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Abstract 

 

Intervertebral disc (IVD) degeneration, generally considered the major cause of 

spine disorders, is normally associated with Low Back Pain (LBP), one of the 

main contributors to crippling disability worldwide. Current therapies focus only 

on symptoms management, disregarding the true cause of the pathology and 

even accelerating the degenerative process in adjacent tissues.  

Alternative therapies have been proposed for LBP and IVD degeneration, 

namely cell-based therapies. Among these, Mesenchymal Stem/Stromal Cells 

(MSCs) appear to be the most appealing. MSCs regenerative potential has 

been mostly linked to their differentiation potential, but their paracrine 

mechanism of action is being increasingly appointed as a main therapeutic 

factor, with many studies achieving equally promising results with MSCs 

secretome. Nevertheless, MSCs therapeutical properties are strongly influenced 

by cells’ microenvironment but how this affects MSCs secretome is not yet well 

described.  

This work aims to evaluate the immunomodulatory and regenerative potential of 

MSCs secretome in IVD degeneration and to study the influence of oxygen and 

pro-inflammatory stimuli on MSCs secretome. For that, human bone marrow-

derived MSCs were pre-conditioned for 48h with IL-1β (10 ng/mL), TNF-α (10 

ng/mL) or both (IL-1β+TNF-α), in either normoxia (21% O2) or hypoxia (6%O2). 

MSCs viability, metabolic activity and phenotype were maintained within 

different preconditioning conditions. Different MSCs secretomes (secMSCs) 

were collected and used to culture bovine IVD punches in pro-

inflammatory/degenerative culture conditions (puncture+IL-1β stimulus), as 

previously established in the group. The treated IVDs remained viable and 

secMSCs down-regulated inflammatory markers of the pro-

inflammatory/degenerative IVDs cultures (IL-6, IL-8, TNF-α, PGE2, TGF-) after 

48h in general, which was not observed in the presence of MSCs. After 14 

days, the ECM production of treated IVDs was promoted only in the presence of 

MSCs and secMSCs of three conditions (control, IL-1+normoxia, IL-1+TNF-

+hypoxia), which interestingly, present higher levels of key immune regulatory 

molecules (TNF-, IL-6, IDO).  Overall, the results demonstrate the potential of 
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secMSCs to control inflammation and the possible link between inflammatory 

response and ECM remodeling in degenerated IVD, opening new perspectives 

for LBP treatment.  
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Resumo 

 

A degeneração do Disco Intervertebral, geralmente considerada a principal 

causa de doenças da coluna, é normalmente associada à Dor Lombar, um dos 

principais fatores que contribuem para a incapacidade física mundial. As 

terapias atuais focam-se apenas na gestão dos sintomas, ignorando a 

verdadeira causa da patologia e contribuindo ainda para uma aceleração do 

processo degenerativo em tecidos adjacentes. 

Têm sido propostas terapias alternativas para a Dor Lombar e para a 

degeneração do disco Intervertebral. De entre estas, as Células 

Estaminais/Estromais Mesenquimais (MSCs) apresentam-se como a mais 

atrativa. O potencial regenerativo das MSCs tem sido maioritariamente ligado 

ao seu potencial de diferenciação, embora o seu mecanismo de ação parácrino 

venha a ser cada vez mais indicado como o principal fator terapêutico, com 

diversos estudos demonstrando resultados igualmente promissores com o seu 

secretoma. As propriedades terapêuticas das MSCs são fortemente 

influenciadas pelo microambiente em que se encontram, mas ainda não se 

encontra bem descrita a forma como isto afeta o seu secretoma. 

Este trabalho tem como objetivo a avaliação dos potenciais regenerativo e 

imunomodulatório do secretoma das MSCs na degeneração do disco 

Intervertebral assim como da influência do oxigénio e do estímulo pró-

inflamatório nas suas características. Nesse sentido, MSCs humanas da 

medula óssea foram pré-estimuladas durante 48h com IL-1β (10ng/mL), TNF-α 

(10ng/mL) ou ambas (IL-1β+TNF-α) em condições de normóxia (21% O2) ou 

hipoxia (6% O2).  

A viabilidade, a atividade metabólica e o fenótipo das MSCs foram mantidos 

nas diferentes condições de pré-condicionamento. Diferentes secretomas de 

MSCs (secMSCs) foram recolhidos e usados para cultura de porções de disco 

em condições pró-inflamatórias/degenerativas (estímulo com punção + Il-1β), 

como descrito anteriormente pelo grupo. Os discos tratados mantiveram-se 

viáveis e o uso de secMSCs reduziu a produção de marcadores inflamatórios 

da cultura de discos em condições pró-inflamatórias/degenerativas (IL6, IL-8, 

TNF-α, PGE2, TGF-β) após 48h, o que não foi observado na presença de 

MSCs. Após 14 dias, a produção de ECM dos discos tratados foi promovida 
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apenas na presença de MSCs e secMSCs de três condições (controlo, IL-

1β+normoxia, IL-1β+TNF-α+hipoxia), que, curiosamente, apresentam níveis 

mais elevados de moléculas com um papel chave na regulação imune (TNF-α, 

IL-6, IDO). 

Em resumo, os resultados demonstram o potencial do secretoma das MSCs 

para controlar a inflamação e a possível ligação entre a resposta inflamatória e 

a remodelação da matriz extracelular do disco intervertebral degenerado, 

introduzindo novas perspetivas no tratamento da dor lombar. 
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A. Introduction 

 

1. Low Back Pain and Degenerative Disc Disease 

Low back pain (LPB) is on the top of the list of the major causes of disability in 

the world, being expected that 2/3 of the world population will suffer from it at 

least once in their lives [1]. LBP contributes with more than 10% to the global 

number of years lived with disability, or 83 million years lived with disability [2], 

and has a relevant economic burden associated [2-4]. Degeneration of the 

intervertebral disc (IVD) is considered the major cause of spine disorders [5] 

and is commonly linked to degenerative disc disease (DDD) and LBP [6, 7], 

although this last one is known as a multi-factorial disorder [8-10].  

The IVDs are key structures to sustain the weight applied to the spine and 

provide spine flexibility, multi-axial motion and load transmission throughout the 

spine [11, 12]. They are composed by an outer ring of fibrous cartilage (annulus 

fibrosus-AF) surrounding a gelatinous nucleus (nucleus pulposus-NP) that is 

delimited, above and below, by cartilage endplates [11]. The NP is the largest 

avascular tissue in the body and forms a hypoxic and hyperosmotic 

environment [13], which is possible only due to the cells’ constitutively 

expression of hypoxia-inducible-factor-1/2α (HIF-1/2α) [14]. As its main function 

is to resist compressive loads, the NP extracellular matrix (ECM) is mostly 

composed of aggrecan (Agg) and type II collagen (Col II) in a characteristic ratio 

of >20 [15]. NP cells can also be characterized based on a set of specific 

markers such as sonic hedgehog (shh), brachyury and CD24, even though 

most known NP markers are species dependent and still controversial [16]. NP 

contains mainly two different cell populations (chondrocyte-like and notochordal 

cells) but Molinos et al has recently published the discovery of three 

distinguishable sub-populations in the NP by flow cytometry [17]: P1, presenting 

a seemingly more progenitor-like phenotype with high expression of CD146 and 

CD44 in most cells and only a few expressing CD45 and CD34; P2 and P3, 

CD29 expressing populations, distinguishable mainly by P2-restrict expression 

of CD45 and CD146.  
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IVD degeneration is believed to originate in the NP (Fig. 1A), the central region 

of the IVD that ensure ECM maintenance [12]. Age related changes, mostly 

progressive cell senescence [21, 22] seem to indicate this connection. 

In this characteristic environment, degeneration begins with increased 

production of matrix metalloproteinases (MMPs) that results in ECM increased 

degradation [23] with loss of disc height and integrity [24, 25]. Nutrition 

becomes impaired with calcification of the end plates, normally responsible for 

the diffusion of gases and nutrients to the disc [26, 27]. Disc invasion by nerve 

and blood vessels was observed, being appointed as a possible cause of the 

pain induced [28, 29] (Figure 1). Up-regulation of a wide number of 

inflammatory cytokines (Tumor Necrosis Factor α (TNF-α), IL-1β, IL-6, IL-8, 

Nitric Oxide (NO) and Prostaglandin E2 (PGE2) among others) has also been 

observed, indicating involvement of an inflammatory process [30-32]. Although 

this inflammatory reaction remains still scarcely understood in the context of 

IVD degeneration, ECM breakdown products generated during tissue damage 

or as a consequence of degenerative metabolic dysfunction seem to elicit a 

local inflammatory response. Indeed, Quero et al. observed that in human IVD 

cells, hyaluronan fragments provoked increase in expression of inflammatory 

genes such as IL-1β, IL-6, IL-8 and matrix-degrading genes MMP1 and MMP13  

Figure 1| The IVD niche and its degeneration 

A. The IVD presents an heterogeneous group of different cell populations, namely: notochordal cells (large 

and vacuolated progenitor cells), mature nucleus pulposus cells (chondrocyte-like cells), annulus fibrosus cells 
(fibroblast-like cells) and cells of the endplate (also chondrocyte-like cells). B. IVD niche is very specific and 

harsh environment, presenting low pH and oxygen levels and a poor nutrients supply due to its avascular 
nature, alongside an intense mechanical load. C. In the process of disc degeneration, there is loss of disc 

height and integrity, with possible disc extrusion. The calcification of the endplates is also a natural outcome of 
this process, further inhibiting nutrients supply. There’s also invasion by nerves and blood vessels. Adapted 
from: Sakai, D. and G.B. Andersson, Stem cell therapy for intervertebral disc regeneration: obstacles and 
solutions. Nat Rev Rheumatol, 2015. 11(4): p. 243-56 
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[33]. Accordingly, IVDs seem to endogenously present inflammatory-like cells 

able to phagocyte apoptotic bodies [34] that present immune-specific markers 

[35] and produce inflammatory cytokines, even in non-degenerated conditions 

[36]. Additionally, infiltrated leukocytes were found in IVDs with intact NP still 

isolated from vascular supply, suggesting an endogenous source for the 

inflammatory reaction [36]. In more advanced degenerative states, when the NP 

becomes exposed to the immune system, the invasion of immune cells 

attracted to the local inflammatory stimulus, further aggravate the reaction [37]. 

The presence of high levels of some of these inflammatory cytokines in the IVD, 

may mediate catabolic effects, such as loss of ECM proteoglycan content and 

stimulation of MMP expression [31, 38]. 

 

2. Mesenchymal Stem/Stromal Cells (MSCs) as a promising cell source  

Currently, DDD is mainly either conservatively treated with pain management 

through medication or physical therapy, or surgically treated with removal or 

substitution of complete/partial disc tissue or in addition, vertebral fusion [19, 

39]. These approaches are not only not treating the disorder cause, seeking 

merely symptomatic relief [40], as they are also not always effective, impairing 

normal motion when fusion methods are used, with possible acceleration of 

degeneration in adjoining segments and maintenance of LBP [41, 42]. 

