
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

An Android GUI Crawler for Test Case
Generation and Runtime Analysis

Miguel Bruno Rego Freitas

Mestrado Integrado em Engenharia Electrotécnica e de Computadores

FEUP Supervisor: Ricardo Morla

Vodafone Supervisor: Pedro Nogueira

July 28, 2016



© Miguel Bruno Rego Freitas, 2016



Abstract

In the new era of mobile devices, thousands of applications are developed daily either by com-
panies or self-taught developers. One of their main concerns is, with no doubt, the User Inter-
face (UI). The UI is defined as the space where interaction between humans and applications
occur. Due to that, applications should be the most user-friendly and easy to use as possible,
involving other fields of study such as ergonomics, psychology and design. In this way, before
each new mobile applications’ release, several manual tests must be conducted to verify if the
application isn’t prone to errors and robust enough to be available for users. As this is a routinely
and error-prone task, that spends a huge amount of time, there is a great and rightful interest to
automate it. Related to that, there is also an interest to increase the bug report process’ speed
and, above all, to assure the product’s quality. Currently, there are several tools and frameworks
to automate these tests in mobile platforms. However, it is almost always required some device’s
interaction or having some knowledge about the concerned application, calling for an automated
way to reduce the tester’s work.

In response to that necessity, this dissertation introduces a new approach in mobile software
test automation area. It is proposed a crawler-based and black-boxed solution to run across the
Android application’s Graphical User Interface (GUI) automatically, simulating user’s inputs.
The main goal of this tool is to try to achieve all possible application’s patterns and, based on them,
generate test cases for each one. Through time, the data model’s representation will be refined and
improved and, when all patterns were discovered, tests in natural programming language will be
generated automatically. This format is used to be understandable for any person independently
of their technical skills. At the same time, some runtime evidences are captured such as: traffic
network, video and logs. These facts can be useful for further analysis regarding security, control
flow and bug reporting issues. In this study were also included all background knowledge for a
better understanding of the final solution, as well as the literature review of this area, software
testing. In the end, was still made a tool’s evaluation and some conclusions are taken, without
forgetting the future work that can be made in order to improve the tool.

i



ii



Resumo

Na nova era dos dispositivos móveis, milhares de aplicações móveis são desenvolvidas por dia
tanto por empresas como por programadores autodidatas. Uma das suas principais preocupações
é, sem dúvida, a Interface do Utilizador (UI). A UI é definida com o espaço onde a interação entre
os humanos e as aplicações ocorrem. Devido a isso, as aplicações devem ser o mais amigáveis e
fáceis de usar possíveis, envolvendo outras áreas de estudo tais como a ergonomia, psicologia e
design. Neste sentido, antes do lançamento de novas aplicações móveis, são necessários conduzir
vários testes manuais para verificar se a aplicação é ou não susceptível a erros e robusta o suficiente
para ser disponibilizada para os utilizadores. Como esta tarefa é rotineira e susceptível a erros,
gastando enormes quantidades de tempo, há um grande e legítimo interesse em automatizá-la.
Em relação a isso, há também interesse em aumentar a rapidez do processo de relatório de erros
e, acima de tudo, assegurar a qualidade do produto. Atualmente, existem várias ferramentas e
frameworks que automatizam os testes em plataformas móveis, contudo é quase sempre necessário
alguma interação com o dispositivo ou ter algum conhecimento acerca da aplicação em questão,
necessitando de uma forma de reduzir o trabalho de um tester.

Em resposta a esta necessidade, esta dissertação introduz uma nova abordagem na área de
automação de testes de software para plataformas móveis. É proposta como solução um crawler do
tipo caixa preta para percorrer a Interface Gráfica do Utilizador (GUI) de uma aplicação Android
automaticamente, simulando as acções de um utilizador. O principal objectivo desta ferramenta
é tentar encontrar todos os caminhos possíveis da aplicação e, baseando-se neles, gerar casos
de teste para cada um. Ao longo do tempo, o modelo de representação de dados será refinado e
melhorado, e, quando todos os caminhos forem encontrados, serão gerados automaticamente testes
em linguagem natural. Este formato é usado para ser percebido por qualquer pessoa independente
das suas capacidades técnicas. Ao mesmo tempo, são capturadas algumas evidências durante a
interação com a aplicação tais como: o tráfego de rede, video e logs. Estas evidências podem
ser úteis para análise futura tendo em conta questões de segurança, controlo de fluxos e reporte
de erros. Neste estudo, é também incluído tanto o conhecimento prévio necessário para melhor
compreensão da solução final, como a revisão da literatura para esta área de estudo, testes de
software. No final, é ainda feita uma avaliação da ferramenta, algumas conclusões serão tiradas,
sem esquecer o trabalho futuro que pode ser feito para melhorar a ferramenta.

iii



iv



Acknowledgements

First and foremost, I want to thank to my supervisors, Professor Ricardo Morla, at FEUP, and
Project Manager Pedro Nogueira, at Vodafone, for their guidance and expertise, and for taking the
time to keep me focused on the task at hand. I am most grateful for the role they performed in this
project.

To my parents, José Freitas and Maria Rego, and my brother, Tiago Freitas, I want to thank
their support, caring and patience that helped me along the path I have walked so far. I am fully
aware of their sacrifices and it will not go without saying that they made all the difference.

I would also like to express my appreciation to Engineers Rui Maia and Marco Rodrigues, at
Vodafone, for their help, motivation, advice, concern and programming knowledge given to me
and to this dissertation, in order to make this project as better as possible.

I want to thank to all Customer Operations - Online & Mobile team members, at Vodafone,
Pedro Tavares, Rui Eusébio, Susana Banha, Cláudia Simões, Ricardo Santos, Ricardo Silva, Rui
Coimbra, Rita Madureira, Sofia Teixeira, Sara Pinto and Mário Correia, for their willingness to
provide me a good place to work and learn on this project, for proposing the project itself, for their
good reception and integration in the team, and for all funny moments lived during this journey.

To all my friends, Patrícia Magalhães, Hugo Fonseca, Tiago Costa, Juliana Araújo, Ana An-
drade, Adriana Simões, André Ferreira, Marisa Agra, Daniela Macedo, António Tomé, Rubén
Brito, André Granja, Filipe Morais, Márcia Rodrigues, Guilherme de Sá Pires, Jorge Corujas and
Filipe Pena, I want to thank their availability, their caring and their ability to always find the right
words or gestures to lift my spirit and to motivate me to do this dissertation.

To all my colleagues, Isabel Fragoso, António Pintor, Ricardo Sousa, André Coelho, Bruno
Jorge, Rui Gomes, Wilson Silva, José Valente, Matteo Benčić, I want to thank for all help given to
me and for all commitment given to the projects that we worked on.

To all the professors that teach me all things that I know today, thank you for molding me into
the student and person that I am today.

Finally, I thank to all the people that have contribute, directly or indirectly, so I could achieve
this stage in my life. To all, thank you for taking a part in this journey.

Gratefully,

Miguel Bruno Rego Freitas

v



vi

"You can mass-produce hardware;
you cannot mass-produce software -

you cannot mass-produce the human mind."
Michio Kaku



Contents

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Structure of Document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Background 5
2.1 Software Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Waterfall Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 RAD Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.3 Spiral Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.4 Incremental Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Android . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.2 Applications’ Components . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 State of Art 19
3.1 Software Testing Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Test Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.1 Functional Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.2 Non-Functional Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3 Testing Methodologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3.1 White Box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3.2 Black Box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3.3 Gray Box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.4 Analysis Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.4.1 Static Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.4.2 Dynamic Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.5 GUI Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.5.1 Manual Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.5.2 Automated Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.5.3 Test Automation Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4 Android GUI Crawler 37
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2 Interaction with device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

vii



viii CONTENTS

4.3 Android Debug Bridge (ADB) . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.4 Data Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.5 Crawler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.6 Test Case Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.7 Test Case Capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.8 Traffic Capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5 Crawler Evaluation 59
5.1 Apps’ Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.3 Case Study: My Vodafone App . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.3.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.3.2 Devices’ Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.4 Expandability To Another Applications . . . . . . . . . . . . . . . . . . . . . . 64
5.5 Evidences’ Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.5.1 Risk Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6 Conclusions 71
6.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

A Activity Lifecycle 75

B Commands 76
B.1 ADB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
B.2 Device’s Shell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

C UIAutomator Dump Example 78

D Extracted Data Example 80
D.1 Device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
D.2 App . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

E Evidences Found 83
E.1 Bug and Crash Evidences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

References 86



List of Figures

2.1 The Waterfall model [1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 The RAD model [2]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 The Spiral model [3]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 The Incremental model [3]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.5 Evolution of the mobile devices market share1. . . . . . . . . . . . . . . . . . . 10
2.6 Android versions distribution 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.7 Android screen sizes and densities distribution3. . . . . . . . . . . . . . . . . . . 12
2.8 Android OS architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.9 Android application build process. . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1 Testing Methodologies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2 The cost of manual vs. automated testing. . . . . . . . . . . . . . . . . . . . . . 28
3.3 Automated testing pyramid 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.1 Connection with devices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2 ADB operation diagram - Wi-Fi and USB options. . . . . . . . . . . . . . . . . . 40
4.3 Model - Class Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.4 Tap Gesture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.5 Scroll Gesture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.6 Swipe Gesture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.7 Resolution of the problem with elements without ID and any text. . . . . . . . . 46
4.8 No changes in the layout and activity. . . . . . . . . . . . . . . . . . . . . . . . 49
4.9 Changes in the layout, activity is still the same. . . . . . . . . . . . . . . . . . . 50
4.10 Activity already exists in tree. . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.11 New activity appears. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.12 Crawling process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.13 Leaves full pattern extraction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.14 Test Case Generation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.15 Test case capture process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.16 Event Decoding process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.17 JnetPcap Decoding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

A.1 Activity lifecycle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

E.1 My Vodafone App - crashes found. . . . . . . . . . . . . . . . . . . . . . . . . . 83
E.2 My Vodafone App - bugs found. . . . . . . . . . . . . . . . . . . . . . . . . . . 84
E.3 JN App - crashes/bugs found. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
E.4 Farmácias Portuguesas App - bugs found. . . . . . . . . . . . . . . . . . . . . . 85
E.5 IPMA@Meteo App Freeze. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

ix



x LIST OF FIGURES

E.6 Tinder App Blank Screen. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85



List of Tables

3.1 UI automation tools comparison - general metrics . . . . . . . . . . . . . . . . . 32
3.2 UI automation tools comparison - technical metrics . . . . . . . . . . . . . . . . 33

5.1 App Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.2 My Vodafone app characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.3 My Vodafone App - Crawler results. . . . . . . . . . . . . . . . . . . . . . . . . 62
5.4 My Vodafone App - Crawler UI elements results. . . . . . . . . . . . . . . . . . 63
5.5 Crawler results using different devices. . . . . . . . . . . . . . . . . . . . . . . . 64
5.6 Crawler measures for USB connection. MTTC represented in seconds. "*" means

that the crawler has undetermined end, due to loops and always new nodes appears. 65
5.7 Risk levels classification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.8 Issues found. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.9 Number of apps with potential vulnerabilities issues and its risk assessment levels 68

xi



xii LIST OF TABLES



Abbreviations and Symbols

AAPT Android Asset Packaging Tool

AC Activity Coverage

ADB Android Debug Bridge

API Application Program Interface

APK Android Package

ART Android Runtime

AVD Android Virtual Device

BDD Behavior-Driven Development

BFS Breadth-First Search

DDMS Dalvik Debug Monitor Server

DEX Dalvik Executable

DLL Dynamic-Link Library

DSL Domain-Specific Language

GROPG Graphical On-Phone Debugger

GUI Graphical User Interface

HAL Hardware Abstraction Layer

HTML HyperText Markup Language

HTTP Hypertext Transfer Protocol

ID Identification

IDE Integrated Development Environment

IMSI International Mobile Subscriber Identity

IoT Internet of Things

IP Internet Protocol

JAR Java ARchive

xiii



xiv ABBREVIATIONS AND SYMBOLS

JD Java Decompiler

JDWP Java Debug Wire Protocol

JSON JavaScript Object Notation

MSISDN Mobile Station International Subscriber Directory Number

MTTC Mean Time per Test Case

NAFA Number of Activities Found Automatically

NAFM Number of Activities Found Manually

NDK Native Development Kit

OS Operative System

PID Process Identification

PIN Personal Identification Number

QA Quality Assurance

RAD Rapid Application Development

REST Representational State Transfer Protocol

SDK Software Development Kit

SGL Scalable Graphics Library

SIM Subscriber Identity Module

SOAP Simple Object Access Protocol

SQL Structured Query Language

SSL Secure Sockets Layer

SUT System Under Test

TAD Test-After Development

TCP Transmission Control Protocol

TDD Test-Driven Development

TID Task Identification

TNA Total Number of Activities

UDP User Datagram Protocol

UI User Interface

USB Universal Serial Bus

VM Virtual Machine

XML Extensible Markup Language



Chapter 1

Introduction

In the age of Internet of Things (IoT), more than 2 billion people1 use smartphones to commu-

nicate with each other, to play games, to monitor their lives or to take some advantage of all the

potential of having a small computer in their pocket. In response to the users’ needs to fulfill this

potential, many applications are developed with many different purposes by software companies

- in order to improve their clients’ customer services - and by many self-taught developers. Be-

fore these applications become available in their respective mobile markets, it is viewed as a good

practice to submit them under thorough and extensive testing stage, with the goal of verifying if

the application works as required or not. This generic phase includes several different kinds of

testing such as integration, system, usability and acceptance testing. Generally, this testing phase,

depending of the development methodology used, as reported in [4], precedes the deployment into

production and all these mentioned tests are included in a certain software Quality Assurance (QA)

process.

During the testing phase, one of the main concerns of any company building a mobile appli-

cation is its UI, since it’ll be the context in which the interaction between user and application

happens and it correlates positively with the customer’s usage or payment: the more engaging a

UI is, the more amount of time a given customer spends in the mobile application, and the highest

the likelihood that a given customer ends up paying for its usage. As reported in [5, 6, 7], before

developing a product, companies must be concerned about the UI, demonstrating that software

engineering isn’t just about engineering itself, but it also involves ergonomics, psychology and

design, known as User Experience (UX).

1.1 Motivation

Before each release of new mobile applications it is necessary to test them as much as possible,

tracking unreported bugs, verifying if the UI is designed exactly as planned and if the application

does what it is supposed to do. Generally, this process is done manually by testers, and using a

1Statista. Number of smartphone users* worldwide from 2014 to 2019 (in millions). January,
2016. [Accessed: Jan. 29 2016]. URL: http://www.statista.com/statistics/330695/
number-of-smartphone-users-worldwide/.

1

http://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
http://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/


2 Introduction

different device at once, requiring high amounts of time for each test and due to that it becomes a

tedious task and highly prone to mistakes. Because, in a corporate perspective, time means money

for every company, there has been a great interest to automate this task and speed up the bug re-

porting process. Currently, there are already in the market some tools and frameworks to automate

it, however, it is always necessary to have some technical and programming skills, usually related

with the native environment or programming language of the mobile application and/or its visual

components. Another limitation of the automated testing tools is that they only perform the tests

that were previously programmed, which leaves open the possibility that some of the application’s

patterns and states are left untested. In addition to these facts, some of the existent automated

tools do not capture device’s and application’s evidences during test execution, which would def-

initely be useful for developers to track and fix errors. Furthermore, the manual specification,

implementation and maintenance of each test case requires a great amount of knowledge and time.

1.2 Goals

This work will focus on Android applications because this mobile platform currently has more

than 1.4 billion of active users around the world2 and leads the market share, with wide difference

of their main opponent iOS (Apple, approximately 15% of market), with 82.8% of sales in the

second quarter of 20153.

This comprehensive study aims to implement an Android GUI automated testing black-box

tool that, with no knowledge of the application’s source code, generates and simulates user inter-

actions and triggers transition events, based on the provided dumps by UIAutomator tool.

The main goal of this work is try to discover all of the application’s patterns automatically,

translating them into a tree data model, in order to generate natural language tests, like Cucumber

[8], to be used by other automated tools as Jenkins 4. At the same time, some evidences should

be captured such as screenshots, video records, logs and network traffic, in order to facilitate the

finding of errors, bugs and security issues for reporting. The tool should allows the connection of

several devices at the same time and provides two connection modes (Universal Serial Bus (USB)

and Wi-Fi), taking advantage of Android Debug Bridge (ADB) capabilities. Furthermore, the

tool’s modularity should allows the use of each module, crawler, test case generation, network

traffic capture or logs capture, separately.

1.3 Structure of Document

This section exposes the structure and organization of this report, with an overview of each chapter.

2John Callaham. Google says there are now 1.4 billion active Android devices worldwide. Android-
Central. September, 2015. [Accessed: Jan. 29 2016]. URL: http://www.androidcentral.com/
google-says-there-are-now-14-billion-active-android-devices-worldwide.

3International Data Corporation (IDC). Smartphone OS Market Share, 2015 Q2. IDC. August, 2015. [Accessed:
Jan. 29, 2016]. URL: http://www.idc.com/prodserv/smartphone-os-market-share.jsp

4Jenkins. April, 2016. [Accessed: Apr. 04 2016]. URL: https://jenkins.io/.

http://www.androidcentral.com/google-says-there-are-now-14-billion-active-android-devices-worldwide
http://www.androidcentral.com/google-says-there-are-now-14-billion-active-android-devices-worldwide
http://www.idc.com/prodserv/smartphone-os-market-share.jsp
https://jenkins.io/


1.3 Structure of Document 3

In chapter 2, it is made an overview about the software development models and the Android’s

World, providing a previous knowledge to understand the following chapters.

In chapter 3, it is described the literature review as well as the description of different types

of tests, analysis, testing methods and testing automation tools.

The chapter 4 includes all integral specification about the solution and its components, detail-

ing each decision taken to build it.

In chapter 5, the tool is evaluated and it is described the dataset collected, the methodology

and the obtained results.

Finally, in chapter 6, it is presented the conclusions that can be taken from this study, explain-

ing its contributions and making some suggestions for future improvements.



4 Introduction



Chapter 2

Background

This chapter presents contextual information that is important for a better understanding of the

scope of this dissertation. It is presented a description about the most common software engineer-

ing processes used nowadays by companies. Furthermore, it is presented the most widely used

mobile Operative System (OS) in the world, Android, with a description of its architecture and

components. At the end, it is also performed a conclusion about them all.

2.1 Software Engineering

Since 1968, as reported in [9], software engineering has been arising ever since, becoming more

concentrated in the design of better processes, methodologies and tools to develop innovative and

complex systems or technologies. In order to simplify and help to manage software projects, it

was created several models to represent the abstraction of some objects and activities involved

in software development [10]. These models are also used to improve efficiency and to reduce

the time and costs of projects. Essentially, they are divided in three different types, as reported

in [3]: sequential, that includes Waterfall and Rapid Application Development (RAD) models;

evolutionary, that includes the Incremental model, and a mixture of both, that includes the Spiral

model. There are another models that can be included in each type, but only the mentioned types

will be approached in this dissertation and will be described in the next subsections.

2.1.1 Waterfall Model

As the name says, the Waterfall model is a sequential process, conducting software projects with

one phase at a time. This model was initially proposed by Winston Royce in [1], but it isn’t the

only one. In this paper are presented some models more interactive than Waterfall, although they

are characterized as risky and prone to failures. Focusing on Waterfall model, in each software

release, the projects needs to go sequentially through every single one of the phases. This model

has, in total, seven phases, as it can be seen in figure 2.1, but they are generally grouped in five,

resulting in:

5



6 Background

• Requirements Phase: functional and non-functional requirements are specified, defining

what the system should do and describing how the system should behave, respectively;

• Design Phase: the proposed solution is specified;

• Development Phase: the solution is implemented into a working product;

• Verification Phase: tests and integration of the solution is made;

• Maintenance Phase: it is given the support as necessary to maintain the solution operational.

Figure 2.1: The Waterfall model [1].

Although this model seems to fill all the steps of software engineering, it is very static and

rarely these steps are fulfilled, because there is almost always an issue, either in design or the

requirements before or during the implementation phase. Furthermore, in big projects, the gap

between implementation and design is huge, requiring recall and redefinition of the requirements.

This problem can generally be corrected by using an iterative Waterfall model or by using some

other software model.

2.1.2 RAD Model

The RAD model is a sequential software development process, initially supplied by James Martin

in the 1990s [11], to distinguish a model from the traditional used, Waterfall. RAD was designed

for short development cycles, usually between 60 and 90 days, and enables the building of a "fully

functional system" in this period [12]. RAD model takes advantage of teams with diversity of

skills and roles, to allow its implementation, as can be seen in figure 2.2. This model is composed,

as reported in [2], by the following five phases:



2.1 Software Engineering 7

• Business modeling: in this phase all the concerns are taken around the information that

drives the business model and its flow, from its generation, through processing, to its desti-

nation;

• Data modeling: The flow of information is translated into relations between objects with

several attributes;

• Process modeling: in this phase are described and detailed all the processes that will deal

with the objects created in the data modeling;

• Application generation: in this phase, this model try to reuse, as far as possible, existent

program components and automated tools to ease up the application construction;

• Testing & turnover: RAD reuses other software parts, which are usually already tested,

hence reducing the allocated testing time. However, the integration of all the software parts

with the new components must be tested themselves, in order to guarantee robustness in the

final software product.

