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Abstract 

The ability to orientate in space is crucial for survival. This behavior relies on the neural 

representation that emerges from the integration of various sensory inputs. Through the 

detection of gravity, the vestibular system plays a central role in self-motion perception. 

Since it detects the motion of the head in space, it unravels fundamental sensorimotor 

functions such as balance, posture or gaze stabilization. These functions are kept 

constant through life as a result of the adaptation to the surrounding visual and vestibular 

inputs. By performing a visuo-vestibular mismatch (VVM) protocol, we demonstrate that 

the long-term exposure to a conflict between these inputs causes a lasting adaptation of 

the vestibulo-ocular reflex (VOR). This adaptive motor memory, which initially is 

generated and stored in the cerebellum, is on the long term transferred to the vestibular 

nuclei. Hence, using a video-oculography technique in mice that underwent the VOR 

adaptation protocol, we were able to determine that the adaptation persists for several 

days, it is frequency-dependent and that a strong retinal slip drives motor learning. 

Additionally, to investigate the cellular and molecular mechanisms underlying this long-

term adaptation we performed whole-cell patch clamp in brainstem slices in both control 

mice and mice adapted to the VVM. The central vestibular neuron's synaptic activity was 

recorded while the vestibular afferents were stimulated with a bipolar electrode. The 

gathered electrophysiological results suggest that, the efficacy of the synapse that 

connects the vestibular afferents to the vestibular nuclei is compromised following long-

term adaptation. Using immunohistochemistry, we tested a possible basis of the 

observed modifications in the vestibular nuclei neurons’ synaptic properties. Additionally, 

using mice displaying fluorescent GABAergic neurons, we performed encouraging 

preliminary studies that, further on, will allow determining the role of the different 

subpopulation of neurons in the adaptive process. In conclusion, the present study 

shows that consolidation of long-term VOR adaptation relies on synaptic plasticity in the 

direct VOR pathway. 

Key-words: VOR, adaptation, motor learning, vestibular, brainstem. 
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Resumo 

A capacidade de orientação no espaço é crucial para a sobrevivência. Este 

comportamento depende da representação neural que emerge da integração de vários 

inputs sensoriais. Através da deteção da gravidade, o sistema vestibular exerce um 

papel central na perceção do deslocamento individual no espaço. Pela deteção do 

movimento da cabeça no espaço, possibilita funções sensoriomotoras fundamentais 

como o equilíbrio, a postura ou a estabilização do olhar. Estas funções são mantidas 

constantes ao longo da vida como resultado da adaptação aos inputs visuais e 

vestibulares circundantes.  Realizando um protocolo de desemparelhamento visuo-

vestibular (VVM), neste estudo demostrou-se que a exposição a longo prazo ao conflito 

entre estes dois inputs causa uma adaptação duradoura do reflexo vestíbulo-ocular 

(VOR). Esta memória motora adaptativa, que inicialmente é gerada e guardada no 

cerebelo, é a longo prazo transferida para o núcleo vestibular. Assim, usando a técnica 

de vídeo-oculografia em ratinhos que foram sujeitos ao protocolo de adaptação do VOR, 

neste estudo determinamos que a adaptação persiste durante vários dias, é dependente 

da frequência e que o deslizamento da imagem na retina conduz a aprendizagem 

motora. De modo a investigar os mecanismos moleculares e celulares adjacentes a esta 

adaptação de longo-termo, realizou-se whole-cell patch clamp em cortes de tronco 

cerebral de ratinhos controlo e ratinhos submetidos ao protocolo de VVM. A atividade 

sináptica dos neurónios centrais vestibulares foi gravada enquanto o aferente vestibular 

foi estimulado com um elétrodo bipolar. Os resultados eletrofisiológicos reunidos 

sugerem que a eficácia da sinapse que liga o aferente vestibular ao núcleo vestibular, 

fica comprometida após a adaptação de longo prazo. Usando imunohistoquímica foi 

também testada uma possível base das modificações observadas nas propriedades 

sinápticas dos neurónios do núcleo vestibular. Adicionalmente, usando ratinhos com 

neurónios GABAérgicos fluorescentes, realizamos estudos preliminares que, no futuro, 

permitirão determinar o papel das diferentes subpopulações de neurónios no processo 

adaptativo. Em conclusão, o presente estudo mostra que a consolidação de longo-termo 

da adaptação do VOR requer plasticidade sináptica na via direta do reflexo vestíbulo-

ocular. 

Palavras-chave: VOR, adaptação, aprendizagem motora, vestibular, tronco cerebral. 
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Introduction 

1. The vestibular system 

1.1. Function of the Vestibular system 

In the De Anima book II, Aristoteles described for the first time the five senses: sight, 

hearing, taste, smell and touch (Durrant and Aristotle, 1993, Cullen, 2012). These 

sensory systems were indubitably appreciated since antiquity because they provide us 

with recognizable and distinct everyday life perceptions. Remarkably, the vestibular 

system was one of the earliest sensory systems to rise in evolution and it is 

phylogenetically the oldest part of the inner ear (Cullen, 2012). Conversely, after many 

close attempts (Figure 1), it was the last one to be discovered and was only considered 

an entity distinct from the cochlea in the middle of the 19th century by Pierre-Marie 

Flourens, a French physiologist (Wiest, 2015).  

 

The vestibular system participates in a wide range of functions, from reflexes to 

the most intricate level of voluntary behavior and bears information about head motion 

and position relative to gravity. Although it has a key role in daily life, this late recognition 

was mainly due to the fact that, when this system is functioning correctly, we are unaware 

of the information coming from vestibular activity, so that there is no vestibular perception 

in normal situation. Normally, vestibular, visual and proprioceptive inputs are seamlessly 

Figure 1. Image of Josef Hyrtl’s collection of inner ears of different species from his published textbook in 1845. Based on 

their shape, Hyrtl erroneously assumed that the semicircular canals served the function of condensing sound waves. From 

(Wiest, 2015). 
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integrated to give rise to internal estimates of motion as well as the coordination of 

oculomotor and postural movements. Obtrusive vestibular sensations appear when there 

is an abnormal motion or pathology that involves the peripheral organs or their central 

pathways. These sensations are commonly known as vertigo, dizziness or imbalance 

(Kandel, 2013). 

In order to maintain proper locomotion and to stabilize gaze and posture, the 

vestibular system encodes the self-motion information through the detection of the 

motion of the head in space (Beraneck and Idoux, 2012). Combining oculomotor, 

cerebellar, cortical inputs as well as neck proprioception and inputs from the vestibular 

sensors, the vestibular nuclei will generate the estimation of self-motion, and premotor 

command for gaze stabilization reflexes, as well as posture and balance reflexes (Figure 

2). 

1.2. Anatomy and Physiology 

The vestibular system is a distributed system that gathers the peripheral vestibular 

apparatus, the brainstem central vestibular nuclei, parts of the cerebellum (nodulus, 

uvula, flocculus & paraflocculus), and various areas of the cerebral cortex (Khan and 

Chang 2013). 

Figure 2. Multimodal integration within vestibular pathways. The brain areas vestibular nuclei (VN) receive direct 

inputs and the outputs of the processing of the information. From (Cullen, 2012) 
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The inner ear possesses five peripheral vestibular structures: the utricle, the 

saccule and the three semicircular canals (anterior, posterior and horizontal) (Figure 3). 

These small structures constitute the vestibular apparatus and detect head motion and 

gravitational force (Highstein and McCrea, 1988) 

1.2.1. Bony and membranous labyrinth 

The peripheral vestibular apparatus is located in the inner ear, more specifically, on the 

temporal bone, and it comprises the bony labyrinth and membranous labyrinth.  

Figure 3. Anatomy of the ear. Black square indicates the inner ear. From (Felten et al., 2003). 

Figure 4. Representation of the bony (white) and membranous labyrinth (blue). Detailed illustration of the relation between 

the cochlea and the vestibular apparatus and its respective bony labyrinth. From (Felten et al., 2003). 
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The bony labyrinth is constituted by the cochlea, the vestibule and the 

semicircular canals (Figure 4). The cochlea, a spiral-shaped chamber, contains the 

Organ of Corti, which is the organ for audition. The bony labyrinth structures are filled 

with perilymph, a fluid that is alike and in continuance with the cerebral spinal fluid (Khan 

and Chang, 2013).  

As it can be seen in Figure 4, although the membranous labyrinth (in blue) is 

quite smaller than the bony labyrinth (in white), they have equivalent forms except in the 

vestibule, where the membranous labyrinth acquires a sac-shape which makes up the 

utricle and saccule (Khan and Chang 2013). Additionally, endolymph, a fluid similar in 

composition to intracellular fluid, flows inside all the membranous labyrinth components 

(Mescher and Junqueira, 2013). 

1.2.2. Hair cells 

The vestibular system comprises mechanoreceptors named hair cells. They are 

specialized at the apical (or mechanical) pole as well as at their basal (or synaptic poles). 

From the apical surface emerges a single large kinocilium and several stereocilia (from 

20 to approximately 100) (Goldberg and Oxford University Press., 2012). This stereocilia 

are arranged in rows of a descending fashion; from the biggest one (next to the 

kinocilium) to the smallest stereocilia. “Tip links” (represented in Figure 5) connect the 

tips of the shorter stereocilia to their neighbor (taller) ones (Barrett and Ganong, 2010). 

When head movements result in deflections towards or away from the kinocilium, the 

afferent nerve’s discharge will, respectively, be increased (excitation) or decreased 

(inhibition) (Goldberg and Oxford University Press., 2012). 

 

This hair cells constitute the sensory neuroepithelium of the crista ampullaris 

(located in the semicircular canals) and the macula (both utricular and saccular 

macula)(Khan and Chang, 2013). 

 

Figure 5. Schematic representation of hair cell’s “tip link” function. The bending of the kinocilium can either depolarize 

(increase of the “tip link” tension) or hyperpolarize (reduction of the “tip link” tension) the hair cell, releasing 

neurotransmitters that stimulate action potentials in the vestibular ganglion. From (Khan and Chang, 2013). 
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1.2.3. Utricle and saccule 

The utricle and saccule are able to detect linear acceleration, gravitational forces and 

tilting of the head (Figure 6A). Therefore, they give neural signs for coordination, position 

and movement of the head and neck. The utricle and saccule both have a sensory 

neuroepithelium named macula that can detect, respectively, motion in the horizontal or 

in the vertical plane (Khan and Chang, 2013). The maculae are bathed in a gelatinous 

membrane that buries small (3-30 µm in humans) particles of calcium carbonate 

(CaCo3), the otoliths (Goldberg and Oxford University Press., 2012).  

The stereocilia in the macula are oriented in respect to the striola (Figure 6B). 

The striola is a curvilinear line that is an area of thinning in the utricle and of thickening 

in the saccule. The hair cells are distributed towards the striola in the utricle and away 

from the striola in the saccule. This arrangement in different directions allows various 

patterns of hair cell stimulation depending on the direction of the head tilt (Khan and 

Chang, 2013). 

 

1.2.4. Semicircular ducts 

The three semicircular ducts have an equivalent format to the bony semicircular canals 

in which they are accommodated. They constitute the kinetic labyrinth which detects 

angular acceleration (rotation of the head, Figure 7A) and are arranged in the three 

orthogonal planes. The superior and posterior ducts are aligned 45º to the sagittal plane 

and the lateral canals are aligned 30º to the axial plane (Figure 7B). Contralateral 

semicircular ducts are mutually perpendicular and are paired with conjugate canals on 

the opposite side of the head organized as shown on Table 1 (Khan and Chang, 2013). 

Hence, this 3-dimensional positioning enables each duct to sense movement a certain 

plane (Khan and Chang, 2013). 

 
 

B A 

Figure 6. (A) Membranouslabyrinth. Utricle and saccule’s position in the membranous labyrinth is highlighted with 

a black rectangle. Adapted from (Felten et al., 2003). (B) Schematic representation of the utricle and saccule and 

the relative location of the striola. Arrows represent the stereocilia in the macula, which are oriented in relation to 

each striola’s profile. From (Khan and Chang, 2013) 
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Before the three semicircular canals open into the utricle, at each of their ends, 

exists a dilatation named ampulla. The ampulla contains the crista ampullaris, its sensory 

neuroepithelium, covered by the cupula, a gelatinous substance in which hair cells are 

embedded (Figure 7). Although the crista ampullaris is histologically similar to the 

macula, the cupula is thicker and doesn’t have otoliths (Khan and Chang, 2013).  

 

1.2.5. Vestibular ganglion and vestibular nerve 

In turn, the vestibular organs are connected to the vestibulocochlear nerve. It was 

Antonio Scarpa (1795), an Italian anatomist, who first accurately described the organs 

of the inner ear and their innervations (Wiest, 2015). The Scarpa’s Ganglion (Figure 8), 

or vestibular ganglion, sits in the internal auditory meatus. It comprises, in humans, 

around 20.000 bipolar cell bodies that receive afferent impulses from the crista 

ampullaris (Adelman and Smith, 1999).  

Table 1. The functional semicircular duct pairs. Adapted from (Khan and Chang, 2013). 

Left horizontal Right horizontal 

Left anterior Right posterior 

Right anterior Left posterior 

A B 

Figure 7. (A)Position within base of skull of the semicircular canals of the inner ear. The three semicircular canals are 

located at 90-degree angles to each other. From (Felten et al., 2003). (B) Left- Representation of the angular acceleration 

of a human head. Right - Ampulla of the semicircular ducts. Arrows indicate either head rotation (angular acceleration; black 

arrow) or the sense of the motion of the endolymph (blue arrow). The cupula is displaced by the flow of the endolymph when 

the head turns. From (Kandel, 2013). 
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Axons from the vestibular ganglion merge to form the vestibular nerve. In turn, 

the vestibular nerve merges with the cochlear nerve to become the vestibulocochlear 

(VIIIth) nerve, disjoining again in the brainstem. The majority of the afferent fibers project 

to the ipsilateral vestibular nuclear complex in the pons (Khan and Chang 2013). 

