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Abstract

Simulations of cells at the biomolecular scale yield accurate representations of the metabolic be-
haviour, cellular phenomena and culture inter-variance. Using the interactions between enzymes
and metabolites as the functional unit of biomolecular systems, the agent-based modelling (ABM)
paradigm has the potential to develop such model.

This dissertation approaches how to translate conceptual and mathematical models from Physics,
Chemistry and Biology to an agent-based computational model. Specifically, the present work fo-
cuses on the curation of biological data available at either public databases or scientific literature,
and in adapting the modelling strategy so that this data can be used as modelling inputs.

The developed modelling approach was used to simulate volumes of enzyme and substrate
solutions in different biological scenarios, such as diffusion-controlled reactions, substrate sat-
uration, Brownian motion, and reactions limited by substrate concentration. An adaptation of
the Michaelis-Menten kinetic model for different isomerases was developed. The behaviour and
kinetic parameters were successfully recreated for two isomerases, a 2-hydroxymuconate tau-
tomerase and a steroid δ -isomerase. With iterative refinements to the model inputs, the parame-
ters of 2-hydroxymuconate tautomerase were recreated with deviations of 6% for the Km and 19%
for the kcat . In a first estimate of the modelling inputs for steroid δ -isomerase, the resulting Km

was within the same order of magnitude as the published value. Additionally, it was assessed the
potential of the present model to quantify intrinsic metabolic noise due to differences in spatial
location of molecules.

Additionally, to evaluate the availability of data at the metabolic scale, a proof-of-concept cu-
ration of the necessary modelling inputs was conducted for the glycolysis pathway of E. coli. The
retrieved data regards mainly the size of biomolecules and kinetic parameter values for the en-
zymes in the pathway. The procedure of curation and criteria to choose among differing available
data are discussed, and data to simulate the glycolysis pathway and pyruvate metabolism of E. coli
is presented.

The underlying assumptions of the physical and biological behaviour of agents was validated
and the present modelling approach can be used as a foundation for the agent-based modelling of
more complex systems, such as metabolic pathways, in more complex scenarios, such as molecular
crowding and physiological conditions.
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Resumo

Simulações da célula à escala biomolecular conseguem produzir uma representação exacta do
comportamento metabólico, fenómenos celulares e variância entre culturas celulares. Usando
interações entre enzimas e metabolitos como unidade funcional de sistemas biomoleculares, o
paradigma de modelação por agentes (ABM) tem potencial para desenvolver tal modelo.

Esta dissertação aborda como transpôr modelos conceptuais e matemáticos das áreas da Física,
Química e Biologia para um modelo computational baseado em agentes. Especificamente, o tra-
balho desenvolvido foca-se na curação de informação e dados biológicos disponíveis, em bases de
dados públicas ou na literatura científica, e em adaptar a estratégia de modelação para que estes
dados possam ser introduzidos como variáveis no modelo.

A modelação desenvolvida foi utilizada para simular volumes de soluções de enzimas e metaboli-
tos em cenários biológicos diferentes, tais como reacções controladas pela difusão e em saturação
de substrato, movimento Browniano e reacções limitadas por concentração de substrato. Uma
adaptação computacional do modelo cinético de Michaelis-Menten para diferentes isomerases foi
desenvolvida. O comportamento e parâmetros cinéticos de Michaelis-Menten foram recriados com
sucesso para duas isomerases, uma 2-hydroxymuconate tautomerase e uma steroid δ -isomerase.
Com refinamentos iterativos aos inputs do modelo, os parâmetros para a 2-hydroxymuconate tau-
tomerase foram recriados com um desvio de 6% para o Km e 19% para o kcat . Numa primeira esti-
mativa dos inputs de modelação da enzima steroid δ -isomerase, o Km resultante é da mesma ordem
de magnitude do publicado. Adicionalmente, foi avaliado o potencial do modelo em questão para
quantificar ruído intrínseco metabólico devido a diferenças na localização espacial de moléculas.

Adicionalmente, para avaliar a disponibilidade de informação relevante para este método de
simulação à escala metabólica, foram recolhidos dados sobre a via metabólica da glicólise em
E. coli, como teste de conceito. Os dados necessários consistem principalmente em dados sobre
tamanho de biomoléculas e dados cinéticos das enzimas da via, e recolha de várias fontes da sua
grande maioria é apresentada neste trabalho. São ainda discutidos os procedimentos de curação
de dados e critérios de escolha entre diferentes dados disponíveis.

As hipóteses subjacentes ao comportamento físico e biológico dos agentes foram validadas e
a presente abordagem de modelação pode ser usada como uma base para a modelação baseada
em agentes em sistemas mais complexos, como vias metabólicas, em cenários complexos como
crowding molecular e condições fisiológicas.
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“When you eliminate the impossible, whatever remains,
however improbable, must be the truth.”

Sir Arthur Conan Doyle
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Chapter 1

Work Outline

1.1 Project background

The objective of the this project is to apply agent-based modelling to biomolecular systems.

The proposed model focuses on rendering an accurate representation of the interactions between

biomolecules, namely enzyme and metabolites. Such approach has the potential to correctly model

the emergence of biological phenotypes and capture its complexity, as well as account for the spa-

tial scale of cells. Ultimately, it can become a powerful tool to simulate metabolic pathways and

cellular systems.