Figure 2.2: The RAD model [2].



8 Background

This model seems to resolve the problems of the Waterfall model, but it has some quid pro

quos, as reported in [13]. RAD requires, first of all, a satisfactory number of people to create RAD

teams with the right size. Also, it requires the full commitment of the developers and customers to

fulfill the project planning. Another of the drawbacks is that RAD requires modularity and if that

can’t be achieved, it can produce block states and dependencies. Finally, due to short development

cycles, sometimes at the end of the project, some extra project requirements can appear, forcing a

new development cycle with substantial changes, consuming time and money.

2.1.3 Spiral Model

The Spiral model was initially proposed by Barry W. Boehm at 1988 [14] and includes the best

of two types of models, characterized by its sequentiality and evolution, as presented in [3]. This

model enables the transformation of a prototype, achieved in the early iterations, into a functional

and complete system, that is improved through new iterations. Generally this model is divided

into several activities, that are presented in 2.3.

This process is started by the customer’s requirements establishment, followed by the plan-

ning to define the timeline, required resources and other project related issues. Then, before the

design of the product (engineering task), is made a risk analysis both in the technical and manage-

ment perspectives. Finally, it is made the construction of the product and its testing, providing to

the customer all the documentation and training support, before having customer’s feedback, as

reported in [2], and its development can involves several cycles around the spiral.

Figure 2.3: The Spiral model [3].

This model is usually applied to the development of a large-scale systems and software. How-

ever, it has some issues around its practical application in a real-world environment. To apply



2.1 Software Engineering 9

correctly this model, it’s necessary to practice its implementation for several in years and it’s re-

quired some expertness to make a successful risk assessment. One of its main difficulties is to

convince the customers of its controllability and efficiency, as described in [2].

2.1.4 Incremental Model

The Incremental model was initially introduced by Victor R. Basili in 1975 [15]. This model

combines several linear sequential models with iterations between them. Each linear sequence

represents an increment in the software product, and with new increments, its capabilities and

features are improved. Every delivery considers the customer’s feedback and attempts to include

the proposed changes in subsequent increments. The project will have several increments until the

product is completed, as reported in [2, 3, 16].

Such as it happens with the Waterfall model, the Incremental model includes some similar

and correspondent phases, apart of the maintenance phase, that was already described in subsec-

tion 2.1.2.

Figure 2.4: The Incremental model [3].

However, this model has some advantages and limitations, as it happens with any other model.

Regarding the advantages, this model is often useful when there isn’t sufficient human resources

to do the implementation, because early increments can be performed with few people, and some

issues can be implemented in the next increments, as reported in [2]. Despite that, if some funda-

mental requirements of the customers are considered in the last increments, it can increase the risk

of the project delivery, as described in [3]. Currently, there is an extension of incremental model

very used in software companies known as Agile.

Concluding, there is no right model to conduct in the right way the software engineering

process, because each case has its own peculiarities. Despite that fact, they all have, at least,



10 Background

one thing in common: the testing phase. With every model, software testing must be performed

until the release of the software product. In this way, software testing will be the focus in this

dissertation.

2.2 Android

As said in chapter 1, Android is the most used mobile OS in the World, as the figure 2.5 shows.

In second quarter of 2015 Android had a market share about 82%, crushing its directly competi-

tor, Apple’s iOS, with only about 15% of market share. On other hand, others competitors have

insignificant shares comparing with Android, like Blackberry and Windows Phone.

Figure 2.5: Evolution of the mobile devices market share1.

Android was created by Open Handset Alliance and led by Google at 5 November of 2007

sharing a common goal to deliver to its users innovation, giving them a better experience and

opening on mobile devices. The first Android phone released to the market was HTC Dream (also

known as T-Mobile G1) in 2008, with 1.0 version 2.

Currently, there is a huge number of versions that are already in use over the world and have

its distributions presented in figure 2.6. The present version is 6.0, called Marshmallow, and

is scheduled a new Android version release till the summer of 2016 (Android N - 7.0 version).

Each Android version released has the peculiarity in its name of always having an alphabetic

confectionery-themed code name. The main reason of this variety of versions available on the

market is because there is a huge community of developers that constantly improve and modify

the OS, and create new applications.

1International Data Corporation (IDC). Smartphone OS Market Share, 2015 Q2. August, 2015. [Accessed: Jan. 29,
2016]. URL: http://www.idc.com/prodserv/smartphone-os-market-share.jsp

2Dan Morrill. Announcing the Android 1.0 SDK, release 1. Android Developers Blog. September,
2008. [Accessed: Feb. 07 2016]. URL: http://android-developers.blogspot.pt/2008/09/
announcing-android-10-sdk-release-1.html.

http://www.idc.com/prodserv/smartphone-os-market-share.jsp
http://android-developers.blogspot.pt/2008/09/announcing-android-10-sdk-release-1.html
http://android-developers.blogspot.pt/2008/09/announcing-android-10-sdk-release-1.html


2.2 Android 11

Figure 2.6: Android versions distribution 3.

Android OS is also known by its Easter eggs, that are hidden features on the OS such as

developer options, and Android version animations.

Other aspect that is also important to approach is that Android doesn’t have a fixed UI, i.e., for

each type of screen resolution an application has a different layout’s disposition. Currently, there

are a several distinct number of mobile devices, with different screen sizes and pixel density, as

can be seen in figure 2.7, and is necessary takes it into consideration when an Android application

is developed.

3Android Developers. Dashboards. Google. February, 2016. [Accessed: Feb. 07, 2016]. URL: https://
developer.android.com/about/dashboards/index.html.

https://developer.android.com/about/dashboards/index.html
https://developer.android.com/about/dashboards/index.html


12 Background

Figure 2.7: Android screen sizes and densities distribution3.

After this kind of analysis about Android devices, it is necessary to understand the architecture

of the OS, that will be approached in the next subsection.

2.2.1 Architecture

Android is a mobile OS based on Linux and a Java virtual machine called Android Runtime (ART).

This OS has a well-defined architecture 4 represented in figure 2.8, being constituted, from the

bottom to the top, by the following parts:

• Linux kernel: that is the lowest layer and the basis of Android. It is responsible for the

memory’s management, processes communications, security, network, files, peripheral and

sensor drivers issues;

• Hardware Abstraction Layer (HAL): it is a standard interface that allows the Android sys-

tem to call into the device driver layer without concerns about the lower-level implementa-

tions of drivers and hardware. This is specially important for embedded systems present in

Android devices such as audio, camera, Bluetooth, external storage, sensors and graphics;

• Native libraries: these libraries, written and compiled in C/C++, deal with processor native

instructions. It is also possible to create new native libraries using the Native Development

Kit (NDK). These libraries are composed by:

– the Surface Manager that composes the UI on the screen;

4Android. The Android Source Code. Google. [Accessed: Feb. 11 2016]. URL: https://source.android.
com/source/index.html.

https://source.android.com/source/index.html
https://source.android.com/source/index.html


2.2 Android 13

– the Scalable Graphics Library (SGL) that is a 2D graphics engine;

– the OpenGL ES (3D library);

– the Media Framework responsible for recording and playback audio, video and image

formats;

– the FreeType responsible for rendering bitmap and vectors fonts;

– the SSL responsible for Internet security;

– SQLite to provide a relational database engine for the applications;

– the WebKit to provide embedded browser and web views;

– the Libc to provide implementation of C native libraries.

• Android runtime: it is composed by an optimized Java virtual machine (ART) and a Java

core library;

• Android Framework: it is a top-level Java library for creation of Android applications, com-

posed by content providers and managers (activity, location, package, notification, resource,

telephony and window);

• Applications: the OS has several default application that are built-in in Android devices

such as a browser, camera, alarm and contacts.

In addition to the architecture, Android has also a feature called Widget 5, corresponding to a

small rectangular portion that can be displayed in the Home application with different purposes.

After this detailed description, it is important to approach how the applications are built from

Java source code point-of-view. That is important to understand the reverse engineering process

that will be described in the subsection 3.4.1.

5Android Developers. Widgets. Google. [Accessed: Feb. 11 2016]. URL: https://developer.android.
com/design/patterns/widgets.html.

https://developer.android.com/design/patterns/widgets.html
https://developer.android.com/design/patterns/widgets.html


14 Background

Figure 2.8: Android OS architecture.

When the applications are compiled from the Java source code, it firstly uses javac tool to

translate java files into class files, then using Dalvik Executable (DEX), the class files are converted

into DEX files and finally with the help of aapk tool, the DEX files, Extensible Markup Language

(XML) resources (containing the manifest file) and assets are joint into an Android Package (APK)

file 6 and represented in figure 2.9.

6Android Studio. Configure Your Build. Google. [Accessed: Feb. 11 2016]. URL: https://developer.
android.com/studio/build/index.html.

https://developer.android.com/studio/build/index.html
https://developer.android.com/studio/build/index.html


2.2 Android 15

Figure 2.9: Android application build process.

Beyond this, an Android application has several components that will be approached in the

next subsection.

2.2.2 Applications’ Components

Android applications are characterized by not having a single entry point like main() in Java pro-

grams, and they are composed by several independents components 7, such as:

• Activities: generally composed by an independent portion of UI, composed hierarchically

by views that can be invoked by other views, which users can interact performing actions.

This component is characterized by its lifecycle callbacks, as presented in appendix A, such

as:

– onCreate() - is the callback where the activity is firstly created and where occurs the

UI inflation, the data binding or recovery from previous callback;

– onStart() - is the callback where the layout becomes visible to the user. This callback

can be reached after onCreate() or onRestart();

– onResume() - is the callback where the activity starts to interact with user from the use

of layout changes/animations;

– onPause() - is the callback where a new activity is called and the previous is sent to

background. In this callback should be saved quickly the persistent data, memory

issues has to be considered;

7Android Developers. Application Fundamentals. Google. [Accessed: Feb. 11 2016]. URL: https:
//developer.android.com/guide/components/fundamentals.html.

https://developer.android.com/guide/components/fundamentals.html
https://developer.android.com/guide/components/fundamentals.html


16 Background

– onStop() - is the callback where the activity is no longer visible to the user, but is not

called a new activity. In this callback the process of application could be killed because

of memory issues;

– onRestart() - is the callback where an activity is already created, not visible, and is

called again;

– onDestroy() - is the callback where the activity is destroyed by closing the application

or calling finish() method in the source code;

• Services: are executed in background, not providing a specific UI and generally are used to

establish connection with an Application Program Interface (API), Representational State

Transfer Protocol (REST) or Simple Object Access Protocol (SOAP)-based;

• Broadcast receivers: this component allows to the developed application to receive and react

to notifications generated by another applications or systems;

• Content providers: they allow the providing of data from the developed application to other

applications, and it is composed by an UI.

To invoke the first three presented components it is used an invocation mechanism called

Intent with a specific name/action. In other hand, to invoke content providers it is necessary its

declaration in the manifest file with a well defined authority and name for its data collection.

The manifest file is required for all Android applications and are described in it all important

information about the application such as the package name, permissions, minimum and target

Software Development Kit (SDK) versions, application’s activities and components, and instru-

mentation classes.

There is another Android device’s features such as sensors, Bluetooth, camera and others, but

due to the fact that this work won’t require to include them, it will only focused the input events.

Many Android devices don’t have a built-in keyboard and the most of all user’s inputs available

are touches and screen gestures. There are a huge amount of events that can be click, long click,

key insertion, scroll down, scroll up, swipe right, swipe left and many others. It is also important

to refer that Android supports multitouch, and this information will be very useful for solution’s

implementation.

After this overview analysis about Android, it is important take some conclusions about this

chapter, that will be presented in the next section.

2.3 Conclusions

With this background study, now it is possible have more knowledge about the different types of

software development models generally used in this scientific area and how Android OS works.



2.3 Conclusions 17

Regarding the first section, can be concluded firstly that there isn’t a well defined software

development model process. As George Box says8, "Essentially, all models are wrong, but some

are useful". All of them have their advantages and drawbacks and every project is a isolated case

that has it peculiarities. However, in each one of the studied models, a testing phase is included,

justifying its need.

Regarding the Android OS, it has many advantages, however it has also its drawbacks. Focus-

ing its strengths, Android is the most used mobile OS in the world, having a largest number and

diversity of applications available in the official market. It is frequently maintained and updated,

possessing an attractive and user-friendly UI and having multi-tasks and an open source system,

that can be considered as a drawback as well. On the other hand, its main limitations rely on: the

inconsistency between devices, due to the great amount of versions, screen resolution and pixels

density of the screen; the version updates force the users to root the device or to buy a new one; and

the non validation of applications in the official market may compromise the users’ data security.

After this preliminary research done and analyzed, in the next chapter will be presented the

literature review.

8George E. P. Box and Norman R. Draper. Empirical Model-building and Response Surface. John Wiley & Sons,
Inc. 1986. [Accessed: Feb. 12, 2016]. URL: http://dl.acm.org/citation.cfm?id=17317

http://dl.acm.org/citation.cfm?id=17317


18 Background



Chapter 3

State of Art

This chapter describes the literature review made about this dissertation’s theme, including an

overview of the software testing processes, techniques and mobile GUI test automation tools for

Android mobile platform. Finally, it will be described some relative work done in this field of

study.

3.1 Software Testing Overview

As it happens with hardware, software can be very powerful, unpredictable and risky, requiring

some type of verification before its execution and release to the market. Software testing is an

important component of software QA process. In this way, software needs to be tested several

times to verify if it does what is expected to do. With every new code developed, new errors’

possibilities are introduced, increasing the risk of its failure. Because of it, there is commonly a

testing phase, after the software product’s development and before its deployment into production

phases, with the goal of reducing the risk of customer deal with software’s bugs and errors [17].

"The best software is that which has been tested by thousands of users under thou-

sands of different conditions, over years. It is then known as "stable." This does NOT

mean that the software is now flawless, free of bugs. It generally means that there

are plenty of bugs in it, but the bugs are well-identified and fairly well understood" -

Bruce Sterling in [18].

Currently, compilers provide some help in this task, generating warnings and errors about the

code, but they aren’t enough to software testing. To assure the robustness and strength of an

application, must be conducted different types of analysis and several tests, that will be described

in the following sections. This sections’ division is based in different references with different

types of content and due to that couldn’t be intended as ideal by others researchers.

19



20 State of Art

3.2 Test Types

In this section it will be described two different kind of tests, the functional tests, that are related

tangibly with features, and the non-functional tests, that are related with the operation of the

system. These tests are included in the testing phase of every software engineering model, as

described in section 2.1.

3.2.1 Functional Tests

According [17], this type of tests is part of software QA process and is used to verify if the product

does what is supposed to do, by testing its features. Functional tests, generally, are characterized as

a black box testing method (3.3.2), but can be performed also as white box testing method (3.3.1),

as reported in [19]. They are used to guarantee that all the product’s requirements and features,

previously defined, are accomplished. There is a huge amount of tests that fit in this tests’ family,

as reported in [17, 19, 20] , such as:

• Alpha testing: these tests are performed with a product’s prototype version, and at this point,

can suffice to have some issues and bugs regarding the system and interface;

• Beta testing: these tests are performed with most of the system’s and interface’s issues

resolved, bearing in mind performance and cosmetic concerns.

• Unit testing: this type of tests is the first one usually performed and commonly this work is

done by the developers, in single units. For a number of specified inputs it’s obtained the

outputs and these are compared with the expected values, determining if there are errors or

not;

• Integration testing: in contrast to unit testing, these tests are performed to verify the group’s

assembly of units, focusing in the interaction between them;

• System testing: this kind of tests is performed on the final product, verifying if the product

gives the right outputs, given a specified set of inputs, and it handles the exceptions in the

right way;

• Regression testing: the changes made in a new release of software are simply verified,

validating if they haven’t compromised the previous developed code’s functionalities;

• User Acceptance testing: generally this is the last phase of tests before the product’s release,

and they are performed to guarantee the minimum standards of product’s quality being ac-

cepted by the customer. This usually is focused on what the end-user can see and do, but it

can includes some documentation and training material.

After functional tests were properly distinguished and described, now the non-functional test

will be presented in the following subsection.



3.3 Testing Methodologies 21

3.2.2 Non-Functional Tests

Unlike the functional tests aforementioned, the non-functional tests [17] verify the system’s toler-

ance and robustness, testing it with non-validated cases and inputs. Furthermore, some kinds of

these tests verify its performance, reliability and scalability. As reported in [20], there are many

types of these tests that can be divided in:

• Performance testing: to verify if the software meets the performance requirements such as

memory consumptions and time responses;

• Security testing: to assure that the software is protected against external threats, verifying

its confidentiality and integrity and also the system’s availability, as specified in [21];

• Usability testing: to evaluate how easily the user can learn and use the software. It is

generally related to the visual interface and the understandability of the error messages;

• Stress testing: to determine the system’s limits and to test its defense mechanisms, also

known as load tests;

• Recovery testing: to verify how the system recovers, after a system’s crash or an unstable

situation;

• Reliability testing: to measure if the software assures the data’s delivery to the right desti-

nation;

• Smoke testing: a simple test that verifies if the system is running or not.

With this detailed analysis of almost all test types in software engineering, can be concluded

that due to the enormous quantity and diversity of tests, currently there is a urgent need to automate

them. To perform each one, there are some different methodologies that can be used, and them

will be described in the next section.

3.3 Testing Methodologies

Due to different type of persons involved in the test of the software product (testers, developers,

product owner, customer...), different methodologies can be approached to test it, such as white,

black and gray methods, as can be seen in figure 3.1, and they will be described in the following

subsections.



22 State of Art

Figure 3.1: Testing Methodologies.

3.3.1 White Box

One of most common testing strategies in software development is white box testing. Also known

as glass-box and logic-driven, this method is characterized by the transparency of the internal

structure of programs to the tester [17]. Generally, this kind of tests are performed by developers

during the coding process, although there are some limitations. One of them is the huge amount

of possibilities that the program can produce, making even impossible this testing task. The other

is that the code can have untraceable algorithm errors (ascending-order sorting routine instead of

descending, per example), missing paths or data-sensitivity errors, as reported in [22].

3.3.2 Black Box

As the name says, black box testing treats the program as a black-box, which means that there

isn’t any knowledge about the internal structure of the code, bearing in mind exclusively the input

against expected output, as described in [17]. Some commons examples of black box tests are

user acceptance testing and system testing, that were described in subsection 3.2.1, verifying the

implementation of the requirements set by the client [22]. This method, as gray box (3.3.3),

becomes a challenge to every tester regarding the functional and non-functional tests. Generally,

these tests are performed manually, requiring a huge amount of time from the testers schedule

and hence becoming a boring task, costing money that companies could be allocating into more

interesting and intellectually intensive activities.

3.3.3 Gray Box

This type of test methods unites both white and black box methods and takes advantage of reverse

engineering, as described in [23]. The cross-linking data between source code analysis and the

expected outputs, given a specific input, providing a great resource to make a deeper and more

complete software testing.



3.4 Analysis Types 23

All these three types of methodologies are only based on the access to the source code or not.

However, testing an Android application requires different types of analysis based on the running

state of it or not. This topic will be approached in the following section.

3.4 Analysis Types

There are two different approaches that can be performed to analyze and evaluate the Android

software product’s quality, such as static and dynamic analysis. They will be described in the

following two subsections.

3.4.1 Static Analysis

As reported in [24, 25], static analysis involves access to the source code, in a non-running state

of the program, and is used to find defects in it, as compilers do, but with code inspections and

reviews improvements, trying to rectify confusing or misleading code, even if it doesn’t result in

misbehavior. Furthermore, this kind of analysis can be used to improve code understanding, that

nowadays is very important for every developer that needs to deal with someone else’s code. This

analysis is extremely effective, both in terms of costs as in defect spotting, and could be made by

a people’s group, also known as pair programming, or by automated tools, as reported in [25].

One of those tools is Soot, as reported in [26, 27, 28]. This tool is an optimization and language

manipulation framework that can be used to improve Java programs and applications. Soot takes

advantage of accepting input files as Java source code, Android or Java byte-code (Baf), Java

simple (Jimple) or Jasmin - a low-level intermediate representation and that could be converted to

Jimple, a simplified version of Java source code, containing only three components per statement,

or into Java/Android byte-code or Jasmin. Soot provides a call-graph construction, dependency

analysis, intra and inter-procedural data-flow analysis and defects’ analysis in use of chains.

Another tool is FindBugs 1, also reported in [24], an open source tool sponsored by Google that

makes static analysis of Java byte-code and source code, finding defects and reporting warnings

to the user, classifying bugs in false positive, trivial and serious. This tool is already very known

in the market, having available plugins for the main Java Integrated Development Environment

(IDE)s such as NetBeans, Eclipse and IntelliJ.

Once this dissertation will focus in Android applications, it is important to consider, also, some

tools provided by Google, like Lint, and some reverse engineering tools that allow source code

analysis of APK files, such as APKTool, Smali, DEX2Jar, Java Decompiler (JD)-GUI, ded and

Dare. Some of these tools are used, generally, to find vulnerabilities and malicious applications,

as reported in [29, 30, 31].

