0 - - H

16S rRNA 1 607 2 698 1 092 960 0 49,3 - - H

tRNA (Leu) 2 699 2 763 65 - -4 (0) 100 - - H

tRNA (Ala) 2 760 2 928 66 - -66 (0) 100 - - H

tRNA (Pro) 2 830 2 895 165 - 0 100 - - H

ND 6 2 896 3 366 471 456 16 (0) 89,8 UUG (-) UAA (-) H

ND 5-like 3 383 5 007 1 625 1 607 2 (0) 30,8 - - H

ND 1 5 010 5 924 915 915 3 (1) 17,6 GUG (-) UAA (UAG) H

tRNA (Tyr) 5 929 5 994 67 67 -1 (-1) 1 - - H

tRNA (Trp) 5 994 6 060 67 70 3 (3) 0 - - H

ND 4L 6 064 6 340 277 222 0 85,6 AUA (AUA) UAA (-) H

CYT B 6 341 7 450 1 114 1 119 0 17,8 AUG (-) UAA (-) H

tRNA (Asp) 7 455 7 525 71 22 -1 0 - - H

tRNA (Phe) 7 525 7 592 68 65 191 (82) 0 - - H

COX 2 7 784 8 458 675 606 2 (4) 25,3 AUG (-) UAA (UAA) H

tRNA (Gly) 8 461 8 525 65 63 2 (2) 0 - - H

tRNA (His) 8 528 8 596 19 - -2 100 - - H

tRNA (Cys) 8 595 8 658 64 - 29 (8) 100 - - H

tRNA (Gln) 8 688 8 750 63 18 5 0 - - H

tRNA (Leu) 8 821 8 756 66 6 5 0 - - L

ATP 8 8 991 8 827 165 112 0 0 AUG (AUG) UAA (-) L

tRNA (Asn) 9 059 8 992 68 68 4 (12) 1,5 - - L

ATP 6 9 726 9 064 663 662 0 77,8 AUG (AUG) UAA (UAA) L

tRNA (Arg) 9 789 9 727 63 65 2 (1) 0 - - L

tRNA (Glu) 8 995 9 780 64 67 0 1,5 - - L

12S rRNA 10 586 9 856 731 729 1 8 - - L

tRNA (Met) 10 652 10 588 65 59 -2 (-2) 18,6 - - L

ND 3 11 004 10 651 354 354 4 (1) 6,5 AUG (AUG) UAA (UAA) L

tRNA (Ser) 11 065 11 009 57 9 6 (6) 0 - - L

tRNA (Ser)(2) 11 072 11 134 63 22 0 0 - - L

ND 4 11 135 12 483 1 349 1 468 -1 (1) 69,8 AUG (UUG) UAA ((UAA)) H

tRNA (Thr) 12 549 12 483 67 72 0 (1) 0 - - L

COX 3 13 333 12 550 784 801 46 (42) 34,2 AUU (AUN) UAA ((UAA)) L

tRNA (Ile) 13380 13 445 66 69 0 28,9 - - H

ND 2 13 446 14 381 936 936 -1 (-1) 62,4 GUG (-) UAG (UAA) H

tRNA (Lys) 14 381 14 445 65 68 1 (1) 0 - - H

F. cantabrica (OP0014)

Position (Ref.) Size (ungapped)
% AMB

Intergenic nucleotide         

Ref. (OP0014)

Codon
StrandGene
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Table 10 Assembled regions of mitochondrial genome of F. villafranca using MITObim. 

 

Start and stop codons of reference (and Felimare) coding genes are given when found. Reference intergenic regions (and intergenic regions 
recovered) as well as the percentage of differences relative to the reference sequence are also given. Highlighted cells (red) are short (very 
incomplete) fragments. Codons with lowercase TAA’s (in double brackets) are incomplete termination codons, presumably completed by 
polyadenylation. 

 

From To Ref. (bp) Op0031 (bp) Start Stop

COI 1 1533 1 553 1541 8 (8) 8,7 AUG (AUG) UAG (UAG) H

tRNA (Val) 1 546 1606 65 99 0 (1) 12,1 - - H

16S rRNA 1 607 2698 1 092 1 287 0 60,6 - - H

tRNA (Leu) 2 699 2763 65 - -4 (0) 100 - - H

tRNA (Ala) 2 760 2928 66 - -66 (0) 100 - - H

tRNA (Pro) 2 830 2895 165 - 0 100 - - H

ND 6 2 896 3366 471 456 16 (8) 37,5 UUG (-) UAA (UAA) H

ND 5-like 3 383 5007 1 625 1 622 2 (4) 4,2 - - H

ND 1 5 010 5 924 915 915 3 (1) 3,6 GUG (AUG) UAA (UAG) H

tRNA (Tyr) 5 929 5 994 67 67 -1 (-1) 1,5 - - H

tRNA (Trp) 5 994 6 060 67 70 3 (3) 0 - - H

ND 4L** 6 064 6 340 277 230 0 1,7 AUA (AUA) UAA (UA(A)) H

CYT B** 6 341 7 450 1 114 1 125 0 8,2 AUG (AWG) UAG (U(AA)) H

tRNA (Asp) 7 455 7 525 71 45 -1 15 - - H

tRNA (Phe) 7 525 7 592 68 47 191 (27) 2,1 - - H

COX 2 7 784 8 458 675 675 2 17,8 AUG (AUG) UAA (-) H

tRNA (Gly) 8 461 8 525 65 - 2 100 - - H

tRNA (His) 8 528 8 596 19 - -2 100 - - H

tRNA (Cys) 8 595 8 658 64 - 29 100 - - H

tRNA (Gln) 8 688 8 750 63 - 5 100 - - L

tRNA (Leu) 8 821 8 756 66 84 5 (11) 40,5 - - L

ATP 8 8 991 8 827 165 156 0 (1) 1,3 AUG (AUG) UAA (UAA) L

tRNA (Asn) 9 059 8 992 68 68 4 (19) 0 - - L

ATP 6 9 726 9 064 663 665 0 38,2 AUG (AUG) UAA (UAA) L

tRNA (Arg) 9 789 9 727 63 66 2 (1) 0 - - L

tRNA (Glu) 8 995 9 780 64 67 0 0 - - L

12S rRNA 10 586 9 856 731 728 1 1,6 - - L

tRNA (Met) 10 652 10 588 65 64 -2 (-2) 9,1 - - L

ND 3 11 004 10 651 354 356 4 (31) 2,5 AUG (-) UAA (UAA) L

tRNA (Ser) 11 065 11 009 57 59 6 (4) 0 - - L

tRNA (Ser)(2) 11 072 11 134 63 63 0 56,4 - - H

ND 4 11 135 12 483 1 349 1 354 -1 (-1) 96,55 AUG (-) UAA (-) H

tRNA (Thr) 12 549 12 483 67 68 0 11,8 - - L

COX 3 13 333 12 550 784 821 46 (44) 39,1 AUU (-) UAA (-) L

tRNA (Ile) 13 380 13 445 66 66 0 0 - - H

ND 2 13 446 14 381 936 242 -1 (-1) 63,2 GUG (AUG) UAG (-) H

tRNA (Lys) 14 381 14 445 65 66 1 (2) 0 - - H

F. villafranca (OP0031)

Codon
Gene Strand

Position (Ref.) Size (ungapped)
% AMB

Intergenic                            

Ref. (OP0031)
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Figure 24 Putative tRNAs cloverleaf secondary structures for F. cantabrica. Sixteen (black) and nine (orange) tRNAs were identified, 
respectively, from blast of transcriptome contigs and reads assembly (MITObim) of F. cantabrica using C. magnifica mitogenome as 
reference. tRNAs were inferred with the Internal software module, which is part of the MITOS annotation pipeline. 
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Figure 25 Putative tRNAs cloverleaf secondary structures for F. villafranca eighteeb (black) and eight (orange) tRNAs were identified, 
respectively, from blast of transcriptome contigs and reads assembly (MITObim) of F. villafranca using C. magnifica mitogenome as 
reference. tRNAs were inferred with the Internal software module, which is part of the MITOS annotation pipeline. 
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3.5 DETECTION AND FILTERING OF AMPHIBIAN MTDNA CONTAMINATION 

As explained in the Material and Methods section, some contigs were found to be highly 

divergent from Chromodoris magnifica (and other molluscs) mtDNA. Quick BLAST searches against 

NCBI nr database revealed them to be amphibian mtDNA belonging to the toad Epidalea calamita. 

Of the contigs recovered through the BLAST against the Mollusca mtDNA database, 15 of a total of 

34 for F. cantabrica, and 20 of a total of 38 in F. villafranca, were E. calamita mtDNA. 

Thus I built a database with several coding/non-coding regions and some additional Nudibranchs and 

Anura mitochondrial genomes (See section 2.2.6 of Material & Methods), using both taxonomic 

criteria and previous results from annotation (Figure 23). I used that database against the 

transcriptome assemblies as an attempt to evaluate the extension of this contamination and, if 

possible, exclude “amphibian” contigs for further analyses (Table 1). 

Using the default BLAST limit on the number of hits (500), most query sequences returned a low       

(1-5) number of hits at both nucleotide and protein blast, against the previously mentioned database 

(Figures 26 and 27). 
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Figure 26 Number of hits per sequence for blastn (nucleotide) analyses against nuclear and mtDNA coding regions across molluscs and 
other invertebrate and vertebrate species for each transcriptome. (graph truncated as blastp returned hits can be much higher – as they 
may include several hits in the same target sequence). 
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Figure 27 Number of hits per sequence for blastx (protein) analyses against nuclear and mtDNA coding regions across molluscs and other 
invertebrate and vertebrate species for each transcriptome (graph truncated as blastp returned hits can be much higher – as they may 
include several hits in the same target sequence). 

 

Table 11 presents the number of sequences from each transcriptome with hits, as well as the 

best-hit distribution across the genomes in the database. Approximately 6.5% (3,582 sequences) and 

18.9% (10,345 sequences) of the total contigs from F. cantabrica, as well as 7.7% (4,545 sequences), 

and 20.34% (11,914 sequences) of F. villafranca contigs had hits with sequences in the database 

(nucleotide and protein sequences, respectively). Contigs matching all taxa (invertebrates and 

vertebrates) included in the database were also found. Under both strategies and in both                        

(F. cantabrica and F. villafranca) transcriptomes, the genome with the highest number of nucleotide 

hits was Aplysia californica, followed by Xenopus tropicalis and Lottia gigantea (Figures 28 and 29). 

These numbers changed when we look at results from the protein blasts, with an increase of 

“Mollusca” - homolog sequences retrieved. 
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 Table 11 Number of sequences of transcritpomes with hits, as well as the best-hit distribution across nuclear and mtDNA coding regions of 

molluscs and other invertebrate and vertebrate species. 
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Figure 28 Number of sequences with best hits against genomes in the database (blastn). 
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Figure 29 Number of sequences with best hits against genomes in the database (blastx). 

 

Overall, the total number of “unique hits” (sequences for which hits were only observed in a 

certain taxonomic group) for non-vertebrata was significantly higher than for vertebrata, as expected. 

There was a great number of sequences that had hits simultaneously with vertebrata and non-

vertebrata, a result more evident in the protein blast (blastx), as expected. Several blast parameters 

(frequency, percentage of identity, alignment length) were plotted across different e-value categories, 

to better evaluate the reliability of these hits. Overall, the most frequent classes of e-value were the 

two highest ones ( 1e-50), with an overall correlation between relationship was more evident in the 

protein blast results (Figures 30 and 31). These plots were very similar when using all hits or only the 

best hits. 
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Figure 30 Plots of frequency, % identity and alignment length per class of e-value of F. cantabrica contigs with all nucleotide hits. 

 

Figure 31 Plots of frequency, % identity and alignment length per class of e-value of F. cantabrica contigs with all protein hits. 
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These same plots but only concerning the sequences with hits (best) retrieved against a specific 

organism/group (Aplysia californica; Xenopus tropicalis; Bufo sp. mtDNA; nudibranchs mtDNA and 

Homo sapiens) showed similar patterns for the hits with A. californica and Xenopus, while for the other 

organisms, as the number of hits were lower, these general trends were not observed. Yet, overall, 

we can see that the huge majority of the hits are reliable, with a few possible exceptions. This few 

cases that seem to have both high e-values and low %ID and alignment length were found in the 

nucleotide hits with Homo, and in the protein hits with both Aplysia and Xenopus (Supplementary 

Material 3-6, 9-12). Plots regarding best-hits to A. californica (full genome coding sequences) and      

C. magnifica, N. gardineri, and species of the genus Bufo, as well as the remaining analyses are 

presented in Supplementary Material 3, 7-10). 

 

3.5.1 Battery of orthologs 

Using a conservative criterion, with 30% of minimum identity between sequences, only 

sequences with hits exclusively unique to other Mollusca (unique hits) were considered the orthology 

search between the two transcriptomes. These represent, respectively 6% (3,342) for  F. cantabrica, 

and 6,1% (3,573) for F. villafranca contigs. 