 

1.2.6. Vestibular nuclei complex 

The vestibular complex is composed of four main nuclei: the superior (SVN), medial 

(MVN), lateral (LVN) and descending (DVN) (also called spinal or inferior) vestibular 

nuclei (Figure 9). The first three are also known as Bechterew, Schwalbe and Deiter 

respectively, named after their discoverers (Highstein and McCrea 1988). They are 

located under the floor of the fourth ventricle and go from the medulla to the pons in two 

major columns. The superior vestibular nucleus is located entirely in the pons. The 

medial vestibular nucleus is the largest of the four and composes the medial column. In 

turn, the lateral column is made up of the superior, lateral and inferior vestibular nuclei 

(Khan and Chang, 2013). 

 

 

Figure 8. Anatomical representation of the vestibulocochlear nerve (VIII) (yellow). The vestibulocochlear nerve arises 

from the merging of the vestibular nerve with the cochlear nerve (structures indicated in black rectangles). The central 

processes of the vestibular ganglion cells terminate in vestibular nuclei (medial, lateral, superior, and inferior) in the 

medulla and pons and in the cerebellum. From Netter, 2016. 
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Functionally, the vestibular nuclear complex is at the core of the circuitry 

responsible for processing and merging the input from the different vestibular organs 

with other non-vestibular information. Most of the vestibular-nerve afferents carry 

information and create convergences in the VN neurons (canal-canal, otolith-otolith and 

canal-otolith). Additionally, vestibulo-ocular (VOR) and vestibulo-colic (VCR, targets the 

neck to stabilize the head) reflex pathways arise in the VN. Both reflexes schematically 

depend on the integration of vestibular and visual or vestibular and proprioceptive 

information, respectively. Furthermore, mutual connections exist between the vestibular 

nuclei and the cerebellum. Due to its pivotal role in multisensory processing and in 

vestibular plasticity, its crucial to understand the characteristics of the central vestibular 

nuclei (Goldberg and Oxford University Press., 2012). 

 

1.2.7.  Central vestibular neurons 

Central vestibular neurons (2ºVN) have an instrumental function in the processing of 

different sensory inputs (vestibular, visual and proprioceptive inputs). These neurons 

integrate these signals and generate a representation of the position and movement of 

the head-in-space which creates a pre-motor command used for gaze control (Beraneck 

and Idoux, 2012). 

When functionally identified in vivo, 2°VN display various discharge properties 

(Shimazu and Precht, 1965, Precht and Shimazu, 1965). Based on their modulation 

during eye movements, 2°VN are classified into two main groups. One group is made of 

those that carry purely vestibular signals, the vestibular-only neurons (VO), most likely 

to mediate the vestibulo-spinal reflex (VSR) (Scudder and Fuchs, 1992, Roy and Cullen, 

2001) and also project to higher brain areas (e.g., thalamus and cortex) to provide signals 

necessary for the sense of balance, orientation and navigation (Akbarian et al., 1988, 

Figure 9. Vestibular nuclei complex. Colored lines represent the vestibular inputs terminations in the four vestibular 

nuclei: the superior (orange), the lateral (pink), the medial (green) and the inferior (violet). Adapted from (Felten et al., 

2003). 
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Buttner and Lang, 1979). Neurons in the second group of 2°VN carry eye movement 

related signals in addition to the vestibular signal.  These neurons are directly involved 

in generation of the VOR (PVP, position-vestibular-pause neurons in monkey, or ES for 

Eye-Sensitive, in mice) (Beraneck and Cullen, 2007) or in VOR adaptation through inputs 

from the cerebellar flocculus (FTN, floccular target neurons)(Lisberger et al., 1994).  

In vitro characterization of 2°VN neurons shows two groups of neurons: type A 

and type B in rodents or tonic and phasic in other vertebrates (Straka et al., 2005, 

Beraneck and Straka, 2011) (Figure 10A). These two types of neurons differ in their 

electrophysiological properties such as discharge dynamics (Straka et al., 2005), 

resonance frequencies (Ris et al., 2001), and neurotransmitter content (Takazawa et al., 

2004, Bagnall et al., 2007). Current evidence regarding the putative roles of each 

subclass of 2°VN suggests that type A neurons are GABAergic neurons involved in local 

inhibitory networks (Shin et al., 2011) and a major component of the commissural system 

(Beraneck and Idoux, 2012, Bergquist et al., 2008). Type B neurons, either excitatory or 

inhibitory, are most likely the output neurons of the VN (Beraneck and Idoux, 2012) 

How are these neurons categorized? 2°VN recorded on brainstem slices of mice 

(Dutia et al., 1995) and rats (Murphy and Du Lac, 2001) display pacemaker activity, 

which persists even when synaptic activity is reduced or blocked. The pacemaker activity 

of 2°VN in adult rodents is in the range of 15-30 spikes/s (Sun et al., 2002). Based on 

the resting discharge, researchers have focused their analysis on the 

electrophysiological signatures of the neurons (Beraneck and Idoux, 2012, Beraneck et 

al., 2004). Therefore, the type A/B classification doesn’t relate to an anatomical scheme 

(connectivity) but rather to the neuron’s electrophysiological features at rest (Beraneck 

et al. 2007).  

 

B A
B 

Figure 10.  (A) Static properties of MVN neurons. Superimposed spike traces of type A (blue) and Type B (green). From 

(Beraneck and Idoux, 2012). (B) Images of the MVN neurons of two transgenic lines. Left- YFP-16 mouse line; neurons 

expressing fluorescent protein in (green) and retrogradely labed with stereotaxic dye injection (purple). Right- GIN mouse 

line; neurons are labeled in green and the dendrites of a neuron in purple. From (McElvain et al., 2010). 
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Hence, the classification into type A and type B is based on the shape of their 

action potential, the subsequent after hyperpolarization (AHP) and interspike intervals 

(Serafin et al., 1991, Eugene et al., 2011). Type A neurons have a single and deep AHP 

followed by an inflection that retards the depolarization of the neuron (IA-like rectification). 

On the other hand, type B neurons show a first fast AHP followed by a slow one, therefore 

they have a so-called biphasic or double AHP (dAHP). Quantitatively, mice aged 

approximately 30 days, possess 70–80% type B neurons and 20–30% type A neurons 

(Eugene et al. 2007).  

Both types of neurons are differently inserted in the vestibular networks since 

most type A neurons, based on their neurotransmitter content, seem to be GABAergic 

while type B could be glutamatergic or glycinergic (Takazawa et al. 2004). Hence, the 

type A neurons correspond to tonic cells involved in inhibitory network. Type B neurons 

are the phasico-tonic excitatory or inhibitory output of the vestibular network (Biesdorf et 

al. 2008, Rossert and Straka 2011).  

As mentioned, the neurotransmitter content of MVN neurons also enabled to 

distinguish two main categories. For this purpose, two transgenic mouse lines were used: 

GIN line expressing green fluorescent protein in inhibitory GABAergic neurons and YFP-

16 line expressing yellow fluorescent protein in non-GABAergic (glycinergic or 

glutamatergic) (McElvain et al. 2010; Shin et al. 2011) (Figure 10B). 

Although the two mentioned distributions (Type A/B and GIN/YFP) are not strictly 

equivalent, based on their action potential profiles, GIN would correspond to type A and 

YFP to type B neurons (Eugene et al. 2011). 

 

1.2.8. Extraocular muscles 

In turn, emerging from the brainstem, the cranial nerves will innervate the extrinsic 

muscles of the eye. For the eyes to be able to execute their movements, the extraocular 

muscles (EOMs) are innervated by three groups of motor neurons whose cell bodies 

form the nuclei in the brainstem shown in Figure 11. 
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The lateral rectus is innervated by the abducens nerve (cranial nerve VI); the 

superior oblique is innervated by the trochlear nerve (cranial nerve IV); the medial, 

inferior and superior recti and inferior oblique muscles are innervated by the oculomotor 

nerve (cranial nerve III)(Felten et al., 2003). 

 

Consequently, the six existing EOMs will control the turning of the eyes 

(represented in Figure 12) and they are arranged in three antagonistic pairs. The lateral 

and medial recti muscles control the side (left-right) rotation. The superior and inferior 

recti muscles control up and down eye movements. The superior and inferior oblique 

muscles control the torsional rotation and elevation of the eye (Kandel, 2013).  

Figure 11. Cranial nerves and their nucleus and nerves of the orbit nerves. The abducens nucleus (VI) is located 

in the pons. The oculomotor nucleus (III) is in the midbrain, adjacent to the trochlear nucleus (IV).  From (Felten 

et al., 2003). 

Figure 12. The global position of the EOMS. The orbital wall is not represented in order to give a clear frontal view of 

the eye. The VI cranial nerve (CN) innervates the lateral rectus muscle; the IV CN innervates the superior oblique 

muscle; and the III CN (oculomotor nuclei) innervates the medial rectus, superior rectus, inferior rectus, and inferior 

oblique muscles. From (Felten et al., 2003). 
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2. Gaze stabilizing reflexes  

Raymon Dodge, in the early 90’s, was responsible for the classification of the eye 

movements, that are used to project or stabilize gaze, into five groups. Three of them 

are voluntarily initiated movements to direct gaze to a particular object in the visual field: 

saccades (a scanning motion, rapid discontinuous), smooth pursuit (to track small 

moving targets) and vergence (to move the eyes in two different angles so that they 

converge on near or far targets) (Goldberg and Oxford University Press., 2012). The two 

other classes of eye movements – the vestibulo-ocular reflex (VOR) and optokinetic 

reflex (OKR) – are reflexes that function to hold images stationary on the retina, a pre-

requisite to vision. These two crucial reflexes work daily together to stabilize gaze (eye-

in-space) during head motion (Figure 13).  

Contrarily to VOR, the OKR relies on visual inputs instead of vestibular ones to 

stabilize gaze. Independently of head movement, OKR is commanded by the relative 

movement of the spatial context (visual field) across the retina. OKR stabilizes vision 

mainly at low-frequencies while VOR functions at higher frequencies (Faulstich et al., 

2006). The OKR creates an eye movement which consists of alternating slow (smooth 

pursuit) compensatory in one direction and quick (saccadic) retuning eye movements on 

the other direction (Goldberg and Oxford University Press., 2012). 

 

 

Figure 13. VOR and OKR, eye movements that stabilize gaze. Left - The VOR counter-rotates the eyes 

during head movements, maintaining the image stable in the retina. The eyes rotate right after the start of 

the rotation of the head. Right - The OKR, after longer latency, stabilizes the line of sight with respect to 

the moving visual environment. From (Squire, 2003). 
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2.1. The vestibulo ocular reflex (VOR) 

The vestibulo ocular reflex (VOR) consists in automatic eye movements that stabilize the 

eye-in-space position by directing the eye in the opposite direction of the head 

movements (Figure 14). The VOR produces eye movements in response to both 

horizontal (HVOR) and vertical (VVOR) head rotations (Boyden et al., 2004). The 

vestibulo-ocular reflex is often described as a very rapid, 3 neuron-reflex-arc (see 

description below in 2.2). The VOR response can be as short as 5-10ms which makes it 

one of the most rapid sensorimotor chain of the brain (Goldberg and Oxford University 

Press., 2012).  

Although its function is to provide clear vision by stabilizing gaze, the VOR is 

experimentally measured in the absence of light so that the eye movements driven by 

vestibular stimuli are isolated from eye movements driven by visual stimuli. It is important 

to state that, this reflex works as an open-loop that doesn’t depend on visual input. That 

is, it works even in the absence of image in the retina because its visual system feedback 

is not essentially part of the reflex. However, the calibration of the reflex does depend on 

the visual feedback through essentially the same pathway as the OKR pathway 

(Accessory optic system; nucleus of the optic tract; inferior olive; cerebellum). 

The performance of the VOR is characterized by the gain – ratio between eye 

and head velocities – and phase – i.e. the temporal relationship between eye and head 

movement (Broussard and Kassardjian 2004). Consequently, a perfect VOR would have 

eye movements of equivalent magnitude to the head movements, generating a gain of 

1.0 and beginning at exactly the same moment as the head movement, with a phase of 

0º (Blazquez et al., 2004).  

Figure 14. Vestibulo-ocular reflex - Eyes move in the opposite direction as the head. This results in the eyes 

being stationary in respect to the surroundings. From (Boyden et al., 2004). 
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Experimentally, the VOR possesses numerous advantages that make it an 

adequate model to study motor learning: it can be tested with easily controlled sensory 

inputs, it has quantifiable motor outputs, a fairly well described circuit anatomy and 

precise quantification methods (Boyden et al., 2004, Blazquez et al., 2004). Until early 

2000s, VOR adaptation studies have been dominated by the Human and rhesus monkey 

models. It is only with the apparition of video-oculography that mice were shown to have 

a perfect VOR (Stahl, 2004). Since then, a growing body of evidence emerge from 

laboratories which have taken advantage of the genetic tools available in mice. 