1David Hovemeyer. FindBugs™ - Find Bugs in Java Programs. The University of Maryland, June, 2015. [Ac-
cessed: Feb. 07 2016]. URL: http://findbugs.sourceforge.net/index.html.

http://findbugs.sourceforge.net/index.html


24 State of Art

Lint 2 is a tool provided by Android SDK that makes a static analysis of source code in order

to find potential bugs and conducts code optimizations. The main goal of this tool is to increase

code’s robustness, improving an Android application in terms of performance, security, accessibil-

ity, usability and internationalization. Lint analyze the Java source code of an Android application

and characterize the bugs found using three distinct metrics: category, that defined the issues’

severity nature, defining the problem’s impact in the whole application; and priority that identify

what issues should be resolved firstly. Furthermore, this tool also generate bug reports and can be

customized.

APKTool 3, Smali, Dex2Jar and JD-GUI are used together, having each one a specific role and

function in this reverse engineering process. The first is used to compile/decompile APK files,

resources and XML; the second one is used to assembler/disassembler Dalvik Executable (DEX)

files; the third one to convert DEX files into Java ARchive (JAR) files; and the last one to decompile

class files into Java source files, as described in [31].

The ded decompiler [29, 30] was created to help the finding of malicious applications by a

given APK file, extracting its source code. Currently, this tool has been replaced by Dare [32],

that is more precise and powerful in the decompiling process.

This type of analysis relies in white or gray box testing methods, that were already explained

in subsection 3.3.1 and 3.3.3, and it main limitation is that, currently, many developers use obfus-

cation of their code [33], making this kind of analysis very hard and sometimes even impossible.

3.4.2 Dynamic Analysis

As described in [17], dynamic analysis unlike static analysis, looks for the code when it is executed

in the appropriate environment, making an analysis of the quantities of the variables used, looking

at the memory and processor consumptions or overall performance. Dynamic analysis is usually

done by developers, running the debugging mode of the program to check if variables have the

supposed values and take care of another issues.

Android SDK already provides a set of tools that make possible to perform this type of anal-

ysis in several different ways, such as ADB, LogCat, Dalvik Debug Monitor Server (DDMS),

HierarchyViewer.

ADB 4 is a debug bridge to establish connection between desktop and the plugged Android

device. It acts like a client-server application including the following three components:

• A client running on desktop, that can be invoked from a shell by issuing an ADB command.

• A server running as a background process on desktop, managing communication between

client and daemon.
2Android Studio. Improve Your Code with Lint. Google. [Accessed: Apr. 27 2016]. URL: https://developer.

android.com/studio/write/lint.html.
3Connor Tumbleson. A tool for reverse engineering Android apk files. APKTool, 2016. [Accessed: Apr. 27 2016].

URL: http://ibotpeaches.github.io/Apktool/.
4Android Studio. Android Debug Bridge. Google. [Accessed: Feb. 24 2016]. URL: https://developer.

android.com/studio/command-line/adb.html.

https://developer.android.com/studio/write/lint.html
https://developer.android.com/studio/write/lint.html
http://ibotpeaches.github.io/Apktool/
https://developer.android.com/studio/command-line/adb.html
https://developer.android.com/studio/command-line/adb.html


3.4 Analysis Types 25

• A daemon running as a background process on the device.

When ADB client is initiated, it checks if the server process is running, and if not, client starts

it. When the server is started, it binds the Transmission Control Protocol (TCP) port 5037 to

communicate with all clients. Then, the server scans a pair of ports, an even-numbered port for

console and an odd-numbered port for ADB. These ports range between 5555 and 5585 of each

connected devices/emulators, starting the correspondent daemon. In this way, it is possible to

conclude that the limit of connected devices/emulators that ADB supports at the same time is 15.

The server manages connections with all devices/emulators, and because of that, it is possible have

multiple ADB clients controlling any device or emulator.

LogCat 5 is the Android logging system that collects and display the system and applications

debug outputs. To use this tool, is required an ADB connection to the device. It is possible to

see in the LogCat the JavaSE system’s outputs as System.out or System.err, but it isn’t recom-

mended. Logcat’s outputs generally are composed by time, priority, Process Identification (PID),

Task Identification (TID), tag and message, but can be displayed in other formats. Furthermore,

the output messages can have different types of severity, such as verbose, debug, info, warning,

error, fatal or silent. However, this tool sometimes isn’t precise as a developer desires, and only

gives a specific way for tracking states or outputs of an Android application or system.

DDMS 6 is an integrated debugging tool in the Android Device Monitor, that provides a huge

amount of informations about the device and its applications, such as:

• Threads states, heap usage and memory allocation tracking;

• TraceViewer: provides a timeline panel of methods and threads called, and a profile panel

presenting time statistics about them;

• Running applications on the device;

• Screen Capture;

• Spoofing of incoming calls, text messages and location data;

• Port-forwarding and network services.

Firstly, when DDMS starts, it connects to ADB and creates a Virtual Machine (VM) to system’s

monitoring. Once every application has its own process and VM, it is possible to connect DDMS

to the debug port of each VM’s, via an ADB daemon. Typically, DDMS listens to a range of ports

from 8600 to 8700, and is possible to forward all devices’ traffic to these ports, using the Java

Debug Wire Protocol (JDWP). This is a protocol that establish communication between the ADB

daemon and the Dalvik VM.

HierarchyViewer7 provides a hierarchy view about the UI of an Android application, profiling
5Android Studio. logcat Command-line Tool. Google. [Accessed: Feb. 24 2016]. URL: https://developer.

android.com/studio/command-line/logcat.html.
6Android Studio. Using DDMS. Google. [Accessed: Feb. 24 2016]. URL: https://developer.android.

com/studio/profile/ddms.html.
7Android Studio. Hierarchy Viewer Walkthrough. Google. [Accessed: Feb. 24 2016]. URL: https:

//developer.android.com/studio/profile/hierarchy-viewer-walkthru.html.

https://developer.android.com/studio/command-line/logcat.html
https://developer.android.com/studio/command-line/logcat.html
https://developer.android.com/studio/profile/ddms.html
https://developer.android.com/studio/profile/ddms.html
https://developer.android.com/studio/profile/hierarchy-viewer-walkthru.html
https://developer.android.com/studio/profile/hierarchy-viewer-walkthru.html


26 State of Art

each view. For each application’s activity, it renders each element, based on a tree model, been

possible to observe the detailed information about it, such as class type, resource Identification

(ID), position on the screen and other properties. Furthermore, with this tool is also possible have

time statistics about the layout rendering, making easier the GUI debugging.

Another tool developed to perform dynamic analysis is Graphical On-Phone Debugger (GROPG)

[34]. This tool was developed at University of Texas at Arlington and allows the debugging, on the

device, of applications in real-time, providing a traditional debugging environment and containing

common actions such breakpoints, step out/into/over and thread/variable values analysis.

Furthermore, dynamic analysis is also used in terms of security. Generally, it is used to pre-

vent security threats, as described in [35]. It is commonly used to find input or output validation

error (Structured Query Language (SQL) injection and cross-site scripting, per example), server

configuration mistakes and to verify if the connection with the server is secure, ensuring, above

all, confidentiality, integrity and authenticity, as defined in [21]. It can prevents different types

of attacks, such as man-in-the-middle and sniffing, that currently have been discussed as a big

problem in mobile application systems. As reported in [36], dynamic analysis is immune to ob-

fuscation and is often used to identify malicious applications and threats. Its main difficult remains

in the protection after its execution. The best way to do it is to take advantage of virtualization,

that reproduces a controlled environment, allowing the prevention of information’s escape and the

infection of other machines and devices.

There are some tools available to perform security dynamic analysis such as Wireshark, a well-

known network protocol sniffer, that is an open sourced and platform-independent tool capable to

decode more than 400 protocols, as reported in [37]. This tool contains a non-GUI version called

TShark, that acts like tcpdump with some options to filter and analyze network traffic. Tcpdump 8

is a command-line tool used to capture network traffic, having different configurable parameters.

There are another tools such as IBM Rational AppScan [38] and HPE Fortify [39], but because

they are limited capability and commercial tools, they will not be described.

This type of analysis is characterized by the use of both testing methods, black and gray

box, that were described in subsection 3.3.2 and 3.3.3, respectively. After its description, will be

presented in the following section a specific kind of test, GUI testing, that is the main purpose of

this study.

3.5 GUI Testing

When a Android application’s GUI is tested, both of some functional (system, regression, user

acceptance) (3.2.1), and non-functional (stress, usability) (3.2.2) tests are combined and several

persons from the software, infrastructure and design fields are involved. Furthermore, different

types of testing methodologies and analysis are performed, as shown in the previous sections.

8Tcpdump.org. Tcpdump/libpcap public repository. 2015. [Accessed: Feb. 24 2016]. URL: http://www.
tcpdump.org.

http://www.tcpdump.org
http://www.tcpdump.org


3.5 GUI Testing 27

Generally, GUI tests are made when the software product is already developed, but not released

to the market, yet. Usually, it is done manually and black-boxed, but nowadays, there are several

ways to automate this kind of tests. In this way, the following two subsections present the two

different approaches to test an Android application’s GUI.

3.5.1 Manual Testing

One of the ways most known and used by software companies to make product’s GUI tests is

manually. To perform them, there are some different methodologies, as reported in [40], such as:

• Heuristic Methods: requiring a group of UI specialists testers that studies the software in

order to find problems. This technique identifies many more and serious problems, in a short

time, however it requires many and well payed specialist testers;

• Guidelines: this technique is based on recommendations about software and UI previously

defined, however it can miss some serious problems;

• Cognitive walkthrough: This technique is characterized by developers/testers trying to act

like a real user, defining the main tasks, and its goals/expectations about the UI’s interac-

tions.

• Usability tests: The software is used by real users, under controlled conditions, collecting

and identifying problems, reporting to the company the improvements that can be made

before the product’s release.

This is the most reliable way to test applications, because more bugs can be found, if per-

formed by good specialists, and bugs could provide hints to find new ones that an automated test

is unable to understand yet. Another benefit of manual testing, is the detection of usability prob-

lems. However, this technique has also drawbacks, such as: the effort and time required, a weak

coverage, a regression test must be repeated and it is difficult to find a good tester. In this way, the

following subsection an automate approach to test application’s GUI.

3.5.2 Automated Testing

As reported in [17], test automation has some number of goals that, nowadays, software companies

want to accomplish. One of them is the reduction in cost and effort done to make tests, since every

single release of new software always requires human resources and a huge amount of time to

perform them. Another goal is to speed up the bug reporting process, allowing faster corrections

by developers. Finally, the last goal is to reduce the errors made by humans during the testing

phase.

But the real question is, from what point does the test automation offsets? The answer to this

question can be found in [41] and [42], that detail the costs of automation. In these documents,

they specify the cost with a single automated test (Aa), represented in equation 3.1, where V

represents the costs with the test specification and implementation, D represents the cost for the



28 State of Art

single test execution and n is the number of test executions. They use the same calculation to

represent the cost for manual test execution(Am), as can be seen in equation 3.2, and to calculate

the break-even(E(n)), i. e., the point where the automated costs are equal to manual costs, simply

comparing the both costs, as can be seen in 3.3 and 3.2.

Aa := Va+n∗Da (3.1)

Am := V m+n∗Dm (3.2)

E(n) :=
Aa
Am

=
(Va+n∗Da)
(V m+n∗Dm)

(3.3)

Figure 3.2: The cost of manual vs. automated testing.

According to this model and with the growing of tests’ number (n) necessary to perform before

each release, it’s empirically proven that test automation not only is necessary but also, if not

implemented, may incur higher costs as the number of tests grow.

Test automation can be applied to a different pyramid’s levels, as presented in figure 3.3, that

goes from the bottom, deep level of automated tests, to the top, manual tests. Considering that

GUI’s automated tests are the closer layer to the manual tests, it means that, among all automated

tests, this type requires more supervision. Usually, as further closer to the top of pyramid, more

black boxed tests are.



3.5 GUI Testing 29

Figure 3.3: Automated testing pyramid 9.

To conduct GUI’s automated tests can be used different approaches, as reported in [43], such

as:

• Capture and replay: the tester can track the entire interactive session, recording user’s in-

puts, gestures and keys pressed, saving it in a log file. Then, it is possible to replay with

accuracy the entire session without human’s interaction. This approach can be very pow-

erful in regression testing, however, it only can be used when there is a product and when

there is no layout changes between product’s versions. RERAN, reported in [44], is one of

these tools;

• Random inputs: acting like a monkey, random and unpredictable inputs are generated au-

tomatically, making a kind of stress test. Although this approach is good to find system

crashes, the bugs’ finding and reproduction can be a hard task. UI/Application Exerciser

Monkey, is one of these tools;

• Unit testing: generally based in JUnit testing framework, the tests can be automatically exe-

cuted in order to test the application’s GUI. The tests can be written before the development

phase, however the test cases have to be programmed manually and usually require more

lines of code than the application itself. Robotium and UIAutomator are examples that take

advantage of this approach;

• Model-based: makes an abstract representation of states and behavior of a System Under

Test (SUT). Then, based on it, test cases are derived, generally using only black box method-

ologies. This approach is characterized by its adaptability to changes, automatic test case

9Alister Scott. Introducing the software testing ice-cream cone (anti-pattern). WatirMelon. Jan-
uary, 2012. [Accessed: Feb. 12, 2016]. URL: http://watirmelon.com/2012/01/31/
introducing-the-software-testing-ice-cream-cone/.

http://watirmelon.com/2012/01/31/introducing-the-software-testing-ice-cream-cone/
http://watirmelon.com/2012/01/31/introducing-the-software-testing-ice-cream-cone/


30 State of Art

generation and its testing exhaustion. However, it has some drawbacks, such as: the model

complexity, the huge amount of generated test cases and its management issues. GUI Rip-

ping, reported in [45], is one tool that uses this approach;

Despite these four different approaches, all can be categorized in two software development

processes, known as Behavior-Driven Development (BDD) and Test-After Development (TAD).

BDD is an extension of Test-Driven Development (TDD) and is characterized by writing behavior

tests before the development phase. In other hand, TAD is characterized by writing tests after the

development phase, having a prototype or a final product to understand its behavior.

Nowadays, there are also some tools based on Domain-Specific Language (DSL), as described

in [8]. This is a very popular approach to automate GUI tests and is used to express the behavior

of an application and the expected outcomes in a script using natural language sentences. It can

be used for both BDD and TDD approaches. Tools as Cucumber, Appium and Robotium take

advantage of a DSL, and will be described further.

Currently, there are a set of tools available on the market that will be described and analyzed

in the next subsection.

3.5.3 Test Automation Tools

As described in [8] and mentioned in previous subsection, Cucumber is a command-line and a

DSL tool that reads natural language text files, as a simple algorithm script, taking advantage of

Gherkin parser. Each file is interpreted as a feature that contains several scenarios, and it is tested

against the program or system. Cucumber uses Ruby to convert the natural language into native

programming language with the help of a library, that translates it into the application’s domain.

As mentioned in the previous subsection, Appium 10 is an open-source automation and cross-

platform tool for mobile applications, both for Android, iOS and FirefoxOS. It takes advantage

of Apple UI Automation for iOS, Google UIAutomator and Instrumentation for Android. This

tool joins all of these tools in a web-driver API that acts in a client-server architecture. It uses a

RESTful web service and Hypertext Transfer Protocol (HTTP) protocol to application’s testing.

Due to huge amount of libraries included, this tool offers some flexibility in terms of programming

language chosen.

Since the main focus in this dissertation will be Android, would be good to make an analysis

exclusively about the automation tools of this mobile OS. Currently, Google provides some sup-

port in the Android testing automation, including and developing classes/libraries to do it, such as

Robotium, monkeyrunner, Monkey, UI automator and Espresso, as reported in [46], [47] and [48].

Robotium 11 was developed in 2010 and is one of the main test automation frameworks for

Android mobile applications. With this tool it is possible to a tester the faster creation of test cases,

eliminating the boring task and error-prone of manual scripting. Robotium requires a minimal

10Appium. Automation for Apps. Sauce Labs, 2016. [Accessed: Feb. 27 2016]. URL: http://appium.io/
index.html.

11Renas Reda. Robotium. 2010. [Accessed: Feb. 10 2016]. URL: http://robotium.com/.

http://appium.io/index.html
http://appium.io/index.html
http://robotium.com/


3.5 GUI Testing 31

knowledge of the application under testing, since it is black boxed and it handles with both native

and hybrid applications. Although the code is available to the community, Robotium has a paid

version to record Android UI tests, but can be used in Android Studio and Eclipse with a free

plugin.

On the other hand, there is the monkeyrunner 12, a black boxed tool that provides an API to

control an Android device or emulator. This tool allows the users’ inputs simulation and gener-

ation, take screenshots or install an Android application. monkeyrunner requires the writing of

Python scripts, and uses Jython to convert them into Java programming language.

As mentioned in the previous subsection, the UI/Application Exerciser Monkey 13 generates

pseudo-random streams of users’ inputs, simulating clicks, touches or gestures and system-level

events. This is a command-line based tool that performs stress tests in Android applications,

allowing the user to choose which application he wants to test, the time of testing, the events,

constraints and the debugging cases.

The Espresso 14 testing framework, is used to automatic simulate users’ inputs in the applica-

tion’s UI, assuring that the users don’t have a bad experience when interacting with the application.

It is very similar to monkeyrunner.

UI Automator 15 is an instrumentation-based API that allows the simulation of users’ inputs

across multiple applications, regardless of which activity is focused. It has also UI dump capabil-

ities, can extracting the elements presented on the Android device’s screen.

Another existing tool is Selendroid 16, a script-based tool for Android native and hybrid ap-

plications, both in mobile devices or emulators. The tool has a web-driver to conduct tests on the

browser, and supports a large number of Android target APIs.

As the detailed description of the tools is done, now is necessary define some metrics to com-

pare them. Major part of this job was already done by Linus Esbjörnsson in [49], and can be found

in tables 3.1 and 3.2, with some corrections and another tools analysis.

12Android Studio. monkeyrunner. Google. [Accessed: Feb. 10 2016]. URL: https://developer.android.
com/studio/test/monkeyrunner/index.html.

13Android Studio. UI/Application Exerciser Monkey. Google. [Accessed: Feb. 10 2016]. URL: https:
//developer.android.com/studio/test/monkey.html.

14Android Developers. Testing UI for a Single App. Google. [Accessed: Feb. 10 2016]. URL: https:
//developer.android.com/training/testing/ui-testing/espresso-testing.html.

15Android Developers. Testing UI for Multiple Apps. Google. [Accessed: Feb. 10 2016]. URL: https://
developer.android.com/training/testing/ui-testing/uiautomator-testing.html.

16Ebay Software Foundation. Selendroid. 2012. [Accessed: Feb. 10 2016]. URL: http://selendroid.io/.

https://developer.android.com/studio/test/monkeyrunner/index.html
https://developer.android.com/studio/test/monkeyrunner/index.html
https://developer.android.com/studio/test/monkey.html
https://developer.android.com/studio/test/monkey.html
https://developer.android.com/training/testing/ui-testing/espresso-testing.html
https://developer.android.com/training/testing/ui-testing/espresso-testing.html
https://developer.android.com/training/testing/ui-testing/uiautomator-testing.html
https://developer.android.com/training/testing/ui-testing/uiautomator-testing.html
http://selendroid.io/


32 State of Art

Table 3.1: UI automation tools comparison - general metrics

General metrics
Metric/-

Tool Robotium Selen-
droid

UI
Automator Espresso Appium mon-

keyrunner

API
Very

simple
Moderate Simple

Very
simple

Very
simple

Simple

Logging
support

Average Average Bad Good Average Average

Cap-
ture/replay

support
Yes Yes No No Yes Yes

Documen-
tation

Good Bad Good Good Good Good

Testing
method

Gray-box
Black-

box/Gray-
box

Black-
box/Gray-

box
Gray-box Black-box Black-box

Random
event

generation
No No No No Yes No

Emula-
tor/real
device
support

Both Both Both Both Both Both

Version
support

API 8+ API 10+ API 18+ API 8+ API 17+ API 8+

Version
control
support

No No No No Yes No

IDE
support

Eclipse,
Android
Studio

Eclipse
Eclipse,
Android
Studio

Eclipse,
Android
Studio

Eclipse,
Android
Studio

Eclipse,
Android
Studio

From these tables and the previous description of each tool, can be concluded that there is a

larger number of tools for test automation and some of them can be very useful in the solution’s

implementation, as UIAutomator. However, it may noticed that no one of them make a security

and dynamic analysis of the applications’ network traffic/logs generated.