Alternative approaches have been explored, recurring to growth factors injection 

[43], gene therapy [44, 45] and tissue engineering [19, 44]. However, with 

known limited success. In addition, cell-based therapies have been purposed 

[46, 47], with promising results, either with IVD autologous cells [23], NP 

progenitor cells [48, 49], immortalized NP-cell line [50], fetal spinal cells [51] and 

stem-cells [52-55], namely MSCs [56, 57]. 

MSCs named by Caplan [58] and first isolated by Friedenstein and colleagues 

[59] are defined as plastic-adherent fibroblast-like cells with multipotent 

differentiation capacity in vitro [60] and an expression pattern of 

CD90+CD105+CD73+CD14-CD34-CD45- [61]. MSCs are also MHCI+MHCII-

CD40-CD80-CD86-, an immune phenotype that inhibits T-cell activation by lack 

of secondary stimuli (provided by MHCII, CD80 and CD86, for example), even 

when there is recognition (by interaction between T-cells and MHCI molecules), 

making them non-immunogenic [62, 63]. The production of specific soluble 
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factors such as members of the TGF-β family, IL-6 and IL-10, MMPs and nitric 

oxide interferes with a variety of pathways necessary for the immune response 

[64]. Besides suppressing T-cell proliferation [65], MSCs induce T-regulatory 

cells activity [66] and inhibit the function and maturation of dendritic cells [67]. 

Both immunological suppressive [65-68] and stimulating capacities [69, 70] 

have been described, supporting the current definition of immunomodulatory 

cells. 

Although these defining characteristics, there is still not an unique set of 

markers for MSCs and many other markers may be analyzed [60]. Traditionally, 

adult MSCs are isolated from bone marrow (BM) [59]. Nonetheless, MSCs have 

also been isolated from adipose tissue (AT) [71], umbilical blood cord (UCB) 

[72], placenta [73], peripheral blood [74] and other multiple sources [75-79]. 

When expanded in vitro, they have been shown primarily to have osteogenic 

potencial, and later, to be able to differentiate in other skeletal tissues such as 

chondrogenic and adipogenic lineages, all from mesodermal origin [80, 81]. 

More recently, MSCs were shown to have regenerative potential in ectodermal 

and endodermal lineages’ tissues [82-88], even though the question whether 

they do so by differentiating or by molecular signaling remains controversial. 

Although MSCs physiological role is yet to be elucidated, it seems to be 

established their involvement in hematopoietic microenvironment formation and 

maintenance [89], modulation of immune response [90, 91] and regenerative 

processes throughout the human body [92], as exemplified in table 1.  

 

3. Evidences of MSCs beneficial effects in DDD 

The majority of the current cell therapies aim to restore native IVD matrix, 

focusing particularly in increasing NP proteoglycan content [19, 93]. Several 

studies focus on the possibility of tissue repopulation with IVD native cells, 

succeeding in delaying degeneration and maintaining disc height with ECM 

production. However, studies have shown that the isolation of cells from this 

tissue could create or accelerate pre-existing degeneration, suggesting a 

downside to this possible future therapy [94]. Additionally, the recruitment of 

cells to increase the supply of viable cells, recurring to cytokine and chemokine 

provision, seems to be difficult. Although IVD progenitor cells have been  
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Table 1| MSCs regenerative potential - Several examples 

Study 
MSCs 

Source 
Study Model Major Conclusions 

Bone & 
Cartilage 

      

Garimella et al. 
2015

[50]
 

AT 
Mouse rheumatoid arthritis 

model 
Reduction of clinical symptoms and joint 

pathology. 

Zscharnack et al. 
2010

[172]
 

BM 
Chronic osteochondral defect in 

ovine stifle joints 
Significant improvement of morphological 

characteristics of hyaline cartilage. 

Koh et al. 2012
[76]

 AT Patients with knee osteoarthritis Improvement of clinical symptoms. 

Nervous System 
   

Zhao et al. 
2007

[169]
 

BM 
Mouse amyotrophic lateral 

sclerosis model 
Delay in disease onset and progress. Increase in 

mice lifespan 

Bouchez et al. 
2008

[20]
 

BM Rat Parkinson’s disease model 
Reduction of behavioral symptoms. Partial 

restoration of dopaminergic markers 

Zhang et al. 
2008

[168]
 

BM 
Patients with traumatic brain 

injury 
Significant improvement of neurologic function 

Bang et al. 
2005

[11]
 

BM 
Patients suffering with post-

stroke severe neurologic deficit 
Consistent improvement of functional scores 

Heart       

Hamdi et al. 
2011

[56]
 

AT Rat myocardial infarction model 
Increase in survival rate and cell engraftment. 

Preservation of ventricle geometry 

Amado et al. 
2006

[6]
 

BM Pig cardiac infarction model 
Active contractile tissue recovery with increase in 

myocardium thickness. Scar tissue reduction 

Viswanathan et al. 
2010

[156]
 

BM Myocardial infarction patients 
Perfusion improvement in the infarcted area and 

ejection fraction 

Immune 
System 

      

Le Blanc et al. 
2008

[79]
 

BM 
Patient with severe graft-versus-

host disease 
No adverse effects directly related. Higher 

survival rate. 

Sun et al. 2008
[149]

 BM 
Systemic lupus erythematosus 

mice model 
Reconstruction of BM osteblastic niche with 

reversion of multiorgan dysfunction. 

Ciccocioppo et al. 
2015

[35]
 

BM 
Patients suffering from Crohn’s 

disease 
Disease remission achieved after 1 and 5 years. 

Cancer       

Yulyana et al. 
2015

[166]
 

Fetal bone 
marrow 

Hepatocellular carcinoma 
mouse model 

Inhibition of cancer cell proliferation. 
Enhancement of chemotherapeutic drugs effect. 

Skin       

Santos et al. 
2015

[135]
 

UCB Rat wound splinting model 
Faster and better wound resolution with complete 
tissue and mature vascular system regeneration. 

Pancreas       

Holmes 2014
[62]

 BM 
Type 1 diabetes mellitus 

patients 
Preservation of c-peptide response after 1 year. 

Bladder       

Snow-Lisy et al. 
2015

[145]
 

BM Rat bladder augmentation model 
Increase in blood vessel numbers and muscle 

content. Peripheral nerve regeneration 

Kidney       

Gatti et al. 2011
[51]

 BM 
Nephrectomy and renal artery 

and vein occlusion in rats 
Inhibition of cell apoptosis. Reduced renal 

function impairment. 

Liver       
Zhang et al. 

2012
[167]

 
UCB 

Patients suffering from 
decompensated liver cirrhosis 

Significant improvement in liver function 
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discovered in NP [95], AF [96] and end-plates [97] and shown to have 

multipotency in vitro and in vivo [98, 99], in 2012, Sakai and colleagues have 

demonstrated that there is an exhaustion of these cells with ageing and 

degeneration [22] and so, attempts to stimulate them for matrix repair could be 

impossible due to a lack of sufficient cells [25]. 

Transplantation of cells from different sources, such as chondrocytes [100, 101] 

and MSCs, has been contemplated, with mainly positive results. MSCs 

transplantation in the degenerated disc has been demonstrated initially in the 

works of Sakai et al. In this work, it was shown that cells seeded in a collagen 

scaffold, after implantation in a rabbit degenerated disc model, induced ECM 

production while disc height was maintained [102, 103]. Following the trend, 

hydrogel [104, 105], hyaluronan [106], fibrin [107, 108] and collagen [109]-

based scaffolds seemed to work synergistically with cell therapy leading to 

matrix recovery, enhancing its effects. Additionally, scaffolds were shown to 

prevent possible osteophyte formation in near tissues due to cell leakage [109, 

110]. In 2010, Yang and colleagues introduced a TGF-β1(Transforming Growth 

Factor β1) loaded fibrin scaffold, demonstrating higher regenerative effect 

influenced by the cell-growth factor interaction to increase NP and Col II content 

[108], supporting earlier evidence that pointed towards the importance of this 

[111, 112] and other factors [105, 113-115], such as hypoxia [113] and load 

[111, 114] in induction of MSC differentiation in NP-like cells for disc 

regeneration. Nonetheless, the clinical application of biomaterials as scaffolds 

for cell therapy may need more research to become feasible. On the one hand, 

there’s the difficulty in tuning biomechanical properties adequate for use in load-

bearing tissue such as the IVD, in order to avoid problems such as material 

extrusion [116]. On the other hand, the surgical techniques commonly used to 

introduce the material in the tissue have been shown to accelerate IVD 

degeneration [117].   

Cell transplantation proved to be successful even without the use of a scaffold 

in small [118-120] and large animal models [121, 122]. In a rabbit degenerated 

disc model, MSC injection not only promoted Col II synthesis, but lead to an 

alteration of NP cells genetic profile as well, with suppression of degradative 

enzymes and inflammatory cytokines’ gene expression, indicating a possible 

immunomodulatory effect [118]. Another work in a dog degenerated disc model 
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established 106 MSCs/disc as an optimum cell number for transplantation, to 

maintain a higher survival rate and to promote the maintenance of structural 

microenvironment and ECM content [122], effects previously observed 

elsewhere [121].  

Two human clinical trials have recently been done, with more underway. In 

2010, two Japanese elderly female patients received an autologous BM-derived 

MSC seeded collagen scaffold transplant to treat lumbar spinal canal stenosis 

with vacuum phenomenon related instability. Scaffold pieces grafted 

percutaneously to degenerated IVD lead to improvements in vacuum 

phenomenon as well as reduction in associated instability and maintenance of 

high moisture content, indicating maintenance of ECM content [123]. In 2011, 

10 patients suffering from lumbar disc degeneration with associated LBP 

received autologous BM-MSC injections to the NP, resulting in a rapid pain and 

disability improvement, reaching 71% of optimal efficacy. Water content has 

remained elevated even though disc height was not recovered [54]. A follow-up 

phase I-II clinical trial is currently underway to further study this effect, recurring 

to MSV, an expanded BM-MSC [124]. Six other clinical trials, currently 

recruiting, will study the effect of adipose tissue-derived MSCs 

in lumbar disc degeneration, either recurring to direct cell injection [125, 126] or 

to the use of a supporting scaffold [127-130].  

Despite the increasing evidence towards a beneficial effect of MSCs injection 

on the regeneration on degenerated IVD, some questions have arisen regarding 

practical and safety issues. As aforementioned, osteophyte formation due to cell 

leakage can occur. Vadalà et al observed the migration of injected MSCs to 

surrounding tissues with undesirable bone formation while no marked MSCs 

seemed to be found inside the IVD [110], which suggests not only a safety 

concern but also the possibility of total inefficiency of the procedure. 

Furthermore, even when injected cells engraft into the IVD tissue, some authors 

question whether they can survive and actively function in that hostile 

environment long enough to generate an effect in the progressive degeneration 

[25].      