 

2.2.  The horizontal vestibulo-ocular pathway  

This reflex is really fast and relatively simple as it comprises a three neuron arc 

sensorimotor pathway; from the vestibular afferents, to the vestibular nuclei, and after to 

the ocular motor neuron to enable eye motion in an equal but oppositely direct movement 

of the head (Blazquez et al. 2004). For explanatory purposes, we will consider a VOR of 

the eyes to the right, in compensation of a head rotation to the left (Figure 15). The 

rotational acceleration of the head turning left causes endolymph flow in the ampulla, 

deflection of the cupula and hair cells to the right side. Consequently, this bending will 

cause the opening of the ion channels and depolarization of the hair cells. This 

mechanotransduction transformes a movement into a neural signal which increases the 

firing of the vestibular afferent fibers from the left side of the head. The opposite will occur 

on the contralateral (right, in this case) hair cells, causing hyperpolarization (inhibition) 

and a decrease of the right afferents discharge. Passing through Scarpa’s ganglion, the 

firing frequency of the VIIIth nerve in turn will increase and impulses will be sent mainly 

to the ipsilateral superior and medial vestibular nuclei through first-order vestibular 

neurons (1º VNs, which axons constitute the VIIIth nerve). Excitatory/inhibitory impulses 

are in turn sent to the contralatreral/ipsilateral abducens nucleus (VIth nerve) through 

neurons in the right/left vestibular nucleus (VN), respectively. Internuclear neurons in the 

abducens nuclei cross the midline and ascend to the MLF to terminate on the 

contralateral medial rectus motorneurons (oculomotor, IIIth nerve). Thus, motor neurons 

on the right VI nuclei and left III nuclei fire at a higher frequency, while those on the left 

VI and right III fire at a lower frequency. This will cause a contraction of the right lateral 

rectus and left medial rectus and the distention of the right medial rectus and left lateral 

rectus, resulting in both eyes moving to the right (or contrary to head turning) (Goldberg 

and Oxford University Press., 2012).  
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When the head stops turning (rotational velocity constant), the cupula returns to 

its upright position, regularizing the membrane potential of the hair cells and reducing 

the afferent nerve fibers (Khan and Chang, 2013). 

 

3. VOR adaptation 

As previously mentioned, although the VOR functions in the dark, its calibration depends 

on the presence of visual stimuli in which normally, the eye movement locks the eye 

perfectly to the visual scene. When there is a mismatch between the visual and vestibular 

information, the image of the object moves on the retina, causing a blurred vision. This 

event is called retinal slip. In result to this error signal, which says that eye movements 

are not being compensatory, there is motor learning to adjust the gain of the VOR to give 

an improved eye motion. The process of motor learning modulation in order to restore 

gaze stabilization is called VOR adaptation. VOR adaptation is tremendously needed 

through life since neurons and muscles grow, deteriorate and eventually die (Broussard 

and Kassardjian 2004). Also, in humans the VOR needs to be constantly adjusts since 

young age in order to accompany the changes in head circumference (Goldberg and 

Oxford University Press., 2012). This adaptation to new conditions is possible through 

Figure 15. Head rotation to the left and associated VOR pathway. Excitatory connections of the head turning to the left which 

cause eyes to move to the right. (M) medial vestibular nucleus; (L) lateral vestibular nucleus; (D) descending vestibular nuclei; 

(S) superior vestibular nuclei; (P) prepositus hypoglossi; (H) nucleus prepositus hypoglossi; (III) oculomotor nucleus; (IV) 

trochlear nucleus; (VI) abducens nucleus. From (Kandel, 2013). 
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motor learning in the VOR, which is caused by persistent image motion during head 

movements, resulting in the increase or decrease of the gain.  

Experimentally, it is possible to create motor learning in laboratorial conditions 

through the pairing of image motion with head motion. Depending on the relative 

direction of the head motion and image motion, the gain of the VOR can be adaptively 

increased or decreased, as shown in Figure 16. A gain-up stimulus results in an increase 

of the VOR gain and is obtained by training with image motion in the opposite direction 

opposite that of the head (increase in retinal slip). A gain-down stimulus decreases VOR 

gain and, is induced by image motion in the same direction as the head (decrease in 

retinal slip; Boyden et al. 2004). 

A common example to describe this adaptive plasticity is a subject putting on a 

newly prescribed pair of eyeglasses. The adaptation to the optical magnification needs 

the recalibration or plasticity of the VOR. If the magnification is augmented, a movement 

of the head will result in a bigger and quicker movement of the image across the retina 

and will obtain an increase of the VOR in order to maintain stability. In turn, a decrease 

in the augmentation would translate in VOR gain decrease (Goldberg and Oxford 

University Press., 2012). 

 

 

B 

A 

Figure 16. Motor learning in the VOR. (A) Gain up stimulus: the increase in VOR gain is achieved by training  

with an image (chess box, in this case)  movement in the opposite direction of the head. (B) Gain down stimulus: 

the decrease in VOR gain is achieved by training with the image (chess box)  movement in the same of the 

direction of the head. Adapted from (Boyden et al., 2004). 
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3.1. Possible sites of motor learning 

Motor learning can be defined as the process that improves the smoothness and 

accuracy of movements (Boyden et al. 2004). It is required for intricate movements (for 

example, playing the saxophone) but also for calibrating simple sensorimotor chains like 

the VOR. It is known that the cerebellum is critical for motor learning (Boyden et al. 2004) 

and two long-standing hypotheses provide two very different accounts about the role of 

the cerebellum for motor learning in the VOR. Essentially, the difference between these 

two models is the location of the modified synapses that underlie motor learning (Figure 

17).  

Even before VOR plasticity was demonstrated, Ito (Ito, 1972) proposed a theory 

based on the Marr-Albus hypothesis of cerebellar motor learning (Albus 1971, Marr 

1969). Ito theorized that the role of the cerebellum is to store the motor memory for the 

learned change in VOR gain. More specifically, the climbing fibers (CF) input from the 

inferior olive provide an error signal in response to the retinal slip, that would cause long-

term depression (LTD) at the synapses between parallel fibers and Purkinje cells which 

would alter the efficacy of these synapses. This synaptic plasticity would then modify the 

activity of vestibular nuclear neurons and thus change the gain of the VOR. Consistent 

with this theory is the fact that floccular complex (located in the cerebellum) is essential 

for the acquisition of VOR plastic changes (Rambold et al., 2002) and CF inputs to the 

floccular complex encode retinal slip. Therefore, according to Ito’s framework, learning 

would continue until the signal encoded by the climbing fibers becomes zero. At this point 

the VOR becomes completely compensatory and no more adaptation is needed. 

 Few years later, an alternative model was proposed by Miles & Lisberger (Miles 

and Lisberger, 1981). The authors proposed that the role of the cerebellum was not to 

store the motor memory but to provide a teaching signal guiding the induction of plasticity 

in the brainstem. 

Figure 17. The two different locals (indicated by the black lightning bolts) of plasticity proposed by Ito's hypothesis 

and Miles&Liberger hypothesis. CF, climbing fibers; GC, granule cells; IO, inferior olive; MF, mossy fibers; MN, 

oculomotor nuclei; PC, Purkinje cells; PF, parallel fibers; VN, vestibular nuclei. Adapted from (Boyden et al. 2004) 
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3.1.2. Brainstem plasticity after long-term VOR adaptation 

Initially, support for the brainstem hypothesis mainly came from experiments that 

evaluated alterations in Purkinje cells (Boyden et al. 2004). It was found that changes in 

the VN neurons could not be accounted for the input received by Purkinje cells so, they 

must be a consequence from plasticity events somewhere outside the cerebellum 

(Lisberger, 1994).  

However, VOR adaptation can be short-term or long-term. Long-term adaptation, 

is achieved over a longer period of time (usually more than a week) and, unlike short-

term adaptation, it creates persistent alterations within the oculomotor circuitry.  

Later on, studies focused on experiments using cerebellum deactivation, which 

verified that flocculi shutdown suppresses VOR short-term, but not long-term adaptation. 

The short-term storage of adaptive memories in the cerebellum has been confirmed also 

by OKR experiments. The memory trace of short-term OKR adaptation seems to be 

encoded and initially to reside in the flocculus, while long-term adaptation is probably 

achieved by the transfer of this memory to the vestibular nuclei (Shutoh et al. 2006, Anzai 

et al. 2010, Okamoto et al. 2011). 

Although the hypothesis of a long-term retention of adaptive memory in the 

brainstem has been suggested and given support from several theoretical studies as 

seen in Figure 18 (Yamazaki et al., 2015, Clopath et al., 2014, Menzies et al., 2010, 

Masuda and Amari, 2008, Porrill and Dean, 2007), it doesn’t have yet any experimental 

support in vitro, and the underlying mechanisms therefore remain elusive. 

Figure 18. A hypothesis of motor learning in the VOR. The vestibular inputs come from the left (head velocity) and the 

motor outputs are represented on the right (eye movement). The eye velocity positive feedback pathway is the loop from 

HGVP to FTN to the “final motor pathways” square. The circles indicate the summing junctions HGVP horizontal gaze-

velocity Purkinje cell; FTN, flocculus target neuron; PVP, position-vestibular-pause neuron.  From (Lisberger, 1994). 
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4. Aims of the project 

The goal of the project is to investigate, in the mouse model, the question of the long-

term retention of VOR motor learning in the brainstem. The design of the experiment is 

to allow a system approach with combination of in vivo and in vitro.  

To investigate this question, I performed an in vivo innovative VOR long-term 

adaptation protocol, developed by my team, which exposes mice to a visuo-vestibular 

mismatch (VVM) for 14 days leading to VOR long-term adaptation. A combination of in 

vitro electrophysiological experiments, immunohistochemistry, use of genetically-

engineered mice lines and VOR measurements were executed. By performing whole-

cell patch-clamp experiments in brainstem slices, we aimed to understand the neuronal 

changes that occur after the 14 days of VOR adaptation. Immunohistochemistry was 

performed to explore the expression of the receptors involved in synaptic transmission. 

Finally, using VOR measurements, we tested the influence of the retinal slip on the VOR 

adaptation and the retention of this memory using this new behavioral adaptation 

protocol.  
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Materials and Methods 

1. Animals 

Male C57BL/6J WT (Janvier, Le Genest Saint Isle, France) and 3 transgenic lines 

GAD67-GFP, Pvalb-Cre (Hippenmeyer, Vrieseling et al. 2005) and Sst-Cre (Taniguchi, 

He et al. 2011) were used for the experiments hereafter described. All animals were 

housed with the cycle of 12h light/12h dark and fed with standard rodent chow and water 

ad libitum. The weight and well-being of every mice was tracked daily (a record sheet of 

the weight for one group is available in Annex 1). Animals were used in accordance with 

the European Communities Council Directive 2010/63/EU and all the procedures were 

approved by the ethical committee for animal research of the University Paris Descartes 

34 (CEEA.34).  

2. Visuo-vestibular mismatch protocol 

 2.1. Headpost implantation surgery 

Animals were anesthetized with isoflurane gas (Iso-Vet, Ireland). The head was shaved 

using an electric razor. A longitudinal incision of about 2 cm was performed in the skin 

to expose the skull. Then, a customized headpost (size: 3.0mm width x 1.5mm depth x 

3.0mm height; weight 0.3g) was cemented (Super-Bond C&B, Sun Medical, Japan) to 

the skull between lambda and bregma landmarks. A small RFID (Radio-Frequency 

IDentificatiion) chip was inserted subcutaneously to allow the identification of each 

mouse. In order to ensure a painless healing, 0.1mL of lidocaine (Xylovet, France) and 

0.1mL of Vetedine® (Vetoquinol, France) were applied on top of the suture area. 

Following the surgery, the animals were placed under a red light to avoid 

hypotermia and with buprenorphine 0.05mg/kg diluted in the water to ensure 

postoperative analgesia. As soon as the mice woke up and started moving comfortably, 

they were placed in cages in the respective groups of 3 or 4 animals to stimulate social 

interactions. Images of the surgical procedure are on Annex 2. 

 2.2. Adaptation device 

Two to three days following the surgery, a custom-built helmet (size: 2.2mm width x 

1.5mm depth x 1.5mm length; weight 3g) was secured onto the headpost of the mice. 

This device covers almost completely the face of the mouse while respecting the facial 



FCUP/ICBAS/CNPP 

Brainstem plasticity following long-term adaptation of the vestibulo-ocular reflex 
22 

 

 
anatomy of the animal in order to prevent the blockade of the nose and to allow the 

animal to eat and drink normally (see Figure 19). 

Two types of helmets were used: translucid or striped. The translucid devices 

were made of translucent plastic so that light can reach the eye but no coherent image 

can be seen through it. The striped helmet was made of translucid plastic with additional 

3mm-thick black stripes drawn along with a permanent marker. Using the striped helmet, 

the animal sees a high contrast, fixed visual signal during self-generated head 

movements. The use of these two different devices served the purpose to study the effect 

of the retinal slip on the adaptation of the VOR. When the animal moves and performs 

VOR, the striped device induces a retinal slip, as the image on the retina (black stripes) 

is fixed. On the other hand, the use of the translucid device causes the mouse to see no 

coherent image, which hypothetically reduces the retinal slip error signal on the retina.  

 2.3. Adaptation protocol 

In the first few hours after the implantation of the device, mice exhibited a troubled 

behavior with difficulties to orientate in the cage, often bumping into the walls leading to 

a reduction in social interactions. They also showed problems to properly reach for food 

and water and therefore received extra attention during the first 24h. After 2 days, 

general behavior was restored to normal with perfect orientation in the cage, normal 

locomotion and normal social interactions.  

 At the end of the adaptation protocol, after 14 days with the device on, mice either 

performed behavioral experiments (video-oculography measures) or were used for in 

vitro electrophysiology experiments or for immunohistochemistry experiments. 

Regarding the electrophysiology and immunohistochemistry experiments, only mice 

adapted with the striped helmet and mice which did not wear any device (i.e. controls) 

were used. 

Figure 19.  Images of the striped device used for inducing VOR adaptation. The mouse is wearing a helmet, made of 

translucent plastic with vertical black stripes drawn on the surface which completely covers the mouse's head  
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3. Electrophysiological experiment 

The neural changes following VOR long-term adaptation were studied using whole-cell 

patch clamp electrophysiology, on both control mice and mice following VOR adaptation. 

Recordings were performed in the medial vestibular nucleus (MVN) which encodes 

sensorimotor vestibular transformations in the horizontal plane. 