A reciprocal blast of these two sets of contigs resulted in 728 putative orthologs between the 

two species, ranging from 113bp up to 5282bp (Figure 32). 

 

 

Figure 32 Distribution of the number of putative ortholog transcritps per alignment size categories, after reciprocal blast between clean 
contigs of F. cantabrica and F. villafranca. 
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Chapter 4 Discussion
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For “Opisthobranchs”, taxonomy relies mostly on external morphology and anatomy of soft parts 

(Gosliner et al. 2008). Such information, we know today, is often not sufficient to distinguish between 

species, therefore other types of studies are necessary (e.g. Eilertsen & Malaquias 2013). In the case 

of Felimare, despite some meticulous descriptions of its life-history traits (e.g. type of habitat; 

abundance, diet) and of the many colour variants across species, the majority of the species are still 

described based on anatomical features and colour patterns, with many having high numbers of 

synonyms – often still used in the literature (Ortea 1996; Sánchez-Tocino 2003). This generates an 

overall cumbersome taxonomy for this group and many questions thus exist regarding the validity of 

some of the described species, and the putative existence of species-complexes, which demand the 

use of molecular data. 

About 42 species are currently assigned to the genus Felimare (WoRMS, 2015) but there is 

sequence data (Genbank, mtDNA) only for ten of those, two of which are synonyms (F. tricolor and 

F. midatlantica). Equally important is the lack of genomic resources for Chromodorids in general, as 

well as for other Gastropod molluscs. With this in mind, additionally to sequencing one mtDNA 

fragment for several populations of our group of interest, I also sequenced and assembled the 

transcriptomes of two of its species, F. cantabrica and F. villafranca. Transcriptome sequencing is a 

fast and efficient mean of genome reduction (McCormack et al. 2013), and an accessible tool for the 

acquisition of multi-marker datasets (Barley et al. 2010) applicable either in studies of phylogeny or 

phylogeography. The data here generated can be later used to generate marker sets for these and 

other closely related organisms. 

This work has resulted in the largest molecular dataset (12 species) used for the study of both 

phylogeny and phylogeography of Felimare so far. I obtained molecular data (COI) newly for two 

species, F. cantabrica and F. orsinii, as well as for many individuals from several species and several 

locations across their range. These molecular analyses considerably further our understanding of the 

genetic diversity within the genus. 
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4.1 PHYLOGEOGRAPHY AND PHYLOGENY OF SEVEN EA AND MEDITERRANEAN 

SPECIES OF FELIMARE 

4.1.1 Sampling and species abundance 

The three most abundant species in my dataset (F. tricolor, F. villafranca and F. cantabrica) are 

also the most abundant throughout the Atlantic and Mediterranean coasts according to the literature 

(Ortea 1996; Sánchez-Tocino 2003). F. tricolor, here sampled all the way from the Cantabrian Sea, 

Atlantic Iberian waters, west and central Mediterranean, is described as being abundant throughout 

all year, both in NW and south Iberian coasts. Similarly, F. villafranca is described as frequent, not 

only in the NE/south of the Iberian coasts, but also in its African Atlantic distribution limits, during 

almost all year, with possible declines in the winter season. F. cantabrica, on the other hand, here 

collected mainly in the Atlantic Iberian coast, and at a minor extent in the Atlantic African coast, is 

reported as very frequent in the Iberian coast, however scarce and seasonal throughout Alboran-Oran 

waters. In Granada (South Eastern - SE - Spain), this species was observed punctually by Sánchez-

Tocino (2003) only between January and May. 

The remaining species were not so frequently encountered in our samplings. However that does not 

mean that they cannot be equally abundant: our sampling was quite opportunistic with only a few 

dives performed when sea conditions were favourable. A proper evaluation of species abundance 

was not performed and was outside the scope of our work, although our sampling was concordant 

with the abundance trends reported in the literature. 

 

4.2 INTERSPECIFIC RELATIONSHIPS WITHIN FELIMARE 

Previous molecular phylogenies of Opisthobranchs have included sequences of Felimare, but 

not more than one or two representatives of each species, with many having never been sequenced 

(Gosliner & Johnson 1999; Valdés 2006; Pola et al. 2007; Johnson & Gosliner 2012; Sánchez-Tocino 

et al. 2014). I used a mitochondrial protein-coding gene, cytochrome c oxidase I (COI), as homologous 

sequences (and primers) were already available for some Felimare species (Johnson & Gosliner 

2012) and also because this fragment allows resolution at species level in a wide variety of taxa 

(Hebert et al. 2003), being widely used within nudibranchs (Thollesson 2000; Wollscheid-Lengeling 

et al. 2001; Zardoya et al. 2004; Turner & Wilson 2007). Its fast rate of evolution makes it also an 

ideal marker to record recent historical events (Wilson et al. 2009), although caution has to be taken 

when looking to accurately estimate levels of divergence within and between groups (Mueller 2006). 
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DNA sequences obtained mostly reflected previous morphological identifications, with only a 

few exceptions, which I comment on more detail bellow (see section 4.4). With this I mean that both 

Gene tree (GT) inferences (Bayesian and Maximum likelihood) reflect that the previously recognized 

species are distinct mtDNA lineages defining reciprocally well-supported monophyletic groups (PP/BS 

> 95%). The genetic distances between these species vary between 10.8% (F. villafranca/F. orsinii) 

and 16.4% (F. cantabrica/F. fontandraui) distances, comparable to the ones between sister-species 

in other dorid nudibranchs, although these can be high variable. For example, Pola et al. (2007), 

Turner & Wilson (2007) and Wilson et al. (2009) highlight sister species to be well supported and with 

divergences of 3.3 – 5.77%; when compared with the typical interspecific values of 11.1 ± 5.1% of 

mean uncorrected p-distances (Hebert et al. 2003). On its turn, Malaquias & Reid (2009) estimate 

uncorrected p-distances of 10 - 22% between species of genus Bulla, while other Heterobranch 

species show distances of around 7% (Valdés et al. 2011). Bayesian and maximum likelihood 

phylogenetic analyses support the monophyly of Felimare, as recovered by Johnson & Gosliner 

(2012). At the same time, but contrarily to Johnson & Gosliner (2012), Hypselodoris and Mexichromis 

were not recovered as a monophyletic group in the COI tree. With additional analyses (Supplementary 

Figure 2), I verified that perhaps the greater distance between Roboastra europea (outgroup) and the 

remaining species in the tree, could be disrupting those relationships: when using instead 

Chromodoris magnifica as outgroup, Mexichromis and Hypselodoris were recovered as a clade, with 

very good support in the Bayesian COI tree, and consistent in the ML COI tree. Relationships within 

Felimare, though, seem unaffected by the outgroup used. 

Despite the overall lack of resolution of the tree at basal nodes within Felimare, both gene-tree 

and species-tree analyses were largely congruent in their main aspects: i) the Western Atlantic             

F. kempfi and the Eastern Pacific F. porterae are always sister-taxa (well-supported in the BI tree and 

in the ST), making the Western Atlantic species paraphyletic; ii) also the Eastern Atlantic and 

Mediterranean species are not a monophyletic group, given that the Eastern Pacific F. californiensis 

and F. agassizi cluster within them; iii) of the interspecific relationships, there seems to be some 

support for a sister-relationship between the EP F. californiensis and the Atlantic F. picta, with               

F. agassizi (EP) as their basal group - although not especially supported, this topology is always 

recovered - and iv) the EAM F. villafranca, F. orsinii and F. cantabrica are clearly a well-supported 

clade, although relationships between them are unresolved. Despite biogeographic patterns 

remaining largely unclear, and considering the majority of the diversity of this group is supposed to 

be in the Eastern Pacific region, these phylogenies argue at least for multiple colonisations and 

divergence of the Western and Eastern Atlantic regions. Until a comprehensive inclusion of the 

Eastern and Western Pacific diversity of this group though, it is very difficult to make any statement 

regarding the direction of the colonization of the EAM area – if through the Western Atlantic or from 
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the Eastern Pacific, via Suez canal. Possible explanations to the lack of phylogenetic resolution at 

basal level may include lack of power of the molecular marker used or rapid diversification of the 

group, as has been proposed for this family by Johnson & Gosliner (2012). Potential causes of this 

radiation in the family were previously attributed to morphological key innovation characters, as the 

MDF (Wägele & Klussmann-Kolb 2005), or to ecological speciation by resource partitioning            

(Krug 2011). The first explanation, nowadays, does not seem completely valid, given that MDF occurr 

in other Opisthobranchia (Turner & Wilson 2008), and may not occur on some species                              

(e.g. H. fontandraui) (Haber et al. 2010). The latter explanation, on the other hand, has been proposed 

to potentiate diversification at more local scales, for species living in sympatry, and where vicariance 

does not seems reliable.  

For the seven EAM species in this study, living in partial sympatry ecological speciation is not 

easy to corroborate, therefore I suggest future studies on resource utilization, depth zonation, or 

larvae development, for example, to better understand the co-occurrence of these sister species. In 

order to resolve these phylogenetic questions the addition of more species, especially from the 

Eastern Pacific and Western Atlantic regions will be needed, as well as to survey multiple, unlinked 

nuclear loci and more mtDNA data for the increment of the phylogenetic resolution (as resolution at 

deeper branches is almost inexistent). Still, our results corroborate Felimare as a monophyletic group, 

point to multiple (at least two) colonisations of the Eastern Atlantic and Mediterranean area, and also 

to Miocenic divergences between most species. Some of our results regarding phylogenetic 

relationships and possible instances of cryptic speciation (for F. villafranca) are further corroborated 

in a work published during the writing of this thesis (Furfaro et al. 2016). 

 

4.3 DIVERGENCE TIME ESTIMATES 

Our analysis dates the ancestral divergence within the genus in the Oligocene (30 - 40 MY). 

Subsequent differentiation between species seems to be old and might have occurred mostly during 

the Miocene, with a few confidence intervals extending into the Pleistocene. This means that multiple 

opportunities for dispersal across the Atlantic may have existed throughout this time. These old 

divergences between species estimated from molecular data and based on fossil calibrations seem 

to be a recurrent pattern in the literature for several groups of molluscs (Williams & Reid 2004; Duda 

& Kohn 2005; Williams 2007; Williams & Duda 2008; Malaquias & Reid 2008) and also fish (Hrbek & 

Meyer 2003; Bellwood et al. 2004). 

At least two sister relationships between Eastern Pacific and Atlantic are observed, in 

agreement with previous phylogenetic studies of other dorid nudibranchs, such as genera 
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Phyllidiopsis (Valdés 2001), Rostanga (Garovoy et al. 2001), and Platydoristhe (Dorgan et al. 2002), 

as well as other marine invertebrates, such as gastropods from the periwinkle family Littorinidae 

(Williams & Reid 2004; Reid et al. 2010), Nerita and Bulla (Frey & Vermeij 2008; Malaquias & Reid 

2008), the fiddler crab genus Uca (Sturmbauer et al. 1996), the shrimp genus Penaeus                 

(Lavery et al. 2004), the sea urchin genus Eucidaris (Lessios et al. 1999), and at some extent the 

divergence between the live fossil gastropods of Pleurobranchus and its closest sister genus 

(Goodheart et al. 2015). These patterns are usually explained by vicariant events related to the break-

up of the Tethys Sea, including the formation of the Arabian Land Bridge 23 MY (Harzhauser et al. 

2007), and the East Pacific Barrier about 10 MY (Lessios et al. 2007). Being much older, divergences 

between these groups do not seem related to the closing of the Isthmus of Panama that isolated the 

eastern Pacific and the Atlantic only 2.7–3.4 MY (Leigh et al. 2014). The long branches and old 

divergence ages may also reflect extinction events across lineages, as it is the case in the gastropod 

genus Turbo (subgenus Marmarostoma) (Williams 2007). Extinction could lead to artefacts, this is, 

transisthmian species may not be the true sister-taxa, and the divergence times may have been 

overestimated (Malaquias & Reid, 2009). These hypotheses are usually very hard to distinguish, 

especially in the cases of old divergences. Thus, trans-Atlantic faunal exchange has usually a long 

and complex history (Harzhauser et al. 2002). 

A very recent study on F. picta complex suggests that this species had an unusual success 

crossing main Atlantic biogeographic barriers, including the mid-Atlantic barrier (stretching over 3500 

km), and proposed the origin of F. picta to be posterior to the closing of the Isthmus of Panama 

(Almada et al. 2015). The sister-relationship between the eastern Pacific F. californiensis and the       

F. picta complex are corroborated here but our age-estimates point to a much older divergence than 

the final closure of the Isthmus and call for a re-interpretation of the biogeographic history of F. picta 

complex. The youngest divergence within Felimare, as here estimated is the one between F. tricolor 

and F. fontandraui, however, it has to be taken with special caution, as it was particularly inconsistent 

throughout the several ST analyses (not shown).  