At the same time, the recruitment of cells from the surrounding environment is 

not only an alternative approach, but also a natural response of IVD cells to 

degeneration. In 2012, Illien-Junger et al demonstrated that a degenerative IVD 



22 
 

environment induces the production of factors that promote MSCs recruitment 

[131]. In 2014, Pattappa et al. showed that RANTES (CCL5) and CXCL5, key 

chemoattractant molecules, are produced in response to induced tissue 

degeneration [132], confirming the observation from Phillips and colleagues 

[36]. Meanwhile, Pereira et al. developed a chemoattractant-delivery system 

composed of a thermoreversible hydrogel enriched with stromal cell-derived 

factor 1 (SDF-1) that displayed great potential in MSCs recruitment to 

degenerated IVD, unfolding new possibilities of regenerative approaches [133]. 

Nevertheless, the avascular nature of this tissue represents a major obstacle to 

exogenous cell recruitment as few cells actually migrate from other regions 

towards the IVD [25, 134].  

 

4. MSCs Secretome as a powerful therapy 

As stated by Richardson and Hoyland [94], the most important stem cell asset is 

commonly assumed to be the ability to differentiate into the desired phenotype, 

as it can lead to tissue regeneration through cell repopulation. This seems to be 

supported by a large number of publications that have observed MSC 

differentiation as a major contribution for the positive results achieved. 

However, MSCs mode of action goes beyond their multi-differentiation potential. 

These cells secrete a large variability of bioactive molecules in response to local 

environment that act in near tissues through a paracrine effect [135]. An 

increasing number of publications consider this paracrine action to be a primary 

function of MSCs [92, 135, 136] and there has been much investigation to 

ascertain if some of the effects of the MSCs observed until now are due to 

trophic effects, as in many cases the number of differentiated cells isn’t enough 

to explain the observed response [135]. MSCs secretome’s therapeutic 

potential has been and is being increasingly explored in most tissues and in a 

large variety of pathologic conditions. 

 

4.1.MSCs secretome in Neurologic disorders 

MSCs injection in the brain tissue of a stroke model rat was shown to improve 

coordinated function with inhibition of scar tissue formation and cell apoptosis, 

and stimulation of angiogenesis and endogenous progenitors’ activity [137]. 

Authors, however, reported absence of MSCs’ neural differentiation. Other 



23 
 

study used concentrated conditioned medium (CM) from human MSCs culture 

in a rat model of traumatic brain injury. Results showed that the bioactive 

factors produced by the MSCs (namely Hepatocyte Growth Factor (HGF) and 

Vascular Endothelial Growth Factor (VEGF)) stimulated neurogenesis and 

improved motor and cognitive function [138]. Hypoxic preconditioning seemed 

to enhance these effects. Additionally, MSCs exosomes were shown to mediate 

the transfer of miRNA 133b to neuronal cells, contributing to neurite outgrowth 

and functional recovery after stroke [139], suggesting a relevant part in the 

neuronal protection capacity exhibited by MSCs. One group has directly 

established that MSCs secretome can promote neuronal survival and 

differentiation both in vivo and in vitro [140] and has reviewed the presence of 

factors such as BDNF (Brain-Derived Neurotrophic Factor), GDNF (Glial Cell 

line-Derived Neurotrophic Factor) , NGF (Nerve Growth Factor) and IGF 

(Insulin-Like Growth Factor) in the secretome, with different roles in neuronal 

protection in various related disorders (such as Parkinson’s disease and spinal 

cord injury) [141, 142]. This work demonstrates the vast existent evidence 

indicating the importance of these soluble factors in the MSCs action. 

 

4.2 MSCs secretome in Cardiovascular diseases 

In 2007, Dai et al. observed that using MSCs-CM in myocardial infarction rat 

model when compared to cells transplantation induced an effect only slightly 

less intense, indicating that part of the effect could be attributed to soluble 

factors [143]. Other study has achieved cardiac function restoration only 3 days 

after MSCs injection in infarcted heart tissue, leading to the conclusion that the 

speed of the response couldn’t be explained by a massive differentiation 

phenomenon [144] as MSCs differentiation in cardiomyocyte-like cells can take 

up to 9-14 days to happen [145]. Recently, MSC-derived exosomes were shown 

to improve cardiac function after myocardial infarction, with reduction of infarct 

size and maintenance of systolic and diastolic performance, as a result of 

neorevascularization and modulation of the inflammatory response [146, 147]. 

 

4.3 MSCs secretome in Bone and Cartilage Repair/Regeneration 

Surgically created mandible lesions in a rabbit model were regenerated through 

ASC (Adipose Tissue-derived MSC)-CM administration. CM was obtained from 
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cells incubated in serum-free medium, in hypoxic conditions for 24h. There were 

detected 43 angiogenic factors, from which 11 elevated molecules appeared to 

be involved in bone regeneration: IGF-1, TGF-β1, VEGF, angiogenin, IL-6, 

PDGF-BB, bFGF, EGF, RANTES, MCP-1 and MCP3 [148]. This expression 

pattern seemed to be in accordance with reported MSC-CM composition as 

other authors had found similar key molecules [149-152], including HGF [150] 

and BMP-1 [152]. Notably, VEGF, bFGF, HGF and IGF-1 were also significantly 

increased in injured hearts treated with MSCs [144]. HGF seemed to be a key 

factor in hepatic fibrosis aversion [153]. Knee joint MSCs’ injection in a severe 

osteoarthritis goat model also lead to meniscus regeneration without detectable 

cell differentiation [154] 

 

4.4 MSCs secretome in Liver Disorders 

MSCs co-culture with hepatic stellate cells (SC), responsible for hepatic fibrosis 

formation, induced SC apoptosis mainly through HGF signaling while inhibiting 

SC proliferation and collagen synthesis due to IL-6 induced IL-10 and TNF-α 

production, indicating immunomodulation of activated SCs [153]. Others 

demonstrated the therapeutic action of MSC-derived exosomes in fibrotic liver 

as its administration seemed to have a protecting effect on hepatocytes, 

reducing hepatic inflammation and collagen deposition [155]. Parekkadan and 

colleagues showed that the administration of MSCs-CM to a rat fulminant 

hepatic failure model, not only reduced mortality rate and hepatocellular death, 

but also diverted immune cells from the injured liver, supporting the importance 

of MSCs immunomodulatory action [156].  

 

4.5 MSCs secretome in Kidney Disorder 

In a chronic kidney disease rat model, MSC-CM succeeded in partially rescuing 

kidney function, mainly through endothelial cells attraction, angiogenesis and 

wound closure stimulation [157]. Important reno-protective paracrine factors 

were suggested to be VEGF, HGF and IGF, recurring important factors in MSC-

CM for various different organs. In 2011, Gatti and colleagues managed to 

protect rats from acute kidney injury with a single administration of MSC-derived 

microvesicles that inhibited apoptosis and stimulated tubular epithelial cell 

proliferation [158]. 
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4.6 MSCs secretome in DDD  

Despite the work of many investigators indicating MSCs differentiation as a 

necessary part of the natural IVD regenerative process [105, 111, 112, 114, 

159, 160], there’s strong evidence of existence of an essential paracrine 

crosstalk between the two types of cells [98, 161, 162]. In 2008, Yang and 

colleagues studied this interaction with a co-culture assay, which showed MSCs 

enhanced proliferation and Col II production in response to NP-like cells activity. 

A significant proliferation and Agg production increase in NP-like cells due to 

MSCs influence was also observed [161]. These results were later confirmed by 

Zhang et al. that further analyzed MSC-CM effect in NP-like cells gene 

expression, finding up-regulation of KRT19 and downregulation of MMP12 and 

MGP [162]. As MMP12, KRT19 and MGP have been associated with IVD 

degeneration, authors suggest that an healthy NP-like phenotype could be 

rescued. Another work indicated that MSC-CM could stimulate IVD progenitor 

cells activity [98], once again confirming the existence of a paracrine effect on 

degenerated IVD that could be further explored for therapeutic use. One such 

exploratory work, intending to understand the communication mechanisms 

between MSCs and NP cells, observed that one main via of communication is 

secured by secretion and internalization of microvesicles by both cell types 

[163], indicating, as in other organs, that the study of microvesicles and 

exosomes could represent a step further in the understanding of MSCs action 

mechanisms and in the pursuit of a regenerative therapy. 

 

5. Influence of preconditioning on MSCs secretome  

MSCs paracrine action is influenced by the microenvironment to which MSCs 

are subject to. This is demonstrated by the complexity shown by these cells’ 

response to different physiologic and pathologic situations and by the constant 

dual role they have of stimulation/inhibition, performing as modulatory cells in 

most scenarios. In this context, much investigation is being conducted in the 

effect of MSCs preconditioning in their characteristics, mainly exploring hypoxia, 

inflammatory stimuli and tridimensional culture as preconditioning factors. Some 

authors have also pursued pharmacological conditioning in specific pathological 

contexts [164, 165].  
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MSCs secretome, even when is produced without any prior conditioning of the 

cells, seems to be rich in chemokines, immunomodulatory molecules and 

growth factors (Table 2). Liu et al. analyzed a large array of factors, 

demonstrating that most abundant factors seemed to be IL-6, IL-8, TIMP-1 and 

TIMP-2, with high levels of MCP-1, LIF, VEGF and IGF observed [166]. 

Kyurkchiev et al. reviewed this subject, indicating IL-10, TGF-β, RANTES, IDO, 

ICAM and PGE2 as other factors highly produced by MSCs [167]. Other authors 

also repeatedly observed significant levels of not only VEGF, but also FGF, 

IGF, HGF, EGF, PDGF and BMP [148, 150-152, 166, 168, 169], demonstrating 

MSCs secretome richness in growth factors that are involved in regenerative 

processes of many different systems, accounting for MSCs outstanding 

regenerative capacity. On the other hand, MSCs ability for immunomodulation 

seems secured by the diverse and abundant production of factors involved in 

inflammation and immune response in general. Especially, IL-6 was indicated 

as the key cytokine involved in the immunoregulatory effects by MSCs [170] 

and PGE2 and IDO seem to be major effector molecules in MSCs 

immunoregulation [171, 172].  Effectively, this triad production is stimulated by 

the presence of pro-inflammatory factors, such as IL-1β, TNF-α, IFN-γ and LPS 

[67, 166, 172-174], that mostly elicit an immunomodulatory response from 

MSCs, aside from the production of a cocktail of growth factors, indicating a 

close relationship between inflammation and regeneration. Hypoxia, in turn, 

primarily activates the expression of hypoxia inducible factor (HIF-1α), leading 

to the stimulation of angiogenesis by production of factors such as vascular 

endothelial growth factor (VEGF) and Angiogenin [175, 176], an unwelcomed 

effect in the context of the avascular healthy IVD. Other growth factors seem to 

also be upregulated [177]. Secondly, it seems to induce multipotency 

maintenance [178, 179] and enhance cellular proliferation [180]. These effects 

can be explained by the fact that MSCs tend to exist in hypoxic areas of the 

body, contributing to the maintenance of the microenvironment there found. 