 3.1. Slice preparation/dissection 

Adult mice, 35-38 days old, either control or following VOR adaptation, were deeply 

anesthetized by intraperitoneal injection of pentobarbital (5 mL/Kg) and, after ensuring 

deep anesthesia, quickly decapitated. The brain was then removed and placed in ice-

cold phosphate/bicarbonate-buffered artificial cerebro-spinal fluid solution (25 mM 

NaHCO3, 1mM NaH2PO4, 2.5 mM KCl, 3 mM MgCl2, 10 mM Glucose, and 240 mM 

sucrose oxygenated with 95% O2 / 5% CO2). First, an incision was made in the skin 

longitudinally across the head, and the frontal and parietal bones were removed. A cut 

rostrally to the cerebellum at a +15º angle was made in order to optimize the preservation 

of the afferent fibers in the slicing plane. Coronal brainstem slices of 300µm were cut, 

using the same ACSF solution, on a vibratome (Leica VT100S, Germany) and 

transferred into an incubating vial filled with a regular ACSF (recording solution) 

containing 120 mM NaCl, 25 mM NaHCO3, 1 mM NaH2PO4, 2.5 mM KCl, 2 mM MgCl2, 

10mM Glucose and 1 mM CaCl2, oxygenated with 95% O2 / 5% CO2 gas mixture in 

order to maintain the physiological pH 7.4, during approximately 1.5h before the 

beginning of the recordings. Slices were then placed in the recording chamber 

maintained at 32-34°C and superfused with regular ACSF at a constant flow rate of 3 

mL/min. 

 3.2. Whole-cell patch clamp recording protocol 

The recording solution was perfused into the recording chamber using a peristaltic pump. 

The neurons were visualized with a fixed-stage upright microscope (BX51WI, Olympus) 

using differential interference contrast illumination with Nomarski optics, mounted onto 

an anti-vibrating table (TMC, USA). The image obtained was processed by a camera 

controller (C2741-63, Hamamatsu, Japan). A high-precision electric micromanipulator 

(MPC-200, Sutter Instruments Company, USA) was used to move the recording 

electrode. The temperature of the recording chamber was kept between 33-35ºC with a 

dual automatic temperature controller (TC-344B, Warner Instrument Corporation, USA) 

(Picture of the experimental set up in the Annexes).  
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Recordings were made using a clamp headstage (CV-7B, Axon Instruments, 

Foster City, CA), filtered by a low-pass filter (Model 3900, Krohn-Hite Corporation), 

transferred to the amplifier Multiclamp 700B (Molecular Devices, Sunnyvale, CA, USA). 

Current and voltage from the amplifier were low-pass filtered at 2 kHz and digitized at 5 

kHz (BNC- 2090 + PCI-6052E, National Instruments, Austin, TX, USA). The signal was 

then transmitted to a computer (HP, Windows operative system) running the data 

acquisition and analysis software Multiclamp® (Molecular Devices, USA) and Matlab 

(MathWorks, Inc). 

The patch pipettes were made of borosilicate glass (GC150F-15, Clark 

Electromedical) with an outer diameter of 1.5 mm and were pulled by a horizontal 

micropipette puller (P-2000, Sutter Instruments Company, USA). The open tip 

resistances ranged between 4-8 MΩ. The internal solution (Sekirnjak and du Lac 2006) 

contained 140 mM Kgluconate, 5 mM KCl, 10 mM Nafree-HEPES, 0.1 mM EGTA, 2 mM 

MgCl2, 0.03 CaCl2, 4 Na2- ATP, 0.4 mM Na2-GTP; osmolarity adjusted to 300mOsm with 

K-gluconate. Whole-cell patch clamp recordings were mainly performed in medium-large 

sized neurons of the medial vestibular nucleus on control mice and on mice following 

VOR adaptation (after 14 days with the striped helmet). 

After the surface of soma of a neuron was approached with a pipette, suction was 

applied until a gigaohm seal was made. All neurons were patched in current clamp mode 

and a protocol was applied to study their static and dynamic properties. The routines 

were written in Matlab (The Mathwork). 

After the successful patching of a neuron, a first spontaneous discharge recording 

was made (~ 3 minutes) along with some hyperpolarizing steps (-20, -40 and -60 pA) 

until a stable membrane potential of about -60mV was reached. To minimize variability 

linked to local inhibition, the GABAergic receptors were blocked using Picrotoxin (1mM) 

Figure 20. Illustration of in vitro patch-clamp recordings of medial vestibular nucleus (MVN) neurons on coronal 

brainstem slice. A bipolar electrode is used to stimulate the vestibular afferents en passant. PF: Parafloccular 

regions; 4V: 4th ventricle. 
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and the glycinergic receptors using Strychnine (1mM). A second spontaneous recording 

was performed with the addition of these inhibitors. Following, a first stimulation of 

hyperpolarizing and depolarizing steps (from -130pA to 130pA) was performed. Then the 

neuron was switched to voltage clamp mode (potential holding of -70mV), and first a new 

spontaneous discharge recording was performed. Then a new stimulation using 

hyperpolarizing and depolarizing steps (±20mV) was performed at different holding 

potentials: -70mV, -40mV and -10mV. 

On all patched neurons, an attempt was made to stimulate the vestibular afferents 

by positioning a bipolar concentric electrode on the vestibular nerve (CBAPC75, FHC, 

USA). The placement of the electrode was favored at the top of the nerve, where the 

fibers start to spread, around 6 - 6.4 mm caudal to bregma, 4.4 mm ventral to the 

horizontal plane passing through bregma and lambda, and 1.7 - 1.8 mm lateral to the 

midline. The intensity of the stimulation applied with the electrode ranged from 270pA to 

310 pA in order to achieve the biggest eEPSC amplitude. On some neurons (31 control 

and 17 adapted), evoked EPSCs (eEPSCs) were measured every 15 seconds while 

holding the cell at different potential (-70mV, -50mV, -30mV, -10mV, 10mV, 30mV, 

50mV).  

3.3. Data analysis 

Basic and firing properties of MVN neurons were recorded (Eugene et al. 2007) and 

analyzed using custom-made Matlab software (The Mathwork). 

Static properties of MVN neurons 

Using the spontaneous discharge recordings for each neuron, the potential was 

low-pass filtered at 1 Hz to obtain an estimate of its average resting level that was taken 

as the “mean resting membrane potential” (Vm in mV) of each neuron. Since MVN 

neurons are spontaneously active on slices, the average of the spike shapes and inter-

spike interval profiles were measured in order to obtain the spontaneous firing rate 

(spikes/s), the amplitude of the after-hyperpolarization (AHP in mV), the double 

amplitude of the after-hyperpolarization (dAHPR in mV), the spike threshold potential (in 

mV) and the concavity and convexity (in mV) of the inter-spike interval.  

Neurons were classified as type A or type B as described in (Beraneck, et al. 

2003, Table 2): 
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Table 2. Type A and type B classification parameters. Adapted from (Beraneck et al., 2003). 

 dAHPR (mV) 

AHPR (mV) 0 >0 

<0.08 B B 

>0.08 A B 

 

Dynamic properties of MVN neurons 

Active membrane properties were analyzed using the steps experiments and 

compared between adapted and control mice. This stimulation in current-clamp mode 

allowed to create current/frequency (I/F) curves and to estimate the excitability of the 

neurons. The same stimulation in voltage-clamp mode permitted to create 

current/voltage (I/V) curves to study the impact of adaptation on the conductance of the 

neurons. The analysis of the eEPCS allowed assessing synaptic efficiency by measuring 

their amplitude (pA), the area under the curve (AUC, fC) and time constant (τau, ms). 

  

4. Immunohistochemistry   

4.1. Immunohistochemistry protocol 

Since the synaptic transmission between the vestibular afferent and the vestibular 

neurons is mainly an excitatory glutamatergic transmission through NMDA and AMPA 

receptors, immunohistochemistry was performed to target these receptors in the MVN 

using both control mice and mice adapted with the striped helmet.  

In total, 8 adapted and 9 control mice of 35 days old were used. Mice were deeply 

anaesthetized by an intraperitoneal injection of Pentobarbital (5 mL/kg). They were then 

intracardiacally perfused with phosphate-buffered saline (PBS, 0.1M) followed by 4% 

paraformaldehyde (PFA) fixative, and the brains were carefully removed and placed in 

PFA for 24h. Brains were then placed in sucrose solution (30%) for at least 48h. 

Brain slices (80 µm) were cut in a freezing-slide microtome and were immediately 

placed in PBS 0.1M. The free-floating coronal serial brainstem sections were 

immediately post-fixed in PBS 0.1M for 3 washes of 10 minutes each. During each step, 

the sections were agitated on a rotator at room temperature (25ºC). Slices were then 

preincubated with blocking solution (20 mL PBS, 1000 µL normal goat serum (NGS) 

corresponding to PBS-NGS 5%) for 1 hour.  Slices were then washed two times during 

10 minutes and for a final step during 1h30 with PBS-NGS 1%. For each mouse, 2 brain 
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slices containing MVN were used to perform NMDAR2 staining, 2 slices for AMPA 

staining (GluR2/3) and 2 last slices for non-specific staining (without any primary 

antibody).  

First, slices were incubated with 400 µL of primary antibodies diluted at 

appropriate concentrations (1:50 Anti-NMDAR2a/b; 1:50 Anti-AMPA; AB1548 and 

AB1506, respectively, rabbit polyclonal antibodies- Merck Millipore, Germany) and were 

left overnight at room temperature (RT) in constant rotation. Sections were then washed 

two times with PBS-NGS 1% for ten minutes and one time for 30 minutes. This step was 

followed by the incubation with the secondary antibody (goat anti-rabbit IgG secondary 

antibody, Alexa Fluor™ 546 conjugate – ref A11010, Life technologies, USA) during 

1h30 at RT. After two washes in PBS 0.1M, a third wash of ten minutes was made using 

1μg/mL 4',6-diamidino-2-phenylindole (DAPI) (D1306, ThermoFisher Scientific, USA) in 

0.1 M PBS. Finally, the resulting brainstem slices were mounted with Mowiol® and 

coverslips were applied. For the 2 slices dedicated to non-specific staining, the primary 

antibody was omitted and substituted by an equal volume of PBS-NGS 1%.  

4.2. Image acquisition and analysis 

Immunolabeled tissues were examined under a Zeiss LSM 510 confocal microscope with 

a 20x magnification. Images were taken in the medial vestibular nucleus (MVN), with the 

border of the IVth ventricle as a landmark.  For comparing NMDAR2 or AMPA staining 

between control and adapted mice, quantification of fluorescence was performed using 

ImageJ 1.50i software (NIH, USA). This was made through the drawing of a same size 

(220.23 x 214.26 μm) circle on each acquired image. Then, the mean value of 

fluorescence (level of grey) was calculated for one pixel for each MVN slice (NMDA, 

AMPA and non specific). The average of the two values for each staining (NMDAR2, 

AMPA and non-specific) was calculated for each mouse and the specific staining was 

calculated by subtracting the non-specific fluorescence to the desired receptor’s 

fluorescence (NMDAR2 or AMPA).  
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5. GABAergic distribution in MVN of transgenic lines 

In order to identify and further specify on which class of neurons the effects of VOR 

adaptation occur, future experiments will have to be conducted on transgenic lines. Since 

we observed specific effects of VOR adaptation on type A MVN neurons (see results, In 

vitro electrophysiological experiments) and as these neurons are largely GABAergic, we 

decided to explore their distribution in the MVN using different transgenic lines. We 

decided to visualize GABAergic neurons using the GAD67-GFP knock-in line, 

expressing GFP (green fluorescent protein) only in the neurons containing glutamic acid 

decarboxylase 67(GAD67). We also explored GABAergic neurons using two transgenic 

lines mainly used to observe interneurons in cortical layers: somatostatine-positive 

neurons (Sst-Cre) or parvalbumine-positive neurons (Pvalb-Cre), both expressing 

tdTomato only in these specific classes of GABAergic neurons.    

To observe the distribution of these classes of neurons, the procedure used was 

repeated for the 3 transgenic lines. Mice were deeply anaesthetized by an intraperitoneal 

injection of pentobarbital (100 mg/kg) and injected with Heparine (50 mg/kg), to prevent 

blood coagulation. As soon as the anesthesia prevailed, they were intracardiacally 

perfused with phosphate-buffered saline (PBS, 0.1M) followed by 4% paraformaldehyde 

(PFA) fixative and the brains were carefully removed and placed in PFA for 24h and in 

sucrose solution (30%) for at least 48h. Like for the immunohistochemistry experiment, 

sections (80 µm) were cut in a freezing-slide microtome and were immediately placed in 

PBS 0.1M for 30 minutes. The wells were rinsed and 0.1mM DAPI was left to incubate 

for 20 minutes. After two washes of 10 minutes to remove the excess DAPI, the resulting 

brainstem slices were mounted in slides containing Mowiol® and coverslips were 

applied.  

Slices were visualized using confocal microscopy (LSM 700, Carl Zeiss, Jena 

Germany) using the 10x and 20x objectives. The obtained images were adjusted for 

brightness and contrast and then stacked using ImageJ (Image processing and analysis 

in Java, USA). 
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6. Behavioral experiments 

 6.1. Video-oculography set-up 

Video-oculography was performed to quantify how 2 weeks of visuo-vestibular mismatch 

affects the vestibulo-ocular reflex (VOR). Every mouse was placed at the center of a 

turntable at a ~30° nose-down position so that the horizontal canals were aligned in the 

yaw plane (Beraneck, et al. 2012). Throughout the experiment, the tested mouse stood 

restrained with a metal bar fixed to the headpost and with the body placed in a short 

Plexiglas tube. This restraint assembly was fixed on a rotating platform that stood on top 

of an extended rig with a servo-controlled motor. Images of the recordings are on Annex 

3. 