3.6 Related Work 33

Table 3.2: UI automation tools comparison - technical metrics

Technical metrics
Metric/-

Tool Robotium Selen-
droid

UI
Automator Espresso Appium mon-

keyrunner
Resume
applica-

tion
No Yes Yes No Yes Yes

Suspend
applica-

tion
Yes Yes Yes Yes Yes Yes

Finish
activity

Yes Yes Yes Yes Yes Yes

Change
device
settings

Limited Limited Yes No Yes Yes

Scrolling Yes Yes Yes Yes Yes Yes
Simultane-

ous
keypresses

No Yes Yes No Yes No

Re-launch
applica-

tion
Limited No Yes Limited Yes Yes

Delay
support

Yes Yes Yes Automatic Yes Yes

Condition
based
testing

Yes Yes Yes Yes Yes Yes

Support
for device

keys
Yes Yes Yes Yes Yes Yes

Nowadays, there is a truly security concern in mobile devices’ World and it is very important

to approach due to the huge amount of malicious or insecure applications existent in Android

official and unofficial markets. Furthermore, there is no consistent automated tool that generates

test cases for all possible patterns of the application.

After the detailed analysis of the current existing tools available in the market to automate

tests, it becomes mandatory analyze some implementation attempts of tools similar to the solution

presented in this dissertation. In this way, the related work will be approach in the next section.

3.6 Related Work

Some related work is already done in this area of study, and provides really important information

for the implementation of the solution.



34 State of Art

The paper [50] suggests a tool called Dynodroid that generates a set of randomness touching

and scrolling events as Monkey does, to perform applications stress testing. Besides this tool

generates significantly more concise input sequences, it was more slower than Monkey, doesn’t

support asynchronous operations and is only supported by Gingerbread Android version.

In [51] is proposed a tool called Swift-hand that uses a machine learning approach, generating

sequences of users’ inputs and, at the same time, learning all the application’s possible patterns,

visiting unexplored states of the application and also unreported crashes/bugs. The main limita-

tions are that the tool requires much time to restart the applications, re-exploring the paths already

discovered. Furthermore, it is only supported by Android 4.1 or higher versions, and it cannot

handles apps that use a remote server to store data through Internet connectivity.

In [35] is proposed the AppPlayground to automate the Android application’s security analysis,

using some techniques to discover malicious applications installed in the device. However, this

tool cannot work well when an app contains embedded web pages and applications that require

login or registration.

In [45] is suggested Android GUI Ripper, an automated testing tool based on instrumentation

of Android application’s source code, using an event-driven approach. This tool creates a tree

model from the GUI objects and generates test cases in a Robotium format. This tool does not

provide support for some events such as hardware sensors and networks, and didn’t was tested for

real applications with huge size and complexity.

Troyd in [52] is a integration testing framework, that simulates the user’s inputs and records

the interactions in order to generate Ruby testing scripts that can be used for regression or compat-

ibility tests. However, this tool only control the application’s components, reacting bad to browser

launches. Furthermore, the main drawback of it is the delay between user’s actions and its effect

in the application.

3.7 Summary

Firstly, it can be concluded that there are many tools on the market that perform static and dynamic

analysis of other applications, either using black, gray, or white box methods.

On the other hand, there is as huge amount and diversity of tests that require several hours of

manual labor, hence increase the cost or planning, executing and maintaining them. Henceforth, it

is necessary its automation when the number of test cases executions is high.

This chapter presents also a decent amount of testing tools available on the market that can

be used to automate tests, improving the Android applications’ robustness and liability. Although

many of those tools actually help the software testers’ performance while in-job, none of them

fully satisfies their needs. There’s a common requirement throughout the software testing field

that requests increased test automation, as reported in [17].

This work focuses on enhancing the automation of GUI tests by making a sophisticated An-

droid crawler, similar, but improved, to what are detailed in the some of related work tools and

that can serve as an iterative contribution to the field.



3.7 Summary 35

The following chapter will introduce and detail the proposed solution.



36 State of Art



Chapter 4

Android GUI Crawler

This chapter introduces the problem’s definition, and details the proposed solution of a Android

GUI crawler-based and black-boxed automatic tool, for test case generation. In every section

are placed some important questions and its respective answers for a better understanding of the

dissertation’s purposes. Firstly, it is made a brief introduction and it is described the way which the

interaction with device was done. Then, the ADB tool is detailed as well as the used data model.

Furthermore, the crawler is specified and finally the test case generation and capture modules are

explained. Finally, it is also described the traffic capture module.

4.1 Introduction

Nowadays, mobile applications are in constant change. Software companies have to develop new

products and upgrade the old ones to assure the users’ needs. In this way, every single release,

there is a huge amount of tests that needs to be planned, executed and maintained, requiring human

resources and consuming many time. But, the main problems are the costs associated to manual

tests, that will just increase with time. Because of that, there is a need to automate tests, eliminating

the boring and error-prone task of manually test it, simplifying and reducing the tester’s work.

To solve the problem, it is proposed a GUI crawler-based automatic testing tool, that will be

used to derive test cases and to applications’ mapping. Different from another solutions described

in section 3.6, it is proposed a totally black boxed solution, with any knowledge of applications

flow so as to act like an end-user. This solution is a desktop-based Java application and one of the

main goals of it is covers the maximum number of Android applications’ possible patterns, con-

structing a control-flow tree, extracting screenshots, names of activities and the events that trigger

the transitions. Furthermore, another goal is the test cases generation in natural programming

language that will be useful to perform regression tests.

Finally, there is a concern in the evidences’ capture to report bugs and existent problems,

namely in terms of security. In this way, all device’s network traffic and logs generated are captured

during the crawling process as well as the screen recording, in case that is revealed as a possibility.

37



38 Android GUI Crawler

All this contents will be approached in the following sections, representing all sequential steps

that are made during this dissertation.

4.2 Interaction with device

In a first step, some questions appear and some decisions had to be taken about the way that the

solution will interact with device, such as:

• Q1: Will the solution use real or virtual devices?

• Q2: Will the solution be an Android application, a desktop application or a mixture of both

?

• Q3: What are the benefits and limitations of each option?

• Q4: What is the best option and what is its cost, in terms of time and complexity of its

implementation?

In order to test the solution, currently there are available some virtual devices as Android

Virtual Device (AVD) and Genymotion emulators, that simulate a large number of real devices

with different Android versions, screen sizes and resolutions. However, this type of environment

is very isolated, not counting with other external factors such as 3G connections, background

running applications, services, processes and memory issues. In this way, it was chosen the use of

real devices to completely simulate the end-user device.

In case the final solution would be an Android application, it would be necessary to develop a

service that will take off advantage from Android Linux-based command line, and will be running

on the device OS background during the running of the test intended application. With this ap-

proach implemented, there would be no need of any cables and push/pull files to another systems,

improving the speed of crawler. However, to implement this solution wouldn’t allow the applica-

tions in several devices to be tested at the same time, requiring direct interaction with the device

to start it, which sometimes becomes difficult due to touchscreen size and responsiveness.

If the solution was a mixture of Android and desktop applications, it would be necessary to

develop a desktop application and Android application service, acting as client/server architecture,

taking off advantage from local Wi-Fi connection. This solution requires the service’s installation

in each device, its running, and the desktop application requires a multi-threading server socket

implementation, with push/pull of files from device, increasing the implementation’s time and

complexity.

If the solution was only a desktop application, it would take advantage of a tool already de-

veloped and already mentioned in 3.4.2, the ADB. This tool only requires a USB cable or Wi-Fi

connection with the devices and the push/pull of files from the device, increasing the time of

crawling, however it is lower than the previous proposed solution. This solution doesn’t require

any direct interaction with the devices, taking off advantage from the access to the command line



4.3 Android Debug Bridge (ADB) 39

via ADB. Furthermore, the main drawback of this solution was the insufficient number of USB

ports in the desktop to all pretended test devices, that can be solved with a simply USB switch, or

using wireless ADB capabilities.

After the analysis of these tree possibilities, the solution chosen was the last one, because it

was the one that offers more scalability and benefits considering the pros and cons. Furthermore, it

provides a great relation between time and complexity of implementation as well as the possibility

of usage of Android emulators. It was represented in figure 4.1, where N ranges from 2 to 15 that

is the maximum connection through ADB, as described in 3.4.2.

Figure 4.1: Connection with devices.

After performing this choice, it became important to analyze the tool’s features used to make

the device’s connection, ADB, which will be approached in the next section.

4.3 Android Debug Bridge (ADB)

To make the connection between the desktop and Android device or emulator, there are some pre-

conditions to set up it. These conditions are established to give some security to the device’s user,

because of the possibility of device remote control through ADB. In this way to run ADB it is

necessary to:

• Set the path of ADB executable file as environment variable of the system, in order to

execute ADB commands independently of the working folder;

• Plug device to the computer via USB;

• Activate developer options in the device, by generally tapping ten times in the compilation

number of the device available on about settings. It is considered as an Easter egg, as

described in 2.2;

• In the device, activate USB debugging on developer options;

• If needed, install devices’s ADB drivers. Currently Android SDK provides a generic USB

driver that works for almost all devices.



40 Android GUI Crawler

As said in the previous section, the solution takes advantage of ADB client on the desktop,

that can be used via USB cable or via Wi-Fi through local network. In this way, it was made a

representation of its architecture in figure 4.2, based on 3.4.2.

Figure 4.2: ADB operation diagram - Wi-Fi and USB options.

In order to have some abstraction about this level of the solution, it is developed a very com-

plete Java API, to send desktop ADB commands, presented in section B.1, and device shell com-

mands, presented in section B.2, of appendix B.

Regarding the device shell’s commands, they take advantage of some existent tools in the

Android OS, such as:

• dumpsys: that provides information about the status of system services. In the solution it

is used to verify the state of applications, to know what activity is displayed and focused at

the moment, to verify if keyboard is enable or not, screen resolution, status of battery and

numerous information about the device;

• getprop: this command provides all information about the properties of device, including

the model, Android version, API level, Internet Protocol (IP) addresses, default gateway,

International Mobile Subscriber Identity (IMSI), brand, language, region and others. The

outputs of this tool are used to connect to device and to create some pre-conditions to run

another tools, like Android version and IP addresses;



4.4 Data Model 41

• screenrecord: this command allows the video record of device’s screen. It is a feature only

available to devices with Android API level 19 or higher, and is possible to define its bit

rate, size, rotation, duration and destination of record file. This tool is used to record, if

the user desires, the crawling process, that can be useful to future analysis and bug report.

Unfortunately, the record’s time limit is only 180 seconds (Android limitation), but it can be

surrounded using threads;

• screencap: that allows to take screenshots of the device’s screen and put it in a file. This

tool is used to capture all screenshots of all different activities and dynamic elements, that

can be useful for analysis and bug report;

• cmp: is used to compare the content of two selected files. It was very important to verify if

layout has changes after an input action on the screen;

• pm: also known as package manager, this command is used to install/uninstall applications,

clear its cache and get the system/3rd party applications installed on device;

• monkey: as described in subsection 3.5.3, it generates random events to device’s screen, but

this tool could be also used to open application by given a package;

• input: is a tool to interact remotely with the device. It is used to send key events, taps,

swipes, text strings, presses and rolls;

• tcpdump: this tool is used to capture device’s network traffic to a pcap file. It execution is

only possible in rooted devices, because it needs superuser permissions, and sometimes the

tcpdump binary file need to be pulled to the device, because some rooting tools don’t have

it. If device is rooted, the traffic captures will starts and when the crawling process finish, it

is stopped and the pcap file is pulled from device to desktop;

• uiautomator: is the key to the solution works. This is a tool dumps the current screen layout

to a XML file, according the layout’s hierarchy, containing several UI elements, such as:

relative layouts, linear layouts, buttons, edit texts, spinners and others. Then the XML file

needed to be pulled to the desktop, to make its parsing into a tree data model.

These tools are not run at the same time, and are used in different states of the crawling

process, that will be better explained in the description of the crawling algorithm. Before this

is done though, it is required an explanation about the model used, being it the subject of the

following section.

4.4 Data Model

Before the development of the crawler’s logic, it was necessary to develop a model to deal with

all the UI elements, actions and activities provided by the XML file dumped from device, in every

iteration. In this phase of work, new questions appear to deal with these elements, such as:



42 Android GUI Crawler

• Q1: What is the best model that fits better in these elements representation?

• Q2: What is the complexity of implementation of each model?

In order to answer these two questions, firstly it is tried the implementation of a simply model

based on lists. However, after some time lost on it, it is concluded that it wasn’t the best model to

implement this type of crawler, because several lists will be required, the complexity and entropy

will be huge, and the test case generation will be difficult to specify after the crawling process

ends. Furthermore, the time and efficiency of the crawler will be penalized because of that.

After this unsuccessful route taken, it was chosen a more logic model that fits better in the

proposed solution, a tree model, similar to another tools already mentioned in related work section.

A tree model had been constantly used in several fields of science, mostly in prediction and

decision models. In this case, a tree is used to map an Android application, with all activities, all

clickable elements and all actions performed to achieve new patterns. This tree can has only one

root node and can’t have any cyclic pattern.

The model used in this work is composed by nodes, that can be a root or a normal node, and

each node can be a different type of element: an activity, an UI element or an action. In addition,

each node has a status, if it is already visited or not, that can be important for crawling process,

and it is represented in figure 4.3.

Figure 4.3: Model - Class Diagram.

The main goal of choosing this model is to reduce the complexity of implementation and

representation, however it has some drawbacks, namely with the complexity of search. This work

takes advantage of a well-known type of search called Breadth-First Search (BFS), in order to

increase the time, efficiency and coverage of crawling process.

In first step, the BFS is used to find four main actions available in the activity (swipe left,

swipe right, scroll down and scroll up, as represented in figures 4.6 and 4.5), to search and add all

superficial elements to the activity node.



4.5 Crawler 43

Then it is started the second phase, making tap actions (represented in figure 4.4) in the click-

able elements and looking for new ones, evaluating the new layout or activity that appears in the

same way.

Figure 4.4: Tap Gesture Figure 4.5: Scroll Gesture Figure 4.6: Swipe Gesture

Regarding the tree representation, it is used a very simple and complete open sourced library

named Graphstream. This is a Java library for dynamic graphs representation and analysis, allow-

ing the developer to observe, in real-time, the nodes being added by the crawler, interact with them

and, in the end, to export them to some different file formats (DGS, DOT, GML, GraphGML). This

type of representation was very important for application’s debugging process and to generate the

test cases more easily.

After the understanding of the tools used to make the connection to the device and its selected

data model, it became necessary to understand the proposed solution’s core, the crawler, that will

be described in the next section.

4.5 Crawler

Also known as "spider" or "bot", a crawler is a program that travels automatically and with no

knowledge, through pages of websites. Millions of people use a specific web crawler every single

day without knowing it by this name.

Nevertheless, in this case, the concept of crawler is quite different. It was implemented an

automated program that tries to travel into all possible patterns of Android applications, based on

a tree model, with the purpose of generating automatically test cases for every possible pattern,

capturing some evidences such as the network traffic and the logs, during its execution.

This is a very new and innovative concept in the mobile applications crawling field, and as can

be seen in the literature review, there are some tentatives to doing this, generally based on gray

box and white box methodologies. Regarding these techniques, this dissertation proposes a totally

different implementation of a crawler, based only on a black box methodology and on the GUI of

Android applications. Without any access to the source code, this technique nowadays can be very

useful for companies that have its software products development outsourced. However, some



44 Android GUI Crawler

questions appear, calling for an answer and requiring a more detailed explanation to understand

the purpose of this work, such as:

• Q1: Why crawling Android applications?

• Q2: What device should be used for the crawling process?

• Q3: What are the advantages/disadvantages of the exclusive usage of black box methods?

• Q4: What are the tools the crawler requires to function properly?

The answer for the first question can be difficult to understand at the beginning. Google was

one of the first companies that saw the importance of indexing and crawling the web, due to

the huge amount of data and difficulty to search something. Why not doing it also for Android

applications? Today, there are millions of Android application available to the users, and crawling

them could be useful to get data for business intelligence processes, and to index all the data inside

applications and make it available for search. It also can be useful for testing all available patterns

in order to find bugs and vulnerabilities.

With this approach, it is possible to monitor constantly the quality of the application and test

faster its GUI without the tedious task of doing it manually. Furthermore, it has the main purpose

to automate the test case generation. It also can be used to perform a dynamic analysis of captured

evidences. These are the main reasons why applications should be crawled.

Regarding the second question, because of what was mentioned in section 2.2, due to differ-

ent Android versions, screen sizes and densities of devices, each application will have different

behaviors. In this way, it is important that the tool has the ability to use different devices for

crawling applications. Once the crawler requires the use of UIAutomator, the device must have

the Android’s API Level 18 or greater, as described in table 3.1.

This approach takes advantage of black box only methods to crawl each application. The

main advantage of it is that it does not require any access to the source code, as described in 3.3.2.

However, using only this method can be a harder task to perform the crawling process as efficiently

as the gray/white box methods, due to the lack and precision of information to do it.

Finally, in order to crawl an application there are some dependencies required, such as the

ADB executable file and Windows API Dynamic-Link Library (DLL) file to perform the connec-

tion to the device, the Android Asset Packaging Tool (AAPT) executable file, that is a tool used

to extract information about the Android application. The tcpdump binary file is also required to

capture the network traffic and all of the other tools, already mentioned in subsection 4.3, will be

needed.

After answering these questions, now it becomes important to fully describe the solution in a

detailed time sequence.

Firstly, all the devices should be connected via USB to the desktop. When the program starts,

the ADB server is started, and it is obtained all the connected devices. For each device, it is

obtained all system and third-party applications, as well as all important information about the



4.5 Crawler 45

device, as presented in section D.1 of appendix D, and as can be seen in algorithm 1, appealing to

getprop and dumpsys capabilities.

Algorithm 1 Program Startup
1: startADBserver();
2: List<Device> listOfDevices← getDevices()
3: for (Device device : listOfDevices) {
4: Device dev← getDeviceInfo(device)
5: dev.listOfSystemApps← getSystemApps(device)
6: dev.listOf3rdPartyApps← get3rdPartyApps(device)
7: initialConfigurationThread(dev)
8: }

At this state, it is possible to set up the Wi-Fi connection, if desired, simply by clicking in

a button and disconnecting the USB cable. After the user chooses the application that he wants

to crawl, the APK file is extracted to the desktop and using AAPT it is also extracted to a file

some important data about it, such as application’s name, version code and name, target SDK,

permissions, supported screens, densities and languages supported, as presented in section D.2

of appendix D. After that, three main threads are started, in case the user configures it so, one

for network traffic capture, other to LogCat capture and another to video record the process, as

can be interpreted in the algorithm 2, that can be useful evidences for bug reporting, control flow

and security testing, respectively. Taking advantage of the execution of multiple processes by a

single or multi-core processor parallely, known as multithreading, was fundamental to perform

this evidences’ capture during the application’s crawling.

Algorithm 2 initialConfigurationThread (Device device)

1: if wifi.isClicked() then
2: setUpWifiConnection(device)
3: App app← getSelectedApp(device)
4: app← getAppInfo(app)
5: if login.isSelected() then
6: app← getLoginCredentials()
7: if trafficCapture.isSelected() then
8: setUpTrafficCaptureThread(device)
9: if recordScreen.isSelected() then

10: setUpRecordScreenThread(device)
11: if logCat.isSelected() then
12: setUpLogCatThread(device)
13: startCrawler(device, app)

Then, when the crawler starts, firstly the tree is initialized, the app is opened, using monkey

capabilities, and the initial activity node is added to tree. The activity’s name is obtained using

dumpsys capabilities, and parsing the command line output string using the findstr tool provided



46 Android GUI Crawler

by WindowsOS. Subsequently, the UI is dumped, using UIAutomator, to a XML file, then is parsed

and interpreted, and all new nodes are added to the activity node, as represented in algorithm 3.

Algorithm 3 startCrawler(Device device, App app)
1: Tree tree← initializeTree()
2: openApp(device, app)
3: String activity← getCurrentActivity(device)
4: Node activityNode← createActivityNode(activity)
5: tree.addChildren(activityNode)
6: dumpUI(activityNode)
7: crawling(activityNode.getChildren())
8: return tree

In this step, the main difficulty was to parse existing elements without ID and any text, per

example RelativeLayout boxes, and several elements with same ID inside different activities, per

example EditText boxes. Regarding the first case, it only happens with ViewGroups elements,

i. e., a container that can contains several Views in it, such as, RelativeLayout, LinearLayout,

FrameLayout and others. To solve this problem, if the ViewGroup is clickable, the clickable

attribute of its children will be set to true and the clickable possibility of the father is removed, as

can be seen in figure 4.7, where the green boxes means that the element is clickable and the white

and dashed boxes means that the element is not clickable.

Figure 4.7: Resolution of the problem with elements without ID and any text.

Regarding the elements with same ID, first of all it will be take for granted that for a given

activity, any element of it has a different ID. In this way, for each element is associated the activity

that it belongs, in order to avoid same elements to be represented in the tree data model.

After that, the crawling process entered in a recursive method, performing the crawling. Re-

cursion was the way found to simplify the problem, being the key of this algorithm. With it, it

is possible follow the approach "Divide and Conquer" and divide a bigger problem in a smaller

ones, having less and cleaner code. In the end, a final tree object is returned, with all available

nodes and patterns of the application identified by the crawler and that will be used for test case

generation.