MSCs have proven to have a wide therapeutic potential in many diseases and 

conditions, as they present multipotent differentiation capacity alongside 

powerful immunomodulation ability and the aptitude to strongly interact with the 

surrounding environment, either collecting signals and reacting accordingly or  
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No stimulation Hypoxia Inflammatory stimuli 

MCP-1[148, 149, 164] * + 
 

MCP-3[148, 149] * + 
 

RANTES [148, 149, 164] * + 
 

Oct4 [165] * + 
 

Rex1[165] * + 
 

Angiogenin [148] * + 
 

PDGF [148, 150, 151] * + 
 

EGF [148] * + 
 

FGF [148, 150, 151, 165, 166] * + 
 

VEGF [148, 150, 151, 164-167] * + + 

IGF [148, 150, 151, 165-167] * + + 

HGF [150, 165, 167] * + + 

IDO [164, 165, 168] * + + 

TGF-β [150, 164-166] * + + 

IL-6 [148, 149, 164, 166, 169] * + + 

Factor H [165] * 
 

+ 

Gal-9 [165] * 
 

+ 

BMP [150-152, 165] * 
 

+ 

PGE2 [164, 165, 168] * 
 

+ 

TSG-6 [165] * 
  

IL-24 [165] * 
  

STC-1 [165] * 
  

CXCR4 [165] * 
  

TRAIL [165] * 
  

CD82 [165] * 
  

IL-10 [164] * - 
 

IL-8 [166] * 
  

IL-1β [166] * 
  

GM-CSF [166] * 
  

IL-3 [149] * 
  

MMP-1 [152] * 
  

MMP-2 [152] * 
  

TIMP-1 [152, 166] * 
  

TIMP-2 [166] * 
  

SDF-1 [150, 151] * 
  

LIF [166] * 
  

Table 2| Overview on the factors produced by MSCs cultured under different conditions 
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producing effects in adjoining tissues, via paracrine effect. As MSCs are also 

easy to isolate from a variety of sources and relatively easy to expand in vitro, 

they have become an attractive regenerative element for future therapies and 

have been studied under such pretense. 

 In degenerated IVD, the current knowledge indicates that MSC therapy is safe 

in short-term and effective in promoting decrease in tissue degeneration [181]. 

But MSCs secretome constitutes a promising alternative for degenerated IVD, 

as its harsh, avascular environment hampers cell survival and recruitment. More 

work is needed to better understand the MSC-based regenerative mechanism 

in this disorder, to tune MSCs secretome towards IVD regeneration.  

The objective of this work is to analyze the effect of MSCs secretome in a 

degenerative/inflammatory IVD model [182], depending on various MSCs 

preconditioning environments. 
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B. Materials and Methods 

 

1. Culture and pre-conditioning of human bone marrow MSCs 

1.1 Isolation of primary human bone marrow MSCs  

MSCs were obtained from BM aspirates collected from the tibia of young 

patients undergoing knee surgery who did not suffer from any known 

inflammatory disease. Patients gave informed written consent for tissue use for 

research purposes and procedures were carried out in accordance with the 

relevant guidelines approved by the Centro Hospitalar São João Ethics 

Committee. Cells were isolated by density gradient centrifugation and selection 

of adherent cells in tissue culture plastic, as previously established in our group 

[183]. After Lymphoprep gradient density centrifugation at 1100g for 30 min, at 

20ºC (no break), nucleated cells were collected and cultured in MSCs standard 

culture medium (SCM): Dulbecco’s modified Eagle’s medium (DMEM) with low 

glucose, 10% selected inactivated FBS (Gibco) and 1% penicillin/streptomycin 

(Invitrogen). Cells were incubated at 37ºC, with 5% CO2.After 72h, non-

adherent cells were removed and new medium was added. The medium was 

changed twice a week until cells reached approximately 80% confluence, after 

which, cells were detached by treatment with 0.05% 

trypsin/ethylenediaminetetraacetic acid (EDTA; Invitrogen) and expanded in 150 

cm2 tissue culture flasks (BD Falcon). Isolation of MSCs was confirmed by 

surface expression of CD105, CD73 and CD90 and absence of expression of 

CD45, CD34, CD14, CD19 and HLA-DR and by testing the cells capacity to 

differentiate towards the chondrocyte, osteoblast or adipocyte lineage.  

 

1.2 Routine culture of human MSCs  

Experiments were performed with 2 different MSCs donors, tested for their 

phenotype and differentiation potential (as described in Supplementary 

Materials and Methods). The ex vivo routine expansion of human MSCs was 

performed using standard culture medium (SCM): Dulbecco’s Modified Eagle’s 

Medium with low glucose (DMEM, Gibco), supplemented with 10% v/v fetal 

bovine serum (FBS, MSCs qualified, Life Technologies Gibco) and 1% v/v P/S 

(Gibco). Cells were expanded in monolayer culture, at 37ºC, in a humidified 
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atmosphere with 5% v/v CO2 in air. Medium was changed twice a week and 

cells were trypsinized when 70% confluence was reached and re-seeded at a 

concentration of 3000 cells/cm3. Experiments were performed with cells in 

passages 4-7. 

 

1.3 MSCs preconditioning  

MSCs stimulation was performed 1 week after cell seeding in T25 flasks, by 

medium supplementation with either recombinant human IL-1β (10 ng/mL, 

PeproTech), recombinant human TNF-α (10ng/mL, Immunotools) or both, in 

normoxic (37ºC, in a humidified atmosphere with 5% v/v CO2 in air) or hypoxic 

(37ºC under reduced oxygen atmosphere with 6% O2 and 8.5% CO2 and 

saturated humidity) culture conditions, as depicted in Figure 2. 

After 48h, media were collected and stored at -80ºC for further use in ex vivo 

disc culture, or at -20ºC for later content analysis. 

 

2. Bovine intervertebral discs isolation and culture 

Bovine IVDs were isolated from tails of young animals (less than 1 year), three 

hours after slaughter in the nearest accredited slaughterhouse. Tails were 

dissected under sterile conditions and the surrounding tissues (muscles, 

ligaments, nerves) were removed, exposing vertebrae and IVDs. Discs were 

then isolated from the adjacent vertebral bodies as close as possible to the 

endplates, punched to a standardized diameter of 9 mm, containing the NP and 

minimum AF lamellae in the borderline, and kept in phosphate buffer saline 

(PBS) with 1% v/v P/S and 0.5% v/v fungizone (Biowest).  

After isolation, discs were cultured in 6-well tissue culture plates with membrane 

filter inserts on the top and 0.46 MPa static loading to prevent tissue swelling in 

Figure 2| Preconditioning conditions design 
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5 mL of DMEM medium supplemented with 5% v/v FBS, 1% v/v P/S, 0.5% v/v 

fungizone and with the osmolarity adjusted to IVD-physiological 400 mOsm by 

addition of 1.5% v/v of a 5 M NaCl/0.4 M KCl solution (IVD medium) [182]. 

Discs culture was always conducted at 37ºC under reduced oxygen atmosphere 

with 6% O2 and 8.5% CO2 and saturated humidity as described [46]. Medium 

was changed every second day, for a period of 6 days.  

 

2.1 IVD pro-inflammatory stimulation 

At day six of culture, discs were punctured with a 21G needle that was 

introduced laterally up to the NP and rotated 180º three times clockwise and 

three times anticlockwise, and kept inserted for approximately 30sec. 

Additionally to this physical stimulus, culture medium was supplemented with 10 

ng/mL recombinant human IL-1β. Three hours after this stimulus, medium was 

replaced with previously thawed MSCs conditioned media, similarly 

supplemented with recombinant human IL-1β (10 ng/mL, PeproTech). This 

condition was either maintained for 48h or 14 days, during which, two partial 

media exchanges were performed, renewing 1mL of conditioned media (~20% 

medium exchange). 

Figure 3| Experimental Design 
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3. Analysis of the effect of MSCs preconditioning on cell metabolic 

activity, viability, phenotype and inflammatory profile 

3.1 Mitochondrial Metabolic Activity Analysis 

Mitochondrial metabolic activity of MSCs was accessed by resazurin reduction 

assay. MSCs seeded on the cell culture inserts were transferred separately to 

new medium supplemented with 0.1 mg/mL resazurin sodium salt (Sigma), in 

the dark, for 3h at 37ºC. A blank well with resazurin working solution without 

cells was used. After 3h, resazurin reduction into resorufin fluorescence levels 

were read in a spectrophotometer microplate reader (BioTek Synergy HT), with 

a 560 nm excitation / 590 nm emission filter set. The discs were then washed 

three times with PBS for 10 min and frozen at -20ºC for later analysis. 

3.2. Trypan Blue Exclusion Test of cell viability 

MSCs expansion rate were ascertained by trypan blue dye exclusion assay. For 

that MSCs were trypsinized, centrifuged and resuspended in 1 mL of complete 

cell culture medium. Of these, 10 µL were collected and mixed with Trypan Blue 

dye in a 1:1 proportion of which 10 µL were transferred to a Neubauer chamber. 

The samples were then observed under the microscope and live/dead cells 

counted.  

3.3 Flow Cytometry Analysis of MSCs phenotypic markers 

MSCs phenotype was analyzed by flow cytometry, accordingly with the 

International Society for Stem Cell Research (ISSCR) criteria [184]. For flow 

cytometry analysis, cells were trypsinized, washed in FACS buffer (0.01% 

Sodium Azide/0.5% BSA in PBS) and centrifuged at 1200 rpm, for 7min. After 

discarding the supernatant, cells were resuspended with the following 

fluorochrome-conjugated antibodies: FITC-labelled CD105 (Immunotools), PE-

labelled CD73 (BD) and APC-labelled and CD90 (eBioscience). As controls, 

IgG2a FITC, IgG1 PE and IgG1 APC were used. After incubation, cells were 

washed with FACS buffer and fixed in 4% paraformaldehyde (PFA). At least 

10000 events were counted in a Flow Cytometer (FACSCanto, Becton 

Dickinson). Data was analyzed with FlowJo X software. 
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3.4. Gene Expression Analysis of MSCs 

Quantitative real-time reverse transcription polymerase chain reaction (qRT-

PCR) was performed in duplicate on cDNA derived from MSC samples, using 

the SYBR Green method with specific published primer pairs designed using 

Primer 3 software to be inter-exonic and obtained from Eurofins Genomics 

(Ebersberg, Germany) for Interleukin 6 (IL-6), IL-10, TNF-α, IL-1β, TGF-β and 

β-actin [185] (in Supplementary Materials and Methods: Table S1), conducted 

on iQ5 Real-Time PCR Detection System (Bio-Rad) Primers sequences are 

presented in Table S1.  