 

 

 

 

 

 

 

A miniature video camera, part of the video oculography system, tracks the eye 

movements during table rotations (Figure 21). By adjusting the Plexiglas tube with the 

camera in its central position, the recorded left eyeball could be translated left–right (X-

axis) and the lenses could be focused. In addition, an infrared light beam pointed to the 

center of the pupil. The distance between the pupil and the corneal reflex was used to 

provide an accurate estimate of eye position. 

Video-oculography measures were performed with all sources of light turned off 

except for the computer screen. The turntable is further surrounded with a closed black 

box to isolate the animal from remaining light, with a final intensity inside the box <0.02 

lux. 

6.2. Vestibulo-ocular reflex (VOR) recording sessions 

Video-oculography was performed on two different groups of mice, wearing either striped 

or translucid device. This experiment was performed to record vestibulo-ocular reflex 

(VOR) performances. In total, 6 mice with the translucid device and 6 mice with the 

Figure 21. Illustration of the set-up used to test VOR. The mouse is head-fixed in a Plexiglas tube 

centered on a turn table. Eye movements are recorded by video-oculography performed in the dark. 

IR: Infrared light. 
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striped device were tested. For each mouse, the VOR was tested prior to adaptation 

protocol. After the adaptation protocol (after 14 days with the device), the device was 

removed and VOR performances were also tested in this same day (day 0) and 1, 2, 6 

days post adaptation.  

Before starting the experiment, a drop of 2% pilocarpine (Laboratoire Chauvin, 

France) was applied in the mouse's left eye during 10 minutes in order to keep the size 

of the pupil constant. Horizontal VOR was tested using sinusoidal angular rotations 

around a vertical axis with different frequencies (0.2Hz; 0.5 Hz; 1 Hz; 2 Hz; fixed peak 

velocity 30°/s) and different velocities (20°/s; 30°/s; 40°/s; 50°/s; fixed frequency 0.5Hz). 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.3. Data acquisition and analysis 

Eye movements were recorded using an infrared video system (ETL-200, ISCAN, 

Burlington MA). Eye and head position signals were sampled at 1 kHz, digitally recorded 

(CED power1401 MkII) with the Spike 2 software and later exported into the Matlab (The 

MathWorks) programming environment for off-line analysis. Analysis procedures were 

similar to those already reported (Beraneck et al. 2012). Horizontal eye and head 

movements data were digitally low pass-filtered (cut-off frequency: 40 Hz), and position 

data were differentiated to obtain velocity traces. Segments of data with saccades were 

excluded from analysis. At least 10 cycles were analyzed for each frequency. VOR gain 

and phase were determined by the least-squares optimization method. The variance 

accounted-for (VAF) of each fit was computed, and VAF values were typically between 

0.70–1, where a VAF of 1 indicates a perfect fit to the data (Beraneck and Cullen 2007). 

Figure 22. Example raw traces of the VOR in the dark recorded before (control, blue line) and after 2 

weeks of visuo-vestibular mismatch (adapted, red line). In this example, the vestibular stimulation (head, 

black line) consisted in sinusoidal oscillation in the yaw plane at 0.5Hz and 30°/s. From Carcaud, França 

de Barros et al., 2016 under consideration. 
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For each mouse, a gain and a phase value were measured for the different 

conditions (different frequencies with fixed velocity and different velocities with fixed 

frequency). As the experiment testing at different velocities with the same frequency 

gives similar results, the gain and phase values were averaged among the different 

velocities. This analysis allowed observing the effect of the visuo-vestibular mismatch 

protocol and studying the influence of the retinal slip on the VOR. For this purpose, only 

mice which have a VOR gain >0.5 were retained for further analysis (see Results, VOR 

adaptation protocols). After this selection, only 2 mice with striped device and no mice 

with translucid device were retained from my data set. For this reason, we combined my 

data to another set of data previously recorded in the team. In total, the effect of the 

tested frequency was observed on n=7 mice with the striped device and n=6 mice 

wearing the translucid device. 

 

7. Statistical analyses 

Statistical analyses were performed using Statistica 10 software (StatSoft, France). 

Repeated measures ANOVA (ANalysis Of Variance) as well as Post-hoc Tukey tests 

were performed on VOR gain measures depending on frequency or velocity. Non 

parametric unpaired Mann-Whitney tests were performed for comparing measures 

between control and adapted mice.  The results were considered statistically significant 

when p<0.05. Results in the figures present mean ± SEM. 
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Results 

The aim of this project was to study the neural changes underlying long-term VOR 

adaptation using in vitro whole cell patch clamp electrophysiology on brainstem slices.  

This part of the project was performed immediately after a two-week period of adaptation. 

Additionally, using video-oculography, I studied the role of the retinal slip error signal on 

the adaptation of the VOR. Finally, the test period was extended to 6 days after the 

removal of the device in order to explore the dynamic of the recovery (or re-adaptation 

period). 

I. In vitro electrophysiological experiments 

In order to study the neural changes that occur after the 14 days of VOR adaptation, I 

performed in vitro whole-cell patch clamp electrophysiology and recorded activity on 

brainstem slices of medial vestibular neurons from both adapted and control mice. 

I. 1. Static properties of MVN neurons 

I first studied the effect of VOR adaptation on static properties of MVN neurons. Primarily, 

and due to their pacemaker activity in brainstem slices, the characterization of the 

vestibular neurons responses was made without any external stimulation. The averages 

of the spike shapes and associated inter-spike intervals were used to obtain the 

parameters presented in Table 3: spontaneous firing rate (in spikes/s) and its coefficient 

of variation, the after-hyperpolarization potential (AHP, in mV), the double AHP (dAHP, 

in V/s), the after-hyperpolarization rectification (AHPR, in V/s), the spike threshold 

potential (in mV), the concavity and convexity of the inter-spike interval (in mV). The 

classification of the MVN neurons as type A or B was performed as described previously 

(see Table 2). Shown in Table 3, is also the statistical analysis (Mann-Whitney tests) of 

the difference between control and adapted mice in the three possible combinations 

(pooled control vs pooled adapted; control type A vs adapted type A; control type B vs 

adapted type B). Although most parameters do not reveal statistical significance, there 

is a significant difference between the firing rate (in Hz) of type A control and adapted 

neurons (firing rate of 12.77 vs 6.57, Mann-Whitney test, z z=1.96 p=0.049) and also 

between the amplitude of the after AHP between type B control and type B adapted 

neurons (AHP of 29.30 vs 27.60, Mann-Whitney test, z=-2.20, p=0.027). Overall, these 

results indicate that the electrophysiological signature of type A and type B neurons is 

mostly preserved by the adaptation. However, the decrease of type A neurons resting 
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discharge as well as the diminution of AHP of type neurons indicate that intrinsic 

membrane properties have been modified.
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Table 3. Parameters of the resting spontaneous activity of MVN neurons recorded on control and adapted slices. Static parameters are based on the analysis of the spontaneous pacemaker discharge 

of the neurons and on the quantification of the after-hyperpolarization and interspike interval. Neurons are pooled (all) or segmented in type A and type B. 

 All Type A Type B Statistical tests (Mann-Whitney tests) 

Control Adapted Control Adapted Control Adapted Control vs Adapted 

Number of neurons 38 24 23 7 15 17 All Type A Type B 

Membrane potential 

(mV) 

-47.58 -50.06 -47.68 -48.75 -47.30 -50.63 z=0.00  p=NS z= 0.38 p=NS z= 1.19 p=NS 

Spike threshold (mV) -30.25 -32.57 -30.36 -32.04 -30.58 -32.80 z= 1.59  p=NS z=1.15 p=NS z= 1.36 p=NS 

Firing rate (Hz) 13.10 9.15 12.77 6.57 13.86 10.38 z= 1.88 p=NS z=1.96 

p=0.049 

z= 1.42 p=NS 

Coefficient of variation 0.16 0.22 0.18 0.29 0.13 0.24 z=-1.34 p=NS z=- 1.45 p=NS z=-0.62 p=NS 

AHPR (V/s) 0.28 0.16 0.48 0.38 0.02 0.07 z= 0.93   p=NS z=0.28 p=NS z=- 0.73 p=NS 

dAHP (V/s) 0.53 0.94 0.00 0.00 1.11 1.35 z= -1.23  p=NS NA        NA z=-0.71 p=NS 

AHP (mV) 26.96 27.33 28.63 27.60 29.30 27.60 z= -0.65  p=NS z=-0.28 p=NS z=-2.20 

p=0.027 

Concavity (mV) -1.53 -2.20 -2.31 -4.74 -0.49 -1.09 z= -6.64 p=0 z=1.71 p=NS z=1.21 p=NS 

Convexity (mV) 0.70 0.74 0.50 0.15 0.88 0.95 z= 0.11 p=NS z=1.61 p=NS Z=0.02 p=NS 
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I. 2. Dynamic properties of MVN neurons 

Then the active membrane properties of MVN neurons were examined by the injection 

of step-like stimulations. 

2.1.  Current-frequency curves 

First, I performed current-clamp recordings and used step-like currents to ultimately allow 

the construction of current-frequency curves (I/F curves).  

Figure 23 shows that the current injected has a notorious effect in all control and 

adapted neurons; when the current is increased, the frequency of discharge of the 

neurons also increases (adapted: ANOVA repeated measures, group effect, F1,44=93,52, 

p=0.00; control: ANOVA repeated measures, group effect, F1,68=182,12, p=0.00).  

When pooled together, control and adapted neurons show no significant 

differences between their frequencies of discharge (ANOVA repeated measures, group 

effect, F1,52=0,93, p=NS) (Figure 23A).  

On the other hand, when the segmentation between type A and type B neurons 

is performed, differences between these two types of neurons arise. Adapted type A 

neurons (Figure 23B) show a decrease in the frequency of discharge in comparison to 

control type A neurons (ANOVA repeated measures, group effect, F1,26=7,58, p<0.05). 

By contrast, adapted type B neurons (Figure 23C) show a current-frequency curve 

similar to that of control type B neurons (ANOVA repeated measures, group effect, 

F1,24=0, p= NS).  

This experiment revealed that the long-term adaptation protocol induced a 

decrease of excitability on a specific subpopulation of MVN neurons, the type A neurons, 

whereas it had no effect on type B neurons. This result clearly demonstrated an effect of 

VOR adaptation on dynamic properties of MVN neurons. 
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2.2.  Current-voltage curves 

I then analyzed active membrane properties by the injection of hyperpolarizing and 

depolarizing step-like currents, clamped at different voltages, which allowed to create 

current-voltage relationships.  

These 3 curves (I/V curves) were constructed by plotting the mean amplitude for 

each clamped potential: -70± 20mV; 40±20 mV; -10±20 mV. For graphical purposes, the 

x axis crosses the y axis at the potential clamp in each experiment. Statistical analyses 

were only performed for the clamped potential of -70mV, the sole case in which the 

sample size is big enough to ensure the validity of the statistical tests.  

At a hyperpolarized membrane potential of -70mV, no significant differences were 

found in the response to the injected current between the control and adapted groups 

(ANOVA repeated measures, group effect, F1,53=0.09, p=NS) (Figure 24A). Even after 

the segmentation of MVN neurons in type A and type B, no significant differences were 

found between these I/V curves (type A: ANOVA repeated measures, group effect, F1,30= 

0.01, p=NS; Figure 24B) (type B: ANOVA repeated measures, group effect, F1,21= 2, 

p=NS; Figure 24C). 

A 

B C 
Type A 

All 

Type B 

Figure 23. (A) Mean current-frequency relationship between control (n=38, blue line) and adapted (n=24, red line) neurons 

pooled together. (B) Mean current-frequency relationship between type A control (n=23, blue line) and adapted neurons (n=7, 

red line) and (C) between type B control (n=15, blue line) and adapted neurons (n=17, red line). Error bars represent ± SEM. 
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At a clamp potential of -40mV (Figure 25A) the control and adapted neurons 

show no major differences between the sensitivity to the injected currents, although a 

slight divergence in the curves is noticeable at higher voltages. It seems that type A 

adapted neurons show a decreased slope, i.e. decreased currents for the same 

potentials, in comparison to type A control neurons (Figure 25B). Nevertheless, this 

effect is doubtable by the fact that only 3 type A adapted neurons were recorded in this 

experiment. For type B neurons, there is also a strong difference at lower currents (-20 

pA to 0 pA) between adapted and control neurons. This difference can also be 

questionable since the number of recorded adapted neurons is not big enough, 

confirmed by the clear associated big error bars (Figure 25C). Thus, these results will 

need to be confirmed in future experiments. 

 

 

 

 

B 

A 

C 
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Figure 24. (A) Mean current-voltage relationship between control (n=40, blue line) and adapted (n=24, red line) neurons. 

Potential clamped at -70 mV. (B) Mean current-frequency relationship between type A control (n=25, blue line) and 

adapted neurons (n=8, red line). (C) Mean current-frequency relationship between type B control (n=15, blue line) and 

adapted neurons (n=16, red line). Error bars represent ± SEM. 
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At a clamped potential of -10mV, the control and adapted neurons pooled 

together show no significant differences (Figure 26A). Both adapted type A (Figure 26B) 

and type B (Figure 26C) seem to differ from their control counterparts, but again these 

differences cannot be conferred due to the rather low number of neurons recorded for 

both cases (3 and 9 respectively). 

 

 

A 

C B 
Type A Type B 

All 

Figure 25. (A) Mean current-voltage relationship between control (n=28, blue line) and adapted (n=12, red line) neurons. 

Potential clamped at -40 mV. (B)  Mean current-frequency relation between type A control (n=15, blue line) and adapted 

(n=3, red line) neurons. (C) Mean current-frequency relationship between type B control (n=13, blue line) and adapted 

(n=9, red line) neurons. Error bars represent ± SEM 
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I. 3. Synaptic plasticity after VOR long-term adaptation 

After exploring the static and dynamic intrinsic properties of MVN neurons, the effect of 

VOR adaptation on the synaptic properties was then investigated. 