4.5 Crawler 47

Regarding this recursive method of the crawler, described in algorithm 4, firstly it is necessary

to copy the list of children nodes to another list, to prevent concurrency and stack overflow excep-

tions during the crawling process. Then, it is used an iterator to run across the list. For each node

on the list it is verified if it was already visited and it is a clickable node, and if not it is marked as

visited.

Algorithm 4 crawling(List<Node> children)
1: List<Node> listOfNodes← new List<Node> (children)
2: Iterator it← listOfNodes.iterator()
3: while it.hasNext() do {
4: Node node← it.next()
5: if !node.wasVisited() && node.isClickable() then {
6: if nodeExistsInUI(node) then {
7: tap(node.x, node.y)
8: if keyboardIsEnable() then
9: keyboardDisable()

10: if activityIsLoading() then
11: wait()
12: if appWasChanged() then
13: back()
14: if node.IsEditText() then
15: insertText(node);
16: if activityIsTheSame() then {
17: if layoutChanges() then
18: node.addNewNodes()
19: } else {
20: String activity← getCurrentActivity(device)
21: if tree.hasActivity(activity) then {
22: node.setVisited(true)
23: node.addActivity(activity)
24: Node activityNode← tree.getActivityNode(activity)
25: activityNode.addNewNodes()
26: node← activityNode
27: } else {
28: Node activityNode← new Node(activity)
29: node.addChildren(activityNode)
30: activityNode.addNewNodes()
31: }
32: }
33: } else {
34: markFailedNode(node)
35: failCount++



48 Android GUI Crawler

36: if failCount == 2 then {
37: failCount← 0
38: restartApp()
39: } else
40: node← node.getFatherActivity()
41: }
42: } else
43: node.setVisited(true)
44:

45: if node.hasUnvisitedChildren() then
46: crawling(node.getChildren())
47: }

At this state of work, many problems appear namely because of dynamic elements presented in

the GUI of the applications. Because of that, before tapping in a UI element is done a verification

assuring that the element is really presented in the GUI. This search contemplate actions like

swipe and scroll, as described in 4.4, performing BFS. If not, the node is marked as failed, and

is given another opportunity to find it. Only in the last resort the application is restarted, and the

crawler make the tracking to the last state of application is before the node be failed.

If the node effectively exists in the UI, it is clicked and are contemplated some verifications,

that will be explained next.

Firstly, is verified if the keyboard appears. This is done because the dump of UIAutomator

isn’t capable to identify if the keyboard is enabled or not, having the possibility of it overlaps

the UI elements. Per example, if the next clickable node is behind the keyboard, the crawler will

"think" that it is clicking in the node, but, in reality, it is clicking on the keyboard, producing

undesirable consequences. To solve this problem, if keyboard was enable, it is dismissed using

dumpsys capabilities.

In second place, is verified if the activity is loading. Many application has asynchronous

operations (due to waiting time from the response of REST or SOAP web service), and because

of that, is necessary wait for the integral loading of the activity and its elements, before clicking

in any element. To solve this problem, the dump of UIAutomator is filtered, and if it contains an

UI element that characterize the loading (generally a progress bar or a resource ID with "loading"

keyword) and if the layout was in constantly change, is necessary to wait till the layout changes

stop.

Many application take advantage of other integrations, such as Email, Contacts and Gallery,

in this case is necessary back to the selected application. This condition is also contemplated by

the crawler.

Then, is verified if the UI element is a EditText. In this case, is necessary to verify if the activity

contains a login form. There are a huge amount of applications that require login credentials, and

this can be difficult to solve in this process. To make this verification, is checked if the activity

contains the keyword "login". This was the solution found to solve in this problem. However,

can be used other approaches, such as verify if the activity has, at least, one TextView filled with



4.5 Crawler 49

"login" keyword or even the verification the existence of two EditTexts and one of that must has

the password flag enabled.

Another element that must be specially considered is the WebView. A WebView element is

an UI element provided by Android to display HyperText Markup Language (HTML) web pages

inside the Android applications. Because there are another tools to test web applications and its

content doesn’t belongs to the Android application natively, this kind of element will be considered

as a "dead end", and only be performed actions as scroll and swipe to verify what will be displayed

in the WebView.

Subsequently, after an action, is performed the main verification, that is if the activity changes

or not. When a button is clicked or a scroll/swipe action is triggered there are four possibilities:

1. activity change;

2. layout change and activity is still the same;

3. activity already exists in the tree;

4. layout and activity are still the same;

These four conditions are covered by the algorithm, but only for the first three precautions

are taken, because the last one does not produce any traceable changes, as represented in figure

4.8. The blue node represent the root of tree, the red nodes represent activities, the yellow nodes

represent the UI elements of each activities and the green nodes represent the actions. These

representations are also used in figures 4.9, 4.10 and 4.11. The nodes with dashed lines represent

visited nodes.

Figure 4.8: No changes in the layout and activity.

When the layout changes and the activity is still the same, is performed a new dump of the

GUI, and the new nodes, not present yet in activity node, are added as children of current node, as

represented in the figure 4.9.



50 Android GUI Crawler

Figure 4.9: Changes in the layout, activity is still the same.

When the activity changes, firstly is verified if the activity already exists in the tree. In affir-

mative case, the activity node is extracted from tree, and compared with the new one. This kind

of approach prevent infinite loops inside the application, and the activity name is stored into Node

object, to represent this possible pattern, as represented in figure 4.10.

Figure 4.10: Activity already exists in tree.

In another hand, in a negative case, is created a new activity node, that is child of the current

node, and are added the new nodes in the GUI to it. This is represented in figure 4.11, when the

Element A of Activity A is tapped and new Activity appears (Activity B).



4.5 Crawler 51

Figure 4.11: New activity appears.

After this detailed explanation about the algorithm based on pieces of pseudo-code and dia-

grams, all interactions and operations between desktop and device can be grouped and represented

in a timeline, making a division between tools and outputs in the device, as represented in figure

4.12. Regarding the command line strings output, is important to report that the operative system

used was WindowsOS. Other OSs are not contemplated by the crawler, that imply a few modifica-

tions namely in the tools of search and filter command line strings, per example, replacing findstr

by grep.



52 Android GUI Crawler

Figure 4.12: Crawling process.

At the end of crawling process, the tree is stored in a different formats to be used in the test

case generation module. Furthermore, this tree object is serialized into a XML file and saved in

a different formats, taking advantage of Graphstream library, to be simply parsed and used for

another tools. A screenshot of final tree is taken, the pcap and log file are extracted, as the cache

of the app is also cleared. Then, the tree is used by the test case generator module that will be

described in the next section.

4.6 Test Case Generation

Before the explanation of this module, is necessary to answer some important question for a better

understanding of the solution, such as:

• Q1: Why generate test cases?

• Q2: What is the best format of a test case?

Generate test cases is the best way to automate the testing phase, that usually require a huge

amount of time, however, write test cases also require it. In this way, automate this process be-

comes mandatory, primarily to reduce the time spent with regression tests. Furthermore, write

these tests allow to improve the quality of the final product.



4.6 Test Case Generation 53

A test case can be written using some different programming languages, that sometimes re-

quires technical and specific skills, as unit tests. These skills usually are owned by developers, but

not by the testers. Because of that, is necessary to use a understandable language by both sides.

As reported in 3.5.2 and in 3.5.3, a solution that best fits to this is a DSL based tool as Cucumber.

Using a natural language programming allow any person to write and understand every test case

with a low learning curve. Furthermore, when is necessary, is more easier make changes in the

test case.

After the response to these question, now is important to understand how the test case generator

module was implemented.

As said in the previous section, the final tree is saved in a XML file. Now, in this module, is

necessary to read, parse, and make a graphical representation of it. In this phase, is made a leaves

extraction, i.e., for each extremity of tree (known as a leaf), is extracted the full pattern from the

root to the leaf, as represented by green nodes in figure 4.13.

Figure 4.13: Leaves full pattern extraction.

Each pattern corresponds to a test case, however, it translation is not so simple. In this way,

to make this parsing was developed a data model, based on best practices of Gherkin language,

composed by features, scenarios, steps and its description. As can be seen in figure 4.14, a feature

is composed by a name, description, a stakeholder that describes the correspondent user story, a

goal that describes the purpose of test case, and one or more scenarios. Each scenario is composed

by a unique identifier (ID), by a name, one or more steps and tags. Each step contains also an



54 Android GUI Crawler

unique identifier and a string that describes it. At the end of translation is generated a .feature file

with full definition of the feature, and that can be run in automation platforms as Jenkins 1.

Figure 4.14: Test Case Generation.

At this step of the work, the user can see the full pattern, its test case and can make some

configuration based on description of test case. The user can edit each feature, scenario and step

description. Furthermore, it is also possible add new or make changes in the scenarios and steps,

if desired. Then, it is possible to save the feature in a file, similar to the test case presented in

algorithm 5, or discard it, bringing to the next pattern.

Algorithm 5 Test Case Example
1: Feature: <Test76>
2: In order to <Meet Some Goal>
3: As a <type of stakeholder>
4: I want <Feature Description>
5:

6: @perf @obsessive_screenshots
7: Scenario: <Scenario0>
8:

9: Given the app <com.vodafone.mCare> is running
10: When I start measuring "<Scenario0>"
11: Then I press the "Aceitar" button
12: Then I press the "Rejeitar" button
13: Then I enter "910106596" into text field number 0

1Jenkins. April, 2016. [Accessed: Apr. 04 2016]. URL: https://jenkins.io/.

https://jenkins.io/


4.7 Test Case Capture 55

14: Then I enter "vodafone2016" into text field number 1
15: Then I press the "Login" button
16: Then I wait for "910106596" to appear
17: Then I touch "910106596" text
18: Then I wait for 13 seconds
19: Then I wait for "Logout" to appear
20: Then I press the "Logout" button
21: Then I finish measuring "<Scenario0>"

Here appears a big problem, the test case explosion, already exposed in description of model

based tools in section 3.5.2. This is a unavoidable problem, that this model still not succeeded

in resolving. To solve this problem, a new module is included in this dissertation, that will be

presented in the following section.

4.7 Test Case Capture

Using a similar and a half approach to capture and replay type of tools, already reported in section

3.5.2, as RERAN, with this model, a test case can be captured manually, if the user desires a single

test case, resolving the test case explosion problem reported in the previous section. This module

use the same data model described in figure 4.14, generating a similar test case to the test case

example 5.

During the recording process, UIAutomator and getevent tools capabilities are used to extract

all the elements present in the GUI of the application and to extract the action performed, respec-

tively. Cross-linking this data, is possible to find the element clicked, in case of tap action, or, in

case of swipe (left/right) and scroll(up/down) actions, is possible to decode it, and translate them

to a natural language step, defining a specific scenario and feature, as can be seen in figure 4.15.

Figure 4.15: Test case capture process.

The event decoding process have three different possibilities, depending of the action per-

formed or key clicked, as can be seen in figure 4.16. In case of key clicked, it is possible to track

the back, homepage and menu button, and this kind of event has a specific signature that can easily

be translated. Regarding the actions performed as tap, swipe and scroll, they have the same start

and end signature, and similar position signature. With the flags ABS_MT_POSITION_X and

ABS_MT_POSITION_Y is possible to extract the position on the screen where the user clicks.



56 Android GUI Crawler

Figure 4.16: Event Decoding process.

To stop the capture of the test case, the user can define and choose on the beginning one

specific key of three: back, homepage and menu. By default, the menu key is defined as stop

button because, in almost all applications, between the others, this button less influence the be-

havior of the application. The other flags not used as EV_SYN, ABS_MT_TOUCH_MAJOR and

ABS_MT_WIDTH_MAJOR, are used to divide the events and to give some information about the

cross-sectional area of the touch contact and of the tool itself, respectively.

The only difference between the track of tap actions and swipe/scroll actions is that the second

ones have a huge variety of positions till the end. In this specific case, only the start position and

the last position will be considered to extract two different points in order to decode them in a

swipe or scroll action.

To make a distinction between these two actions and its direction, is calculated the gradient

based in start and end positions, as can be seen in equation 4.1.

gradient =
start.y− end.y
start.x− end.x

(4.1)

Then, the angle of the action is obtained, based in equation 4.2, that will be useful to make a

distinction between scroll and swipe actions, as presented in algorithm 6.

angle = abs(toDegrees(atan(gradient))) (4.2)



4.8 Traffic Capture 57

Algorithm 6 Swipe and Scroll Distinction
1: if(angle > 45.0) {
2: if(start.y > end.y)
3: step = SCROLL_UP;
4: else
5: step = SCROLL_DOWN;
6: } else {
7: if(start.x > end.x)
8: step = SWIPE_LEFT;
9: else

10: step = SWIPE_RIGHT;
11: }

Regarding the tap action, the position of the touch contact is gathered as the dump of the

application’s GUI. Then, the correspondent node based on the position is extracted and translated

in a natural language step. After this, a new event will be expected. It is possible to perform this

even via USB or Wi-Fi, costing almost always some time of UIAutomator dump processing.

Despite of this module can be very useful to capture a specific test case or a test case that the

crawler can’t covers, it has some limitations that at this state of work were impossible to avoid,

such as in EditText UI element is impossible to capture the inserted text on it, and time restrictions,

because the user have to wait until the authorization was given to him by the module to perform

the next step, because the UI of the application must be dumped and parsed before, requiring some

waiting time to do it.

After the analysis of the test case capture module, it becomes important to analyze another

important module included in this work, the traffic capture, that will be described in the following

section.

4.8 Traffic Capture

As described in section 4.3, before traffic analysis is required to capture all traffic generated by the

device using tcpdump capabilities and it is only possible in rooted devices, due to superuser per-

missions required, and in applications that have Internet permissions defined in Android manifest

file.

Because, one of the main goals of tool is to be the more black-boxed possible, to verify if

device is rooted is used a simply try of running superuser commands in ADB shell, like su, and to

verify if the Android application has the Internet permission is used an auxiliary tool called AAPT,

that can extract the permissions of a given APK file.

In this way, before the crawler process starts, this verification is done, and in affirmative case,

is pushed to device the tcpdump binary. Then, is run the proper command to start the capture, as

described in appendix B.2. When the crawler ends, the process that runs tcpdump is killed and the

pcap file with capture is pulled from device to desktop, as can be seen in figure 4.12.



58 Android GUI Crawler

Before the traffic analysis, a pre-defined file is read, where the user can places important

words such as username, password, email, Personal Identification Number (PIN), Mobile Station

International Subscriber Directory Number (MSISDN) and others, acting like a dictionary.

After this phase, to perform the analysis of capture file is used and external library called

jnetPcap 2. With this library is possible to decode the pcap file and obtain almost all content

of each packet with some protocols available such as IP, TCP, User Datagram Protocol (UDP),

Ethernet, HTTP requests, responses and its payload.

In case of HTTP packets, the dictionary file previously filled is used to verify if the payload

of this packet contains any word of it. If this happen, means that the Android application has

encryption vulnerabilities, compromising user’s data.

In the end of the analysis, all packets and its content is dumped to a .txt file, in a understandable

way, and some stats about traffic such as number of packets of each protocol, duration of file

analysis and duration of capture.

Figure 4.17: JnetPcap Decoding.

However, the library used has some drawbacks. Many Android application send/receive XML

and JavaScript Object Notation (JSON) objects to its correspondent REST or SOAP web services,

that many times contains important data about the application’s user, and is impossible to decode

with this library. The other drawback is that this library does not support all type of protocols.

This chapter provided a detailed overview of how the proposed solution is built and how it

should work for several possible use cases. The next chapter focuses on demonstrating how the

solution performs on across several applications and devices, and its impact in the software testing

process.

2Sly Technologies Inc. JnetPcap. 2014. [Accessed: Feb. 02 2016]. URL: http://jnetpcap.com/.

http://jnetpcap.com/


Chapter 5

Crawler Evaluation

This chapter will focus on the performance evaluation of the proposed solution. Firstly, it is defined

the criteria to select the application’s dataset. Then, it is explained the different methodologies

carried out to validate the proposed solution. Finally, the results are shown and discussed regarding

a case of study, the solution expansion to another applications and the evidences’ analysis captured

during its process.

In order to assess the performance and completeness of the proposed solution, it was conducted

several tests to answer the following questions:

• Q1: Can the GUI crawler cover all of the application’s patterns?

• Q2: How expansible is the crawler to another applications ?

• Q3: How useful can the solution be to find bugs and vulnerabilities ?

• Q4: Is the tool faster generating test cases than have them manually written?

These questions, define the goals of this assessment, and will be answered after the analysis

of results, that can be seen in the following sections.

5.1 Apps’ Dataset

Since February 2016, Google Play Store has more than 2 million apps available for download 1.

This number of apps is only indexed for the current Android version (6.0 - Marshmallow), being

more reduced for others version. Due to this huge amount of apps, it is impossible to test and

achieve results for each application, timely. In this way, to have a good sample of applications’

diversity it was selected a set of 20 apps for study, based on different criteria, such as:

• Different applications’ categories, in order to demonstrate the dynamism of the proposed

solution;
1Statista. Number of available applications in the Google Play Store from December 2009 to February 2016.

February, 2016. [Accessed: May 11 2016]. URL: http://www.statista.com/statistics/266210/
number-of-available-applications-in-the-google-play-store/

59

http://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
http://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/


60 Crawler Evaluation

• Free and freemium applications, excluding paid applications, to avoid extra costs. Freemium

applications are free applications that include paid additional resources or features in it.

• Popularity, to test apps commonly used among the World;

• Size of app, to test apps with different range of sizes.

Based on these metrics, it can be chosen a set that fully represents all the Android applications

available on the market. Due to this fact, it was chosen the applications presented in table 5.1.

Table 5.1: App Dataset

ID App’s Name App’s Package Category Size2 Down-
loads3

1 My Vodafone com.vodafone.mCare Productivity 7,11 500k+
2 Placard pt.scml.placard Sports 15,99 500k+

3 Calculator com.android.calculator2 Productivity 0,10
System’s

App

4
Terminal
Emulator

jackpal.androidterm Utilities 0,54 10M+

5 Uporto com.moofwd.uporto Education 27,59 1k+
6 Tinder com.tinder Life Style 14,96 50M+
7 Airbnb com.airbnb.android Travels 43,39 10M+

8
Farmácias

Portuguesas
pt.anf.farmaciasportuguesas

Health and
Fitness

57,85 10k+

9 JN pt.civ.jn
News and
Magazines

10,97 100k+

10
Facebook
Messenger

com.facebook.orca Communication 35,33 1B+

11 Juasapp es.mrcl.app.juasapp Entertainment 5,86 5M+
12 Instagram com.instagram.android Social 15,04 500M+
13 2048 com.androbaby.game2048 Games 3,20 5M+
14 Boomerang com.instagram.boomerang Photo 4,88 10M+
15 PT Airports com.innovagency.ana Transport 14,23 100k+
16 Empregos com.indeed.android.jobsearch Companies 1,46 10M+
17 eBay com.ebay.mobile Shopping 18,12 100M+

18 Disney CR
com.disney

.disneycrossyroad_goo
Familly 48,00 5M+

19 Spotify com.spotify.music Music and Audio 27,00 100M+

20
Me-

teo@IPMA
pt.ipma.meteo Wheather 5,06 100k+

2Size represented in megabyte (MB) units.
3k - Thousand (103), M - Million (106), B - Billion (109), + - or plus. Extracted from Google Play Store.



5.2 Methodology 61

After the choice of the applications to be analyzed, now it is important to define the method-

ology used to achieve the results. This is the subject that will be approached in the following

section.

5.2 Methodology

In order to measure and assess the developed solution, the performance and completeness terms,

it was chosen three distinct metrics: Activity Coverage (AC) (absolute and relative) to evaluate

its completeness, duration time to evaluate its performance and its time variance between each

connection mode, and Mean Time per Test Case (MTTC) spent to prove or not the utility of this

tool. This choice was made because from these metrics can be extracted some good conclusions

to answer the previously placed questions in the chapter’s introduction.

Absolute AC is defined as the ratio between the number of Number of Activities Found Au-

tomatically (NAFA) during execution of crawler and Total Number of Activities (TNA), as repre-

sented in equation 5.1.

AC(Absolute) =
NAFA
TNA

(5.1)

The number of NAFA can be only obtained dynamically from the crawling process, however

TNA can be only retrieved statically. As described in 2.2.2, Android has a manifest file, where

all included activities in the application are defined, and this can be used to retrieve TNA. But, to

read the manifest file is necessary to decompile the application, that can be a hard task. To speed

up this process, it was used a reverse engineering tool, already described in section 3.4.1, called

APKtool that can used to gather access to the source code, assets and manifest file by given APK.

Having the manifest file, the TNA can be extracted counting the number of existing activity tags.

Sometimes it is impossible to find all of the activities described in the manifest file, because

they are hidden or are not being used. The majority of these activities are used to show ads, to

make integrations with another apps or frameworks or simply to make tests. An activity does not

always have an associated GUI. In this way, it was developed a Java program to extract the Number

of Activities Found Manually (NAFM), during a tester session, where the tester tries to run across

all patterns available. So, it was specified the relative AC, that was defined as the ratio between

the number of NAFA during execution of crawler and NAFM, as represented in equation 5.2.