Briefly, the frozen cells were thawed on ice, total RNA extracted using 

ReliaPrep RNA Cell Miniprep System (Promega), according to manufacturer´s 

instructions, quantified using a Nanodrop spectrophotometer and transcribed 

into cDNA with IQTM SYBR Green Supermix (Bio-Rad). Before reverse 

transcription, RNA quality was assessed by means of RNA ratio of absorbance 

(abs 260/abs 280) provided by the Nanodrop spectrophotometer. RNA samples 

were diluted to the same concentration with nuclease-free water and purified by 

DNAse mediated digestion of contaminant DNA for 30 min at 37ºC. Inactivating 

Reagent (4 µL) was added and the mix centrifuged, precipitating the 

contaminant DNA. Of each RNA sample, 25 µL were transcribed into cDNA in 

two steps. First, the reaction mix was completed with deoxynucleotides (dNTPs, 

2 µL) and random hexamers (2 µL) in a total volume of 29 µL, and incubated for 

for 5 min at 65ºC. Then, 1 µL SuperScript® III enzyme, 2 µL 0.1 DTT and 8 µL 

of buffer for reverse transcription (all from Invitrogen) were added to the mix. 

Samples were incubated for a cycle of 10 min at 25ºC, 60 min at 50ºC and 15 

min at 70ºC, followed by storage at 4ºC. 

Gene expression levels were determined by qRT-PCR mixes contained 1 μL 

cDNA, 10 μL iQTM SYBR® Green Supermix (Bio-Rad), 0.5 μL forward primer, 

0.5 μL reverse primer and 8 μL RNase free water. Gene expression analysis 

was performed on ∆Ct values according to a modified method described by 

MacLean et al. [47]. The average Ct value of each duplicate measurement of 

each sample was normalized to the house-keeping gene GAPDH (∆Ct) and the 

∆Ct of each stimulated sample was related to the ∆Ct of each respective control 

(∆∆Ct). Fold changes in gene expression were then presented as 2-(ΔΔCt), an 



34 
 

index that when <1 represents a down-regulation of the gene expression 

compared to its expression in the control sample and when >1 represents an 

opposite up-regulation. 

3.5. Growth factors/cytokine analysis in MSCs secretome by ELISA  

Culture medium collected from MSCs culture was centrifuged at 3000rpm for 

5min to remove cell debris. The following growth factors/cytokines were 

analyzed by human ELISA kits, according to manufacturer’s instructions,: PGE2 

(Arbor Assays), TGF-β (Biolegend), IL-8 (Peprotech), TNF-α (Biolegend), IL-10 

(Biolegend), IL-12 (Biolegend), TSG-6 (RayBiothec) and IDO (Abbexa). 

 

4. Analysis of the effect of MSCs secretome on IVD metabolic activity, 

viability and inflammatory profile  

4.1 Mitochondrial Metabolic Activity Analysis 

Mitochondrial metabolic activity of IVDs was accessed by resazurin reduction 

assay as described in section 3.1. Previous to the assay, discs were cut in half 

with a scalpel and one half was prepared for metabolic activity analysis. The 

other half was stored at -80ºC for later analysis. 

 

4.2. IVD apoptosis/viability analysis by flow cytometry 

IVDs were minced in small pieces and digested in DMEM with 1 mg/mL 

collagenase type I (Sigma-Aldrich). The digestion was conducted under stirring, 

reduced oxygen atmosphere with 6% O2 and 8.5% CO2 and saturated 

humidity, at 37ºC.  After 2h of digestion, the mixture was passed through a cell 

strainer (100 µm pore size), washed with PBS and centrifuged at 400g for 10 

min. Cells were labeled with FITC Annexin V Apoptosis Detection Kit I (BD 

Biosciences) according to manufacturer’s instructions (FITC-Annexin V and 

Propidium Iodide). Cells were then run on the FACSCalibur™ system (BD 

Biosciences). Results were analyzed with FlowJo software version 10.  

 

4.3 Gene Expression Analysis of IVD cells 

Gene expression of IVD cells was analyzed by qRT-PCR and SYBR Green 

method as mentioned in section 3.4. Specific primer pairs were designed using 

published gene sequences and Primer 3 for Interleukin 6 (IL-6), IL-8, 



35 
 

Metalloproteinase 1 (MMP1), MMP3 and MMP13, Collagen type II (Col II), 

Aggrecan (Agg) and glyceraldehydes 3-phosphate dehydrogenase (GAPDH) (in 

Supplementary Materials and Methods: Table S1), conducted on iQ5 Real-Time 

PCR Detection System (Bio-Rad) [186]. 

 

4.4. Analysis of IVDs supernatants 

Culture medium was collected after IVDs pro-inflammatory stimulus and 

treatment with MSCs secretome (secMSCs) and centrifuged at 3000rpm for 

5min to remove cell debris. The IVDs conditioned medium was analyzed by 

ELISA, according to manufacturer’s instructions, for the following molecules: 

PGE2 (Arbor Assays) and TGF-β (Biolegend). 

 

5. Analysis of MSCs secretome long-term effect on IVD matrix content 

MSCs secretome ability to impact matrix content on degenerated IVDs was 

assessed through quantification of sulfated glucosaminoglycans, proteoglycans, 

collagen II and aggrecan by histological analysis after 14 days of culture. 

 

5.1. Sulphated glucosaminoglycans quantification 

IVDs sulphated glucosaminoglycans (sGAG) content was assessed by reaction 

with 1,9-dimethyl-methylene blue zinc chloride double salt (DMMB, Sigma-

Aldrich) dye reagent solution, containing 40mM sodium chloride (NaCl, Roth), 

40mM glycine (Roth) and 46μM DMMB, previously adjusted to pH 3.0. 

Condroitin sulphate A sodium salt from bovine trachea (Sigma) was used as 

standard. Results were normalized by DNA content. 

 

5.2. Proteoglycans detection by safranin O/light green staining 

IVDs collected at day 14 of culture were fixed with formalin, processed and 

embedded in paraffin. Sections of 5 μm thickness were sequentially recovered 

and stained for safranin O/light green (Saf. O/L. Green, 0.1% v/v Saf. O 

(Sigma)/0.4% v/v L. Green (Sigma)). Sections were imaged using and Olympus 

CX31 light microscope equipped with a DP-25 camera (Imaging Software CellB, 

Olympus) using the 20x objective. 
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5.3. Collagen II and Aggrecan detection 

Coll II distribution was analyzed by immunofluorescence staining and Agg 

production and distribution was analyzed by immunohistochemistry (IHC). For 

IHC, NovolinkTM Polymer Detection Kit (Leica Biosystems) was used, following 

the manufacturer’s instructions. For both, antigen retrieval was performed in 

paraffin sections through incubation with 20 μg/mL proteinase K (Sigma-Aldrich) 

solution for 15 min at 37ºC. For Coll II staining, after the blocking step, sections 

were incubated for 2h at 37ºC with anti-collagen II-II6B3 (Developmental Sudies 

Hybridoma Bank) at a 1:50 dilution. Alexa Fluor 694-labeled goat anti-mouse 

(Invitrogen-Molecular Probes, 1:1000) was used as a secondary antibody. For 

Agg, sections were incubated overnight with Agg primary antibody (H-300) sc-

25674 (Santa Cruz Biotechnology) to a 1:50 dilution. All sections were mounted 

in Fluorshield with DAPI (Sigma). Control sections for each labeling excluded 

primary antibody staining. Representative images of the slides were taken using 

an inverted fluorescence microscope (Axiovert 200M, Zeiss) and the 10x 

objective, for Coll II staining. Coll II intensity was quantified using a custom-

made MATLAB (The MathWorks Inc., Natick MA, USA) script, the 

IntesityStatiscticsMask Software [186, 187]. An average of three quantifications 

performed in three different sections of the analyzed disc was used. Agg 

stained sections were imaged with light microscopy with 2x objective for 

qualitative analysis. 

 

6. Statistical analysis 

Results are presented as scatter dot plots with represented median. Statistical 

analysis was performed using GraphPad Prism (vs. 6). Due to low number of 

replicates, non-parametric tests were used. Unpaired tests as Mann-Whitney 

and Kruskal-Wallis were used to compare 2 or more groups, respectively. 

Nevertheless, due to the low number of replicates no statistical significance 

(confidence level 95%) was observed.   
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C. Results 

The work here described focus on the influence of pre-conditioned secMSCs on 

a degenerated/pro-inflammatory bovine disc ex vivo model, under the pretense 

that MSCs paracrine action has a decisive role on the positive results reported 

by previous works on degenerated IVD’s immunomodulation and tissue 

regeneration. The experimental layout is designed in Figure 3. 

 

1. The influence of preconditioning on MSCs  

In the context of this work how MSCs preconditioning could affect cells 

metabolic activity, proliferation, viability and phenotype was first addressed.  

 

1.1. Effect of MSCs preconditioning on cell viability and phenotype 

Figure 4|  Analysis of MSCs after pre-conditioning with IL-1β (10ng/ml), TNF-α (10ng/ml) or  IL-1β + TNF-

α (10ng/ml) in either normoxic (6% O2) or hypoxic (21% O2) culture conditions.  

A. Number of cells after 48h of pre-conditioning, by Trypan Blue Exclusion Assay . Results are presented 
as scatter dor plots with differentiated experiments. B. Percentage of live cells, by Trypan Blue Exclusion 
Assay. Results are presented as scatter dor plots with differentiated experiments. C. Analysis of MSCs 

metabolic activity by Resazurin Reduction Assay. Fluorescence was read at 560/590 nm 
(excitation/emission wavelenghts). Results are presented as scatter dor plots with differentiated 
experiments. D. Histogram profile and quantitative analysis of MSCs phenotype  exhibiting expression of 
CD90, CD105, CD73. 
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 The effect of MSCs pre-conditioning with inflammatory cytokines - IL-1β (10 

ng/mL), TNF-α (10 ng/mL) or IL-1β+TNF-α (both 10 ng/mL) and oxygen levels - 

normoxia (21% O2) or hypoxia (6% O2) - on cell metabolic activity, viability and 

phenotype was addressed 48h after stimulus. The results indicate that MSCs 

viability and metabolic activity was maintained with the different pre-conditioning 

conditions after 48h (Fig 4A and 4B). Still, IL-1β- or TNF-α-preconditioning in 

normoxia and hypoxia by itself seemed to slightly increase cell proliferation 

when compared to control (normoxia without pro-inflammatory stimuli) (Fig 4C). 