The efficiency of the synapse between the vestibular afferent and MVN neurons 

was evaluated by recording excitatory post-synaptic currents (EPSCs), evoked through 

the stimulation of the VIIIth (vestibulocochlear) nerve. The amplitude (pA), area under the 

curve (AUC, fC) and time constant (tau, ms) of the evoked EPSCs were calculated in 

control and adapted conditions.  

The AUC of an EPSC measures represents the quantity of charge transfer at the 

level of the synapse. As shown in Figure 27A, the AUC is smaller after long-term VOR 

adaptation compared to control (Mann-Whitney test, z= -2.85, p<0.01), showing that the 

synapse efficiency is decreased in the adapted condition. This decrease could reflect a 

change in the presynaptic release of neurotransmitter or a change in the postsynaptic 

receptor subunits. 

Type A 

B 

A 
All 

Type B 

C 

Figure 26. (A) Mean current-voltage relationship between control (n=14, blue line) and adapted (n=9, red line) neurons. 

Potential clamped at -10 mV. (B) Mean current-frequency relation between type A control (n=9, blue line) and adapted A 

(n=2, red line) neurons. (C) Mean current-frequency relation between type B control (n=7, blue line) and adapted B (n=7, 

red line) neurons. Error bars represent ± SEM. 
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To determine if this decrease in eEPSCs AUC depends on changes in the 

composition of the postsynaptic receptors, I explored the kinetic characteristics of the 

EPSCs. The eEPSCs time constant (τau) is not different between the 2 groups (Figure 

27B, Mann-Whitney test, z=-0.88, p=NS) while its amplitude is smaller following the long-

term adaptation in comparison to control mice (Figure 27C Mann-Whitney test, z=-2.58, 

p<0.01). This result is also confirmed in Figure 27D, representing the distribution of the 

eEPSCs amplitude in both groups (control and adapted), showing that EPSCs in adapted 

mice display a smaller amplitude on average (~50-100pA) when compared to those of 

control mice (200-400pA). As the time constant is similar between the 2 groups, it 

suggests that the receptor units involved in the eEPSCs responses are qualitatively not 

different between adapted and control mice. Thus, the observed change could reflect a 

change in the amount of postsynaptic receptors expressed at the membrane of MVN 

neurons. 

 Overall, this experiment demonstrates that the long-term VOR adaptation also 

depends on the reduction of the efficiency of the synapse between the vestibular 

B A 

C 
D 

Figure 27. A) Evoked EPSCs area under de curve (AUC in fC) on control (n=17, blue bar) and adapted mice (n=31, red 

bard), (B) time constant (tau in ms) and (C) amplitude (in pA) recorded from control neurons (n=17, blue bars) and after 

VOR adaptation (n=31, red bar). Error bars represent ± SEM. (D) Distribution of EPSCs amplitude clearly showing that 

EPSCs after VOR adaptation have smaller amplitudes than on control. 
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afferents and the second-order vestibular neurons, in addition to the plasticity on intrinsic 

properties of MVN neurons found previously. 

 

II. Immunohistochemistry experiment 

 

Several hypotheses could explain the observed synaptic plasticity within the vestibular 

nucleus: i) a change in the quantity of the neurotransmitters release; ii) a change in the 

quantity of receptors expressed; iii) a change in the affinity between the 

neurotransmitters and the receptors.  

Hence, the decrease of the EPSCs amplitude in adapted mice (seen in Figure 

27) could be related to a decrease of the expression of the receptors involved in synaptic 

transmission between the VIIIth nerve and the vestibular neurons. In order to this 

hypothesis we performed immunohistochemistry analysis on two of the receptors known 

to mediate the main vestibular inputs: NMDA and AMPA (Sans et al., 2000). The 

experiments were performed for both receptors on control and adapted mice. 

Figure 28 shows the receptor-specific staining results for both control and 

adapted conditions for NMDA receptors (NR2 subunit), AMPA receptors (subunit GluR2 

and GluR3) and for non-specific staining (negative control). Images of the Purkinje cells 

were taken in order to confirm that the staining was successful (positive control).  
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Figure 28. Immunohistochemical detection of the NMDA and AMPA receptors in the MVN of control (left panel) and adapted (right panel) mice. Positive controls are showed with images of the 

cerebellum Purkinje cells in the cerebellum. Scale bars: 50μm. 
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Although both receptors were detected in the MVN, NMDA (Mann-Whitney test, 

z=0.24, p=NS) and AMPA (Mann-Whitney test, z=0.24, p=NS) staining results show no 

significant differences between control (n=9) and adapted (n=8) conditions (Figure 29). 

This result suggests that the decrease of synaptic efficiency cannot be linked to a 

decrease of a specific subtype of glutamatergic receptor. 

Overall, the results presented so far extend and complete a comprehensive 

study, which demonstrates that long term VOR adaptation depends on changes within 

the brainstem, at the level of the MVN neurons. These changes involve both a change 

in the synaptic properties that links vestibular afferents to central vestibular neurons and 

changes in the intrinsic properties of vestibular neurons, and more specifically the 

subpopulation of type A neurons. 

Given these results, I conducted additional exploratory experiments which set the 

basis of future studies: first, I explored the use of genetically-engineered mice strains to 

allow future specific recordings of type A neurons. Second, I performed behavioral 

experiments to determine the role of the retinal slip in the VOR adaptation and extended 

the tests to the first week following removal of the visuo-vestibular mismatch.   

 

 

 

 

A B 

Figure 29. Mean specific staining for NMDA (NR2) (A) and AMPA (GluR2 and GluR3) (B) expression in the MVN in control 

(blue bars) and adapted conditions (red bars). Error bars represent ± SEM 
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III. Identification of neurons 

As presented in Figure 23B, long-term adaptation decreases the frequency of discharge 

of type A neurons when compared to their control counterparts. Because Type A neurons 

are in large part GABAergic (Rossert and Straka, 2011, Eugene et al., 2007, Eugene et 

al., 2011). we decided to observe the presence and the innervations of this subpopulation 

of neurons by using three different lines of genetically-engineered mice with fluorescent 

GABAergic neurons: GFP (GAD67), tdTomato Sst-Cre and Pvalb-Cre fluorescent 

proteins.  

Using the GAD67 mice, this experiment allowed to visualize the anatomic 

distribution of all the GABAergic neurons present on the MVN. As expected, the GAD67-

GFP (Figure 30A) neurons showed a wide spread distribution across the MVN.  

GABA neurons expressing somatostatin (Sst) were also present in the MVN. The 

somatostatine-positive neurons (Figure 30B) are present in fewer quantities but in an 

even fashion throughout the MVN even though the number of neurons present is inferior 

in comparison to GABAergic neurons stained in the GAD67 line. 

Parvalbumine-positive neurons distribute heterogeneously across the MVN, with 

a more peripheral expression, as it can be seen on Figure 30C.  A scheme of the region 

of the brainstem (specifically, medial vestibular nucleus) where the images were taken 

is shown in Figure 30D. 

This experiment shows the heterogeneous expression in the MVN of the different 

GABAergic neurons. It also encourages further experiments that will target a specific 

subset of vestibular neurons. 
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Figure 30. Confocal microscopy images of 80 μm coronal brainstem slices of transgenic mouse lines (20x and 40x). 

White arrows indicate the neuron targeted in each line. (A) GAD67-GFP positive neurons; (B) somatostaine-postive 

neurons (Sst-Cre); (C) parvalbumine positive neurons (Pvalb-Cre). Scale bars represent 100 μm. (D) Associated 

schematic representation of the location of the images in the brainstem. 
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IV. VOR adaptation protocols 

The protocol used during my master thesis is a new paradigm which has never been 

used in rodents. It therefore raises many experimental questions, some of which are 

addressed in the following experiments. 

IV. 1. The learning persists for several days 

The first question is whether this long term adaptation engraved within the brainstem 

persists after the removal of the device, i.e how rapid is the unlearning (or the 

readaptation)? To investigate this point, VOR was tested before and several days (0; 1; 

2; 6 days) after the end of the 14 day of visual vestibular mismatch (VVM). The data 

presented in the next figure follow the selection criteria mentioned in the Materials and 

Methods. 

Analyzing the VOR responses under the same conditions at several time points 

allows to answer this question. Horizontal VOR in dark was recorded before and after 

VVM, at a fixed frequency of 0,5 Hz and with several velocities (20°/s-50°/s). Since the 

VOR gain was always similar between the different velocities tested, the performances 

at different velocities were averaged for all the mice tested and plotted against time. 

Figure represents the mean VOR gain normalized to the “before” (day prior to the VVM) 

value for the mice adapted to the striped device. The gain values for the mean of the 

velocities tested are statistically different during the different days measured (ANOVA 

repeated measures, time effect, F4,24=13,62, p<0.001). After the two weeks of VVM (day 

0), there is a significant decrease of approximately 70% of the VOR gain. This notable 

decrease between “before” and “day 0” confirms that the striped device induces a 

marked VOR adaptation (before vs day 0, Tukey HSD, p<0.001). In addition, the VOR 

gain remains very low and doesn’t go back to the initial value during the 6 following days 

(before vs day1, before vs day2, before vs day6: Tukey HSD, p<0.001). After a week of 

readaptation the gain appears to be still decreased by about 50% of its initial value, not 

changing significantly since day 0 until the end of the experiment (day 0 vs day 6, Tukey 

HSD, p=NS). This indicates that the adaptation persisted and that the learning signal has 

been engraved in the oculomotor circuitry. Thus, validating the notion of “long term”, very 

persistent, memory used throughout my master thesis. 



FCUP/ICBAS/CNPP 

Brainstem plasticity following long-term adaptation of the vestibulo-ocular reflex 
48 

 

 

To thoroughly examine the individual variability between each mouse in response 

to the adaptation, I plotted the mean VOR responses per each mouse trough time 

(Figure 32). This graph confirms the response found in Figure 31; every mouse shows 

that the adaptation occurred at day 0 and its subsequent persistence along the next six 

days. This figure emphasizes that, despite a strong inter individual variability, the vast 

majority of the animals do not recover a pre-adaptation gain in 6 days of unlearning. 

 

 

 

 

 

 

 

 

 

 

Figure 31. Mean VOR gains plotted in function of time (days) (each point represents the average of the tested velocities: 

20°/s; 30°/s; 40°/s; 50°/s; fixed frequency of 0,5 Hz) for the striped device (red line, n=7). For each temporal scale 

presented from now on, the “Before” day represents the day prior to the adaptation and “Day 0” the day in which the 

device is removed from the mouse. Hence, between “before” and “day0” there is a difference of 14 days. Error bars 

represent ± SEM. 

Figure 32. Normalized mean of VOR gains (tested velocities: 20º/s, 30º/s, 40º/s and 50º/s; fixed frequency of 0,5Hz) 

plotted in function of time (in days) for each mice using the striped device (n=7). 
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IV. 2. Effect of the tested frequency on the VOR  

In the previous shown experiments, the persistency of the learning was observed at a 

particular frequency of 0.5Hz. Therefore, I next questioned whether the observed VOR 

adaptation happens at all frequencies. For that purpose, VOR was recorded in dark with 

a fixed velocity of 30 º/s with different frequencies ranging from 0.2 to 2 Hz (Figure 33). 

VOR adaptation was induced for the whole range of the frequencies tested. This 

is demonstrated by the fact that the gain values were statistically different for the different 

frequencies tested (ANOVA, repeated measures, frequency effect, F3,21=73,47, p=0.00). 

Remarkably, between 0.2Hz and every tested frequency as well as between 2 Hz and 

every tested frequency, the gain values are always statistically different for the days 

tested (0.2 Hz vs 0.5 Hz, 0.2Hz vs 1 Hz, 0.2 Hz vs 2Hz: Tukey HSD, p<0.01). On the 

other hand, at all the days tested, the gain values were statistically not different between 

0.5Hz and 1 Hz (Tukey HSD test, p=N.S); despite not existing a statistical difference at 

1Hz the recovery is faster than as 0.5Hz. 

The gain values were also statistically different for the different days tested 

(ANOVA repeated measures, time effect, F4,28=26,60, p=0.00). This means that the 

adaptation persists during all the days and for every tested frequency. At all the 

frequencies tested, the gain values were only statistically not different between day 1 

and day 2 (Tukey HSD test, p=N.S), day 1 and day 6 (Tukey HSD test, p=N.S) and day 

2 and day 6 (Tukey HSD test, p=N.S). This means that, from day 1 until day 6, the gain 

values stay more or less the same. For every frequency tested there is also a notorious 

decrease in the gain between before and after the VVM protocol (before vs day 0, Tukey 

HSD test, p<0.001), demonstrating that VOR adaptation was induced for the range of 

frequencies tested. Additionally, between before and every tested day, the VOR gain 

values were always statically significant (before vs day 1, before vs day 2, before vs day 

6: Tukey HSD test, p<0.001), meaning that the VOR gains recoveries did never fully 

occur. 

Nonetheless, it is possible to observe that the adaptation endured longer for the 

lowest frequencies (0.2 Hz and 0.5Hz) compared to the highest frequencies (1 Hz and 2 

Hz) since the VOR gains values stay further away from its corresponding before value. 

Hence, it is possible to say that VOR adaptation is frequency-dependent and its recovery 

is more efficient at higher frequencies. This result illustrates the frequency-dependent 

differential role of the visual inputs (and of the optokinetic system) in the tuning of the 

vestibular system. It also shows that adaptation is most efficient and persistent at the 
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frequency where most of the natural head movements of the mouse occur (Beraneck et 

al. 2008). 

 

 

 

 

 

 

 

 

 

IV. 3. The retinal slip drives motor learning 

To determine if the retinal slip drives the motor learning, as it is hypothesized in 

the literature, I compared the VOR responses of the striped and translucid devices (see 

Materials and Methods). Therefore, I performed the same experiments referred above in 

mice adapted with a translucid device that provides a less contrasted visual surround. 