All in all, I must stress the need of taking all these age estimates with caution. Additionally to 

being based on a single locus, estimates of the timing of speciation events are subject to errors of 

incomplete sampling and poor phylogenetic resolution. 
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4.4 INCONGRUENCES BETWEEN MORPHOLOGY AND MOLECULAR DATA 

Because colour pattern identification is the most straightforward way to identify these species 

in the field, and because no internal anatomic characters were used for this study, I relied on 

descriptions, records of geographic distributions, and detailed discussions upon morphological 

characters from Ortea et al. (1996) and Sánchez-Tocino (2003). Ortea et al. (1996) was the pioneer 

in the study of the blue Chromodorid group, i.e. all species with a bluish background and their multiple 

yellow, orange and/or white stained forms. After him only Sánchez-Tocino (2003) attempted a revision 

on the systematics of the blue Chromodorids of the Atlantic. However, for some species, descriptions 

are based on one or two individuals (e.g. F. malacitana), with some generalizations based on few 

individuals or on human misidentifications (Sánchez-Tocino 2003), and many times dealing with the 

existence of many synonyms for many species, resulting in many confusing characters descriptions. 

I noticed Important incongruences between morphologic and mitochondrial data in this study. Two 

individuals from Cádiz, with no photo record available but identified as F. fontandraui were assigned 

to F. tricolor according to COI. Conversely, one specimen identified as F. tricolor clustered within        

F. fontandraui (Figure 33 below). Another individual from Morocco (Anza) first identified as                      

F. bilineata, was found to share its COI haplotype with individuals of F. cantabrica. (Figure 34 below). 

Additionally, an individual labelled in Genbank as F. picta elegans, from NW Spain and which has 

been used in many studies of Chromodorididae phylogenies, shares its haplotype with   F. villafranca 

individuals from NW Iberia. This one is probably a case of wrong labelling/sequencing (Heike Wägele, 

pers. comm.). 

4.4.1 F. fontandraui and F. tricolor 

Regarding individuals from Cádiz, because no pictures of these specimens were taken and 

colour degrades after a few hours in ethanol, I could not re-access the identification of these 

individuals and address if they were erroneous ones. On the other side, one photograph was taken 

(Figure 33) of the individual identified as F. tricolor from Barcelona, which was later assigned to            

F. fontandraui based on mtDNA. In the photo it is clear the regular contoured dorsal central line and 

the lack of several linear stains in the border of the mantle (as expected in F. fontandraui). Plus, the 

anchor-like pattern in the head was not observed in the Figure 33 (personal communication). As I 

could not be certain of non-erroneous identifications, I considered these individuals dubious and, for 

the purpose of this work, re-assigned them to the species of their mtDNA (marked with an asterisk (*) 

in Supplementary Table 1). Yet, it would be interesting to keep these in mind for future investigations 

either on the morphological diagnosis of these two species or/and the possibility of hybridization 

between them. 
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Figure 33 Specimen from Barcelona originally identified as F. tricolor but harbouring F. fontandraui mtDNA (and thus re-assigned to this 
species). This photo was kindly handed by Enric Madrenas from Cataluña. 

 

4.4.2 F. bilineata and F. cantabrica 

One specimen collected in Morocco (Anza), shown in Figure 34, was originally identified as       

F. bilineata based on its coloration pattern. Its COI haplotype is shared with F. cantabrica, shared with 

individuals from the north Atlantic. Contrary to the previous case,  morphological identification was far 

from ambiguous. 

 

 

Figure 34 Felimare individual collected at Anza, Morocco (a), first identified as F. bilineata (c), and which exhibits a mtDNA haplotype 
shared with many F. cantabrica (b) individuals. 
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F. malacitana (Figure 34a) is restricted to the Southern coasts of Spain (Málaga and Almería) 

(Ortea 1996), and was recently reported from deep waters of the East Atlantic shores (Canary Islands 

and Senegal) (Sánchez-Tocino 2003). 

Adults of F. malacitana can be confounded with F. cantabrica (Ortea 1996). The presence of 

tubers or the so-called mantle dermal formations (MDF) in the surface mantle is apparently the one 

visual characteristic that allows this species to be differentiated from the F. cantabrica (Tociño et al. 

2003). Still this characteristic isn’t so easy to see at naked eye, and for sure it is even harder to see 

when trying to identify species only by photography (e.g. divers often identify species records only 

based on visual/digital evidence). Juveniles present two central lines in the dorsum that tend to unify 

right after the line of the rinophors. Such pattern can also be confounded with juveniles of F. bilineata. 

Again the presence/absence of tubers in F. malacitana and F. bilineata, respectively, appears the 

most evident distinctive character. As adults their coloration is reported as easy to differentiate 

(although exceptions are reported at distinguishing F. bilineata from Ghana; 

http://www.seaslugforum.net/) (Figure 36), and they also differ concerning to the lip armour                   

(F. malacitana has more dentils than F. bilineata). F. malacitana is known to be hard to identify even 

for experts with recurrent contact with these Chromodorid nudibranchs (see 

http://seaslugforum.net/showall/hypsmala).  

Regarding the individual analysed in this work (Figure 34a), it was identified as F. bilineata, and 

there isn’t enough detail in the picture to access if it could be a F. malacitana. As I found it to have 

mtDNA clearly clustering within F. cantabrica, and as F. malacitana and F. cantabrica are also 

sometimes reported to be difficult to distinguish, I have to hypothesize the potential occurrence of 

hybridization between F. cantabrica and F. bilineata, and that the geographically-restricted, 

phenotypically-variable F. malacitana may actually be not a valid species but instead represent hybrid 

individuals between these two co-occurring species. It would also be interesting to further investigate 

this issue. 
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Figure 35 Images taken from http://seaslugforum.net/showall/hypsmala. Specimens in the image have been suggested to be F. malacitana 
by experts on nudibranch’s taxonomy (Bill Rudman). On the left: a specimen from El Hierro Island (Canary). On the right: a specimen from 
“Grand Turiba”, Dakar, Senegal. 

 

4.5 INTRA-SPECIFIC VARIABILITY AND GENETIC STRUCTURE 

4.5.1 Genetic differentiation 

The genetic structure of the seven EAM Felimare species as inferred from the mtDNA COI 

marker has shown to be useful for tracing both intra and inter-specific genealogies of many 

heterobranch species (Ellingson & Krug 2011; Wilson et al. 2009; Johnson & Gosliner 2012). Bearing 

in mind the sampling limitations of this study, my results show already some clear patterns of genetic 

structure across the different species, as well as unveil several cases of potential cryptic species. The 

seven EAM species exhibit distinct phylogeographic patterns, as well as variable degrees of 

differentiation within each species. For five of the species, the substantial genetic divergence between 

clades and reciprocally allopatric distributions point to the existence of species complexes. One of 

those, F. picta, has been subject of further exploration as this thesis was being written                  

(Almada et al. 2015). 
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4.5.2 Species without signs of population structure 

4.5.2.1 F. cantabrica and F. tricolor 

These two species did not show any signs of population structure, with closely related 

haplotypes distributed (and shared) across their sampled distributions. In the case of F. cantabrica, 

its distribution seems to encompass only the Cantabrian and Eastern Atlantic coast, so a strong 

genetic structure would be less expectable. The absence of phylogeographic structure in F. tricolor, 

distributed from the Cantabrian sea to the Eastern Mediterranean is remarkable (Figure 14). These 

patterns may either indicate the existence of overall gene-flow across this area for these species or 

an overall recent colonization of their distribution area. To test these hypotheses, the collection of 

more data and the use of comprehensive multilocus inference frameworks will be needed. Similar 

patterns of lack of genetic differentiation in this region are observed in other limpet-like species        

(e.g. Patella rustica, Pollicipes pollicipes, Nassarius reticulatus) and isopods of the genus Stenosoma 

(Couceiro et al. 2007; Campo et al. 2009; Ribeiro et al. 2010; Xavier et al. 2011), as well as for the 

sea urchin Arbacia lixula (Wangensteen et al. 2012).  

Their pelagic larvae confer these organisms a high dispersal potential which may offset their 

small-scale mobility when adults. Both species, F. cantabrica and F. tricolor, need approximately 

seven to eight days (six of which are expended as veliger stage) after their period of fertilization to 

settle in the substrate (Coelho & Calado 2010). These numbers are similar (9 to 15 days) to those of 

other species such as limpets of the genus Patella, that share haplotypes between the Atlantic shores 

of Africa and Iberian Peninsula and Mediterranean Iberian shores (Sá-Pinto 2008). In the case of P. 

rustica, Ribeiro et al. (2010) hypothesized that the prevailing current patterns during the reproductive 

season could be responsible for the observed genetic homogeneity. Throughout the year, the mean 

flow on the surface of the Portuguese coast is southward, but seasonal winds can change this pattern 

(Martins et al. 2002). The general absence of genetic differentiation throughout the distribution of 

these two species may mean that regional hydrographic patterns may be promoting their high 

conectivity, both northwards and southwards, as observed for other species by Xavier et al. (2011). 

4.5.3  Species with signs of population structure 

4.5.3.1 F. villafranca 

F. villafranca exhibited a marked genetic structure with clear differentiation between the East 

Atlantic (Iberian coast, west of Gibraltar), West Mediterranean (Barcelona, Girona, Menorca and 

France), Central Mediterranean (Italy) and Morocco. In particular, the samples from Italy and Morocco 

are highly differentiated from the rest (2.6% and 7.1%, respectively). Differentiation between Iberian 

and Moroccan populations has sometimes been reported in the literature, for other species              
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(Simon-Bouhet et al. 2006; Xavier et al. 2011; Ouagajjou & Presa 2015), but many other studies on 

crustaceans and gastropods (e.g. barnacle, squat lobster, limpets Cymbula nigra, P. rustica) fail to 

find it (Pannacciulli et al. 1997; Naciri 1999; Sá-Pinto 2008; Campo et al. 2009; Cabezas et al. 2011; 

Espinosa et al. 2011). With exception of limpets, either barnacles or squat lobsters need at least one 

to several months to settle to the substract, and therefore are expected to disperse quite well. As for 

other organisms (e.g. Ouagajjou & Presa 2015), this latitudinal divergence in the Atlantic is likely due 

to a poor offshore dispersal between the continental coasts of Europe and Africa. Even within the 

northeastern Atlantic coast some differentiation (1.2% p-distance) is seen across localities, with the 

southern ones (Ria Formosa, Cádiz, Gibraltar) not sharing haplotypes with the more northern 

localities (Ferrol, Vigo and Sesimbra). Although I still miss sampling from a great part of its known 

distribution, this species is a the only direct developer in the group and therefore expected to be 

subdivided. Juveniles from F. villafranca hatch already in a benthic dorid-shape (Coelho & Calado 

2010), and in fact it is possible that the observed patterns can be mostly explained by isolation-by-

distance. Additionally, given what is known about Mediterranean and north African coastal 

biogeographic areas and barriers to gene-flow, it is likely that further sampling across its distribution 

range unveils yet more lineages. 

4.5.3.2 F. fontandraui 

At least three lineages can be seen within this species: Atlantic + Chafarinas, and at least two 

others in the Mediterranean. Despite this species having planktonic larvae (which disperse more than 

F. villafranca), little haplotype sharing was observed between localities (only in one case). This may 

be a real pattern or result of the limited sampling. In any case, the geographic distribution of the 

different clades seems to coincide with the known marine barriers of Almeria-Oran Front (samples 

west to it, including Chafarinas belong to the same clade) and the Balearic Front and the border 

between the Ligurean and Thyrrenean Seas (Figures 1 and 4) (which could explain the differentiation 

between the samples from Girona and South-West France from the diverging Italian one, from Ischia). 

Yet, the fact that one haplotype is also shared between individuals from Girona and Italy (Giglio island) 

indicates that further effort is needed to clarify the biogeographic structure of this species in this area. 

The region that separates the Ligurian Sea and the North Tyrrhenian Sea, between the coast of 

Tuscany, and the islands of Elba and Corsica, has been hypothesized as a biogeographic barrier 

(Bianchi 2004), being characterized by divergent currents on both sides  (Millot 1999). However very 

few studies have tested such barrier (Lenfant & Planes 1996; Rastorgueff et al. 2014) and for none 

of the organisms it was shown to be effective, including one study with gastropods (Villamor et al. 

2014). The isolation of the north-western Mediterranean lineages might been maintained by a quasi-

circular cyclonic front located in the Ligurian Sea active all year round, and marked seasonal variability 



 
100 

of the Tyrrhenian Current. When active (autumn and winter), the Tyrrhenian current flows close to the 

Ligurian coast (Astraldi et al. 1995) and could explain some dispersals between the two regions. 

Sánchez-Tocino (2003) states the winter season and possibly the spring as the reproductive period 

of F. fontandraui. This could facilitate larvae migration during this period between the two basins and 

explain the currently observed patterns. On the other side, the differences in the thermohaline 

conditions of the two basins in winter (Astraldi et al. 1995) may act in promoting isolation. 