To guarantee that MSCs phenotype was maintained with these culture 

conditions, the expression of MSCs positive surface markers - CD90, CD73 and 

CD105 – was addressed and no differences were observed when compared 

with surface expression of the same markers in MSCs without pre-conditioning 

(Fig 4D).                                                                                                                                                                                               

2. Effect of MSCs secretomes (secMSCs) on the degenerated IVD 

 To take advantage of MSCs immunomodulatory potential as well as their 

paracrine mode of action, different secMSCs were produced by MSCs pre-

conditioning (as described in 1) and used to cultivate bovine IVD punches 

previously stimulated with IL-1β (10 ng/mL) and needle puncture, consisting in 

an ex-vivo model that mimics the pro-inflammatory environment of a 

degenerated disc. These cultures were maintained for 48h to study the effect 

that these secretomes could have in the inflammatory state of the disc and in 

the early signs of matrix unbalance, or for 14 days to observe the effects 

produced on the matrix at protein level. Three different controls were used: non-

stimulated IVDs (Control), IVDs needle punctured and stimulated with IL-1β 

(10ng/mL) to simulate degenerative/pro-inflammatory conditions (IL-1β) and IL-

1β-stimulated IVDs co-cultured with MSCs seeded on the culture inserts 

(IL1β+MSCs). 
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2.1. Influence of different secMSCs on the pro-inflammatory/degenerated 

IVDs apoptosis/viability 

In order to evaluate the effect of the secMSCs on the IVD cells 

apoptosis/viability, IVDs were digested and IVD cells stained with PI/AnnexinV 

and analyzed by flow cytometry (Fig 5A). Both cell apoptosis (AnnexinV+/PI-) 

(Fig. 5B) and cell death (AnnexinV+/PI+) (Fig. 5C) did not seem to be 

significantly affected by any of the conditions tested, with percentages about 

20%.  

 

Figure 5| Analysis of IVD condition after pro-inflammatory stimulus with IL-1β (10ng/mL) + puncture and posterior 

treatment with MSCs or MSCs secretomes. 

 A. Dual parameter flow cytometry analysis of IVD cells with PI/Annexin fluorescent labeling to define percentage of 

necrotic and late apoptotic cells (upper quadrants), early apoptotic cells (right lower quadrant) and live cells (left 
lower quadrant). B. Quantitative analysis of flow cytometry analysis with definition of percentage of apoptotic cells. C. 

Quantitative analysis of flow cytometry analysis with definition of percentage of apoptotic cells. Results are presented 
as scatter dot plots with differentiated experiments.  
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2.2. Effect of secMSCs on the IVDs inflammatory state 

Considering MSCs immunomodulatory potential, the effect of different secMSCs 

on the pro-inflammatory/degenerated disc model was assessed. Gene 

expression and protein production of some factors involved in the inflammatory 

state was analyzed 48h after inflammatory stimulus and treatment with 

secMSCs. As illustrated in Figure 6A, IL-6, IL-8 and TNF-α expressions were 

upregulated in the discs stimulated with IL-1β, as expected, as these are 

cytokines globally associated with an inflammatory state [38, 188, 189]. Co- 

culture with MSCs seemed to maintain IL-8 up-regulation, increase IL-6 

Figure 6| Effect of different secMSCs on IVDs inflammatory response, 2 days after pro-inflammatory stimulus and 

treatment. Quantitative analysis of pro-inflammatory markers.  

A. mRNA expression of IL-6 (A.1), IL-8 (A.2) and TNF-α (A.3). Levels of mRNA were normalized to GAPDH. The ratio 

of stimulation to control condition indicates the fold change of induction after stimulation (control level=1). Results are 
presented as scatter dor plots with differentiated experiments. B. PGE2 (B.1), TGF-β (B.2) and IDO (B.3) 

concentration, normalized to total protein concentration in culture medium minus concentration found in secMSCs prior 
to IVDs treatment. Results are presented as scatter dor plots with differentiated experiments. 
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expression (about 3-fold increase) and downregulate TNF-α (more than 5 times 

decrease), in the one indicative experiment that yielded detectable results for 

this cytokine.  

Treatment with secMSCs seemed to considerably reduce IL-6 and IL-8 up-

regulation caused by the stimulus with IL-1β and even downregulate its 

expression comparatively to control, in some animals. For IL-6, only 

unstimulated secMSCs or produced in normoxia with IL-1β alone maintained or 

presented a slight up-regulation compared with the IL-1β condition 

(approximately 2-fold increase). IL-8 seemed to be upregulated when discs 

were treated with secMSCs produced in hypoxia when compared with those 

produced in normoxia. The unstimulated secMSCs decreased IL-8 expression 

to control levels, completely countering the up-regulation elicited by the 

stimulation with IL-1β. In both cases, treatment with secMSCs seemed to 

reduce cytokine expression, especially in secretomes produced in normoxia.  

For TNF-α, treatment with unstimulated secMSCs seemed to highly increase its 

expression and treatment with secMSCs preconditioned with both cytokines 

seemed to maintain control levels.  

Regarding the analysis of protein produced to the medium (Figure 6B), the 

stimulus with IL-1β seemed to increase PGE2 production (from 1754 pg/mg 

protein to 9156 pg/mg) and have no significant effect on TGF-β levels (about 

7,59-8,73 pg/mg protein), indicating that under inflammatory stimulation, IVD 

cells produce more PGE2, known as an inflammatory marker, but not TGF-β 

that is recognized as an anti-inflammatory player. IDO was undetectable in 

either control or IL-1β conditions. For all three molecules, co-culture with MSCs 

seemed to significantly increase protein levels in supernatant. Treatment with 

secMSCs seemed to decrease PGE2 (to 5536 pg/mg protein (median)) and 

TGF-β (to 1,42 pg/mg protein (median)) protein levels, an effect generally 

pronounced in conditions where secretome was produced in normoxia 

conditions.  

Levels of IDO were only detectable in discs treated with two different 

secretomes: secretome produced in normoxia with IL-1β (1276 pg/mg) and 

secretome produced in hypoxia with both cytokines present (2669 pg/mg). Both 

levels were lower than the level obtained with MSCs in co-culture (6229 pg/mg).   
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2.3. Effect of secMSCs on initial IVDs matrix degradation 

 As the main consequence of IVDs degeneration is the loss of ECM the effect of 

various secMSCs on expression of MMPs and matrix main components – Col II 

and Agg – was analyzed, 48h after pro-inflammatory stimulus and treatment 

with secMSCs, by qRT-PCR.  

The pro-inflammatory stimulus by itself, up-regulated MMPs levels 

comparatively to control, particularly MMP1 and MMP3 (8,7 and 9,1-fold 

increase respectively). Co-culture with MSCs maintained MMP3 and increased 

MMP1 expression levels (to 43,4 fold-increase), when compared with discs 

Figure 7| Effect of different secMSCs on IVDs matrix maintenance and content, 2 days after pro-inflammatory 

stimulus and treatment.  

Quantitative analysis of MMPs (matrix metaloproteinases). A. mRNA expression of MMP1 (A.1), MMP2 (A.2), 
MMP13 (A.3) B. Matrix components Collagen type II (B.1) and Aggrecan (B.2). Levels of mRNA were normalized to 

GAPDH. The ratio of stimulation to control condition indicates the fold change of induction after stimulation (control 
level=1). Results are presented as scatter dor plots with differentiated experiments.  
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solely stimulated with IL-1β. Contrarily, MSCs seemed to down-regulate MMP13 

comparatively with the pro-inflammatory condition, in the only experiment that 

yielded detectable levels of expression.  

Treatment with secMSCs appeared to always decrease MMP1 expression, 

independently of preconditioning, while co-culture with MSCs presents a 

broader range of results, demonstrated in Figure 7A. On the other hand, MMP3 

expression seems to be stimulated in discs treated with secMSCs produced in 

hypoxia (except for the condition secMSCs-IL-1β) (20,4-fold increase) and 

normoxia-IL-1β (19,1-fold increase) or normoxia-(IL-1β+TNF-α) (17,8-fold). In 

general, secMSCs seem to contribute to an increase in the expression of this 

enzyme and the effect of IL-1β seems to be dependent on oxygen availability. 

Regarding Col II and Agg (Figure 7B), stimulation with IL-1β elicited a 

downregulation in expression (down to 0,5-0,7 fold-change), comparatively to 

control, as expected [186]. Treatment with MSCs and secMSCs seemed to 

further downregulate their expression (down to 0,12-0,21 fold-change), 48h 

after treatment.  

 

2.4. Effect of secMSCs on IVDs matrix degradation at protein level 

To fully understand how both pro-inflammatory stimulus and treatment with 

secMSCs could influence disc degenerative state, their effects in the 

degenerated disc ECM were investigated after a 14-days culture period. Discs 

were prepared for histological analysis of proteoglycans (Safranin staining) and 

Col II and Agg (IHC) content. Biochemical analysis of sGAG content was also 

performed.  

Relatively to proteoglycans content (depicted in Figure 8A), discs stimulated 

with IL-1β appeared to lose proteoglycan content (stained in red), comparatively 

to control, confirming that an inflammatory state seems to be linked to tissue 

degeneration. On the other hand, co-culture with MSCs seemed to slightly 

increase the proteoglycan content of the disc, indicating that the presence of the 

MSCs may have a positive effect in the matrix regeneration. Discs treated with 

secMSCs without pre-conditioning and TNF-α-pre-conditioned also seemed to 

recover some proteoglycan content. On the other hand, secMSCs produced 

under hypoxic conditions didn’t have an effect in proteoglycan content. 
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Figure 8| Effect of different secMSCs on inflammatory/degenerated IVD model matrix content, at the protein 

level, 14 days after pro-inflammatory stimulus and treatment.  

A. Saggital sections of disc punches stained for proteoglycans (scale bar: 50 μm ). B. Biochemical analysis of 

sGAG content of IVD punches.  
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Figure 9| Effect of different secMSCs on inflammatory/degenerated IVD model matrix content, at the protein level, 14 

days after pro-inflammatory stimulus and treatment.  

A. Saggital sections of disc punches stained for collagen type II (a-k, scale bar: 200μm), aggrecan (l-v, scale bar: 50μm 
). B. Collagen II fluorescence intensity normalized to control (dashed line).  
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The pro-inflammatory stimulus seemed to reduce sGAG content (Figure 8B) 

(from 23,9 to 5,25 sGAG/DNA) and neither MSCs nor secMSCs were able to 

promote tissue recovering at this point (the median level of GAGs of IVDs 

treated with secMSCs was 6,16). 

A qualitative analysis of Agg content was also performed upon visual 

evaluation, as well as a quantification of collagen fluorescence intensity, using a 

custom-made MATLAB script software [187]. Representative images are 

presented in Figure 9A. Comparatively to control, and as observed for 

proteoglycans and sGAG, IL-1β treatment of IVDs induced a significant loss of 

Agg and Col II (down to 0,72 fold-change) content that co-culture with MSCs 

appeared to partially recover (up to 0,9 fold-change). The secMSCs treatment in 

general increased Col II content, independently of oxygen availability, specially 

using secretome produced without pre-conditioning and IL-1β-preconditioned 

cells (up to 1,06 and to 1,43 fold-change, respectively). Concerning Agg 

production, only secMSCs obtained without pre-conditioning, IL-1β-

preconditioned and (IL-1β+TNF-α)-preconditioned in hypoxia were able to 

increase Agg production. Overall, treatment of pro-inflammatory/degenerated 

IVD with secMSCs produced in normoxia and with IL-1β-preconditioning appear 

to promote Coll II and Agg production, while TNF-α-preconditioning appears to 

contribute to proteoglycans production.  