Horizontal VOR in dark was recorded before and after VVM, at a fixed frequency 

of 0,5 Hz and with different velocities (20°/s-50°/s). Since the VOR gain was always 

similar between the different velocities tested, the performances at different velocities 

were averaged for all the mice tested and plotted against time. Figure 34 represents the 

mean VOR gain normalized to the “before” (day prior to the VVM) value for the mice 

adapted to the striped device. The gain values for the mean of the velocities tested are 

statistically different during the different days measured (ANOVA repeated measures, 

time effect, F2,10=11,60, p<0.01) Interestingly, the decrease in VOR gain from “before” to 

“day 0” was the same reported for the striped device (approximately 70%) (before vs day 

0, Tukey HSD, p<0.01). This suggests that the marked decrease seen for both conditions 

can either depend on the retinal slip or on a decalibration of the VOR. Contrarily, in the 

translucid condition, 2 days after VVM removal the VOR gain mostly returns to its initial 

value (before vs day 2, Tukey HSD, p=NS). This rapid unlearning suggests that the 

strength of the learning does depend on a strong retinal slip. 

Figure 33.  Mean VOR gain, in function of time (days), per each tested frequency at a fixed velocity of 30°/s. Black 

line: 0.2 Hz; red line: 0.5 Hz; blue line: 1 Hz; green line: 2 Hz. Striped condition. Error bars represent ± SEM. 
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To confirm each mice’s response to the adaptation, I plotted the mean VOR 

responses per each mouse trough time (Figure 35). Although mouse E and F do not 

follow the trend, Figure 35 shows that the adaptation occurred at day 0 and that there 

was less persistency than with the stripped helmet along the next two days.  

Following, I studied at which frequencies the VOR decrease happens. For that 

purpose, VOR was recorded in dark with a fixed velocity of 30 º/s with different 

frequencies ranging from 0.2 to 2 Hz. 

Figure 34. Mean VOR gains plotted in function of time (days) (each point represents the average of the tested 

velocities: 20°/s; 30°/s; 40°/s; 50°/s; fixed frequency of 0,5 Hz) for the translucid device (green line, n=6). For each 

temporal scale presented from now on, the “Before” day represents the day prior to the adaptation and “Day 0” the 

day in which the device is removed from the mouse. Hence, between “before” and “day0” there is a difference of 14 

days. Error bars represent ± SEM. 

Figure 35. Normalized mean of VOR gains (tested velocities: 20º/s, 30º/s, 40º/s and 50º/s; fixed frequency of 0,5Hz) 

plotted in function of time (in days) for each mice (n=6). Translucid condition. 
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VOR adaptation with the translucid device was also induced for the whole range of the 

frequencies tested (ANOVA repeated measures, frequency effect, F3,15=22,45, p<0.001). 

Similarly to the striped condition, at the lowest frequencies the VOR gains have the 

lowest values throughout the duration of the protocol, with statistical significance when 

compared to the highest frequencies (frequency 0.2Hz vs 1Hz, 0.2 Hz vs 2Hz, 0.5 Hz vs 

1Hz, 0.5Hz vs 2Hz: Tukey HSD test, p<0.001). On the other hand, no differences were 

found between the highest frequencies (1Hz vs 2Hz Tukey HSD test, p=N.S). 

The gain values were also statistically different for the different days tested 

(ANOVA repeated measures, time effect, F2,10=18,62, p<0.001). For every frequency 

tested there is also a notorious decrease in the gain between before and after the VVM 

protocol (before vs day 0, Tukey HSD test, p<0.01), demonstrating that VOR adaptation 

was induced for the range of frequencies tested. Nevertheless, for all the frequencies 

tested, there were no statistical differences between before and day 2 (before vs day 2, 

Tukey HSD test, p=N.S), meaning that the gain returned to its initial values revealing a 

weak and, therefore, short VOR adaptation (Figure 36).  

 

 

 

 

 

 

 

 

 

Overall, these results demonstrate three main points. First, that the adaptation 

persists for several days after the removal of the device, which confirms that long-term 

adaptation process, is at stake. Second, that adaptation is most persistent at frequencies 

below 0.5HZ. Third, and final, that adaptation depends on a strong retinal slip, which 

drives the motor learning. At day 0 however, the VOR decreases are multi causal as they 

can be interpreted as a combination of both a reduction of the VOR (specific learning, 

frequency dependent) and as a decalibration of the VOR (unspecific and frequency 

independent). 

Figure 36. Mean VOR gain, in function of time (days), per each tested frequency at a fixed velocity of 30°/s. Black line: 0.2 

Hz; red line: 0.5 Hz; blue line: 1 Hz; green line: 2 Hz. Translucid condition. Error bars represent ± SEM 
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Discussion  

During the course of this project, a novel protocol to study long-term VOR adaptation 

was used. The cellular and molecular alterations that occur after VOR long-term 

adaptation were studied through the comparison between control and adapted mice. We 

obtained first direct evidence that long-term VOR adaptive memory is consolidated within 

the vestibular nuclei, especially at the synapse between the first and second-order 

vestibular neurons, accompanied with modifications of the excitability of a subpopulation 

of neurons (type A) in the medial vestibular nucleus (MVN). With the VOR adaptation 

protocol we demonstrated the persistency of the adaptation, especially at the lower 

frequencies, and confirmed the role of the retinal slip in driving the motor learning.  

The advantages and limitations of the protocol we used to create the visuo-

vestibular mismatch are hereby first discussed followed by the cellular and molecular 

hypothesis related to our findings. 

1. VOR adaptation protocol 

1.1. Advantages of the VVM protocol 

VOR adaptation is commonly studied in humans and monkeys through the use of prisms 

that are worn by the subject for several days (Anzai, Kitazawa et al. 2010). On the other 

hand, in rodents the VOR gain-down adaptation is usually induced by the use of a 

turntable in which the head-fixed mouse is rotated while its visual field is also rotated 

(Broussard and Kassardjian, 2004). Hence, a visuo-vestibular conflict is created making 

VOR counterproductive. The long term VOR adaptation is then reached through iteration 

of an 1h training session on numerous consecutive days, which makes it a methodology 

that dispends a lot of experimental time, adding to the fact that usually a lot of mice need 

to be trained and recorded (Raymond and Lisberger 1996, Boyden and Raymond 2003). 

Besides, head-fixed protocols restrain the mouse to pre-defined frequencies/velocities 

and to training sessions that go on just for a limited amount of time per day. In addition, 

the vestibular stimulation is not generated actively since they impose involuntary 

movements to the mouse, thus representing a “passive” learning which greatly influences 

the vestibular processing (Cullen, 2012). While most of the in vivo experiments are 

performed on monkey and cats, in vitro cellular and molecular work is conducted on 

rodents. Due to this duality, the possible mechanisms of cellular plasticity that take place 
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during VOR adaptation are still considered with skepticism (Goldberg and Oxford 

University Press., 2012). 

The inspiration for the presented visuo-vestibular mismatch (VVM) protocol in this 

project came to resolve part of these experimental discrepancies. The methodology 

developed by my group surpasses the experimental restrictions mentioned in the above 

paragraph. It consists in a VVM induced by a helmet-like device on the mouse’s head 

that enables a free behavior, as do the prisms in human and monkey. Consequently, in 

this innovative protocol, the uninterrupted 14-day process of adaptation causes VOR 

learning through the response to voluntary natural head movements.  

As we will see in the following parts of the discussion, this new protocol makes it 

possible to perform in the same animal experiments at the behavioral and 

cellular/molecular level, opening a new era in the study of VOR motor learning. 

 

1.2. VOR adaptation following VVM protocol 

Before my thesis, my group was already using the VVM with stripped helmet. However, 

the protocol was applied on all mice without any additional criteria. The team had 

produced data demonstrating that, in average, 15 days of VVM produce a roughly 50% 

VOR gain diminution. As we have mentioned above, this experimental paradigm is closer 

from the in vivo models than from the rodent head-fixed models used so far. However, 

we also have validated that the induced VOR adaptation resembles to the one produced 

during head-fixed protocols in terms of gain reduction and phase adjustments. This is a 

crucial point as it suggests that the cellular/molecular mechanisms are, in part, 

comparable. 

On the group of mice I worked with, I noticed that some had a rather low initial 

gain (“before adaptation”). As we wanted to study the adaptation, with a low initial gain, 

any occurring changes would not have been adequately noticed. Therefore, a new 

criteria of a minimum VOR gain before adaptation of 0.5 was established. Like that, the 

decrease in the gain after the 14 days of adaptation could have an ample magnitude in 

order to be duly noted. This criteria, selected in the striped condition only two mice and 

discard all the four mice adapted using the translucid device. Even though throughout 

the whole protocol all the mice had the same age (starting the protocol at 3 weeks and 

ending at 6 weeks), the difference in the gains recorded between them could be due to 

biological differences. For example, a visual deficit or even the onset of puberty, which 

usually is variable even among animals of the same inbred strain (Fox, 2007). This 



FCUP/ICBAS/CNPP 

Brainstem plasticity following long-term adaptation of the vestibulo-ocular reflex 
56 

 

 
crucial methodological point has been identified during my master thesis. Its 

consequence is that in future studies, it will be necessary to record VOR before to induce 

VVM and to keep for in vitro work only animals which have an already >0.5 VOR gain. 

1.3. Effect of the retinal slip on the VOR adaptation and recovery 

The use of the two different patterns on the device (striped or translucid) was done with 

the purpose to test the effect of the retinal slip in the VOR adaptation. The retinal slip is 

strong with the striped device but probably minimal or absent with the translucid device. 

The VOR recordings showed that, in order to have a strong VOR adaptation, the 

presence of a strong retinal slip is needed. Although, the 14 days of VVM protocol induce 

a gain-down adaptation of the VOR with or without retinal slip, there is a notorious 

difference on the recovery of the VOR gain. The striped device, after the six days of the 

removal of the device, doesn’t recover while, the translucid device’s gain returns to its 

initial value after two days. Therefore, at day 0 the VOR decreases are multifactorial as 

they can be faced as a combination of both a reduction of the VOR (specific learning, 

frequency dependent) and as a decalibration of the VOR (unspecific and frequency 

independent). 

 

1.4. Effect of the tested frequency on the VOR adaptation 

Using this VVM protocol, a clear VOR adaptation is also shown at all tested frequencies 

(0.2Hz, 0.5Hz, 1Hz and 2Hz). This decrease is analogous to the ones obtained in the 

mentioned traditional head-fixed protocols (Boyden et al. 2004, Kassardjian et al. 2005). 

But the VOR adaptation has different effects on the tested frequencies.  

When the VOR is tested for low frequencies, for the striped condition, there is no 

recovery during the six days following the removal of the device. This can be related to 

the fact that, naturally, mouse’s head movements are done at low frequencies and thus, 

should be the ones more greatly affected by the adaptation (Beraneck et al., 2008). 

Additionally, the optokinetic reflex (OKR), which complements the VOR to stabilize vision 

during low frequency movements (Faulstich et al., 2006, Goldberg and Oxford University 

Press., 2012), is most efficient at lowest frequencies. Since the VOR adaptation is 

visually-induced, it is understandable that the adaptation concerns the frequencies 

where the visual, and not the vestibular system, is most efficient. 

Interestingly, previous studies have demonstrated that the spread of adaptation 

is frequency-selective: when adaptation is performed at low frequencies like 0.2Hz or 

0.5Hz, the learning spreads to other frequencies. If the learning is performed at a higher 
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frequency (1 or 2Hz), it remains specific to that particular frequency (Boyden et al. 2004, 

Kassardjian et al. 2005). In the case of the VVM, we have demonstrated that adaptation 

occurs around frequencies of 0.2 to 0.5Hz, and supposedly spreads to higher 

frequencies. Nevertheless, its retention seems to be more consistent at these 

frequencies where the adaptation occurred.  

The VOR recovery was found to occur faster at higher frequencies than at low 

frequencies. At high frequencies the translucid condition shows recovery at day 2 while, 

in the striped condition, the recovery comes close to completion at day 6. This shows 

that VOR long-term adaptation was not induced at 1Hz and 2Hz in the translucid 

condition, and less robust in the striped condition.  This could be due to the fact that the 

response to higher frequencies is dominated by the vestibular inputs of the VOR. These 

inputs are known to be governed by AMPA/NMDA receptors (Sans et al., 2000), which 

were tested immunohistochemically and qualitatively showed no alterations. Therefore, 

further pharmacological and electrophysiological studies will be needed in order to 

quantify the NMDA and AMPA components of the responses. 

Overall, these results indicate that VOR adaptation is frequency dependent and 

that the VVM paradigm is more efficient for the frequencies below 0.5Hz. 

 

2. In vitro electrophysiological experiments 

In vitro patch-clamp recordings were performed on MVN neurons of brainstem slices 

from adapted and control mice. These recordings allowed studying the alterations 

caused by the VOR learning protocol to the neurons’ intrinsic and synaptic properties. 

2.1. Plasticity of the synaptic properties  

Changes in the synaptic properties of MVN neurons were early on postulated as a 

possible adaptive mechanism following VOR learning (3.1. Possible sites of 

motor learning). Recently, Mitchell and her team (Mitchell et al., 2016) have 

demonstrated in vivo that plasticity in the brainstem was presumably mediated by 

synaptic changes in the VOR pathway. 

In our study, we have observed a consistent decrease in the EPSCs amplitude, 

which is the first demonstration of an in vitro modifications following VOR adaptation 

paradigm. The decrease of synaptic efficiency at the level of vestibular afferent synapse 

onto vestibular nuclei neurons is in direct line with theoretical evidence which have 
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postulated a long-term change at these synapses (Masuda and Amari 2008, Menzies et 

al. 2010, Yamazaki et al. 2015).  