4.5.3.3 F. orsinii 

Very few samples of this species, with a mostly Mediterranean distribution, were collected, but, 

again, the Atlantic-Mediterranean split is very clear, with an Atlantic and a Mediterranean lineage 

around 7.5% divergent. 

4.5.3.4 F. bilineata 

F. bilineata has been already suggested to be a species complex, with possible cryptic lineages 

in Atlantic Iberia, Canary islands and Ghana (Ortea 1996). For this study samples could only be found 

in the southern Iberian Atlantic coast (Ria Formosa and Cádiz) and Madeira. Remarkably, even just 

within those two close localities, F. bilineata harbours at least two highly differentiated lineages with 

a minimum p-distance of 4.3%, without any clear geographic structure. Further differentiation was 

found within one lineage, by a minimum of seven mutational steps (approximately 1% uncorrected p-

distance). Such pattern of divergence is not common in gastropods in such a small area, particularly 

for species with a planktonic larval dispersal. It will be important to further sample across the 

distribution range of this species in order clarify the distribution and origin of these different lineages 

(ecological or allopatric differentiation in secondary contact?) 

4.5.3.5 F. picta 

F. picta showed a pattern of deep genetic differentiation between southern Atlantic populations 

(Cabo Verde and S. Tomé) and more northern Atlantic and Mediterranean populations. These two 

where the highest differentiated intraspecific lineages in this stuidy (more than 9% divergent). This 

strongly suggests that F. picta is a species complex, in agreement with Almada et al. (2015), and with 

Ortea et al. (1996). Studies reporting northern and tropical eastern Atlantic genetic breaks are 

common in the literature (Muss et al. 2001; Quinteiro et al. 2007; Domingues et al. 2008; Pellerito et 

al. 2009), and this patterns is not surprising. Yet, in this case, no differentiation was detected between 

Iberian Atlantic (west of Almeria-Oran) and Mediterranean populations, despite the multiple eastern 

Mediterranean samples included in our study. In this study there are only a few samples from the 

northeastern Atlantic region, and no samples from eastern Mediterranean locations or other disjoint 

F. picta populations (Azores, Brasil, the Caribean) but Almada et al. (2015), showed that little 
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differentiation exists between populations from Iberian Peninsula (south Spain, Cádiz), Madeira, 

Canary islands, Azores and even Mexico, which would belong to our Atlantic clade. In our samples, 

haplotypes from both clades are very closely related, or shared (e.g. individuals from Cádiz and Italy 

shared their haplotypes), likely indicating gene flow across large distances, as also argued by Almada 

et al. (2015). Based also on their mtDNA phylogeny, which also includes F. picta representatives from 

Brasil and another closely related species from Bermuda (F. zebra), these authors argue two 

eastwards colonizations to explain its amphi-Atlantic distribution, unique among chromodorids. 

Coelho & Calado (2010) reported that F. picta shows the largest egg size and planktotrophic larvae 

length at hatching reported among nudibranch molluscs, which could help to explain this remarkable 

pattern. Still, Almada et al. (2015) argue for an origin of this species complex posterior to the closure 

of the Isthmus of Panama (given its sister-relationship with the eastern Pacific F. californiensis), which 

clearly is contradicted by the genetic distances and divergence time estimates obtained here, and 

that suggest that the origin of this species complex seems to largely predate this closure. 

 

4.6 ATLANTIC AND MEDITERRANEAN BARRIERS TO GENE-FLOW 

As expected, many of the areas/features known to act as barriers to gene flow in other marine 

species seemed to affect the distribution of Felimare. The two biographic discontinuities known to 

cause differentiation between Atlantic and Mediterranean populations are the Strait of Gibraltar (SG) 

and Almeria-Oran Front (AOF). These have been widely described as major dispersal barriers for 

many marine organisms (e.g. Patarnello et al. 2007; Galarza et al. 2009), and are here hypothesized 

as causes for the observed patterns in several species. Regardless the fact I often do not have a 

representative sampling to clearly distinguish between the effects of the Strait of Gibraltar or of the 

AOF it seems that for species as F. fontandraui and F. villafranca (where samples collected east of 

the SG - Chafarinas, Gibraltar - cluster within remaining Iberian Atlantic ones) AOF may be the 

prevailing barrier acting on Atlantic-Mediterranean differentiation. A similar pattern is suggested in  

Sá-Pinto et al. (2012). F. fontandraui and F. villafranca populations from the Balearic area (Girona, 

Southwest France, Balearic islands) also show some slight differentiation, likely reflecting as well the 

action of the Balearic front. This area is under the farthest influence from the incoming Atlantic water 

and constitute the most differentiated Mediterranean waters (Palero et al. 2008). Here, the occurrence 

of the Northern and Balearic Currents form a mesoscale cyclonic gyre (Figure 1), which may favour 

larval retention. 
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The role of further eastern proposed barriers in the Mediterranean either was not observed in 

F. tricolor and F. picta and could not be tested in the remaining species. It would be interesting to 

extend the sampling of the remaining species across their distribution area in the eastern 

Mediterranean, as further population structure is likely expected. Additionally, some studies           

(Jaziri & Benazzou 2002) suggest further structure within north African coasts, which would be 

interesting to explore in the several species with northern African distributions. 

 

4.7 TRANSCRIPTOME ASSEMBLY 

4.7.1 Sequence analysis and assembly 

From the many short read assemblers available I selected Trinity, a method for de novo 

reconstruction of full-length transcripts in a sample from RNA-seq reads, and broad range of 

expression levels, high reference coverage, low levels of redundancy, on both small and large 

datasets (Yang & Smith 2013). Another advantage of using Trinity is the efficiency of its default 

settings, already optimized for a single k-mer size (25 k-mer), and with efficient thresholds for 

minimum length of transcripts. Other popular software packages, instead, use a range of k-mer sizes 

for short-read RNA-seq assembly that generally require additional analyses (e.g. k-mer sizes 

manipulation, average insert length manipulation). Furthermore Trinity explicitly outputs assembled 

sequences in a hierarchical mode (e.g. component or genes, subcomponent or homologs and 

transcripts or isoforms), which is an advantage over other assemblers. In the particular case of 

transcriptomic data, Trinity has shown to be superior, with sensitivity comparable to methods relying 

on genome alignments, even in the complete absence of a reference genome (Riesgo et al. 2012; 

Grabherr et al. 2013; Yang & Smith 2013).  

The number of reads collected in this study (close to 40 35 million) is equivalent to other transcriptome 

analyses of invertebrates molluscs (e.g. cephalopod Octopus vulgaris, the chitone Chiton olivaceus, 

and pond snail Radix balthica) (Feldmeyer et al. 2011; Riesgo et al. 2012), and significantly larger 

than some other previous studies (e.g. Nerita melanotragus) (Amin et al. 2014).  One way of 

evaluating the transcriptome completeness was by using CEGMA, which searches for 248 core 

proteins that generally lack paralogs in the eukaryotes (Tatusov et al. 2003; Parra et al. 2007). 

CEGMA reports their recovery as “complete” or “partial”, where “complete” means that 70% or more 

of the amino acid sequence was recovered. The values here obtained (50% to 60%) are lower in 

comparison with other transcriptomic studies on molluscs (e.g. Hu et al. 2011; Cornman et al. 2014), 

and may reveal incompleteness of the transcriptome. Such scenario might be expected given that 

only foot tissue was represented in the sequencing libraries. The number of contigs/transcripts 
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obtained here (80K) fall in a range comparable to studies of molluscs and other invertebrates. For 

instances, for the two pond snail gastropods analysed by Feldmeyer et al. (2011), contigs varied 

between 52K up to 57K, while Riesgo et al. (2012), obtained totals from 71K – 207K contigs in a wide 

set of invertebrates. 

The N50 is defined as the shortest sequence length such that half of the total sequence output 

length is included in sequences. Usually, it is around 1 Kb for genome assemblies, as the average 

size of an exon for animals (Bolshoy et al. 2011), but at the same time it varies proportionally to both 

the length and coverage (O’Neil & Emrich 2013). This wasn’t primarily aimed to be a reference 

measure in transcriptomes, yet some studies refer to it as a complement comparative value among 

similar studies (e.g. Riesgo et al. 2012; Amin et al. 2014). The lowest N50 recovered among my 

datasets belonged to F. cantabrica, with 899 bp, with an average length of 625, while for F. villafranca 

the values are slightly higher, with 950 bp of N50 and average of 651 bp. These values were 

equivalent to many other transcriptome sequencing studies (e.g. 900 bp for the chickpea; 893 bp for 

Oncopeltus, or 837 for the sea cucumber Apostichopus japonicus) (Garg et al. 2011; Ewen-Campen 

et al. 2011; Zhou et al. 2014) and higher than others (e.g. 258 for N. melanotragus, 599 for O. vulgaris) 

(Riesgo et al. 2012; Amin et al. 2014). It is not straightforward to compare transcriptome assemblies 

and their qualities based on these metrics, though. (O’Neil and Emrich, 2013). Finally, by picking each 

component more representative isoform (most “abundant”/the one with the highest coverage) in both 

cases, I attempted to diminish redundancy, obtaining an appropriate dataset for “phylogenomics”, a 

strategy used previously by other authors (e.g. Yang & Smith 2013). 

 

4.8 FUNCTIONAL ANNOTATION 

The blast against nr (18% and 19%) and annotation (8%-5%) success for both assemblies were 

low but similar to other non-models organisms studies (Riesgo et al. 2012). One possible explanation 

for the limited annotation success is the fact that few reference genome sequences exist for mollusc 

species (Sadamoto et al. 2012). Amin et al. (2014) highlights that the success of transcriptome 

representation on gastropod species will require more reference genome sequences, as well as an 

increase in mollusc protein sequences in public databases. Very short contigs (200–500 bp) rarely 

returned blast hits or annotations, with more than 90% of these sequences excluded from the final 

assignments to GO terms. Among the ~10K hits against the nr database, the majority had its best-hit 

with Aplysia californica, the only gastropod genome sequenced within Heterobranchs. The top-hits 

species distribution showed that the majority of the hits were also to other mollusc species. The fact 
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that many hits were also present (and especially in F. villafranca) for Xenopus laevis, did not call our 

attention in the first moment. This is a well-annotated reference genome, and other distantly related 

organisms were also present in the hit distribution at similar percentages. 

Comparisons annotations among studies are not easy, given the focus on specific biological 

questions. No functional category of gene function was lacking in any of the Felimare transcriptomes, 

and both transcriptomes shared most of the terms. Despite the limited number of annotated contigs, 

the assembly captured a broad variety of GO categories for all functional domains. As expected, 

annotations regarding level 2 were more similar across transcriptomes, with all the top-20 terms being 

shared by the two species. My results were in fact similar to those of Zhou et al. (2014), for the sea 

cucumber A. japonicas, Sadamoto et al. (2012), for the pond snail L. stagnalis, and Amin et al. (2014), 

for the gastropod N. melanotragus, either respect to the top GO terms found, as well as their 

percentages. Here I provide the first global view of two Chromodorids transcriptomes that may serve 

as a basis for future studies. Overall both my datasets provide a relatively comprehensive view of 

each transcriptome, and the relative proportion of different GO terms bears a resemblance to those 

of other well-annotated transcriptomes. 

 

4.9 DETECTION OF CONTAMINATION 

There are numerous challenges for effective NGS data quality control (QC) (Schmieder & 

Edwards 2011; Zhou et al. 2013), although this is extremely important for downstream analysis. Many 

NGS studies perform a basic cleaning/trimming of the reads (Parchman et al. 2010; Feldmeyer et al. 

2011; Zhou et al. 2014; Senatore et al. 2015). Others perform additional validations by using a 

reference set of genes/genomes of closely related species (Amin et al. 2014). The quality of data may 

be affected by several factors regardless of the NGS platform. Contamination by external sources, 

especially cross-contamination during library preparation, is generally neglected, but can be an 

important source of error (Zhang et al. 2012; Tosar et al. 2014). A recent tool, QC-Chain (Zhou et al. 

2013) claims the ability to both filter low quality reads as well as to detect contaminating reads without 

prior information on the contamination source, by mapping reads either to rDNA databases or NCBI-

NT database. However that was not used in this study. 

In this work I only noticed the occurrence of sequences of amphibian origin at a later stage of 

my analyses (mitochondria reconstruction). In fact, this contamination was detected by chance, as it 

was not in the initial plans to reconstruct the mitochondrial genomes. At that point of the work, 

remaking every analysis from the very first step (including obtaining new reads) was not possible. 

Likewise, I believed I could identify a reasonable number of homologous contigs between the two 
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species. The strategy adopted was to perform a series of blast analyses to evaluate the extension of 

the contamination and filter the contaminating contigs. I used available genome data on molluscs and 

amphibians, as well as other invertebrate and vertebrates (based on previous results from the 

annotation step), as I felt reasonable for the “exercise” of this thesis. I used a conservative criterion 

and filtered both assembled transcriptomes to contigs with hits exclusive to available Mollusc coding-

genomes, using only these data in downstream analyses. 