AC(Relative) =
NAFA
NAFM

(5.2)

From both equations 5.1 and 5.2 it can be concluded, intuitively, that as higher the AC is, the

higher the number of application’s patterns that can be explored.

To evaluate the speed of the solution, it is important to measure the duration of the crawling

process. This calculation can be achieved by using a simple formula, represented in equation 5.3.



62 Crawler Evaluation

Duration = EndTime−StartTime (5.3)

Intuitively, the smaller the duration is, the faster all of the patterns of the application will be

discovered. Regarding this duration, it will be made a comparison between the performance of the

crawler in USB versus Wi-Fi.

After this detailed description about the methodologies used to evaluate the solution, now, in

the following section will be presented the results and all important data obtained.

5.3 Case Study: My Vodafone App

At first step, the crawler was developed bearing in mind an Android application with sufficient

complexity and diversity of operations. So this criteria be fulfilled, it was chosen the Portugal’s

version of the My Vodafone App for solution’s initially testing. Its general characteristics can be

seen in the table 5.2 and they are the reason of this choice.

Table 5.2: My Vodafone app characteristics.

ID App’s Name Version TNA Authentication Asynchronous
Operations WebViews

1 My Vodafone 2.6.2 138 Yes Yes Yes

This application contains at total 138 activities (statically extracted and parsed from manifest

file), requires authentication to access all app’s features, has asynchronous operations (commu-

nication with web services/servers), and contains WebViews. If all of these situations can be

covered, it can solve some problems of the related work tools, already described in section 3.6.

After this superficial analysis, now in the following subsection it will be presented the obtained

results of the solution for this application.

5.3.1 Results

To perform these tests it was used the device Vodafone Smart Ultra 6, via USB, with Android ver-

sion 5.1.1 (Lollipop), not rooted, unencrypted, with screen size 1080x1920 and with a Subscriber

Identity Module (SIM) card associated to Vodafone Portugal operator.

The results of these tests are presented in the table 5.3 and 5.4.

Table 5.3: My Vodafone App - Crawler results.

Duration4
NAFA NAFM AC(%) Generated RestartsUSB Wi-Fi Relative Absolute Tests

03:02:47 03:24:54 49 68 72,06 35,51 237 25



5.3 Case Study: My Vodafone App 63

Table 5.4: My Vodafone App - Crawler UI elements results.

UI Elements EditTexts TextViews ImageViews Buttons Others
502 (100%) 24 (4,78%) 239 (47,61%) 69 (13,75%) 107 (21,31%) 63 (12,55%)

As expected, the duration of crawling process via Wi-Fi is more slow than USB connection

(≈ 10% slower), due to packet loss, limited band, interferences from other sources and limited

range. Another external and uncontrollable factor that must have into consideration is the server

response, that could be slower at hours of greater affluence of clients to the service.

At this step, can be concluded that solution requires a huge amount of time (more than 3

hours). This duration time is due to the fact of loadings, restarts, search of element in the GUI, UI

dumps pulling from the device and parsing.

Considering the generated tests from the crawling process, it was generated 237 test cases

automatically using, in the best case, only 03:02:47 hours, corresponding to a single test case

generated by 46 seconds, approximately, that can be considered faster than do it manually.

Furthermore, regarding table 5.4, can be concluded that the solution use a huge amount of UI

elements, catching approximately 87,5% of them (EditText, TextViews, ImageViews and Buttons),

doesn’t interpreting the other ones.

After this kind of analysis, now, in the next subsection the crawler’s performance and expand-

ability to another devices will be evaluated properly.

5.3.2 Devices’ Comparison

The goal of this test is to take some conclusions about the performance of the solution across

different devices. An Android application can has different behaviors depending on the Android

version and screen resolution. Due to that, these results will show what kind of device will be the

faster to run the crawler.

In this test, only be considered Android devices with versions API 18 or higher, as already

described in table 3.1, because these are the versions that supports UIAutomator.

As can be seen the crawler performs better in devices where screen is bigger, independently of

the Android version. It can be justified due to the number of the scroll actions necessary to execute

in the devices where the screen is smaller. To search new existing elements in a single activity, the

crawling process will be more fast in this kind of devices.

The other conclusion that can be taken from these results is that, on average, the crawler is

13,09% slow via Wi-Fi than connected via USB, due to what was already described in section

5.3.1.

The device more fast in both connection modes is Samsung Galaxy S6 and the slowest is

Vodafone Smart 4 Turbo. Regarding the difference between Samsung Galaxy S6, with API level

4Time format - hour, minute, second (hh/mm/ss)



64 Crawler Evaluation

Table 5.5: Crawler results using different devices.

Device Resolution Version API Duration
Level USB4 Wi-Fi4 Variance

Samsung
Galaxy S6

1440x2560 6.0.1 23 03:00:40 03:23:07 11,05%

Vodafone
Smart Prime 7

720x1280 6.0.1 23 03:15:22 03:44:32 12,99%

Vodafone
Smart Ultra 6

1080x1920 5.1.1 22 03:02:47 03:24:54 10,79%

Alcatel One
Touch Idol3

720x1280 5.0.2 21 03:11:45 03:37:04 11,66%

Huawei
Ascend P7

1080x1920 4.4.2 19 03:05:33 03:34:42 13,58%

Vodafone
Smart 4 Turbo

480x854 4.4.2 19 03:30:45 04:12:23 16,50%

Huawei
Ascend G6

540x960 4.3 18 03:20:35 03:56:07 15,05%

Mean: 03:12:30 03:41:50 13,09%

23, Vodafone Smart Ultra 6 and Huawei Ascend P7 with same resolution screen, although the

resolution of the first is bigger than the others two, the difference between its result is very low,

due to an additional step that the crawler have to pass on Android Marshmallow (permissions

acceptance). This happens also with Vodafone Smart Prime 7 and Alcatel OneTouch Idol3. This

additional step added in Android version 6 increases the crawling process time on each restart of

the application.

Before take some conclusions about the solution, to evaluate it is necessary to collect data

based in a different application’s dataset. In this way, all of the applications will be specified,

described and analyzed in the following section, presenting the results for each one.

5.4 Expandability To Another Applications

To perform this test it was used the device Vodafone Smart Ultra 6, via USB, with Android ver-

sion 5.1.1 (Lollipop), not rooted, unencrypted, with screen size 1080x1920 and with a SIM card

associated to Vodafone Portugal operator.

The results for the dataset described in table 5.1 are presented in the table 5.6.



5.4
E

xpandability
To

A
notherA

pplications
65

Table 5.6: Crawler measures for USB connection. MTTC represented in seconds. "*" means that the crawler has undetermined end, due to loops and
always new nodes appears.

ID Duration Authen- Restarts NAFA NAFM TNA AC(%) Genera- MTTCUSB4 Wi-Fi4 Variance tication Relative Absolute ted Tests
1 03:02:47 03:24:54 10,79% Yes 25 49 68 138 72,06 35,51 237 46,27
2 01:05:41 01:12:02 8,82% No 35 3 4 6 75 50 80 49,26
3 00:27:31 00:30:24 9,48% No 0 1 1 1 100 100 33 50,03
4 00:01:57 00:02:04 5,65% No 0 1 3 8 33,33 12,50 5 23,40
5 00:04:10 00:04:54 14,97% Yes 0 3 20 24 15 12,50 13 19,23
6 00:01:05 00:01:18 16,67% Yes 0 1 7 23 14,29 4,35 4 16,25
7 00:03:01 00:03:22 10,4% Yes 10 2 25 125 8,00 1,60 10 18,10
8 00:08:14 00:08:31 3,33% Yes 1 2 4 6 50 33,33 10 49,40
9 00:08:16 00:08:24 1,59% No 0 2 2 2 100 100 15 33,07
10 * * * Yes * * 25 153 * * * *
11 00:39:23 00:40:11 1,99% No 4 9 9 14 100 64,29 67 35,27
12 * * * Yes * * 10 22 * * * *
13 00:02:10 00:02:14 2,99% No 1 1 1 2 40 50 3 43,33
14 00:10:29 00:11:21 7,64% No 1 1 2 2 33,33 50 5 125,80
15 00:09:07 00:09:43 6,17% No 2 2 5 17 19,44 11,76 30 18,23
16 00:00:55 00:01:01 9,84% Yes 0 1 3 4 33,33 25 2 27,50
17 * * * Yes * * 36 122 * * * *
18 00:02:04 00:02:10 4,62% No 1 2 6 29 33,33 6,90 2 62,00
19 00:02:12 00:02:21 6,38% Yes 0 2 12 80 8,33 2,5 5 26,40
20 00:02:04 00:02:22 12,68% No 0 1 1 1 100 100 7 17,71

Mean: 00:21:50 00:23:57 7,88% - 4,18 4,88 12,20 38,95 55,35 38,84 31,06 38,90



66 Crawler Evaluation

Firstly, regarding these results, can be concluded that the crawler achieves, on average, more

than 50% activities of an application, according to what a tester can achieves manually (NAFM),

having a more lower absolute AC, approximately 40%, according to the number of activites stated

in the manifest file of an application (TNA).

Then, can be concluded that the restarts of the applications increase and penalize significantly

the time performance of the tool. As much the number of the restarts is higher more probably the

duration time could be.

As already stated in the last section, in these results the time performance of the crawler is

better through USB connection than Wi-Fi.

Some social and e-commerce apps (Instagram, Facebook Messenger and eBay) presents a

huge amount of possibilities, increasing exponentially the time of crawling process, and because

they have constantly updates of the data on some activities, the crawler’s algorithm is incapable

to detect these loops. In this way, this algorithm calls for improvements similar to PageRank

algorithm, a search tool of Google.

In the authentication required apps, the login is the "master key" to achieve more activities,

however the crawler cannot detect all of login forms of some applications, as happen in the Spotify,

eBay, Farmácias Portuguesas, Uporto and Tinder apps. At this step, some app authentication

integrations, as Facebook, could "help" the crawler to achieve more higher results, as happen in

the Instagram app. The crawler calls for improvements in the à priori definition of the login.

Some bugs and crashes decrease significantly the AC of the crawler, as happens in the Tinder

app. Furthermore, the number of test case are usually bigger as the NAFA and the duration are.

On average the MTTC is usually smaller than 60 seconds, that can be interpreted as much

more faster than specify and write each test case manually.

5.5 Evidences’ Analysis

Before describe and detail the vulnerabilities found in the applications, and make its risk assess-

ment, it is necessary define three related and important aspects in this area according [53]: likeli-

hood, impact and risk.

5.5.1 Risk Assessment

The first one keyword is defined as the probability of a potential vulnerability being exploited by

a threat-source, that can be a hacker, cracker, computer criminal, terrorist, insider or an industrial

spy. In this specific case can be a malware installed on the device or sniffer that makes passive or

active eavesdropping attacks. To evaluate this parameters is necessary take into account the moti-

vation and capability of threat-source, the nature of vulnerability, and the existence/effectiveness

of current controls. These factors describe likelihood in three levels: low, medium and high.

To understand impact is necessary divide it in two type: tangible impact and non-tangible im-

pact. The first one, refers to the commitment of a system infrastructure and security mechanisms,



5.5 Evidences’ Analysis 67

and should be based on the combination of integrity, availability and confidentiality losses. This

impact can be quantitatively measured according the market losses, cost of repairs or the effort to

replace the availability of the system. The second one, refers to reputation, credibility and confi-

dence losses, and can be measured qualitatively, normally appealing to market surveys and others

types of internal analysis. As likelihood, we will consider the same qualitative classification of

three levels of impact: low, medium, high.

Regarding risk, as quoted in [53], it was defined as "the net mission impact considering (1)

the probability that a particular threat-source will exercise (accidentally trigger or intentionally

exploit) a particular information system vulnerability and (2) the resulting impact if this should

occur."

In this way, is necessary a model to classify the risk assessment based on likelihood and

impact, one could be the risk classification model defined in [54]. This model classify risk in

three qualitative levels according quantitative attributes, thus, to the low risk level corresponds

1, to the medium risk level corresponds 2 and 3, and to the high risk level corresponds 4 and 5,

demonstrated in table 5.7.

Table 5.7: Risk levels classification.

Likelihood
Low Medium High

Low 1 2 3
Medium 2 3 4Impact

High 3 4 5

After the analysis of the concepts, now is a concern describe the main and common risks

in terms of security that can be found in the analyzed applications. The following risks include

only medium and high level risks and will be detailed with some examples of how to perform the

respective attack.

5.5.2 Results

To perform this test it was used the device Vodafone Smart 4 Turbo, via USB, with Android version

4.4.2 (KitKat), rooted, unencrypted, with screen size 480x854 and with a SIM card associated to

Vodafone Portugal operator.

In this section it is presented all bugs, crashes, log errors and potential security issues found in

table 5.8 and 5.9 by the use of crawler or its modules separately.



68 Crawler Evaluation

Table 5.8: Issues found.

ID Bugs App’s App’s Log
Found Crash Errors

1 3E.2 2E.1 Yes
2 0 0 No
3 0 0 No
4 0 0 No
5 0 0 Yes
6 1E.6 0 Yes
7 0 0 No
8 2E.4 0 No
9 1E.3b 1E.3a Yes

10 0 0 Yes
11 0 0 Yes
12 0 0 Yes
13 0 0 Yes
14 0 0 No
15 0 0 No
16 0 0 No
17 0 0 Yes
18 0 0 No
19 0 0 No
20 1E.5 0 Yes

Table 5.9: Number of apps with potential vulnerabilities issues and its risk assessment levels

Potential Vulnerabilities
Nº of Apps with Issues Risk Assessment

3 5
1 4
2 3
0 2
3 1

During the run of crawler some blocking bugs are detected that freeze the application and avoid

the solution to go further, this is the case of application 8 and 20. Furthermore, some app crashes

were detected, and for this specific case, the crawler can overtake it, restarting the application and

mark the node that trigger the event as visited.

Regarding the potential vulnerabilities found, it requires an analysis of the log and capture

files, generated by the solution, looking for vulnerable data and app errors.

All bug and crash evidences can be found in appendix E. Furthermore, there are a huge number

of applications that print errors in the log file, during the navigation through the app, and it must

be corrected in the next release of the app.



5.6 Discussion 69

Regarding the table 5.9, 9 potential vulnerabilities were found, and almost all were reported to

the respective company, assuring a responsible disclosure policy. In this way, it is only presented in

this dissertation the number of apps where a potential vulnerability was found and its respectively

risk assessment. Before the issues be solved, it was decided to do not expose the sensitive data

found, because it can be a false positive, or an issue already reported or even a serious security

issue that can impacts the company’s business and its client’s reliability.

After the execution of this test cases, now it is possible to answer the questions placed in the

beginning of this chapter and will be approached in the next section.

5.6 Discussion

Regarding all of this dataset of results and its analysis some conclusions can be taken in order to

answer the questions stated in the beginning of this chapter. In this way, it will be presented, again,

the answer and it respectively answer.

Q1: Does the GUI crawler can cover all application patterns ?

Regarding the case of study, the crawler has a good percentage of AC relative (72,06%). It can

identifies more than 87% of UI elements and overtake some issues of related work tools, such as

authentication, asynchronous operations and WebViews.

Q2: How expansible is the crawler to another applications ?

The crawler can be expansible to another applications, however the algorithm calls for im-

provements, namely regarding the way that the loadings, dialogs, apps’ bugs, number of UI ele-

ments are detected, login forms filling and dynamic elements (notifications and ads) identification.

With all of these improvements the duration time, even through USB and Wi-Fi, can be reduced

significantly.

Q3: How useful can be the solution to find bugs and vulnerabilities ?

Regarding the bugs, crashes and security issues, the crawler and its modules can be very useful

for bug and vulnerabilities reports and analysis, been possible to implement and integrate them into

another tools or frameworks.

Q4: Is the tool more faster generating test cases than manually ?

As can be seen in the results, the specification of a test case could be much faster than do it

manually, and the test case can be generated in two possible modes:

• The slow mode: here the user have to wait for the discovery of all application’s patterns by

the crawler. At the end of this process the user can choose and edit every test case in the

way that he wants. The main drawback it is the huge amount of test cases generated, called

test case explosion.

• The fast mode: where the user can capture a test case manually. The test case will be

specified according the navigation of the user across the application’s patterns.

In conclusion, these results shows that this tool can be very useful, even for test case generation

as well as for runtime analysis.



70 Crawler Evaluation

So, after the description of the proposed solution and its evaluation, now, in the next chapter,

will be presented all conclusions taken from this dissertation, the contributions of this work even

to the science as well as to the company, and future work that can be done based on solution’s

core.



Chapter 6

Conclusions

In this chapter it will be presented conclusions about all the work done in this dissertation, as well

as detailed the contributions and specified some suggestions of future work to be made after the

completion of this dissertation.

6.1 Contributions

In this dissertation, it was introduced the importance of software testing for product’s reliability

and customer’s attraction purposes. It was made a wide description about some of the existent

software development models, focus on mobile development, more concretely, Android OS. This

operative system was properly analyzed, specified and described regarding its architecture and

components.

Furthermore, it was presented a deep analysis about the numerous and different existent test

types, considering both the function and non-functional tests, the different types of testing method-

ologies and the different types of analysis that can be performed, enumerating some existent tools

for each one.

Then, it was made an overview about GUI testing and a comparison between manual and au-

tomated testing and its different methodologies for each. Regarding the second one, some existing

tools were properly described.

Regarding the solution, firstly it was presented some related work. In this section are presented

gray and white box tools, that are characterized by its speed in test case generation and required

only the APK file, however this type of approach is not used in this work because of the possibility

of obfuscation of source code and the impossibility to capture evidences such as screenshots,

video, logs, bugs, crashes and network traffic to perform user acceptance, system, regression,

security tests.

Due to drawbacks identified in these tools, a sophisticated black-boxed Android GUI crawler

was developed in order to automate the test case generation and runtime analysis.

71



72 Conclusions

The crawler takes advantage of the ADB’s capabilities, in order to test several devices at the

same time (even through USB and Wi-Fi connection), and the UIAutomator tool, in order to dump

the UI elements presented on the Android device’s screen and to build a tree data model.

In this way, the solution tries to map every application, testing every possible pattern available.

Regarding the results, it has, on average, more than 50% of completeness, regarding to the number

of activities that can be found manually, and a lower AC for activities that can be found in the

manifest file.

The results show that the tool can be expanded to several devices, since the 18 to 23 Android

API Level, independently of its brand and model. Furthermore, it can be also expanded to another

applications, independently of its size and category’s family. This automated tool can helps a

tester, primarily in test case specification following a TAD approach, and can be useful to find

untested patterns, facilitating the bug and crash reports to the application’s support team.

After all the test cases be generated by the tool, its implementation, management and main-

tenance in an automated tool as Jenkins, they might be very useful in order to reduce the huge

amount of regression tests that must be performed before a new release of an Android application,

translating into a reduction of company’s costs. Furthermore, the tool can replaces a common

tester in easy test cases, such as scroll, action/reaction of buttons and its expected outputs, and so

on. It can be also used to find bugs and crash situations as shown in table 5.8 and appendix E.

Considering the time of the crawling process and its generated test cases, the specification of

each one is much faster than do it manually (less than 1 minute per test case, on average).

Regarding the evidences’ analysis, the tool can provides a good help for a tester in order to

improve the security issues analysis, that normally are being left behind. As presented in the

results, based on potential vulnerabilities found, for a dataset of 20 applications, 9 of them have

potential security issues, considering the presented risk assessment classification. The majority of

them are classified as serious risk, and from these results can be concluded that there are yet few

security concerns in mobile development, calling urgently for improvements.

However, the tool is only a prototype and a proof of concept. Many improvements can be

done in the time performance and completeness of the algorithm. Its main drawbacks are duration

time, the incapacity to go forward in some forms such login, being unable to detect different

ways of loading (asynchronous operations), the application’s restarts that increases significantly

the duration time and the use of not all UI elements.

So, it can be improved in several ways, prospectively. In this way, were proposed in the fol-

lowing section some future improvements, that can take advantage of the solution’s potentialities

and of what was already developed.

6.2 Future Work

During this dissertation, new ideas, possibilities and different approaches emerged in order to take

advantage of the developed solution. Mainly, due to time restrictions, decisions had to be made

and possible new ideas were held back.



6.2 Future Work 73

Regarding the developed solution, some improvements can be made, mainly related with:

• the crawling algorithm: currently the algorithm doesn’t cover all possibilities, as results

show, calling for new improvements, such as:

– Detection of loadings, taken advantage of the unused data provided by the dumpsys

tool of Android OS;

– Handle with dynamic elements that appears with no reason in the GUI of application.

This can be solved using a separately thread that dumps the UI and verify if the layout

changes even without no interaction. If it happens new nodes should be added to the

respective node;

– Decrease of restarts, currently the search of the element is only done in the present

activity. It could be improved implementing a better search of the UI element using

back button to find it in other activities;

– Increase of the UI elements identified, appealing to use reverse engineering and static

analysis tools to improve it;

– Better identification of login forms and the button that triggers this event. Currently,

the detection of login forms is not so efficient. The identification of two EditTexts

and one of that must has a password flag enabled, might be better for identification of

authentication forms.