What are the mechanisms underlying this decrease? In these experiments, we 

observed a decrease in the evoked excitatory post-synaptic currents (eEPSCs) area 

under the curve, meaning that adapted MVN neurons have a decrease in the quantity of 

ions (cations) released through the membrane when compared to control ones. This 

decrease of synaptic efficiency in adapted neurons is further confirmed with the decrease 

in the EPSC amplitude. The decrease of the EPSCs amplitude could be explained by 

different hypothesis: either a decrease of the release of the neurotransmitter quantity, or 

a decrease of the affinity of the excitatory receptors or finally a decrease of the number 

of receptors.   

The release of neurotransmitter quantity can be tested by analyzing the miniature 

EPSCs, which reflect the spontaneous release of neurotransmitter vesicles. Recently, 

my group has recorded and analyzed the miniature EPSCs from control and adapted 

mice: this specific analysis demonstrated no difference between the 2 conditions, which 

indicates that the presynaptic release of neurotransmitter is probably not affected by the 

VVM. 

In order to test the hypothesis of a decrease of the number of receptors, 

immunohistochemistry experiments were performed in brainstem slices of control and 

adapted mice. Both NMDA and AMPA receptors were detected in the MVN but no 

significant differences were found in the quantity of these receptors between control and 

adapted conditions. Hence, this result suggests that the decrease of synaptic efficiency 

is not related to a decrease of a specific subtype of glutamatergic receptor. To fully affirm 

this, more experiments would have to be done in the remaining subunits of both 

receptors (GluR1 and GluR4 as well as NMDAR1).  

 

2.2. Plasticity of the intrinsic properties 

Changes in the intrinsic excitability of MVN neurons were also hypothesized as a 

possible adaptive mechanism following VOR learning (du Lac, 1996).  

First, the static properties of MVN neurons were studied. No major modifications 

after VOR adaptation were found. In another model of post-lesional plasticity, the static 

properties of MVN neurons were extensively modified, that is the electrophysiological 

signatures of type A and type B neurons revealed in depth modifications of the 

conductances implicated in the pacemaker activity of the neurons (Beraneck et al., 2003, 
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Beraneck et al., 2004). This is not the case following VOR long term adaptation. 

However, a change of the spontaneous firing rate of type A neurons was found between 

control and adapted mice, as well as a slight modification of the amplitude of the AHP of 

type B neurons. These 2 results have no direct functional interpretation, but are evidence 

of on-going plastic changes that differentially affect both subpopulations of neurons. 

I then studied the dynamic properties of MVN neurons and found a modification 

of sensitivity revealed by the I/F curves in type A neurons after adaptation, while type B 

neurons remained unaltered. At this point, we have no evidence suggesting which 

conductances have been modified. These could obviously be the Na+ and K+ 

conductances implicated in the generation of the action potential, however we found no 

differences in the spike per se. Another possibility would be a change in the calcium 

homeostasis of the neurons, for instance in the calcium-dependent K+ conductances, 

calcium conductances and calcium buffering proteins which have been shown to be 

regulators of central vestibular neurons excitability (Eugene et al., 2011). 

This result was further confirmed by the I/V curve at the highest clamped potential 

(-10mV and even -40mV), showing that type A adapted neurons, in comparison to type 

A control neurons, have decreased currents for the same injected potentials, 

demonstrating a decreased excitability. Even though there is not enough data to ensure 

the reliability of this last result, the observed trend confirms the result found with the I/F 

curve. However, this effect was not observed at really hyperpolarized membrane 

potential of -70mV. One putative explanation is that the conductances implicated in the 

responses differ greatly between hyperpolarized versus depolarized states. 

  Overall, our results indicate that type A neurons are probably a key player in the 

adaptive process. Type A neurons are thought to be local GABAergic interneurons or 

GABAergic neurons implicated in the commissural system. They however constitute a 

heterogeneous population and it will be therefore important in the future to be able to 

further discriminate the neurons according to additional criteria (Kodama et al., 2012) as, 

for instance, using genetically-engineered mice lines. 

 

2.3. Heterogeneous population of MVN neurons 

As mentioned, we found a decrease in the average size of the EPSCs from the vestibular 

afferent to the second order neurons. Based on previous experiments (Lisberger and 

Pavelko, 1988), it is probable that this decrease is not found in every vestibular neuron. 
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Hence, vestibular neurons constitute a heterogeneous population according to their 

neurotransmitter content, inputs received and projection areas.  

The above figure summarizes different group of vestibular neurons according to 

the input they receive from the flocculus; their neurotransmitter content and their 

projecting area. MVN neurons that receive cerebellar inputs are commonly called 

flocculus target neurons (FTNs). FTN integrate cerebellar and vestibular information and 

should have an instrumental role in the transfer of plasticity after long-term VOR 

adaptation (Broussard and Kassardjian, 2004). The role of Purkinje cells is to integrate 

the error signal with vestibular information and to regulate the activity of the vestibular 

neurons (Ramachandran and Lisberger, 2008). 

On the long term, how could PCs affect FTNs? Our group results show that long-

term VOR adaptation induces a decrease of the efficiency of the vestibular nerve 

synapses onto MVN neurons, probably trough long-term depression (LTD). So far, FTNs 

were not specifically targeted so the data reported is the mean reduction of the 

heterogeneous MVN population. It was previously shown that plasticity at this synapse 

can be induced by high frequency stimulation of vestibular afferents, and that the 

Figure 37. Circuitry of structures involved in VOR and its adaptation. First-order vestibular neurons (1°VNs) send head 

movement information to the medial vestibular nucleus (MVN). Subpopulations of second-order vestibular neurons (2°VNs) 

are partitioned depending on the density of innervations received from the flocculus and their neurotransmitter content. 

Densely or sparsely innervated glycinergic (blue) floccular target neurons (FTNs) project ipsilaterally to abducens nucleus 

(Abd), densely innervated glutamatergic FTNs (red) project ipsilaterally to oculomotor nucleus (Omn), sparsely innervated 

FTNs or non-FTNs glutamatergic neurons project contralaterally to abducens nucleus, and GABAergic FTNs (green) project 

to the contralateral MVN. Motoneurons (MNs) control the eye muscles contraction. During adaptation, the retinal slip error 

signal is sent to the inferior olive (Inf olive) and then to the cerebellum by climbing fibers (CF). Purkinje cells (PCs) integrate 

the error signal with vestibular information conveyed by mossy fibers (MF) and parallel fibers (PF) of granular cells (GCs), 

and in turn regulate the activity of 2° VNs. From Carcaud, França de Barros et al.,2016 (under consideration). 
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direction of the plasticity is dependent on both the developmental stage (Puyal et al., 

2003) and the stimulation pattern (Scarduzio et al., 2012) at resting potential. Moreover, 

previous studies found that this plasticity is also dependent on the postsynaptic 

membrane potential; short burst stimulation resulted in LTD if the neuron was at its 

resting potential or in LTP if the neuron was hyperpolarized (McElvain et al., 2010). 

These data suggest that PC inhibition could guide the strengthening of vestibular nerve 

synapses onto vestibular nucleus neurons. Therefore, the possible LTD reported could 

be explained by a mechanism of heterosynaptic plasticity. More experiments will be 

needed in order to decipher the mechanisms which underlie the transfer of memory from 

cerebellum to the brainstem. 
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Future perspectives 

Following this master, many question arises which would deserve additional 

experiments. Some of which have already been presented in the discussion. I have listed 

below additional perspectives ranging from the behavior to the cellular and molecular 

level. 

1. Different timescales 

As can be seen, the VVM protocol performed is perfect to study any desired 

timescale (short or long). It is known from post-lesional studies that neuronal membrane 

properties modifications are qualitatively and quantitatively wider after a month of 

adaptation than after 10-15 days (Beraneck and Idoux 2012). Therefore, as future 

perspectives for the behavioral experiment, we intend to perform behavioral tests in 

which the time of the VVM protocol is extended from 14 to 30 days. This extension would 

enable to see the differences in the strength of the adaptation as well as how is the 

recovery affected by a longer time period.  

2. A pathway-specific adaptation? 

Another point which offers experimental perspective is to test whether the 

adapted neurons are specific of the vestibulo-ocular pathway, or if other vestibular-

dependent pathway are also affected? For instance, the vestibular system is crucial for 

postural control through the vestibulo-spinal pathway. Are the descending outputs from 

the vestibular neurons modified following VOR long term adaptation? If that is the case, 

is this compensated by a change of the ascending proprioceptive inputs to the vestibular 

neurons? As seen, many intriguing questions arise from the present VVM protocol which 

all would deserve specific experimental testing. 

3. Mechanisms of VOR learning 

At this point, the hypothesis of a modification of the affinity of the receptors is the 

only one which has not been specifically tested. We could do so by using antagonists for 

the main contributors of the excitatory glutamatergic responses in the MVN: NMDA and 

AMPA receptors. Following the previously described procedure (see Materials and 

Methods, 3.2. Whole-cell patch clamp recording protocol), eEPSCs would be recorded 

first without and then with antagonists (for example, for NMDA: D-APV and for AMPA: 

NBQX) and both responses would be compared. Using the antagonists will make it 
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possible to isolate the relative contribution of the NMDA and AMPA receptors, and to 

identify putative changes in the dynamic of the receptors. 

 

4. A specific role for type A interneurons 

As we found a change in the intrinsic properties of only type A neurons after VOR 

adaptation, we can wonder whether the observed synaptic plasticity only appears on this 

subpopulation of MVN neurons. Our results so far indicate that this is probably not the 

case, as the decrease in EPSC was observed on an average population constituted of a 

majority of type B neurons. So, if plasticity is not restricted to this population, what makes 

the type A neurons intrinsic properties more likely to be adapted? 

To answer this question, we could record from only type A neurons, which are 

thought to be GABAergic, and study the effect of VOR adaptation. To allow recordings 

of only GABAergic neurons, it would be possible to use transgenic lines expressing 

fluorescence in this kind of neurons. In this work, I began to use three different transgenic 

lines, which allowed seeing the heterogeneous expression of the different GABAergic 

neurons in the MVN.  

The distinction between type A and type B could also be done using the 

genetically-engineered mice strains GAD67, in which the mouse expresses fluorescent 

GABAergic neurons (type A), as well as the YFP strain, in which the mouse has 

fluorescent glutamatergic/glycinergic neurons (type B). Our lab already has the GAD-67 

mouse strains and will soon receive the YFP mouse line. Future experiments will 

therefore be possible using this genetic approach. 

Furthermore, using Sst-Cre and Pvalb-cre expressing tdTomato fluorescent 

protein, we can narrow down the possible existence of subtypes of type A neurons. 

Overall, it will enable to study how the VOR adaptation affects both subpopulations and 

to sort out MVN populations according to their neurotransmitter content.  
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Conclusions 

In conclusion, the presented study provides evidence in favor of the plasticity in the 

brainstem. Concretely, that long-term VOR adaptation is consolidated within the 

vestibular nuclei at the synapse between the first and second-order vestibular neurons. 

VOR memory is consolidated through a transfer from the cerebellum to the 

vestibular nuclei. This transfer mechanism for “system consolidation” is postulated to 

relieve the cerebellar cortex and make it capable of learning new motor skills (Nagao et 

al., 2013, Clopath et al., 2014). Comparable mechanisms have also been reported in 

models of non-motor memories, for instance declarative memory transferred from the 

hippocampus to the cerebral cortex (Frankland and Bontempi, 2005, Takashima et al., 

2006, Durrant and Lewis, 2009), as well as for associative memories transferred from 

the antennal lobes to the mushroom bodies in invertebrates (Carcaud et al., 2015). 

The perspective that not all neurons react equally regarding pathological 

situations motivates future investigation in this direction. Understanding the similarities 

and differences will help to understand the plastic mechanisms that guarantee vestibular 

homeostasis and provide options for future treatments and rehabilitations following 

vestibular deficits.  
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Mouse  Surgery Adapted Day (weight in grams)                

   0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

4084402 08/10/2015 12/10/2015 17,3 17,4 18,1 18,7 19,4 \ \ 21,1 21,2 21,5 21,9 22,1 \ \ 22,5 23 

4084168 08/10/2015 12/10/2015 18,1 18,9 19,2 19,5 20 \ \ 19 18,9 18,6 18,6 18,8 \ \ 20,5 21,2 

4084391 08/10/2015 12/10/2015 19,2 19,7 19,9 20,4 20,5 \ \ 19,9 19,3 18,9 19,3 20,1 \ \ 21,6 22,4 

4084417 08/10/2015 13/10/2015 20,6 20,2 20,2 20,4 \ \ 19,8 19,7 20,2 20,3 20,8 \ \ 22,5 22,2 23,3 

4084179 08/10/2015 13/10/2015 18,8 19,6 19,6 19,7 \ \ 21,7 22,1 22,4 22,6 22,6 \ \ 23,5 23,4 23,9 

4084117 08/10/2015 13/10/2015 19,8 19,7 19,8 19,7 \ \ 18,9 17,9 18,2 18,4 19,1 \ \ 20,5 20,8 21,5 

Annex 1. Example record sheet of the weight for one group. Each column has a parameter: “Mouse” - number on their microchip by which the mice are identificated; “Surgery” – day in which 

the surgery was done; “Adapted” – day of the conditioning with the adaptation device and “Day” – record of the weight (in grams) during protocol. Days marked with \ indicate days in which the 

weighting wasn’t done. 
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Annex 2. Surgical procedure steps for the headpost fixation. (A)Deep anesthesia with isoflurane; (B)preparation of 

the mouse to do (C, D) the first incision with the scalpel. (E, F, G, H) Cementing to the skull of the headpost, (I) suture 

and (J) recovery under the red-lights. 
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Annex 3. Video-oculography room. (A) Video-oculography device with motor and platforms. (B) Mouse in the 

Plexiglas tube used to immobilize. (C, D) Infrared light and camera that records the eye movements and in turn sends 

them to the computer (E) where the monitoring of the eye movements is done. 
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