The real extension of the contamination on both transcriptomes is difficult to determine given 

that I measured it using the assembled transcripts and not the initial reads. Both amphibian and sea 

slug’s reads may have been assembled together, creating some chimeric (fake) contigs that then 

would likely retrieve no blast-hit or annotation. Given the fact that most of the assembly statistics were 

similar to other molluscs’ de novo transcriptome assemblies, I had no clues of the existence of an 

external contamination, especially not from amphibian origin. Looking backwards, the top-hits species 

graph was in fact the first sign of it, as the Western clawed frog (Xenopus sp) is represented as a high 

ranking species in both transcriptomes. At the same time, it represented less than 4% (3,9%) of the 

total annotated contigs in F. villafranca, and 1% in F. cantabrica. 

The number of unique hits to vertebrates was clearly inferior to the unique hits with non-

vertebrates. Taking into account these results, and further analyses given in the supplementary 

material figures 3-13, I decided to consider only unique hits to Molluscs as a conservative approach 

to eliminate potential “contaminant” sequences in downstream analyses of marker development. 

To fully evaluate the extension of contamination in both datasets and its interference in the assembly, 

I would need to remove the reads prior to the assembly (by mapping to available amphibian 

sequences) and then compare the two assemblies for example. Besides using a new version of the 

fastQC from Zhou et al. (2013) to clean the reads I should also map my reads against a full 

mitochondrial genome close enough to the species of study. Selecting mtDNA reads prior to assembly 

seems to be advisable (Ekblom et al. 2014), and it may be a way of prevent/detect mtDNA 

contamination (as mtDNA reads are more abundant), allowing for more refined and accurate 

homology testing. 

Regardless the contamination affecting this study, identification and exclusion of non molluscs contigs 

served as test for if we could still get enough information to proceed with orthologous discovery. 

Meanwhile both of the species transcriptomes are being re-sequenced for further work. 
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4.10 PRELIMINARY ORTHOLOG SEARCH 

Regardless contamination, and after filtering both assemblies, I could still obtain a total of 728 

potential ortholog fragments. In a recent study, Schultheis et al. (2014) used a similar approach using 

two RNAseq samples and a distant reference genome, and obtained around double of the potential 

orthologs than I did. From those, they ultimately ended with 24 with > 85% and <98% identity suitable 

for primer design, plus 30 mapping to intron regions of a distant reference genome, from which primers 

were designed for 14, which revealed to be useful at a population scale. Plus, they argue that >1500 

contigs could still be screened for useful molecular markers information. Overall, the putative 

orthologs I obtained could still be a useful starting point for the development of nuclear markers using 

a similar same approach, especially considering the lack of phylogenetic markers at several levels 

within the Heterobranchs/Opistobranchs.   

 

4.11 MITOGENOME ASSEMBLIES 

4.11.1 Genome composition and arrangement 

Full mitochondrial genomes offer interesting information on gene order and number and are 

themselves additional sources of phylogenetic information (Simon & Hadrys 2013; Perseke et al. 

2013). Although a great number of mitochondrial genomes is available in NCBI for Heterobranchia, 

only one is available for the Chromodorididae family (Chromodoris magnifica). In this study I tried to 

obtain the first two mitochondrial genomes from the genus Felimare, and consequently two additional 

Chromodoridid representatives. 

The mitochondrial genomes of gastropods are generally known to be very compact, i.e. with 

absence or mostly short intergenic regions (Boore 1999). Its length in this organisms usually varies 

from 13 to 17 kb (e.g. 13,670 bp in Biomphalaria glabrata, 17,575 bp in Diodora aspera), with few 

exceptions (ribbed limpet Lottia digitalis, with a length of 26,835 bp) (Simison et al. 2006). Even though 

I was not able to recover the complete mitochondrial genome sequences (approximately 14 kb), they 

seem to be of similar size to other Opistobranch mtDNA genomes (Medina et al. 2011). 

The mitochondrial genomes were not completely assembled. With regards to the first approach 

(manual contig alignment), around 30% of the mtDNA contigs initially recovered by BLAST revealed 

to be Bufo/Epidalea mitochondrial sequences in both genomes. Regarding the contigs homologous 

to Opistobranchs mtDNA, I obtained 13,980 bp and 14,208 bp, respectively, for F. cantabrica and      

F. villafranca, very similar to the C. magnifica mitogenome. These mitochondrial genomes had the 

same arrangement of genes as other nudibranchs (Grande et al. 2002; Medina et al. 2011). More 
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than one coding and/or noncoding regions of the mitochondrial genomes were recovered within the 

same contig, generally with the same gene rearrangement of the reference. 

The total bp recovered by MITObim was higher in general, yet involving a great amount of ambiguous 

nucleotides. Given that, and regardless the approximately 14 kb assembled for both species, as well 

as missing regions within genes, I highlight that the ambiguities in the assembly resulting from 

MITObim are too high for me to be confident on its recovered mtDNA sequence. Thus, in the following 

sections I will mostly take in consideration the results obtained from the mtDNA assembly from the 

contigs. 

MITObim has been used to achieve complete assemblies of mitogenome in several distinct 

species (e.g. insects, fishes, birds, gastropods) (Hahn et al. 2013; Gan et al. 2014; Gan et al. 2015; 

Guan & Xu 2015; Krzeminska et al. 2015), with or without a reference of a closely related organism, 

and also to infer rearrangements of the gene order. Unfortunately that was not the case in this study, 

where this assembler performed very poorly. This assembler has been mostly used for genomic rather 

than transcriptomic data (Doyle et al. 2014), and is frequently recalled as requiring low-input DNA 

quantity and of simple usage, being particularly advantageous for new users (Gan et al. 2014). 

Nonetheless, it was not straightfoward the understanding of the different settings of the progam, and 

I have verified that for inputs above 10 million reads, the program would generate greater amounts of 

ambiguities and could not perform properly. I suspect that one of the problems with this approach may 

have been its default number of allowed mismatches to the reference sequence (15% of the average 

read length), which I used, and may have been too low for the distant reference mtDNA genome (as 

can be inferred from the % differences obtained from the assembled contigs). Another hypothesis for 

the bad perfotmance of the programme could be the existence of mtDNA reads of Bufo/Epidalea in 

the readpool, complicating the MITObim assembly. 

4.11.2 Coding regions 

As inferred from these assemblies, the gene content for the two Felimare mitochondrial 

genomes is the same typically present in other known nudibranch gastropods (Medina et al. 2011; 

Sevigny et al. 2015). Overall, for most of the encountered genes, I was able to recover most of the 

start-codons and stop-codons The presence of incomplete termination codons is fairly common in 

metazoan mitogenomes (Ojala et al. 1981), including in the Molluscs mitochondrial genomes 

sequenced to date (Grande et al. 2002; Medina et al. 2011). In such circumstances termination 

codons are generated via polyadenylation to TAA (Ojala et al. 1981). Indeed, that seemed to be also 

the case for some of our genes. 
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4.11.3 ND5-like case 

The gene content for the two Felimare mitochondrial genomes seems to be the same as in other 

nudibranch gastropods (Medina et al. 2011; Sevigny et al. 2015). For most of the genes I was able to 

recover most of the start- and stop-codons The presence of incomplete termination codons is fairly 

common in metazoan mitogenomes (Ojala et al. 1981), including mollusks (Grande et al. 2002; 

Medina et al. 2011). In such circumstances, termination codons are generated via polyadenylation to 

TAA (Ojala et al. 1981). Indeed, that seemed to be also the case for some of our genes. 

I found a region homologous to the “ND5-like” of C. magnifica. This region is annotated as non-

coding in C. magnifica, as no valid start or stop codons were found (Medina et al. 2011) in our case, 

the beginning of the fragment, was TTA/UUA, as in C. magnifica. This triplet codes for Leucin, which 

is also found to be a starting-codon in invertebrates, although only in its TTG/UUG forms, as in 

Roboastra europaea (Grande et al. 2002; Serb & Lydeard 2003). TTA/UUA has not described as a 

start codon for invertebrates so far. The stop codon, was also homologous to C. magnifica. Despite 

that a stop codon has not been annotated for this gene, a codon TAG/UAG was found in the dataset, 

exactly in the same position as in R. europaea genome, followed by gene (ND1) possibly starting 

immediately 2 bp after (with ATT/AUU). This is as annotated for R. europaea, as also homologous to 

what we find in the Felimare transcriptomes. Further comparisons with other invertebrate mtDNA 

genomes for this region seem necessary to decipher whether this is a real coding fragment, or an an 

overlapping gene. 

4.11.4 RNAs 

MtDNA intergenic noncoding regions are generally very variable and include indels (Grande et 

al. 2008). This is also observed in these two Felimare mitogenomes, with many of the tRNAs (and 

rRNAs) differing a few bp in length respect to the C. magnifica mitogenome. 

The identification of tRNAs in molluscs or in other invertebrates (J. Terrett et al. 1996; Hatzoglou et 

al. 1995; Yamazaki & Ueshima 1997; Sasuga et al. 1999) can be difficult because the standard 

cloverleaf secondary structure may not be present (T or D arms can be lacking) (Kurabayashi & 

Ueshima 2000; Grande et al. 2002). Still, pulmonate tRNAs can be functional in these conditions 

(Sasuga et al. 1999; Boore 1999). The observed lack of a paired D arm is unusual in metazoan 

organisms (Kurabayashi & Ueshima 2000), however they are found recurrently in heterobranch 

organisms (Grande et al. 2002; Kurabayashi & Ueshima 2000; Groenenberg et al. 2012).  

Success in recovering the tRNA regions was also higher when using the assembled contigs instead 

MiITObim. Although not all tRNAs were recovered, several were identified, forming secondary 

structures similar to the ones recovered for R. europaea. A less stringent mapping approach with 
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MITObim, or a de novo assembly from a partial mtDNA assembly could be used to try to improve the 

assembly and to potentially recover additional tRNA and other mitochondrial regions. 
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Chapter 5 Conclusions & Future 

Prospects 
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5.1 CONCLUSIONS 

This work has provided relevant information on the patterns of genetic diversity and divergence 

of seven species of the genus of Felimare, throughout the eastern Atlantic Ocean and Mediterranean 

sea. Furthermore, the COI phylogeny resulted in a more comprehensive understanding of the 

relationships within the genus, despite the lack of representatives from the Western side of the Atlantic 

Ocean. 

Overall, five species showed highly divergent and often geographically localized lineages, 

representing potential species complexes. The intraspecific structure patterns appear to be strongly 

influenced by coastal topography and water circulation, with areas of restricted gene-flow matching 

the ones also acting on other organisms (e.g Gibraltar, Almeria-Oran front, and possibly the Balearic 

front), and with some cases of high diversity across relatively short distances. As expected due to its 

direct development, F. villafranca showed a strong population structure, with different lineages with 

variable distribution ranges (one large western lineage and possibly four smaller eastern ones). 

Overall, our results suggest that the taxonomic status of some of the (for now intra-specific) lineages 

need further revision. 

The phylogenetic resolution of the deep branches was very low. Still, our results corroborate Felimare 

as a monophyletic group, point to at least two colonisations of the Eastern Atlantic and Mediterranean 

area, and to Miocenic divergences between most species. Importantly, some instances of 

disagreement between morphological identifications and mitochondrial diversity were highlighted, 

which deserve further investigation (especially for F. bilineata and F. cantabrica)  

The two new transcriptomes for F. cantabrica and F. villafranca represent important genomic 

resources that will facilitate future research in this genus. Additionally, I was able recover a large 

portion of the mitochondrial genome of these two species, even in the absence of a close reference.  

New nuclear markers can be further developed from the information here provided (the preliminary 

ortholog battery). These could could potentially encompass population level information, and be of 

great utility for further phylogenetic/phylogeographic studies in this group solving several of the 

questions exposed above. 
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5.2 FUTURE WORK 

This work contributed to the knowledge of the phylogeny of this group and the phylogeographic 

patterns of some species and revealed several instances of possible cryptic species – further work is 

needed, though, to clarify their distributions, evolutionary history and taxonomic status. 

The phylogeny of the group reveals interesting aspects regarding patterns and times of 

divergence, yet it is still largely unresolved. The use of extra markers (mostly nuclear) will be essential 

to improve the estimate of phylogeny of the group.  

The developed nuclear markers will also be useful in the study of Chromodoridae phylogeny in 

general, as presently they are largely unresolved and mostly based on mtDNA markers. 

Given that some portions in the currently assembled mtDNA genomes are still missing, a better 

assembly of these must also be performed. Relaxing mapping parameters or providing MITObim with 

an initiating mtDNA fragment (COI or from previous assembly) may reveal to be a better strategy. 