 

3. Influence of preconditioning on MSC immunomodulatory profile 

MSCs immunomodulatory capacity has been widely explored in the context of 

diverse immune disorders and can, perhaps, explain some of the observed 

modifications in degenerative/inflammatory disc response when treated with 

different secMSCs. Here, gene expression of immune-related factors in MSCs 

and inflammatory cytokines production to the culture medium was assessed 

48h after preconditioning.  

Gene expression analysis of IL-6, IL-10, TNF-α and IL-1β was tested, with only 

IL-6 wielding results as all others were kept under detection limit; IL-6 was 

upregulated in IL-1β-preconditioned MSCs (6,5-fold increase), independently of 

oxygen availability and the presence of TNF-α (Fig. 10A). Cytokine analysis of 

secMSC revealed that IL-10, IL-1β and TNF-α were undetectable also. 

B 
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Similarly, IL-12, IDO and TSG-6 were not possible to detect by ELISA. IL-8 

production increased by pre-conditioning MSCs with either IL-1β or TNF-α only 

(from 101 to 154 and to 163 pg/mg protein), but not with both cytokines 

(Fig.10B). 

 Oxygen levels didn’t seem to influence IL-8 production, although only two 

experiences were performed. PGE2 production was increased in the presence 

of IL-1β and particularly in (IL-1β+TNF-α)-treated cells (5-8-fold increase), 

independently of oxygen availability (Fig 10C). Free active TGF-β1 levels 

seems to be slightly increased in the presence of IL-1β (from 6,7 to 11,3 pg/mg 

protein) while decreased when both, IL-1β and TNF-α (1,3 pg/mg), were used, 

while hypoxia seemed to reduce TGF-β production in all conditions except in 

the presence of TNF-α (down to a median value of 2,1 pg/mg) (Fig 10D). 

Figure 10| Analysis of MSCs inflammatory-related gene expression and molecular secretion profile , after 

pre-conditioning with IL-1β (10ng/ml), TNF-α (10ng/ml) or  IL-1β + TNF-α (10ng/ml) in either normoxic 
(6% O2) or hypoxic (21% O2) culture conditions. 

 A. mRNA expression of IL-6 in MSCs. Levels of mRNA were normalized to β-actin. The ratio of 

stimulation to control condition (MSCs) indicates the fold change of induction after stimulation (control 
level=1). Results are presented as scatter dor plots with differentiated experiments. B. IL-8 concentration 
in culture medium. Results are presented as scatter dor plots with differentiated experiments. C. PGE2 

concentration, normalized to total protein concentration in culture medium. Results are presented as 
scatter dor plots with differentiated experiments. D. TGF-β concentration, normalized to total protein 
concentration in culture medium. Results are presented as scatter dot plots with differentiated 
experiments   
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D. Discussion 

The main goal of this study was to evaluate the immunomodulatory capacity of 

secMSCs in degenerated IVD. For that, an ex vivo model consisting in an 

organotypic culture of bovine IVDs stimulated with needle puncture and pro-

inflammatory cytokines previously established in the group was used [182]. This 

ex vivo approach is more reliable than any 2D in vitro culture due to the 

increased complexity represented and to the fact that IVD cells cultured in vitro 

lose the ability to produce native ECM [190]. Explant cultures of bovine discs 

seem to be suitable for the study of the IVD degenerative process as they are 

easily available, allow for well-controlled culture conditions [191, 192] and are 

similar to the human IVD, having identical physical-chemical properties [193], 

identical size and considering that the musculature of the bovine tail maintain a 

pressure in the disc that is approximately the same as the one existent in 

human lumbar discs in the prone position [194]. Moreover, although in vivo 

models could be more reliable, the in vivo models of disc injury, normally 

established by IVD puncture or NP enzymatic digestion, do not simulate the 

natural process of human IVD degeneration and do not mimic the mechanical 

forces caused by the biped position of the human spine [194]. The inflammatory 

environment was promoted using needle puncture to simulate disc 

degeneration, as demonstrated in other studies [182, 195, 196], in addition to 

medium supplementation with IL-1β. This cytokine is highly expressed during 

IVD degenerative process [197] and has been shown to lead to the loss of 

ECM, mainly sGAG [198], inducing the desired degenerative state. 

MSCs have been proven to elicit a regenerative response in the degenerated 

IVD, either as a cell therapy [54, 123, 199, 200] or recurring to their secretome 

[161, 162]. In this study, it was hypothesized that MSCs preconditioning with 

pro-inflammatory cytokines and hypoxia, present in degenerated IVDs 

environment, could stimulate MSCs to produce a secretome with 

immunomodulatory and/or regenerative properties, with therapeutic potential in 

the DDD context. IL-1β and TNF-α are pro-inflammatory cytokines constitutively 

expressed in the IVD, particularly in degenerative states [31]. TNF-α has been 

associated to disc herniation and nerve in-growth [201, 202] and both cytokines 

have been demonstrated to induce up-regulation of matrix-degrading enzymes 
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gene expression [197, 203]. These inflammatory factors, as well as hypoxia, 

were reported to stimulate MSCs regenerative and immunomodulatory abilities 

on other contexts [168, 204-207].  

The secMSC was obtained 48h after cells preconditioning with IL-1β and/or 

TNF-α under hypoxic (6% O2) or normoxic culture conditions. MSCs metabolic 

activity, viability, proliferation and phenotype was maintained in all the 

conditions tested, in agreement with the literature [208-212], although the effect 

of hypoxic preconditioning on MSCs viability seems to gather contradictory 

results in other studies, with one group observing increase in number of MSCs 

[213] and another reporting decreased cell viability [214], although in these 

cases the hypoxia values were 1% O2. In this study the oxygen level was 

selected based on NP average normoxic conditions that were previously 

studied and optimized in the context of the degenerative/inflammatory disc 

model used [215].   

The secMSCs obtained upon different pre-conditioning conditions were used to 

culture pro-inflammatory/degenerative IVD organ cultures stimulated with a 

needle puncture and IL-1β (10ng/mL), as previously established [182]. As a 

control, discs were co-cultured with MSCs in similar number to those used to 

obtain secMSCs. IVD viability was maintained within all the conditions tested. 

Considering the high number of factors analyzed concerning degenerated IVDs 

response to the treatment with secMSCs, a heat map was created with an 

overview of all the results observed at 48h to help visualize connections and 

tendencies between results (Figure S2).   

When stimulated with IL-1β, the expression of pro-inflammatory markers IL-8, 

TNF-α and IL-6, as well as the production of PGE2, increases, contrarily to what 

was observed for TGF-β1. This is in conformity with the observations of others 

that have linked an higher production of pro-inflammatory factors in 

degenerated IVD [30, 31, 37]. IL-1β stimulation of IVD also upregulated MMPs 

expression, particularly MMP1 and MMP3, demonstrating that the inflammatory 

state induced stimulates matrix catabolism. This result is also expressed by the 

decrease in the ECM main components, Agg and Col II, in IL-1β-stimulated 

IVDs.  
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48h after treatment with secMSCs obtained in normoxia and pre-conditioning 

with IL-1β, the levels of immune regulatory cytokines in IVD decreased (IL-6, 

PGE2, TGF-β and IDO), while IL-8 was moderately maintained.  

In what concerns ECM remodeling at this time point, secMSCs in general 

appear to stimulate MMP3 and MMP13 compared to IL-1b-treated IVDs and 

cannot revert Agg and Col II gene expression levels, previously down-regulated 

by IL-1b treatment. Only secMSC obtained from MSCs without pre-conditioning 

elicit less loss of Col II expression and less increase in MMPs mRNA levels.  

MSCs co-culture with IVDs in pro-inflammatory conditions was performed as a 

control of secMSCs. In this case, MSCs induce an increase in the pro-

inflammatory markers IL-6 and PGE2 while maintain IL-8 expression levels, 

which was contrarily to the treatment with secMSCs. A decrease in TGF-β and 

TNF-α was observed, this last one previously reported by Bertolo et al. [216]. 

Miyamoto et al. demonstrated an overall downregulation of all inflammatory 

cytokines analyzed, mostly IL-cytokines (such as IL-6, IL-11, IL-3 and IL-15) 

and of the TNF family and MMPs as well as an up-regulation of Col II when rat 

NP cells were co-cultured with human MSCs [217]. However, in a recent in vivo 

rat degenerated disc model, treatment with MSCs seemed to downregulate 

TNF-α, along with IL-13 and up-regulate IL-6 along with other interleukins such 

as IL-2, IL-4 and IL-10 [218], similarly to the results obtained so far in this study.   

 

In addition, IVD cultures were maintained until 14 days to evaluate the effect of 

secMSCs on ECM components at the protein levels. Pro-inflammatory 

stimulation of IVDs was confirmed to cause loss of matrix components, as 

observed in other studies [140, 203]. MSCs co-culture seemed to slightly induce 

ECM recovering in accordance with the literature [101, 102, 118, 122].  

secMSCs obtained without pre-conditioning generally increase proteoglycan 

levels and Col II production, while secMSCs obtained from preconditioning with 

IL-1β seemed to block that effect. Agg production appeared to be moderately 

recovered in discs treated with secMSCs without pre-conditioning, secMSCs-IL-

1β in normoxia and secMSCs-(IL-1β+TFN-α) in hypoxia. Curiously, these were 

the same secretomes that demonstrated a higher reduction of the pro-

inflammatory mediators in IVD, 48h after treatment, as well as a stimulation of 
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immune-regulatory cytokines such as TGF-β and IDO. To our knowledge, this is 

the first report on this interplay between IDO levels and matrix degradation. 

Even though this observation is based in only one experiment, it may wield 

interesting results if further explored.  

 

Therefore, to dissect the mechanisms behind the immune-modulatory capacity 

of secMSCs in the pro-inflammatory IVD organ culture, several inflammatory 

mediators were analyzed by gene expression in pre-conditioned MSCs and by 

ELISA in secMSCs. MSCs preconditioning with IL-1β seemed to up-regulate IL-

6 expression and increase PGE2 production, independently of oxygen 

availability. Although both proteins were shown to be stimulated under pro-

inflammatory conditions [167, 189, 219], in this study TNF-α by itself did not 

have a direct effect in IL-6 and PGE2, contrary to the observations of Aggarwal 

et al. and Heo et al. [67, 220] that indicated a definite link between MSCs 

exposure to TNF-α and increased production of IL-6 and PGE2 in response to 

the inflammatory environment. Also, Bouffi et al. demonstrated a symbiotic 

relationship between IL-6 and PGE2, with IL-6 dependent PGE2 secretion and 

IL-6 activated pathways through PGE2 up-regulation [221]. Additionally, when 

exposed to high levels of IL-6, NP cells were shown to increase the production 

of PGE2, namely through enhancement of IL-1β and TNF-α, further confirming 

the link between these two cytokines and demonstrating their relevance in the 

context of IVD degeneration [222].  