• the UI: beside the application has already an GUI, it is very rudimentary, calling for some

improvements, more specifically it can be converted to a web interface, that can improve the

user experience using some new technologies such as AngularJS, React and D3JS;

• a database: currently, the data is stored in files. It will be necessary store all important

information in a relational or non-relational database for data’s persistence;

• the search: given an application, can be implemented a search based in a keywords, showing

patterns where this keyword can be found, and giving the possibility to generate the test for

it pattern;

• the testing runner module: can be implemented a module that can runs Cucumber tests. With

this module, the system can be centralized in only one tool, eliminating the dependency of

tools and frameworks that can’t be controlled directly in the source code.

Apart from these improvements, other new ideas appeared, and based in what was developed

can be proposed new approaches using the core of this solution, such as:

• Cloud testing system: that is a system were many mobile devices are connected, and where

the solution is running, giving to the user the possibility of runs crawler in every device,

having access to all information captured during it. Furthermore, can be given to the user

the possibility of interact with the device, through a web page, like he wants;



74 Conclusions

• Automated capture and replay apps: this tool can be very useful, namely to perform re-

gression tests. The test or a dataset of tests can be captured and before the release of the

product, all of it can be executed automatically without human intervention, saving time,

human resources and consequently money. Furthermore, currently there are some apps that

do this, however almost all require a rooted device. With this approach it can be made

without superuser permissions;

• Automated scroll apps: currently there are a huge amount of social and news apps that re-

quires many scroll actions to the user see new information. Based in the developed solution,

can be made an app, that scrolls other apps without user intervention automatically, and it

also possible adjust its speed, without root. It can be useful also for big files and books

reading. As the previous idea, there are already in the market apps that do this, however

almost all require a rooted device;

• Image analysis: it can be made a image analysis of the activities and UI elements found in

the application, in order to improve the crawling algorithm and to take conclusions about

user experience;

• Apply Google search to Android apps: this is the most utopian idea. The purpose of this

idea is to apply search to all application’s data inside every application of Google Play-

Store, extracting the data model and all captured evidences that can be important to report

to developers in case of errors, building a test system available for everyone.

In conclusion, the problem was thoroughly analyzed and a solution was presented and detailed.

After a series of tests, it can be concluded that the proposed solution does in fact improve the

software test automation and is a subject with potential that should be further explored.



Appendix A

Activity Lifecycle

Figure A.1: Activity lifecycle.

75



Appendix B

Commands

After conclusions and before references, are presented in this appendix the commands used by the

Java API developed, where ’>’ or ’$’ in the beginning means the command line of Windows and

Android, respectively, the ’$WORD’ must be replaced by the correct information, and the proper

’#Comment’ that explains what the command does.

B.1 ADB

1 >adb start−server #Start adb server
2 >adb kill−server #Stop adb server
3 >adb devices #list devices connected
4 >adb shell #access shell device − one device connected
5 >adb −s $SERIAL shell #access shell device − many devices connected
6 >adb −s $SERIAL pull $SRC $DEST #Pulling files from the device to desktop
7 >adb −s $SERIAL push $SRC $DEST #Pushing files from the desktop to device
8 >adb −s $SERIAL tcpip 5555 #Set up TCP port to connect shell via Wi−Fi
9 >adb −s $SERIAL connect #Connect shell via Wi−Fi

10 >adb −s $SERIAL install $APKPATH #Install app from desktop

B.2 Device’s Shell

Note : to run the following commands from desktop, they must be preceded by:

1 >adb −s $SERIAL shell

1 $getprop ro.product.model #Get device model
2 $getprop ro.build.version.sdk #Get device API version
3 $getprop ro.build.version.release #Get device Android version
4 $getprop ro.product.brand #Get brand of device
5 $getprop ro.product.locale.language #Get language of device
6 $getprop ro.product.locale.region #Get region of device

76



B.2 Device’s Shell 77

7 $getprop | grep wlan0.ipaddress #Get Wi−Fi IP address of device
8 $getprop persist.sys.timezone #Get Timezone
9 $getprop ro.nfc.port #Get NFC port

10 $getprop ro.crypto.state #Get crypto state
11 $getprop sys.usb.state #Get USB state
12 $getprop gsm.operator.numeric #Get operator numeric
13 $getprop gsm.sim.state #Get SIM state
14 $getprop gsm.operator.isroaming #Get roaming state
15 $getprop gsm.operator.alpha #Get operator
16 $getprop ro.build.date #Get build date
17 $getprop persist.radio.sim.imsi #Get IMSI
18 $getprop net.dns1 #Get gateway
19 $dumpsys window windows | grep mSurface=Surface(name=InputMethod) #Verify if keyboard is enable
20 $dumpsys package $PACKAGE #Dump info about a application
21 $dumpsys window windows | grep mCurrentFocus #Get current package/activity displayed
22 $dumpsys window displays | grep init #Get screen size
23 $dumpsys battery | grep level #Get battery level of device
24 $dumpsys input_method | grep mInteractive #Verify if device is locked
25 $dumpsys | grep SurfaceOrientation #Get screen orientation
26 $screenrecord −−bit−rate $BITRATE −−size $SCREENSIZE −−time $TIME $DEST
27 $pidof #Verify if device is rooted
28 $pm uninstall −k $PACKAGE #Uninstall app
29 $pm clear $PACKAGE #Clear cache of app
30 $pm list packages −3 #Get list of 3rd party installed apps
31 $pm list packages −s #Get list of system installed apps
32 $pm path $PACKAGE #Get local path of the APK file
33 $monkey −p $PACKAGE −c android.intent.category.LAUNCHER 1 #Run app
34 $am force−stop $PACKAGE #Stop app
35 $ls /system/bin/uiautomator #Verify is uiautomator is installed
36 $rm $FILEPATH #Remove file
37 $uiautomator dump $FILEPATH #Dump current activity to a XML file
38 $screencap −p $FILEPATH #Take screenshot
39 $su −c ./$PATH/tcpdump −vvvXSs 0 −w $DEST #Run traffic capture
40 $cmp $FILE1 $FILE2 #Compare the content of two files
41 $mv $SOURCE $DEST #Move file
42 $input tap $X $Y #Tap in screen
43 $input swipe $X1 $Y1 $X2 $Y2 $TIME #Swipe in screen
44 $input text $TEXT #Write text in input fields
45 $input keyevent $NUM #Send key events to device
46 $content insert −−uri content://settings/system −−bind name:s:user_rotation −−bind value:i:1 #Change

orientation to landscape
47 $content insert −−uri content://settings/system −−bind name:s:user_rotation −−bind value:i:0 #Change

orientation to portrait
48 $netcfg | grep rmnet0 #Get 3G IP address
49 $netcfg | grep wlan0 #Get Wi−Fi IP address
50 $getevent −lt /dev/input/event7 #Dump touch events



Appendix C

UIAutomator Dump Example

This is the file output obtained by running UIAutomator dump command, supporting all crawler

logic.

1 <?xml version=’1.0’ encoding=’UTF-8’ standalone=’yes’ ?>

2 <hierarchy rotation="0">

3 <node index="0" text="" resource-id="" class="android.widget.FrameLayout" package

="jackpal.androidterm" content-desc="" checkable="false" checked="false"

clickable="false" enabled="true" focusable="false" focused="false" scrollable

="false" long-clickable="false" password="false" selected="false" bounds="

[0,0][1080,1920]">

4 <node index="0" text="" resource-id="android:id/decor_content_parent" class="

android.view.View" package="jackpal.androidterm" content-desc="" checkable="

false" checked="false" clickable="false" enabled="true" focusable="false"

focused="false" scrollable="false" long-clickable="false" password="false"

selected="false" bounds="[0,0][1080,1920]">

5 <node index="0" text="" resource-id="android:id/action_bar_container" class="

android.widget.FrameLayout" package="jackpal.androidterm" content-desc=""

checkable="false" checked="false" clickable="false" enabled="true" focusable=

"false" focused="false" scrollable="false" long-clickable="false" password="

false" selected="false" bounds="[0,75][1080,243]">

6 <node index="0" text="" resource-id="android:id/action_bar" class="android.view.

View" package="jackpal.androidterm" content-desc="" checkable="false" checked

="false" clickable="false" enabled="true" focusable="false" focused="false"

scrollable="false" long-clickable="false" password="false" selected="false"

bounds="[0,75][1080,243]">

7 <node index="0" text="" resource-id="" class="android.widget.Spinner" package="

jackpal.androidterm" content-desc="" checkable="false" checked="false"

clickable="true" enabled="true" focusable="true" focused="false" scrollable="

false" long-clickable="false" password="false" selected="false" bounds="

[48,122][299,195]">

8 <node index="0" text="Janela 1" resource-id="" class="android.widget.TextView"

package="jackpal.androidterm" content-desc="" checkable="false" checked="

false" clickable="false" enabled="true" focusable="false" focused="false"

scrollable="false" long-clickable="false" password="false" selected="false"

bounds="[48,122][251,195]" /></node>

78



UIAutomator Dump Example 79

9 <node index="1" text="" resource-id="" class="android.widget.LinearLayout" package=

"jackpal.androidterm" content-desc="" checkable="false" checked="false"

clickable="false" enabled="true" focusable="false" focused="false" scrollable="

false" long-clickable="false" password="false" selected="false" bounds="

[672,75][1080,243]">

10 <node index="0" text="" resource-id="jackpal.androidterm:id/menu_new_window"

class="android.widget.TextView" package="jackpal.androidterm" content-desc="

Nova janela" checkable="false" checked="false" clickable="true" enabled="true

" focusable="true" focused="false" scrollable="false" long-clickable="true"

password="false" selected="false" bounds="[672,87][816,231]" />

11 <node index="1" text="" resource-id="jackpal.androidterm:id/menu_close_window"

class="android.widget.TextView" package="jackpal.androidterm" content-desc="

Fechar janela" checkable="false" checked="false" clickable="true" enabled="true

" focusable="true" focused="false" scrollable="false" long-clickable="true"

password="false" selected="false" bounds="[816,87][960,231]" />

12 <node index="2" text="" resource-id="" class="android.widget.ImageButton" package="

jackpal.androidterm" content-desc="Mais opcoes" checkable="false" checked="

false" clickable="true" enabled="true" focusable="true" focused="false"

scrollable="false" long-clickable="false" password="false" selected="false"

bounds="[960,87][1080,231]" /></node></node></node>

13 <node index="1" text="" resource-id="android:id/content" class="android.widget.

FrameLayout" package="jackpal.androidterm" content-desc="" checkable="false"

checked="false" clickable="false" enabled="true" focusable="false" focused="

false" scrollable="false" long-clickable="false" password="false" selected="

false" bounds="[0,243][1080,1920]">

14 <node index="0" text="" resource-id="jackpal.androidterm:id/view_flipper" class="

android.widget.ViewFlipper" package="jackpal.androidterm" content-desc=""

checkable="false" checked="false" clickable="false" enabled="true" focusable=

"false" focused="false" scrollable="false" long-clickable="false" password="

false" selected="false" bounds="[0,243][1080,1920]">

15 <node index="0" text="" resource-id="" class="android.view.View" package="jackpal

.androidterm" content-desc="" checkable="false" checked="false" clickable="

false" enabled="true" focusable="true" focused="true" scrollable="false" long

-clickable="true" password="false" selected="false" bounds="

[0,243][1080,1920]" /></node></node></node>

16 <node index="1" text="" resource-id="android:id/statusBarBackground" class="android

.view.View" package="jackpal.androidterm" content-desc="" checkable="false"

checked="false" clickable="false" enabled="true" focusable="false" focused="

false" scrollable="false" long-clickable="false" password="false" selected="

false" bounds="[0,0][1080,75]" /></node></hierarchy>



Appendix D

Extracted Data Example

This example shows an example of the information extracted by the solution for both device and

application.

D.1 Device

Information extracted from Vodafone Smart Ultra 6 device.

1 DEVICE:
2 Serial: 77a1c109
3 Folder: C:\Users\freitasm\Documents\vodafone\Crawler\VodafoneGUIcrawler\VodafoneSmartultra6
4 Model: Vodafone Smart ultra 6
5 API Level: 22
6 Android Version: 5.1.1
7 Brand: Vodafone
8 Language: pt
9 Region: PT

10 Timezone: Europe/Lisbon
11 Battery Level: 100
12 NFC Port: I2C
13 Crypto State: unencrypted
14 Build Date: Tue Feb 16 15:42:58 CST 2016
15 IMSI: 268011201001962
16 Gateway: 192.168.1.254
17 USB State: mtp,adb
18 Rooted: false
19 Mobile Country Code (MCC) + Mobile network code of operator (MNC): 26801
20 SIM State: READY
21 Roaming State: false
22 Network Type: LTE
23 Operator: vodafone P
24 Wireless IP Address: 192.168.1.133/24
25 3G IP Address: 0.0.0.0/0
26 Screen Size: 1080x1920
27 APPS:

80



D.2 App 81

28 Last App Tested: com.airbnb.android
29 Initial Activity of Last App Tested: es.mrcl.app.juasapp.ConfirmActivity
30 Last Activity of Last App Tested: es.mrcl.app.juasapp.ConfirmActivity
31 System Apps:
32 com.google.android.youtube
33 com.android.providers.telephony
34 com.google.android.googlequicksearchbox
35 com.android.providers.calendar
36 com.android.providers.media
37 com.android.wifidirect.test
38 com.zte.camera
39 (...)
40 com.android.bluetooth
41 com.qualcomm.timeservice
42 com.google.android.androidforwork
43 com.android.providers.contacts
44 com.android.captiveportallogin
45 cn.com.zte.settings.patch
46 3rd Party Apps:
47 com.vodafone.mCare
48 com.indeed.android.jobsearch
49 com.innovagency.ana
50 (...)
51 com.tinder
52 com.ebay.mobile
53 com.moofwd.uporto

D.2 App

Information extracted from the MyVodafone app.

1 APP:
2 Package Name: com.vodafone.mCare
3 Target Sdk: 23
4 SDK Version: 9
5 Version Name: 2.6.2
6 Version Code: 177090000
7 Platform Build Version Name: 6.0−2166767
8 install Location: auto
9 Resource Path: /data/app/com.vodafone.mCare−1

10 APK Location: /data/app/com.vodafone.mCare−1/base.apk
11 First Install Time: 2016−04−20 14:31:27
12 Last Update Time: 2016−04−20 14:31:27
13 Label: My Vodafone
14 Icon: res/drawable−mdpi−v4/icon.png
15 Launch Activity: com.vodafone.mCare.Main



82 Extracted Data Example

16 App Location: C:\Users\freitasm\Documents\vodafone\Crawler\VodafoneGUIcrawler\VodafoneSmartultra6\com.
vodafone.mCare\com.vodafone.mCare.apk

17 Pemissions:
18 android.permission.INTERNET
19 android.permission.ACCESS_NETWORK_STATE
20 android.permission.READ_PHONE_STATE
21 android.permission.CALL_PHONE
22 android.permission.READ_CONTACTS
23 android.permission.READ_EXTERNAL_STORAGE
24 android.permission.WRITE_EXTERNAL_STORAGE
25 android.permission.ACCESS_GPS
26 android.permission.ACCESS_ASSISTED_GPS
27 android.permission.ACCESS_LOCATION
28 android.permission.ACCESS_COARSE_LOCATION
29 android.permission.ACCESS_FINE_LOCATION
30 com.google.android.providers.gsf.permission.READ_GSERVICES
31 android.permission.ACCESS_WIFI_STATE
32 android.permission.RECEIVE_BOOT_COMPLETED
33 android.permission.GET_TASKS
34 android.permission.READ_LOGS
35 android.permission.READ_CALL_LOG
36 android.permission.WAKE_LOCK
37 com.google.android.c2dm.permission.RECEIVE
38 android.permission.VIBRATE
39 com.vodafone.mCare.permission.C2D_MESSAGE
40 android.permission.GET_ACCOUNTS
41 Supported Screens: normal,large,xlarge
42 Supported Densities: 160,213,240,320,480,640
43 Locales: de,nl,cs,ca,da,fa,ja,nb,be,af,bg,th,fi,hi,vi,sk,uk,el,pl,sl,tl,am,in,ko,ro,ar,fr,hr,sr,tr,es,it,lt,pt,hu,ru,zu,lv,sv,iw,

sw,fr−CA,lo−LA,en−GB,bn−BD,et−EE,ka−GE,ky−KG,km−KH,zh−HK,si−LK,mk−MK,ur−PK,sq−AL,
hy−AM,my−MM,zh−CN,pa−IN,ta−IN,te−IN,ml−IN,en−IN,kn−IN,mr−IN,gu−IN,mn−MN,ne−NP,pt−
BR,gl−ES,eu−ES,is−IS,es−US,pt−PT,en−AU,zh−TW,ms−MY,az−AZ,kk−KZ,uz−UZ



Appendix E

Evidences Found

E.1 Bug and Crash Evidences

(a) Crash Speed Test. (b) Crash NetPerform.

Figure E.1: My Vodafone App - crashes found.

83



84 Evidences Found

(a) Subcription of additive. (b) Subcription of additive. (c) Null Counters.

Figure E.2: My Vodafone App - bugs found.

(a) Crash App. (b) Resources Missing.

Figure E.3: JN App - crashes/bugs found.



E.1 Bug and Crash Evidences 85

(a) App Freeze. (b) Black Screen.

Figure E.4: Farmácias Portuguesas App - bugs found.

Figure E.5: IPMA@Meteo
App Freeze.

Figure E.6: Tinder App
Blank Screen.



References

[1] Winston W. Royce. Managing the development of large software systems: Concepts and
techniques. In Proceedings of the 9th International Conference on Software Engineering,
ICSE ’87, pages 328 – 338. IEEE Computer Society Press, 1987. [Accessed: Feb. 05, 2016].
URL: http://dl.acm.org/citation.cfm?id=41765.41801.

[2] Roger S. Pressman. Software Engineering: A Practitioner’s Approach. McGraw-Hill Higher
Education, 5th edition, 2001. [Accessed: Feb. 06, 2016]. URL: http://faculty.mu.
edu.sa/public/uploads/1428308006.7514software%20engineering.pdf.

[3] Pat O’Sullivan and Joe Fitzpatrick. 21st century software development - an “on demand”
software engineering process perspective. IBM White Paper, 2010. [Accessed: Feb. 06,
2016]. URL: https://www.engineersireland.ie/EngineersIreland/media/
SiteMedia/groups/Divisions/computing/21stcentureysoftvev.pdf?
ext=.pdf.

[4] Craig Larman. Agile and Iterative Development: A Manager’s Guide. Pearson Education,
2003. [Accessed: Feb. 05, 2016]. URL: http://dl.acm.org/citation.cfm?id=
861501.

[5] Alexander G. Mirnig, Alexander Meschtscherjakov, Daniela Wurhofer, Thomas Meneweger,
and Manfred Tscheligi. A formal analysis of the iso 9241-210 definition of user experience.
In Proceedings of the 33rd Annual ACM Conference Extended Abstracts on Human Factors
in Computing Systems, CHI EA ’15, pages 437 – 450. ACM, 2015. [Accessed: Feb. 04,
2016]. URL: http://dl.acm.org/citation.cfm?id=2732511.

[6] International Organization for Standardization (ISO). Ergonomics of human-system inter-
action: Human-centred design for interactive systems : ISO 9241-210. Number pt. 210 in
DIN EN ISO. ISO, 2010. [Accessed: Feb. 04, 2016]. URL: http://www.iso.org/iso/
catalogue_detail.htm?csnumber=52075.

[7] Susanne Furman, Mary Theofanos, Hannah Wald, and S. Chapman. Human Engineering
Design Criteria Standards Part 1: Project Introduction and Existing Standards DHS S&T
TSD Standards Project. National Institute of Standards and Technology (U.S.). Informa-
tion Technology Laboratory, Material Measurement Laboratory, 2013. [Accessed: Feb. 04,
2016]. URL: https://books.google.pt/books?id=3ntOnwEACAAJ.

[8] Matt Wynne and Aslak Hellesøy. The cucumber book : behaviour-driven development for
testers and developers. Pragmatic Bookshelf, 2012. [Accessed: Feb. 10, 2016]. URL:
https://www.citeulike.org/user/pater/article/11814511.

86

http://dl.acm.org/citation.cfm?id=41765.41801
http://faculty.mu.edu.sa/public/uploads/1428308006.7514software%20engineering.pdf
http://faculty.mu.edu.sa/public/uploads/1428308006.7514software%20engineering.pdf
https://www.engineersireland.ie/EngineersIreland/media/SiteMedia/groups/Divisions/computing/21stcentureysoftvev.pdf?ext=.pdf
https://www.engineersireland.ie/EngineersIreland/media/SiteMedia/groups/Divisions/computing/21stcentureysoftvev.pdf?ext=.pdf
https://www.engineersireland.ie/EngineersIreland/media/SiteMedia/groups/Divisions/computing/21stcentureysoftvev.pdf?ext=.pdf
http://dl.acm.org/citation.cfm?id=861501
http://dl.acm.org/citation.cfm?id=861501
http://dl.acm.org/citation.cfm?id=2732511
http://www.iso.org/iso/catalogue_detail.htm?csnumber=52075
http://www.iso.org/iso/catalogue_detail.htm?csnumber=52075
https://books.google.pt/books?id=3ntOnwEACAAJ
https://www.citeulike.org/user/pater/article/11814511


REFERENCES 87

[9] Niklaus Wirth. A brief history of software engineering. IEEE Annals of the History of
Computing, 30(3):32 – 39, July 2008. [Accessed: Feb. 06, 2016]. URL: http://dl.acm.
org/citation.cfm?id=2341280.