In this thesis, and after the detection of the contamination of the two transcriptomes, I mostly 

proceeded with the filtering of the contigs and “preliminary” ortholog search as a proof of concept that 

information useful for marker development could still be collected. To avoid uncertainties about 

misassembles and increase data size, the sequencing of these two transcriptomes is being repeated, 

as well as of another representative of Chromodoridae (external to Felimare). The new data will be 

used to survey again for orthologs between these species, as well as mapping the obtained contigs 

to A. californica genome assembly and survey for adequate fragments for marker development 

(identification of exonic and intronic regions and suitable flanking sequences for primer design) at 

several levels (phylogenetic and population level) in an approach similar to Schultheis et al. (2014). 

Given the current lack of nuclear markers for phylogenetic inference in these organisms, this data will 

be a valuable contribution for further evolutionary studies in these organisms. 
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Supplementary Table 1 - Detailed information on the sampling localities 

Site ID Locality Area 

1 S. Sebastián S. Sebastián 

Guetaria 

2 Ferrol 
Enseada de Nande 

Rabo da Porca 

3 Vigo 
Limens, Vigo 

Cies, Vigo Islands 

4 Sesimbra Sesimbra 

5 Alentejo Alentejo 

6 Sagres Sagres 

7 Ria Formosa Ria Formosa 

8 Cádiz Cádiz 

9 Gibraltar 
Tarifa 

Punta San Garcia 

10 Chafarinas Chafarinas 

11 Menorca Menorca Island 

12 Barcelona Mataró, Barcelona 

13 Girona 

Roca Roja 

L’Escala 

L’Estartit 

Sá Tuna 

Caials 

14 SW France 
Banyuls-Sur-mer 

Cap Oulestreil 

15 

Italy 

Tor Paterno 

16 Tavolara 

17 Circeo 

18 Ischia 

19 Capo Palinuro 

20 Giglio 

21 Kotor bay Kotor bay 

22 

Greece 

Stoupa 

23 Palaikastro 

24 Lesvos 

25 West Morroco 
Anza 

Tagahzout 

26 Madeira Madeira island 

27 Cape Verde Sal island 

28 São Tomé São Tome e Príncipe 
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Species 
Individual 

Code 
Locality Country GPS Coordinates 

Genbank 
accession 

F. cantabrica 

Op0006 
Cies islands, 

Vigo 
Spain 42˚93'23.99''N 8˚45'26.41''W  

Op0007 
Cies islands, 

Vigo 
Spain 42˚93'23.99''N 8˚45'26.41''W  

Op0008 
Cies islands, 

Vigo 
Spain 42˚93'23.99''N 8˚45'26.41''W  

Op0014 
Cies islands, 

Vigo 
Spain 42˚93'23.99''N 8˚45'26.41''W  

Op0015 
Cies islands, 

Vigo 
Spain 42˚93'23.99''N 8˚45'26.41''W  

Op0016 
Cies islands, 

Vigo 
Spain 42˚93'23.99''N 8˚45'26.41''W  

Op0017 
Cies islands, 

Vigo 
Spain 42˚93'23.99''N 8˚45'26.41''W  

Op0019 
Cies islands, 

Vigo 
Spain 42˚93'23.99''N 8˚45'26.41''W  

Op0020 
Cies islands, 

Vigo 
Spain 42˚93'23.99''N 8˚45'26.41''W  

Op0021 
Cies islands, 

Vigo 
Spain 42˚93'23.99''N 8˚45'26.41''W  

Op0022 
Cies islands, 

Vigo 
Spain 42˚93'23.99''N 8˚45'26.41''W  

Op0023 
Cies islands, 

Vigo 
Spain 42˚93'23.99''N 8˚45'26.41''W  

Op0024 
Cies islands, 

Vigo 
Spain 42˚93'23.99''N 8˚45'26.41''W  

Op0025 
Cies islands, 

Vigo 
Spain 42˚93'23.99''N 8˚45'26.41''W  

Op0026 
Cies islands, 

Vigo 
Spain 42˚93'23.99''N 8˚45'26.41''W  

Op0028 
Cies islands, 

Vigo 
Spain 42˚93'23.99''N 8˚45'26.41''W  

Op0029 
Cies islands, 

Vigo 
Spain 42˚93'23.99''N 8˚45'26.41''W  

Op0030 
Cies islands, 

Vigo 
Spain 42˚93'23.99''N 8˚45'26.41''W  

Op0038 
Cies islands, 

Vigo 
Spain 42˚93'23.99''N 8˚45'26.41''W  

Op0039 
Cies islands, 

Vigo 
Spain 42˚93'23.99''N 8˚45'26.41''W  
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Op0040 
Cies islands, 

Vigo 
Spain 42˚93'23.99''N 8˚45'26.41''W  

Op0041 
Cies islands, 

Vigo 
Spain 42˚93'23.99''N 8˚45'26.41''W  

Op0042 
Cies islands, 

Vigo 
Spain 42˚93'23.99''N 8˚45'26.41''W  

Op0050 Liméns, Vigo Spain 42˚15'53.60''N 8˚49'7.22''W  

Op0051 Limens, Vigo Spain 42˚15'53.60''N 8˚49'7.22''W  

Op0052 Limens, Vigo Spain 42˚15'53.60''N 8˚49'7.22''W  

Op0053 Limens, Vigo Spain 42˚15'53.60''N 8˚49'7.22''W  

Op0054 Limens, Vigo Spain 42˚15'53.60''N 8˚49'7.22''W  

Op0055 Limens, Vigo Spain 42˚15'53.60''N 8˚49'7.22''W  

Op0057 Limens, Vigo Spain 42˚15'53.60''N 8˚49'7.22''W  

Op0060 
Enseada de 

Nande, Ferrol 
Spain 43˚27'36.28''N 8˚17'0.74''W  

Op0063 
Rabo da 

Porca, Ferrol 
Spain 43˚27'40.50''N 8˚18'15.63''W  

Op0064 
Rabo da 

Porca, Ferrol 
Spain 43˚27'40.50''N 8˚18'15.63''W  

Op0065 
Rabo da 

Porca, Ferrol 
Spain 43˚27'40.50''N 8˚18'15.63''W  

Op0089 
Rabo da 

Porca, Ferrol 
Spain 43˚27'40.50''N 8˚18'15.63''W  

Op0090 
Rabo da 

Porca, Ferrol 
Spain 43˚27'40.50''N 8˚18'15.63''W  

Op0091 
Rabo da 

Porca, Ferrol 
Spain 43˚27'40.50''N 8˚18'15.63''W  

Op0114 S. Sebastián Spain 43˚19'6''N 1˚58'52.43''W  

OP0115 S. Sebastián Spain 43˚19'6''N 1˚58'52.43''W  

Op0119 S. Sebastián Spain 43˚19'6''N 1˚58'52.43''W  

Op0123 S. Sebastián Spain 43˚19'6''N 1˚58'52.43''W  

Op0195 Sesimbra Portugal 38˚26'39.18''N 9˚6'5.36''W  

Op0226 Sesimbra Portugal 38˚26'39.18''N 9˚6'5.36''W  

Op0227 Sesimbra Portugal 38˚26'39.18''N 9˚6'5.36''W  

Op0329 Alentejo Portugal 38˚0'0''N 9˚6'3.6''W  

Op0240 S. Sebastián Spain 43˚19'6''N 1˚58'52.43''W  
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Op0241 S. Sebastián Spain 43˚19'6''N 1˚58'52.43''W  

Op0242 S. Sebastián Spain 43˚19'6''N 1˚58'52.43''W  

Op0330 
Guetaria, 

S.Sebastián 
Spain 43˚19'6''N 1˚58'52.43''W  

Op0301 
Tarifa, 

Gibraltar 
Spain 36˚8'26.70''N 5˚21'12.90''W  

Op0303* Anza Morroco 30˚27'15.50''N 9˚39'13.04''W  

Op0331 Tagahzout Morroco 30˚32'42.02''N 9˚42'31.09''W  

F. villafranca 

Op0031 Limens, Vigo Spain 42˚15'53.60''N 8˚49'7.22''W  

Op0032 Limens, Vigo Spain 42˚15'53.60''N 8˚49'7.22''W  

Op0033 Limens, Vigo Spain 42˚15'53.60''N 8˚49'7.22''W  

Op0034 Limens, Vigo Spain 42˚15'53.60''N 8˚49'7.22''W  

Op0035 Limens, Vigo Spain 42˚15'53.60''N 8˚49'7.22''W  

Op0036 Limens, Vigo Spain 42˚15'53.60''N 8˚49'7.22''W  

Op0037 Limens, Vigo Spain 42˚15'53.60''N 8˚49'7.22''W  

Op0043 Limens, Vigo Spain 42˚15'53.60''N 8˚49'7.22''W  

Op0048 Limens, Vigo Spain 42˚15'53.60''N 8˚49'7.22''W  

Op0049 Limens, Vigo Spain 42˚15'53.60''N 8˚49'7.22''W  

Op0058 Limens, Vigo Spain 42˚15'53.60''N 8˚49'7.22''W  

Op0059 Limens, Vigo Spain 42˚15'53.60''N 8˚49'7.22''W  

Op0066 
Rabo da 

Porca, Ferrol 
Spain 43˚27'40.50''N 8˚18'15.63''W  

Op0067 
Rabo da 

Porca, Ferrol 
Spain 43˚27'40.50''N 8˚18'15.63''W  

Op0068 
Rabo da 

Porca, Ferrol 
Spain 43˚27'40.50''N 8˚18'15.63''W  

Op0069 
Rabo da 

Porca, Ferrol 
Spain 43˚27'40.50''N 8˚18'15.63''W  

Op0070 
Rabo da 

Porca, Ferrol 
Spain 43˚27'40.50''N 8˚18'15.63''W  

Op0071 
Rabo da 

Porca, Ferrol 
Spain 43˚27'40.50''N 8˚18'15.63''W  

Op0072 
Rabo da 

Porca, Ferrol 
Spain 43˚27'40.50''N 8˚18'15.63''W  

Op0073 
Rabo da 

Porca, Ferrol 
Spain 43˚27'40.50''N 8˚18'15.63''W  
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Op0074 
Rabo da 

Porca, Ferrol 
Spain 43˚27'40.50''N 8˚18'15.63''W  

Op0075 
Rabo da 

Porca, Ferrol 
Spain 43˚27'40.50''N 8˚18'15.63''W  

Op0076 
Rabo da 

Porca, Ferrol 
Spain 43˚27'40.50''N 8˚18'15.63''W  

Op0077 
Rabo da 

Porca, Ferrol 
Spain 43˚27'40.50''N 8˚18'15.63''W  

Op0078 
Rabo da 

Porca, Ferrol 
Spain 43˚27'40.50''N 8˚18'15.63''W  

Op0079 
Rabo da 

Porca, Ferrol 
Spain 43˚27'40.50''N 8˚18'15.63''W  

Op0080 
Rabo da 

Porca, Ferrol 
Spain 43˚27'40.50''N 8˚18'15.63''W  

Op0081 
Rabo da 

Porca, Ferrol 
Spain 43˚27'40.50''N 8˚18'15.63''W  

Op0082 
Rabo da 

Porca, Ferrol 
Spain 43˚27'40.50''N 8˚18'15.63''W  

Op0083 
Rabo da 

Porca, Ferrol 
Spain 43˚27'40.50''N 8˚18'15.63''W  

Op0084 
Rabo da 

Porca, Ferrol 
Spain 43˚27'40.50''N 8˚18'15.63''W  

Op0085 
Rabo da 

Porca, Ferrol 
Spain 43˚27'40.50''N 8˚18'15.63''W  

Op0086 
Rabo da 

Porca, Ferrol 
Spain 43˚27'40.50''N 8˚18'15.63''W  

Op0087 
Rabo da 

Porca, Ferrol 
Spain 43˚27'40.50''N 8˚18'15.63''W  

Op0088 
Rabo da 

Porca, Ferrol 
Spain 43˚27'40.50''N 8˚18'15.63''W  

Op0332 Cádiz Spain 36˚31'37.42''N 6˚17'18.94''W AJ223266 

Op0300 Cádiz Spain 36˚31'37.42''N 6˚17'18.94''W  

Op0325 Cádiz Spain 36˚31'37.42''N 6˚17'18.94''W KJ911291 

Op0299 Cádiz Spain 36˚31'37.42''N 6˚17'18.94''W  

Op0304 Cádiz Spain 36˚31'37.42''N 6˚17'18.94''W  

Op0324 
Punta San 

Garcia 
Spain 36˚6'18.68''N 5˚25'50.44''W KJ911292 

Op0326 
Illes de 
Porros, 

Menorca 
Spain 40˚5'12.73''N 4˚5'2.69''E KJ911290 
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Op0327 Tagahzout Morroco 30˚32'42.02''N 9˚42'31.09''W KJ911288 