In our study, hypoxia seemed to decrease TGF-β content in secMSCs, 

contrarily to previous studies that demonstrated that TGF-β production is 

stimulated in hypoxic conditions [223], through HIF-1 binding [224]. This 

contradictory result may be, perhaps, due to the difference in available oxygen, 

as cited studies maintained cells cultured under 1% O2, while here 6% O2 was 

used to culture MSCs. Interestingly, TNF-α-preconditioning appeared to block 

this effect. Classically, TGF-β is known for an anti-inflammatory action [167, 

225], meaning that IL-1β would stimulate the production of pro-inflammatory 

cytokines (IL-6, PGE2) while hypoxia would inhibit anti-inflammatory signaling. 
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IL-6 and PGE2, together with IDO, are considered to be the major molecules 

responsible for the immune regulatory ability of MSCs [167, 171, 226], due to 

their dual pro- and anti-inflammatory role, making it extremely more complex to 

understand the practical implications of these differences.   

Although interesting results were observed, an insufficient number of replicas to 

obtain statistical significance was considered, so future experiments need to be 

conducted to ensure the results observed. Moreover, although conducted in an 

organ culture model previously validated, this model has limitations such as the 

presence of immune cells, present in human degenerated discs that are often in 

close contact with blood supply, as there is an increase in angiogenesis as a 

result of the degenerative process [12]. It would be valuable to understand the 

influence of discs treated with secMSCs in immune cells, as this could be a key 

factor in the regenerative process. Also, future in vivo experiments could 

contribute profoundly to the understanding of these processes.  
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E. Conclusion 

This study suggests that secMSCs can modulate the inflammatory response 

and ECM of degenerated disc. MSCs preconditioning with pro-inflammatory 

mediators and low oxygen availability elicited different cell responses in 

degenerated IVD. secMSCs produced in normoxia (independently of the pro-

inflammatory stimuli) reduced expression of pro-inflammatory markers in IVD. 

Unstimulated secMSCs and IL-1β-stimulated secMSCs promoted matrix 

regeneration in degenerated IVDs. MSCs pre-conditioning with IL-1β at 

normoxia stimulates MSCs to produce higher concentration of immune-

regulatory factors (IL-6, IL-8, TGF-β, PGE2) in their secretome. Preconditioning 

with hypoxia appears to affect secMSCs immunomodulatory profile, which 

consequently does not seem to promote matrix recovery. IVD matrix 

regeneration seems to be closely linked to initial inflammation management, as 

well as matrix-degrading enzymes levels. Unstimulated secMSCs and IL-1β-

stimulated secMSCs should be further explored as they are offering clues to 

their regenerative potential in the context of IVD degeneration.  
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G. Supplementary Materials and Methods  

 

1. Flow Cytometry analysis of phenotypic markers 

For flow cytometry analysis, cells were trypsinized, washed in FACS buffer 

(0.01% Sodium Azide/0.5% BSA in PBS) and centrifuged at 1200 rpm, for 7min. 

After discarding the supernatant, cells were resuspended with the following 

fluorochrome-conjugated antibodies: FITC-labelled CD105 (Immunotools), 

CD34 (Caltag Lab) and HLA-DR (Immunotools), PE-labelled CD19 

(Immunotools), CD14 (Immunotools) and CD73 (BD) and APC-labelled CD45 

(Immunotools) and CD90 (eBioscience). As controls, IgG1 FITC, IgG2a FITC, 

IgG1 PE and IgG1 APC were used. After incubation, cells were washed with 

FACS buffer and fixed in 4% paraformaldehyde (PFA). At least 10000 events 

were counted in a Flow Cytometer (FACSCanto, Becton Dickinson). Data was 

analyzed with FlowJo X software.  

 

2. MSCs differentiation assays  

2.1 Osteogenic differentiation 

Cells were seeded in a total of 15000 cells/well in a 24-well plate and induced to 

differentiate by SCM supplementation with 100 nM dexamethasone, 10mM β-

glycerophosphate and 50mM ascorbic acid. Medium was changed twice a week 

and osteogenic differentiation was evaluated after 7, 14, 21 and 28 days with 

alkaline phosphatase (ALP) staining. At each time point, cells were fixed with 

4% PFA, for 15 min, washed with pure water and incubated for 45 min with ALP 

staining solution (4% Naphtol AS-MX phosphate alkaline solution in Fast Violet 

B solution). At days 21 and 28, alizarin and Von Kossa staining were performed. 

For alizarin staining, cells were incubated for 5-10 min with freshly prepared 

alizarin red solution. For Von Kossa staining, cells were serially incubated (and 

serially washed in between) with: silver nitrate 2.5% (w/t) (for 30 min under UV 

light), sodium thiosulfate 5% (w/t) (for 3 min) and nuclear fast red (for 5 min).  

2.2 Adipogenic differentiation 

Cells were seeded in a density of 6000 cells/well in a 24-well plate and left in 

SCM until confluence was reached. Differentiaton twards the adipogenic lineage 

was induced by SCM supplementation with 100μM dexamethasone, 500μM 3-
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isobutyl-1-methylxanthine (IBMX), 10 μg/mL insulin and 100μM indomethacin. 

Medium was replaced every 2 or 3 days with either insulin medium (10 μg/mL 

insulin) or adipogenic medium.  After a 28-days culture, cells were fixed as 

mentioned above. For Oil Red O staining, cells were washed with pure water 

and incubated with 60% isopropanol for 2-5 min, followed by incubation with Oil 

Red O staining solution for 5 min and with hematoxylin for 1 min to counterstain.   

 

2.3 Chondrogenic differentiation 

For chondrogenic differentiation assessment, 0,2x106 cells were suspended in 

15mL conical tubes, centrifuged at 450g for 10 min and left in DMEMhigh 

glucose (4,5g/L), 1% P/S, 250μM ascorbic acid, 40μg/mL L-proline, 100μg/mL 

sodium pyruvate and 100μg/mL insulin-transferring-selenium (ITS), 

supplemented with 100nM dexamethasone  and 10ng/mL TGF-β, at 37ºC. 

Medium was changed twice a weed.After 14 and 28 days, cells were fixed as 

mentioned above. Cell pellets were then transferred to histology cassettes, 

dehydrated and embedded in paraffin blocks. Pellet sections of 3-5 μm-thick 

were rehydrated and stained with 1% toluidine blue/1% sodium borate solution, 

for 2 min.  

 

3. Primers used for Gene Expression Analysis of MSCs/IVDs 

Quantitative real-time reverse transcription polymerase chain reaction (qRT-

PCR) was performed in duplicate on cDNA derived from MSC/IVD samples, 

using the SYBR Green method as specified in sections 3.4 and 4.2. The 

primers used are presented in Table S1. 

Table S1| Primers used for qRT-PCR analysis 

Human Gene Forward Primer Sequence Reverse Primer Sequence GenBank Number 

β-Actin 5'-TACCTCATGAAGATCCTCA-3' 5'-TTCGTGGATGCCACAGGAC-3' [NM_001101] 

IL-6 5'-CAATCTGGATTCAATGAGGAGACT-3' 5'-CTGTTCTGGAGGTACTCTAGGTAT-3' [NM_000600] 

IL-10 5'-GGAGAACCTGAAGACCCTCA-3' 5'-TATAGAGTCGCCACCCTGAT-3' [NM_000572] 

IL-1β 5'-CTTCAGCCAATCTTCATT-3' 5'-CACTGTAATAAGCCATCAT-3' [NM_000576] 

TNF-α 5'-TCTCTCTAATCAGCCCTCTG-3' 5'-TGCTACAACATGGGCTACAG-3' [NM_000594] 

TGF-β1 5'-CCTGGACACCAACTATTG-3' 5'-CTTGCGGAAGTCAATGTA-3' [NM_000660] 

Bovine Gene Forward Primer Sequence Reverse Primer Sequence NCBI reference 

GAPDH 5'-ACCCAGAAGACTGTGGATGG-3' 5'-CAACAGACACGTTGGGAGTG-3' XM_001252511 

IL-6 5'-ACCCCAGGCAGACTACTTCT-3' 5'-GCATCCGTCCTTTTCCTCCA-3' EU276071 

IL-8 5'-ATTCCACACCTTTCCACCCC-3' 5'-ACAACCTTCTGCACCCACTT-3' AF232704 

MMP-1 5'-ATGCTGTTTTCCAGAAAGGTGG-3' 5'-TCAGGAAACACCTTCCACAGAC-3' NM_174112.1 

MMP-3 5'-AATCAGTTCTGGGCCATCAG-3' 5'-CTCTGATTCAACCCCTGGAA-3' AF069642 

MMP-13 5'- CATGAGTTTGGCCATTCCTT-3' 5'-GGCGTTTTGGGATGTTTAGA-3' NM_174389 

Collagen II 5'-CCTGTAGGACCTTTGGGTCA-3' 5'-ATAGCGCCGTTGTGTAGGAC-3' X02420 

Aggrecan 5'-ACAGCGCCTACCAAGACAAG-3' 5'-ACGATGCCTTTTACCACGAC-3' NM_173981 
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H. Supplementary Results  

 

1. Phenotypic and Functional Characterization of isolated MSCs  

 Human primary MSCs were isolated and phenotypically and functionally 

characterized to ensure that the cells used fulfilled the defined criteria to be 

considered MSCs. These criteria were established in 2006 [184], stating that 

true MSCs are demonstrated when three standard results are achieved: cell 

adherence to plastic (assured by isolation protocol used); multipotent 

differentiation potential and expression of certain surface antigens (CD105, 

CD90 and CD73, specific MSCs markers) or lack of expression of other surface 

antigens (CD19 – B cells marker, CD14 – expressed by monocytes and 

macrophages, CD45 – hematopoietic marker, CD34 – expressed in early 

hematopoietic progenitors and endothelial cells and HLA-DR – expressed in 

activated MSCs). The MSCs used in this study were shown to differentiate to 

osteoblasts, chondroblasts and adipocytes using standard in vitro tissue culture-

differentiating techniques (Fig. S1, Supplementary Data), demonstrating their 

capacity for trilineage mesenchymal differentiation. Furthermore, they were 

shown to have the desired surface expression profile (Fig. S1, Supplementary 

Data). 

 

2. Overview on secMSCs effect on the degenerated IVD 

A heat map, encompassing all results related to the effect provoked on 

degenerative/inflammatory IVD at 48h by the secMSCs, was generated using 

software GENE-E (vs. 3.0.206, The Broad Institute of MIT and Harvard, USA), 

considering median calculated from all replicas of each condition for every 

factor analyzed. 
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Figure S1| Analysis of newly isolated MSCs differentiation capacity and phenotype. 

 A. MSCs differentiation in chondrogenic, osteogenic and adipogenic lineages. A1. representative images of 
toluidine blue staining. A.2 Representative images of alkaline phosphatase (ALP) staining. A.3 Representative 
image of Oil Red O staining. B. Histogram profile of MSCs phenotype exhibiting expression of CD90, CD105, 

CD73, CD14, CD19, CD34, CD45 and HLA-DR. 
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Figure S2| Overall results overview represented as heat map, generated using software Gene E, considering median 

calculated from replicas of each condition for every factor analyzed. 

Results relative to IVDs condition after inflammatory stimulus and treatment with secMSCs, at 48h 

 