[10] Rational Software. Rational unified process : Best practices for software develop-
ment teams. Rational Software White Paper, 1998. [Accessed: Feb. 05, 2016].
URL: https://www.ibm.com/developerworks/rational/library/content/
03July/1000/1251/1251_bestpractices_TP026B.pdf.

[11] Ritu Agarwal, Jayesh Prasad, Mohan Tanniru, and John Lynch. Risks of rapid application
development. Commun. ACM, 43(11es), November 2000. [Accessed: Feb. 06, 2016]. URL:
http://doi.acm.org/10.1145/352515.352516.

[12] James Martin. Rapid Application Development. Macmillan Publishing Co., Inc., 1991.
[Accessed: Feb. 06, 2016]. URL: http://dl.acm.org/citation.cfm?id=103275.

[13] Janet B. Butler. Rapid Application Development in Action’, Managing System Development.
System Development, Applied Computer Research, vol. 14, no. 5 edition, 1994. [Accessed:
Feb. 05, 2016]. URL: https://scholar.google.com/scholar?hl=en&as_sdt=
0,5&cluster=4834007071832675334.

[14] Barry W. Boehm. A spiral model of software development and enhancement. Computer,
21(5):61 – 72, May 1988. [Accessed: Feb. 07, 2016]. URL: http://dx.doi.org/10.
1109/2.59.

[15] Victor R. Basili and Albert J. Turner. Iterative enhancement: A practical technique for soft-
ware development. Software Engineering, IEEE Transactions on, SE-1(4):390 – 396, De-
cember 1975. [Accessed: Feb. 07, 2016]. URL: http://ieeexplore.ieee.org/xpl/
abstractAuthors.jsp?tp=&arnumber=6312870.

[16] Craig Larman and Victor R. Basili. Iterative and incremental development: A brief history.
Computer, 36(6):47 – 56, June 2003. [Accessed: Feb. 07, 2016]. URL: http://dx.doi.
org/10.1109/MC.2003.1204375.

[17] Nick Jenkins. A software testing primer, 2008. [Accessed: Feb. 07, 2016]. URL: http:
//www.nickjenkins.net/prose/testingPrimer.pdf.

[18] Bruce Sterling. Hacker Crackdown: Law and Disorder on the Electronic Frontier. Bantam
Books, Inc., 1993. [Accessed: Feb. 08, 2016]. URL: http://dl.acm.org/citation.
cfm?id=529080.

[19] Cem Kaner, Jack L. Falk, and Hung Quoc Nguyen. Testing Computer Software, Second
Edition. John Wiley & Sons, Inc., 2nd edition, 1999. [Accessed: Feb. 12, 2016]. URL:
http://dl.acm.org/citation.cfm?id=553594.

[20] Pierre Bourque and Richard E. Fairley, editors. SWEBOK: Guide to the Software Engineering
Body of Knowledge. IEEE Computer Society, version 3.0 edition, 2014. [Accessed: Feb. 07,
2016]. URL: http://www.swebok.org/.

[21] William Stallings. Cryptography and Network Security: Principles and Practice. Prentice
Hall Press, 5th edition, 2010. [Accessed: Feb. 09, 2016]. URL: http://dl.acm.org/
citation.cfm?id=1824151.

http://dl.acm.org/citation.cfm?id=2341280
http://dl.acm.org/citation.cfm?id=2341280
https://www.ibm.com/developerworks/rational/library/content/03July/1000/1251/1251_bestpractices_TP026B.pdf
https://www.ibm.com/developerworks/rational/library/content/03July/1000/1251/1251_bestpractices_TP026B.pdf
http://doi.acm.org/10.1145/352515.352516
http://dl.acm.org/citation.cfm?id=103275
https://scholar.google.com/scholar?hl=en&as_sdt=0,5&cluster=4834007071832675334
https://scholar.google.com/scholar?hl=en&as_sdt=0,5&cluster=4834007071832675334
http://dx.doi.org/10.1109/2.59
http://dx.doi.org/10.1109/2.59
http://ieeexplore.ieee.org/xpl/abstractAuthors.jsp?tp=&arnumber=6312870
http://ieeexplore.ieee.org/xpl/abstractAuthors.jsp?tp=&arnumber=6312870
http://dx.doi.org/10.1109/MC.2003.1204375
http://dx.doi.org/10.1109/MC.2003.1204375
http://www.nickjenkins.net/prose/testingPrimer.pdf
http://www.nickjenkins.net/prose/testingPrimer.pdf
http://dl.acm.org/citation.cfm?id=529080
http://dl.acm.org/citation.cfm?id=529080
http://dl.acm.org/citation.cfm?id=553594
http://www.swebok.org/
http://dl.acm.org/citation.cfm?id=1824151
http://dl.acm.org/citation.cfm?id=1824151


88 REFERENCES

[22] Glenford J. Myers and Corey Sandler. The Art of Software Testing. John Wiley & Sons, 2004.
[Accessed: Feb. 05, 2016]. URL: http://dl.acm.org/citation.cfm?id=983238.

[23] Michael Sutton, Adam Greene, and Pedram Amini. Fuzzing: Brute Force Vulnerability
Discovery. Addison-Wesley Professional, 2007. [Accessed: Feb. 04, 2016]. URL: http:
//dl.acm.org/citation.cfm?id=1324770.

[24] Nathaniel Ayewah, William Pugh, J. David Morgenthaler, John Penix, and YuQian Zhou.
Evaluating static analysis defect warnings on production software. In Proceedings of the
7th ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools and En-
gineering, PASTE ’07, pages 1 – 8. ACM, 2007. [Accessed: Feb. 05, 2016]. URL:
http://doi.acm.org/10.1145/1251535.1251536.

[25] Juho Lepistö. Embedded Software Testing Methods. PhD thesis, Helsinki
Metropolia University of Applied Sciences, 2012. [Accessed: Feb. 06, 2016].
URL: https://www.theseus.fi/bitstream/handle/10024/46873/Lepisto_
Juho.pdf?sequence=1.

[26] Alexandre Bartel, Jacques Klein, Yves Le Traon, and Martin Monperrus. Dexpler: con-
verting android dalvik bytecode to jimple for static analysis with soot. In Proceedings of
the ACM SIGPLAN International Workshop on State of the Art in Java Program analysis,
pages 27 – 38. ACM, 2012. [Accessed: Feb. 06, 2016]. URL: http://dl.acm.org/
citation.cfm?id=2259056.

[27] Patrick Lam, Eric Bodden, Ondrej Lhoták, and Laurie Hendren. The soot framework for
java program analysis: a retrospective. In Cetus Users and Compiler Infastructure Workshop
(CETUS 2011), 2011. [Accessed: Feb. 06, 2016]. URL: http://citeseerx.ist.psu.
edu/viewdoc/summary?doi=10.1.1.221.5311.

[28] Barthélémy Dagenais and Laurie Hendren. Enabling static analysis for partial java programs.
In ACM Sigplan Notices, volume 43, Nº10, pages 313 – 328. ACM, September 2008. [Ac-
cessed: Feb. 07, 2016]. URL: http://dl.acm.org/citation.cfm?id=1449790.

[29] William Enck, Damien Octeau, Patrick McDaniel, and Swarat Chaudhuri. A Study of An-
droid Application Security. In Proceedings of the 20th USENIX Security Symposium, Au-
gust 2011. [Accessed: Feb. 08, 2016]. URL: http://dl.acm.org/citation.cfm?
id=2028067.2028088.

[30] Damien Octeau, William Enck, and Patrick McDaniel. The ded decompiler. Technical report,
Network and Security Research Center, Department of Computer Science and Engineering,
Pennsylvania State University, University Park, PA, USA, September 2010. [Accessed: Feb.
08, 2016]. URL: http://siis.cse.psu.edu/ded/papers/NAS-TR-0140-2010.
pdf.

[31] Paul Pocatilu. Android applications security. Informatica Economica, 15(3):163, September
2011. [Accessed: Feb. 10, 2016]. URL: http://revistaie.ase.ro/content/59/
14%20-%20Pocatilu.pdf.

[32] Damien Octeau, Somesh Jha, and Patrick McDaniel. Retargeting android applications to
java bytecode. In Proceedings of the 20th ACM SIGSOFT International Symposium on the
Foundations of Software Engineering, FSE ’12, pages 6:1 – 6:11. ACM, 2012. [Accessed:
Feb. 08, 2016]. URL: http://dl.acm.org/citation.cfm?id=2393600.

http://dl.acm.org/citation.cfm?id=983238
http://dl.acm.org/citation.cfm?id=1324770
http://dl.acm.org/citation.cfm?id=1324770
http://doi.acm.org/10.1145/1251535.1251536
https://www.theseus.fi/bitstream/handle/10024/46873/Lepisto_Juho.pdf?sequence=1
https://www.theseus.fi/bitstream/handle/10024/46873/Lepisto_Juho.pdf?sequence=1
http://dl.acm.org/citation.cfm?id=2259056
http://dl.acm.org/citation.cfm?id=2259056
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.221.5311
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.221.5311
http://dl.acm.org/citation.cfm?id=1449790
http://dl.acm.org/citation.cfm?id=2028067.2028088
http://dl.acm.org/citation.cfm?id=2028067.2028088
http://siis.cse.psu.edu/ded/papers/NAS-TR-0140-2010.pdf
http://siis.cse.psu.edu/ded/papers/NAS-TR-0140-2010.pdf
http://revistaie.ase.ro/content/59/14%20-%20Pocatilu.pdf
http://revistaie.ase.ro/content/59/14%20-%20Pocatilu.pdf
http://dl.acm.org/citation.cfm?id=2393600


REFERENCES 89

[33] Cullen Linn and Saumya Debray. Obfuscation of executable code to improve resistance to
static disassembly. In Proceedings of the 10th ACM conference on Computer and com-
munications security, pages 290 – 299. ACM, 2003. [Accessed: Feb. 05, 2016]. URL:
http://dl.acm.org/citation.cfm?id=948149.

[34] Tuan Anh Nguyen, Christoph Csallner, and Nikolai Tillmann. Gropg: A graphical on-phone
debugger. In Proceedings of the 2013 International Conference on Software Engineering,
ICSE ’13, pages 1189 – 1192. IEEE Press, 2013. [Accessed: Mar. 11, 2016]. URL: http:
//dl.acm.org/citation.cfm?id=2486788.2486958.

[35] Vaibhav Rastogi, Yan Chen, and William Enck. Appsplayground: automatic security analysis
of smartphone applications. In Proceedings of the third ACM conference on Data and appli-
cation security and privacy, pages 209 – 220. ACM, 2013. [Accessed: Feb. 07, 2016]. URL:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.294.9536.

[36] Ulrich Bayer, Andreas Moser, Christopher Kruegel, and Engin Kirda. Dynamic analy-
sis of malicious code. Journal in Computer Virology, 2(1):67 – 77, May 2006. [Ac-
cessed: Feb. 07, 2016]. URL: http://link.springer.com/article/10.1007%
2Fs11416-006-0012-2.

[37] Angela Orebaugh, Gilbert Ramirez, and Jay Beale. Wireshark & Ethereal network protocol
analyzer toolkit. Syngress, 2006. [Accessed: Feb. 11, 2016]. URL: http://dl.acm.
org/citation.cfm?id=1202316.

[38] Justin Clarke. SQL injection attacks and defense. Elsevier, 2009. [Accessed: Feb. 07, 2016].
URL: http://www.sciencedirect.com/science/book/9781597494243.

[39] Security Standards Council. Passing pci dss section 6 compliance. HP, 2010. [Ac-
cessed: Feb. 09, 2016]. URL: https://www.fortify.com/downloads2/user/
Passing-PCI-Compliance-Section-6-6.pdf.

[40] Robin Jeffries, James R. Miller, Cathleen Wharton, and Kathy Uyeda. User interface evalua-
tion in the real world: A comparison of four techniques. In Proceedings of the SIGCHI Con-
ference on Human Factors in Computing Systems, CHI ’91, pages 119 – 124. ACM, 1991.
[Accessed: Mar. 05, 2016]. URL: http://doi.acm.org/10.1145/108844.108862.

[41] Rudolf Ramler and Klaus Wolfmaier. Economic perspectives in test automation: balancing
automated and manual testing with opportunity cost. In Proceedings of the 2006 interna-
tional workshop on Automation of software test, pages 85 – 91. ACM, 2006. [Accessed: Feb.
11, 2016]. URL: http://dl.acm.org/citation.cfm?id=1138946.

[42] Elfriede Dustin, Jeff Rashka, and John Paul. Automated Software Testing: Introduction,
Management, and Performance. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 1999. [Accessed: Feb. 11, 2016]. URL: http://dl.acm.org/citation.
cfm?id=310674.

[43] Mark Blackburn and Aaron Nauman. Strategies for web and gui testing. Tech-
nical report, Software Productivity Consortium, 2011. [Accessed: Mar. 04,
2016]. URL: http://www.knowledgebytes.net/downloads/Strategies_Web_
and_GUI_testing_spc-2004014-D-P.pdf.

http://dl.acm.org/citation.cfm?id=948149
http://dl.acm.org/citation.cfm?id=2486788.2486958
http://dl.acm.org/citation.cfm?id=2486788.2486958
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.294.9536
http://link.springer.com/article/10.1007%2Fs11416-006-0012-2
http://link.springer.com/article/10.1007%2Fs11416-006-0012-2
http://dl.acm.org/citation.cfm?id=1202316
http://dl.acm.org/citation.cfm?id=1202316
http://www.sciencedirect.com/science/book/9781597494243
https://www.fortify.com/downloads2/user/Passing-PCI-Compliance-Section-6-6.pdf
https://www.fortify.com/downloads2/user/Passing-PCI-Compliance-Section-6-6.pdf
http://doi.acm.org/10.1145/108844.108862
http://dl.acm.org/citation.cfm?id=1138946
http://dl.acm.org/citation.cfm?id=310674
http://dl.acm.org/citation.cfm?id=310674
http://www.knowledgebytes.net/downloads/Strategies_Web_and_GUI_testing_spc-2004014-D-P.pdf
http://www.knowledgebytes.net/downloads/Strategies_Web_and_GUI_testing_spc-2004014-D-P.pdf


90 REFERENCES

[44] Lorenzo Gomez, Iulian Neamtiu, Tanzirul Azim, and Todd Millstein. Reran: Timing- and
touch-sensitive record and replay for android. In Proceedings of the 2013 International
Conference on Software Engineering, ICSE ’13, pages 72 – 81. IEEE Press, 2013. [Ac-
cessed: Mar. 04, 2016]. URL: http://dl.acm.org/citation.cfm?id=2486788.
2486799.

[45] Domenico Amalfitano, Anna R. Fasolino, Porfirio Tramontana, Salvatore De Carmine, and
Atif M. Memon. Using gui ripping for automated testing of android applications. In
Proceedings of the 27th IEEE/ACM International Conference on Automated Software En-
gineering, ASE 2012, pages 258 – 261. ACM, 2012. [Accessed: Feb. 10, 2016]. URL:
http://doi.acm.org/10.1145/2351676.2351717.

[46] Tanzirul Azim and Iulian Neamtiu. Targeted and depth-first exploration for systematic testing
of android apps. SIGPLAN Not., 48(10):641 – 660, October 2013. [Accessed: Feb. 11, 2016].
URL: http://doi.acm.org/10.1145/2544173.2509549.

[47] Domenico Amalfitano, Anna R. Fasolino, Porfirio Tramontana, Salvatore De Carmine, and
Gennaro Imparato. A toolset for gui testing of android applications. In Software Maintenance
(ICSM), 2012 28th IEEE International Conference on, pages 650 – 653, September 2012.
[Accessed: Feb. 11, 2016]. URL: http://ieeexplore.ieee.org/xpls/abs_all.
jsp?arnumber=6405345.

[48] Cuixiong Hu and Iulian Neamtiu. Automating gui testing for android applications. In Pro-
ceedings of the 6th International Workshop on Automation of Software Test, AST ’11, pages
77 – 83. ACM, 2011. [Accessed: Feb. 11, 2016]. URL: http://doi.acm.org/10.
1145/1982595.1982612.

[49] Linus Esbjörnsson. Android gui testing : A comparative study of open source an-
droid gui testing frameworks, 2015. [Accessed: Feb. 10, 2016]. URL: http://www.
diva-portal.se/smash/get/diva2:820898/FULLTEXT01.pdf.

[50] Aravind Machiry, Rohan Tahiliani, and Mayur Naik. Dynodroid: An input generation system
for android apps. In Proceedings of the 2013 9th Joint Meeting on Foundations of Software
Engineering, ESEC/FSE 2013, pages 224 – 234. ACM, 2013. [Accessed: Feb. 10, 2016].
URL: http://doi.acm.org/10.1145/2491411.2491450.

[51] Wontae Choi, George Necula, and Koushik Sen. Guided gui testing of android apps with min-
imal restart and approximate learning. SIGPLAN Not., 48(10):623 – 640, October 2013. [Ac-
cessed: Feb. 11, 2016]. URL: http://doi.acm.org/10.1145/2544173.2509552.

[52] Jinseong Jeon and Jeffrey S. Foster. Troyd: Integration testing for android. Technical Re-
port CS-TR-5013, Department of Computer Science, University of Maryland, College Park,
August 2012. [Accessed: Feb. 10, 2016]. URL: http://citeseerx.ist.psu.edu/
viewdoc/summary?doi=10.1.1.306.3636.

[53] Paul E. Black, Michael Kass, and Michael Koo. Source code security analysis tool func-
tional specification version 1.0. National Institute of Standards and Technology, May 2007.
[Accessed: May 13, 2016]. URL: http://samate.nist.gov/docs/source_code_
security_analysis_spec_SP500-268.pdf.

[54] International Electrotechnical Commission and International Organization for Standardiza-
tion. BS ISO/IEC 27005:2008. British Standard. BSI Group, June 2008. [Accessed: May
13, 2016]. URL: https://books.google.pt/books?id=8I7ROQAACAAJ.

http://dl.acm.org/citation.cfm?id=2486788.2486799
http://dl.acm.org/citation.cfm?id=2486788.2486799
http://doi.acm.org/10.1145/2351676.2351717
http://doi.acm.org/10.1145/2544173.2509549
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6405345
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6405345
http://doi.acm.org/10.1145/1982595.1982612
http://doi.acm.org/10.1145/1982595.1982612
http://www.diva-portal.se/smash/get/diva2:820898/FULLTEXT01.pdf
http://www.diva-portal.se/smash/get/diva2:820898/FULLTEXT01.pdf
http://doi.acm.org/10.1145/2491411.2491450
http://doi.acm.org/10.1145/2544173.2509552
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.306.3636
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.306.3636
http://samate.nist.gov/docs/source_code_security_analysis_spec_SP500-268.pdf
http://samate.nist.gov/docs/source_code_security_analysis_spec_SP500-268.pdf
https://books.google.pt/books?id=8I7ROQAACAAJ

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Goals
	1.3 Structure of Document

	2 Background
	2.1 Software Engineering
	2.1.1 Waterfall Model
	2.1.2 RAD Model
	2.1.3 Spiral Model
	2.1.4 Incremental Model

	2.2 Android
	2.2.1 Architecture
	2.2.2 Applications' Components

	2.3 Conclusions

	3 State of Art
	3.1 Software Testing Overview
	3.2 Test Types
	3.2.1 Functional Tests
	3.2.2 Non-Functional Tests

	3.3 Testing Methodologies
	3.3.1 White Box
	3.3.2 Black Box
	3.3.3 Gray Box

	3.4 Analysis Types
	3.4.1 Static Analysis
	3.4.2 Dynamic Analysis

	3.5 GUI Testing
	3.5.1 Manual Testing
	3.5.2 Automated Testing
	3.5.3 Test Automation Tools

	3.6 Related Work
	3.7 Summary

	4 Android GUI Crawler
	4.1 Introduction
	4.2 Interaction with device
	4.3 Android Debug Bridge (ADB)
	4.4 Data Model
	4.5 Crawler
	4.6 Test Case Generation
	4.7 Test Case Capture
	4.8 Traffic Capture

	5 Crawler Evaluation
	5.1 Apps' Dataset
	5.2 Methodology
	5.3 Case Study: My Vodafone App
	5.3.1 Results
	5.3.2 Devices' Comparison

	5.4 Expandability To Another Applications
	5.5 Evidences' Analysis
	5.5.1 Risk Assessment
	5.5.2 Results

	5.6 Discussion

	6 Conclusions
	6.1 Contributions
	6.2 Future Work

	A Activity Lifecycle
	B Commands
	B.1 ADB
	B.2 Device's Shell

	C UIAutomator Dump Example
	D Extracted Data Example
	D.1 Device
	D.2 App

	E Evidences Found
	E.1 Bug and Crash Evidences

	References