Op0328 Tagahzout Morroco 30˚32'42.02''N 9˚42'31.09''W KJ911289 

Op0126 
Mataró, 

Barcelona 
Spain 41˚32'17.33''N 2˚26'41.33''E  

Op0128 
Mataró, 

Barcelona 
Spain 41˚32'17.33''N 2˚26'41.33''E  

Op0129 
Mataró, 

Barcelona 
Spain 41˚32'17.33''N 2˚26'41.33''E  

Op0152 Ria Formosa Portugal 36˚58'8.74''N 7˚52'10.01''W  

Op0153 Ria Formosa Portugal 36˚58'8.74''N 7˚52'10.01''W  

Op0154 Ria Formosa Portugal 36˚58'8.74''N 7˚52'10.01''W  

Op0155 Ria Formosa Portugal 36˚58'8.74''N 7˚52'10.01''W  

Op0156 Ria Formosa Portugal 36˚58'8.74''N 7˚52'10.01''W  

Op0157 Ria Formosa Portugal 36˚58'8.74''N 7˚52'10.01''W  

Op0158 Ria Formosa Portugal 36˚58'8.74''N 7˚52'10.01''W  

Op0159 Ria Formosa Portugal 36˚58'8.74''N 7˚52'10.01''W  

Op0160 Ria Formosa Portugal 36˚58'8.74''N 7˚52'10.01''W  

Op0196 Sesimbra Portugal 38˚26'39.18''N 9˚6'5.36''W  

Op0197 Sesimbra Portugal 38˚26'39.18''N 9˚6'5.36''W  

Op0198 Sesimbra Portugal 38˚26'39.18''N 9˚6'5.36''W  

Op0201 Sesimbra Portugal 38˚26'39.18''N 9˚6'5.36''W  

Op0202 Sesimbra Portugal 38˚26'39.18''N 9˚6'5.36''W  

Op0203 Sesimbra Portugal 38˚26'39.18''N 9˚6'5.36''W  

Op0204 Sesimbra Portugal 38˚26'39.18''N 9˚6'5.36''W  

Op0205 Sesimbra Portugal 38˚26'39.18''N 9˚6'5.36''W  

Op0231 Sesimbra Portugal 38˚26'39.18''N 9˚6'5.36''W  

Op0233 Sesimbra Portugal 38˚26'39.18''N 9˚6'5.36''W  

Op0234 Sesimbra Portugal 38˚26'39.18''N 9˚6'5.36''W  

Op0235 Sesimbra Portugal 38˚26'39.18''N 9˚6'5.36''W  

Op0236 Sesimbra Portugal 38˚26'39.18''N 9˚6'5.36''W  

Op0237 Sesimbra Portugal 38˚26'39.18''N 9˚6'5.36''W  

Op0238 Sesimbra Portugal 38˚26'39.18''N 9˚6'5.36''W  
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Op0247 
L'Estartit, 

Girona 
Spain 42˚3'4.62''N 3˚11'25.86''E  

Op0323 Tor Paterno Italy 41˚39'22.34''N 12˚24'58.09''E  

Op0305 
Banyuls-Sur-

mer 
France 42˚22'0.34''N 3˚7'43.94''E  

F. tricolor 

Op0333 
Martinhal 
Islands, 
Sagres 

Portugal 37˚1'0.585''N 8˚56'26.13''W JQ727898 

Op0061 
Rabo da 

Porca, Ferrol 
Spain 43˚27'40.50''N 8˚18'15.63''W  

Op0092 
Rabo da 

Porca, Ferrol 
Spain 43˚27'40.50''N 8˚18'15.63''W  

Op0093 
Rabo da 

Porca, Ferrol 
Spain 43˚27'40.50''N 8˚18'15.63''W  

Op0094 
Rabo da 

Porca, Ferrol 
Spain 43˚27'40.50''N 8˚18'15.63''W  

Op0104 Kotor Bay MonteNegro 42˚23'34.93''N 18˚33'36.10''E  

Op0117 S. Sebastián Spain 43˚19'6''N 1˚58'52.43''W  

Op0127 
Mataró, 

Barcelona 
Spain 41˚32'17.33''N 2˚26'41.33''E  

Op0141 
L'Escala, 
Girona 

Spain 42˚7'11.46''N 3˚7'21.97''E  

Op0142 
L'Escala, 
Girona 

Spain 42˚7'11.46''N 3˚7'21.97''E  

Op0145 
L'Estartit, 

Girona 
Spain 42˚7'11.46''N 3˚7'21.97''E  

Op0148 
L'Estartit, 

Girona 
Spain 42˚7'11.46''N 3˚7'21.97''E  

Op0149 
L'Escala, 
Girona 

Spain 42˚7'11.46''N 3˚7'21.97''E  

Op0164 Ria Formosa Portugal 36˚58'8.74''N 7˚52'10.01''W  

Op0165 Ria Formosa Portugal 36˚58'8.74''N 7˚52'10.01''W  

Op0166 Ria Formosa Portugal 36˚58'8.74''N 7˚52'10.01''W  

Op0167 Ria Formosa Portugal 36˚58'8.74''N 7˚52'10.01''W  

Op0168 Ria Formosa Portugal 36˚58'8.74''N 7˚52'10.01''W  

Op0169 Ria Formosa Portugal 36˚58'8.74''N 7˚52'10.01''W  

Op0170 Ria Formosa Portugal 36˚58'8.74''N 7˚52'10.01''W  

Op0171 Ria Formosa Portugal 36˚58'8.74''N 7˚52'10.01''W  
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Op0172 Ria Formosa Portugal 36˚58'8.74''N 7˚52'10.01''W  

Op0173 Ria Formosa Portugal 36˚58'8.74''N 7˚52'10.01''W  

Op0174 Ria Formosa Portugal 36˚58'8.74''N 7˚52'10.01''W  

Op0194 Sesimbra Portugal 38˚26'39.18''N 9˚6'5.36''W  

Op0199 Sesimbra Portugal 38˚26'39.18''N 9˚6'5.36''W  

Op0200 Sesimbra Portugal 38˚26'39.18''N 9˚6'5.36''W  

Op0206 Sesimbra Portugal 38˚26'39.18''N 9˚6'5.36''W  

Op0207 Sesimbra Portugal 38˚26'39.18''N 9˚6'5.36''W  

Op0208 Sesimbra Portugal 38˚26'39.18''N 9˚6'5.36''W  

Op0210 Sesimbra Portugal 38˚26'39.18''N 9˚6'5.36''W  

Op0211 Sesimbra Portugal 38˚26'39.18''N 9˚6'5.36''W  

Op0212 Sesimbra Portugal 38˚26'39.18''N 9˚6'5.36''W  

Op0213 Sesimbra Portugal 38˚26'39.18''N 9˚6'5.36''W  

Op0214 Sesimbra Portugal 38˚26'39.18''N 9˚6'5.36''W  

Op0215 Sesimbra Portugal 38˚26'39.18''N 9˚6'5.36''W  

Op0216 Sesimbra Portugal 38˚26'39.18''N 9˚6'5.36''W  

Op0217 Sesimbra Portugal 38˚26'39.18''N 9˚6'5.36''W  

Op0218 Sesimbra Portugal 38˚26'39.18''N 9˚6'5.36''W  

Op0219 Sesimbra Portugal 38˚26'39.18''N 9˚6'5.36''W  

Op0220 Sesimbra Portugal 38˚26'39.18''N 9˚6'5.36''W  

Op0221 Sesimbra Portugal 38˚26'39.18''N 9˚6'5.36''W  

Op0222 Sesimbra Portugal 38˚26'39.18''N 9˚6'5.36''W  

Op0223 Sesimbra Portugal 38˚26'39.18''N 9˚6'5.36''W  

Op0224 Sesimbra Portugal 38˚26'39.18''N 9˚6'5.36''W  

Op0225 Sesimbra Portugal 38˚26'39.18''N 9˚6'5.36''W  

Op0229 Sesimbra Portugal 38˚26'39.18''N 9˚6'5.36''W  

Op0230 Sesimbra Portugal 38˚26'39.18''N 9˚6'5.36''W  

Op0248 Sesimbra Portugal 38˚26'39.18''N 9˚6'5.36''W  

Op0244 
L'Escala, 
Girona 

Spain 42˚7'11.46''N 3˚7'21.97''E  

Op0246 
L'Estartit, 

Girona 
Spain 42˚7'11.46''N 3˚7'21.97''E  
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Op0249 
L'Escala, 
Girona 

Spain 42˚7'11.46''N 3˚7'21.97''E  

Op0250 
L'Escala, 
Girona 

Spain 42˚7'11.46''N 3˚7'21.97''E  

Op0251 
L'Escala, 
Girona 

Spain 42˚7'11.46''N 3˚7'21.97''E  

Op0252 
L'Escala, 
Girona 

Spain 42˚7'11.46''N 3˚7'21.97''E  

Op0253 
L'Escala, 
Girona 

Spain 42˚7'11.46''N 3˚7'21.97''E  

Op0254 
L'Escala, 
Girona 

Spain 42˚7'11.46''N 3˚7'21.97''E  

Op0255 
L'Escala, 
Girona 

Spain 42˚7'11.46''N 3˚7'21.97''E  

Op0256 
L'Escala, 
Girona 

Spain 42˚7'11.46''N 3˚7'21.97''E  

Op0257 
L'Escala, 
Girona 

Spain 42˚7'11.46''N 3˚7'21.97''E  

Op0258 
L'Escala, 
Girona 

Spain 42˚7'11.46''N 3˚7'21.97''E  

Op0259 
L'Escala, 
Girona 

Spain 42˚7'11.46''N 3˚7'21.97''E  

Op0263 Cádiz Spain 36˚31'37.42''N 6˚17'18.94''W  

Op0264 Cádiz Spain 36˚31'37.42''N 6˚17'18.94''W  

Op0265 Cádiz Spain 36˚31'37.42''N 6˚17'18.94''W  

Op0266 Cádiz Spain 36˚31'37.42''N 6˚17'18.94''W  

Op0272 Cádiz Spain 36˚31'37.42''N 6˚17'18.94''W  

Op0273 Cádiz Spain 36˚31'37.42''N 6˚17'18.94''W  

Op0275 Cádiz Spain 36˚31'37.42''N 6˚17'18.94''W  

Op0276 Cádiz Spain 36˚31'37.42''N 6˚17'18.94''W  

Op0277 Cádiz Spain 36˚31'37.42''N 6˚17'18.94''W  

Op0278 Cádiz Spain 36˚31'37.42''N 6˚17'18.94''W  

Op0279 Cádiz Spain 36˚31'37.42''N 6˚17'18.94''W  

Op0280 Cádiz Spain 36˚31'37.42''N 6˚17'18.94''W  

Op0284 Cádiz Spain 36˚31'37.42''N 6˚17'18.94''W  

Op0285 Cádiz Spain 36˚31'37.42''N 6˚17'18.94''W  

Op0286 Cádiz Spain 36˚31'37.42''N 6˚17'18.94''W  
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Op0287 Cádiz Spain 36˚31'37.42''N 6˚17'18.94''W  

Op0288 Cádiz Spain 36˚31'37.42''N 6˚17'18.94''W  

Op0289 Cádiz Spain 36˚31'37.42''N 6˚17'18.94''W  

Op0290 Cádiz Spain 36˚31'37.42''N 6˚17'18.94''W  

Op0291 Cádiz Spain 36˚31'37.42''N 6˚17'18.94''W  

Op0292 Cádiz Spain 36˚31'37.42''N 6˚17'18.94''W  

Op0293 Cádiz Spain 36˚31'37.42''N 6˚17'18.94''W  

Op0294 Cádiz Spain 36˚31'37.42''N 6˚17'18.94''W  

Op0274 Cádiz Spain 36˚31'37.42''N 6˚17'18.94''W  

Op0309 Circeo Italy 41˚13'60''N 13˚2'59.99''E  

Op0310 Tor Paterno Italy 41˚39'22.34''N 12˚24'58.09''E  

Op0311 Tor Paterno Italy 41˚39'22.34''N 12˚24'58.09''E  

Op0312 Tor Paterno Italy 41˚39'22.34''N 12˚24'58.09''E  

Op0313 Tor Paterno Italy 41˚39'22.34''N 12˚24'58.09''E  

Op0314 Tor Paterno Italy 41˚39'22.34''N 12˚24'58.09''E  

Op0315 Tor Paterno Italy 41˚39'22.34''N 12˚24'58.09''E  

Op0316 Tor Paterno Italy 41˚39'22.34''N 12˚24'58.09''E  

Op0317 Tor Paterno Italy 41˚39'22.34''N 12˚24'58.09''E  

Op0318 Tor Paterno Italy 41˚39'22.34''N 12˚24'58.09''E  

Op0319 Tor Paterno Italy 41˚39'22.34''N 12˚24'58.09''E  

Op0320 Tavolara Italy 40˚54'22.32''N 9˚42'47.88''E  

Op0110 S. Sebastián Spain 43˚19'6''N 1˚58'52.43''W  

Op0111 S. Sebastián Spain 43˚19'6''N 1˚58'52.43''W  

Op0112 S. Sebastián Spain 43˚19'6''N 1˚58'52.43''W  

Op0113 S. Sebastián Spain 43˚19'6''N 1˚58'52.43''W  

Op0116 S. Sebastián Spain 43˚19'6''N 1˚58'52.43''W  

Op0118 S. Sebastián Spain 43˚19'6''N 1˚58'52.43''W  

Op0120 S. Sebastián Spain 43˚19'6''N 1˚58'52.43''W  

Op0121 S. Sebastián Spain 43˚19'6''N 1˚58'52.43''W  

Op0122 S. Sebastián Spain 43˚19'6''N 1˚58'52.43''W  

Op0124 S. Sebastián Spain 43˚19'6''N 1˚58'52.43''W  
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Op0125 S. Sebastián Spain 43˚19'6''N 1˚58'52.43''W  

Op0243* 
L'Escala, 
Girona 

Spain 42˚7'11.46''N 3˚7'21.97''E  

Op0245* 
L'Escala, 
Girona 

Spain 42˚7'11.46''N 3˚7'21.97''E  

Op0297 Cádiz Spain 36˚31'37.42''N 6˚17'18.94''W  

Op0298 Cádiz Spain 36˚31'37.42''N 6˚17'18.94''W  

F. fontandraui 

Op0130 
Sa Tuna, 
Girona 

Spain 41˚57'38.02''N 3˚13'43.36''E  

Op0134 
L'Escala, 
Girona 

Spain 42˚7'11.46''N 3˚7'21.97''E  

Op0140 
Roca Roja, 

Girona 
Spain 42˚7'11.46''N 3˚7'21.97''E  

Op0143 
Roca Roja, 

Girona 
Spain 42˚7'11.46''N 3˚7'21.97''E  

Op0144 
Roca Roja, 

Girona 
Spain 42˚7'11.46''N 3˚7'21.97''E  

Op0150 
Roca Roja, 

Girona 
Spain 42˚7'11.46''N 3˚7'21.97''E  

Op0187 Ria Formosa Portugal 36˚58'8.74''N 7˚52'10.01''W  

Op0188 Ria Formosa Portugal 36˚58'8.74''N 7˚52'10.01''W  

Op0189 Ria Formosa Portugal 36˚58'8.74''N 7˚52'10.01''W  

Op0190 Ria Formosa Portugal 36˚58'8.74''N 7˚52'10.01''W  

Op0191 Ria Formosa Portugal 36˚58'8.74''N 7˚52'10.01''W  

Op0193 Sesimbra Portugal 38˚26'39.18''N 9˚6'5.36''W  

Op0228 Sesimbra Portugal 38˚26'39.18''N 9˚6'5.36''W  

Op0307 Chafarinas Spain 35˚14'7.48''N 3˚58'51.91''W  

Op0306 Cap Oulestreil France 42˚30''0''N 3˚7'59.99''E  

Op0321 Ischia Italy 40˚44'20.86''N 13˚57'3.58''E  

Op0322 Giglio Italy 42˚22'27''N 10˚52'47''E  

Op0131* Caials, Girona Spain 42˚42'19.41''N 2˚56'59''E  

Op0308 
Tarifa, 

Gibraltar 
Spain 36˚8'26.70''N 5˚21'12.90''W  

F. bilineata 

Op0161 Ria Formosa Portugal 36˚58'8.74''N 7˚52'10.01''W  

Op0162 Ria Formosa Portugal 36˚58'8.74''N 7˚52'10.01''W  

Op0163 Ria Formosa Portugal 36˚58'8.74''N 7˚52'10.01''W  
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Op0175 Ria Formosa Portugal 36˚58'8.74''N 7˚52'10.01''W  

Op0176 Ria Formosa Portugal 36˚58'8.74''N 7˚52'10.01''W  

Op0177 Ria Formosa Portugal 36˚58'8.74''N 7˚52'10.01''W  

Op0178 Ria Formosa Portugal 36˚58'8.74''N 7˚52'10.01''W  

Op0179 Ria Formosa Portugal 36˚58'8.74''N 7˚52'10.01''W  

Op0180 Ria Formosa Portugal 36˚58'8.74''N 7˚52'10.01''W  

Op0181 Ria Formosa Portugal 36˚58'8.74''N 7˚52'10.01''W  

Op0182 Ria Formosa Portugal 36˚58'8.74''N 7˚52'10.01''W  

Op0183 Ria Formosa Portugal 36˚58'8.74''N 7˚52'10.01''W  

Op0185 Ria Formosa Portugal 36˚58'8.74''N 7˚52'10.01''W  

Op0281 Cádiz Spain 36˚31'37.42''N 6˚17'18.94''W  

Op0282 Cádiz Spain 36˚31'37.42''N 6˚17'18.94''W  

Op0283 Cádiz Spain 36˚31'37.42''N 6˚17'18.94''W  

Op0285 Cádiz Spain 36˚31'37.42''N 6˚17'18.94''W  

Op0296 Cádiz Spain 36˚31'37.42''N 6˚17'18.94''W  

Op0334 Madeira Portugal 32˚45'38.54''N 16˚57'34.1''W  

Op0302 Cádiz Spain 36˚31'37.42''N 6˚17'18.94''W  

F. orsinii 

Op0337 Cádiz Spain 36˚31'37.42''N 6˚17'18.94''W  

Op0136 
Roca Roja, 

Girona 
Spain 42˚7'11.46''N 3˚7'21.97''E  

Op0132 Caials, Girona Spain 42˚42'19.41''N 2˚56'59''E  

Op0133 Caials, Girona Spain 42˚42'19.41''N 2˚56'59''E  

Op0135 
Roca Roja, 

Girona 
Spain 42˚7'11.46''N 3˚7'21.97''E  

Op0138 
Roca Roja, 

Girona 
Spain 42˚7'11.46''N 3˚7'21.97''E  

Op0139 
Roca Roja, 

Girona 
Spain 42˚7'11.46''N 3˚7'21.97''E  

Op0146 
Roca Roja, 

Girona 
Spain 42˚7'11.46''N 3˚7'21.97''E  

Op0147 
Roca Roja, 

Girona 
Spain 42˚7'11.46''N 3˚7'21.97''E  

F. picta 

Op0335 Sao Tome 
São Tomé e 

Príncepe 
0˚15'36.92''N 6˚37'15.81''W HM162685 

Op0095 Sal Cape Verde 16˚55'35.81''N 22˚55'46.95''W  
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Op0096 Sal Cape Verde 16˚55'35.81''N 22˚55'46.95''W  

Op0097 Sal Cape Verde 16˚55'35.81''N 22˚55'46.95''W  

Op0098 Sal Cape Verde 16˚55'35.81''N 22˚55'46.95''W  

Op0099 Sal Cape Verde 16˚55'35.81''N 22˚55'46.95''W  

Op0105 
Miki 

Xaramida, 
Lesvos 

Greece 39˚20'18.76''N 26˚8'21.14''E  

Op0106 Stoupa Greece 36˚50'40.92''N 22˚15'35.13''E  

Op0107 Palaikastro Greece 35˚11'52.56''N 26˚15'15.44''E  

Op0108 Kotor bay Montenegro 42˚23'34.93''N 18˚33'36.10''E  

Op0192 Ria Formosa Portugal 36˚58'8.74''N 7˚52'10.01''W  

Op0267 Cádiz Spain 36˚31'37.42''N 6˚17'18.94''W  

Op0270 Cádiz Spain 36˚31'37.42''N 6˚17'18.94''W  

LN715204 Capo Palinuro Italy   LN715204 

H. picta 
elegans* 

AF249787 Vigo Spain 

  

AF249787 

  

R. europea* AY083457 - -   AY083457 

F. kempfi EF535121 Florida Keys USA 

  

EF535139 

  

F. porterae EF535139 Palos Verdes 
California, 

USA 

  

EF535139 

  

F. ruthae EU982747 
Bocas del 

Toro 
Panama 

  

EU982747 

  

F. agassizii 

JQ727883     JQ727883 

JQ727884 
Baja 

California 
Mexico   JQ727884 

CH019 
Marina de la 

Paz 
Bolivia   CH019 

F. californiensis EU98744 Punta Carbon Costa Rica  EU982744 

H. whitei 

JQ727902  Madagascar   JQ727902 

JQ727903 Queensland Australia   JQ727903 

H. zephyra EF535129 Queensland Australia   EF535129 
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JQ727904 Bali Indonesia   JQ727904 

JQ727905 
Iles de 

Radama, 
Madagascar   JQ727905 

M. 
multituberculata 

JQ727907 
Batangas, 

Twin Rocks 
Philippines   JQ727906 

M. antonii EU982748 Playa Real Costa Rica   EU982748 

Letters above the Individual code (a-e), indicate individuals excluded for the “species-tree” analyses: a) the individual was gathered in Anza 
(Morocco) as a F. bilineata, however mitochondrial DNA recognizes it as F. cantabrica; b) first identified as F. fontandraui, these specimens 
fall in the F. tricolor clade (digital records are not clear for any of the species); c) First identified as F. tricolor, it falls in F. fontandraui clade 
(and once more picture is lacks important morphologic features characterizing both species); d) originally from genebank, the specimen 
classified as F. picta elegans detains the mtDNA of a F.villafranca from Vigo’s (no photo record is available); e) outgroups included in gene-
tree inferences. 
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Supplementary Figure 1 Maximum likelihood phylogeny of mtDNA COI partial sequence. It includes seven species of the Eastern Atlantic 
and Mediterranean Sea, and Genbank sequences from the Eastern Pacific and Western Atlantic Felimare species. Outgroup species 
include two Hypselodoris from Indo-Pacific Ocean (H. zephyra and H. whitei), two Mexichromis, from Eastern Pacific (M. antonii) and Indo-
Pacific (M. multituberculata), and the more distant Roboastra europea, from Eastern Atlantic. Bootstrap values above 50% (from 1000) are 
indicated. Branches with support equal or greater than 95% are bolded. 
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Supplementary Figure 2 – Consensus phylogeny resulting from Bayesian and ML analyses of mtDNA COI partial sequence. Analysis 
includes 7 species of the Eastern Atlantic and Mediterranean Sea, and Genebank sequences from the Eastern Pacific and Western Atlantic 
oceans of the genus Felimare. Other species include two Hypselodoris from Indo-Pacific Ocean (H. zephyra and H. Whitei), two 
Mexichromis from Eastern Pacific (M. antonii) and Indo-Pacific (M. multituberculata), one Chromodrid from Indo-Pacific (Chromodoris 
magnifica. The tree has been rooted with Roboastra europea (not visivel in the image), from Eastern Atlantic. This is a majority-rule of 11 
Million generation (MCMC) with 2 runs. Posterior probabilities (above) and bootstrap values above 50, in percentage, from 1000 bootstrap 
of ML tree (below) are indicated as the support for each node. Branches for probabilities equal or greater than 95% are bolded 
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Supplementary Figure 3 Plots of frequency, % identity and alignment length per class of e-value of F. cantabrica against A. californica 
contigs with only the best nucleotide (above) and protein (below) hits considered. 
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Supplementary Figure 4 Plots of frequency, % identity and alignment length per class of e-value of F. villafranca against A. californica 

contigs with only the best nucleotide (above) and protein (below) hits considered. 
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Supplementary Figure 5 Plots of frequency, % identity and alignment length per class of e-value of F. cantabrica against X. silurana 
contigs with only the best nucleotide (above) and protein (below) hits considered. 
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Supplementary Figure 6 - Plots of frequency, % identity and alignment length per class of e-value of F. villafranca against X. silurana 
contigs with only the best nucleotide (above) and protein (below) hits considered. 
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Supplementary Figure 7 - Plots of frequency, % identity and alignment length per class of e-value of F. cantabrica against nudibranchs 
contigs with only the best nucleotide (above) and protein (below) hits considered. 
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Supplementary Figure 8 - Plots of frequency, % identity and alignment length per class of e-value of F. villafranca against nudibranchs 
contigs with only the best nucleotide (above) and protein (below) hits considered. 
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Supplementary Figure 9- Plots of frequency, % identity and alignment length per class of e-value of F. cantabrica against Bufo species 

contigs with only the best nucleotide (above) and protein (below) hits considered. 
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Supplementary Figure 10 - Plots of frequency, % identity and alignment length per class of e-value of F. villafranca against Bufo species 
contigs with only the best nucleotide (above) and protein (below) hits considered. 
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Supplementary Figure 11 - Plots of frequency, % identity and alignment length per class of e-value of F. cantabrica against H. sapiens 
contigs with only the best nucleotide (above) and protein (below) hits considered. 
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Supplementary Figure 12 - Plots of frequency, % identity and alignment length per class of e-value of F. villafranca against H. sapiens 
contigs with only the best nucleotide (above) and protein (below) hits considered. 