This project is the result of a current collaboration between LEPABE/FEUP and U. Vigo. The

work of this thesis is centred in translating conceptual models of biological phenomena into a

computational model, and the retrieval the curation of pertinent biological data.

A previous instantiation of the proposed biomolecular ABM model was made in 2D [1], in

which the enzymatic behaviour was correctly simulated, reproducing the behaviour observed in

real enzymes during kinetic assays. Notably, two simulation variables were calibrated in order to

match the kinetic parameters by the mathematical modelling of Michaelis-Menten [2].

This is also the core of the 3D version of the proposed biomolecular model, with space consid-

erations updated for the additional dimension. It is not within the scope of this thesis to focus on

the purely computational aspects of creating such model, but to devise strategies to adapt current

conceptual and mathematical models of physical, chemical and biological phenomena to a compu-

tational representation. The model structure is designed with the intent of simulating scenarios of

interest to real world applications. Given this, the necessary inputs for the model should be widely

available data. This depends essentially of selecting data that can be obtained through standard

laboratory experiments and accessible in biological databases. Attention is paid to computational

aspects mainly to establish a working compromise between biological accuracy and processing

constraints, besides assuring a realistic behaviour of the agents as physical biomolecules.
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2 Work Outline

1.2 Main objectives

The contribution to the overall project of this dissertation followed two distinct angles to approach

the ultimate goal, for the main project, of creating an ABM at the metabolic scale.

The first objective was to design simulations based on biological knowledge that could validate

the computational representation of a biomolecular environment. The scope of this part of the

work includes the definition of the simulation’s time step as a fraction of real time in a biological

scenario, implementation of diffusional behaviour, and the modelling of enzymes according to

their reported kinetic parameters.

The second objective was to assess the availability of biological data, regarding the input

requirements of the designed modelling approach at the metabolic scale, and thus assess the fea-

sibility of constructing a simulation based on these data. The curation of data for the glycolysis

pathway of E. coli was used as a proof-of-concept. Searches on databases and scientific literature

were conducted to gather all the relevant data required to enable the modelling of the glycolysis

pathway. This part of the work aims to discuss the details of the available biological data regard-

ing the physical dimensions, physical behaviour and intermolecular interactions. The gathered

insights can guide both the implementations of the project’s modelling approach, in order to re-

flect the reality of data availability, and the future collection of data for models at the metabolic or

cellular scale.

1.3 Organization

Adding to the present Chapter, that introduces the scope and objectives of the thesis and presents

an overall view of the organization of the thesis, the 2nd chapter covers the state of the art in bio-

logical simulation and the basis of ABM, and how it was previously used in modelling biological

phenomena.

The 3rd chapter covers the methodology followed in iteratively validating model assumptions

and reviewing literature, from basic physical rules to the simulation of an enzymatic assay.

The 4th chapter explores the results obtained in the experiments previously described and their

significance.

Chapter 5 provides the main conclusions of the dissertation work, and frames its relevance

within the main project.

Appendix A provides a description of the supplementary material, available in the CD accom-

panying this Dissertation.



Chapter 2

Introduction

2.1 Modelling Biological Systems

Modelling biological systems has the purpose of both aiding scientific understanding and serving

as practical tool to enable an in silico laboratory approach. By building a model of biological phe-

nomena according to the current understanding of the phenomena, one can predict the behaviour

of the modelled system and see to what degree it depicts reality. Once validated, the model be-

comes a valuable tool to simulate different scenarios. This can reduce the number of experimental

possibilities to be tested in a wet lab, or traditional lab, to the ones with most promise, saving time

and financial resources. In particular, modelling is instrumental in Systems Biology, a discipline

that aims to integrate biological data and enable a system-level understanding of organisms and

their biochemistry [3, 4].

Modelling efforts started by systematizing biological data that was obtained by traditional re-

ductionist methods in molecular biology. Their scope and detail increased with the popularization

of high-throughput methods and "omics" data sets [5]. Models exploiting a systematic perspective

of the cell are useful to survey useful genetic modifications to organisms relevant to industrial

biotechnology [6, 7].

Biological modelling can be performed at different scales, like at the level of multicellular

organisms, at the level of the cell, for instance to simulate microbial colonies or animal tissues, or

at the biomolecular level, representing components inside the cell with varying degrees of abstrac-

tion. Within these scales, modelling can focus on different biochemical and cellular processes.

The main processes occurring in biological systems are based on the underlying signalling, reg-

ulatory and metabolic networks [8]. The present work focuses on the biomolecular scale and on

metabolic networks.

The designation of biomolecular modelling can apply to different modelling approaches, with

diverse points of focus. This focus can range from fully atomistic models, which depict fully

the atomic constitution and interactions and have a resolution below the nanoscale, to coarse-

grained models of solutes, which are able to render larger simulation volumes and longer periods

of time [9].
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4 Introduction

Coarse-grained models represent the system by a reduced and essential number of degrees

of freedom and interactions. The use of coarse-graining models is the most viable strategy for

developing physically accurate models that, at the same time, cover both time and length scales of

biological processes [10, 11]. The key issue is to determine what approximations can be tolerated

without comprising the overall level of realism and, inherently, the predictive ability.

Biologically relevant time scales range from nanosecond to microsecond time scales for the

internal dynamics of individual molecules to time scales of seconds to hours for entire biological

processes [9].

However, these two approaches focus largely on the physical aspects of biomolecules, such as

conformation and diffusion [9]. The aim of the present model would be to ultimately bridge the

spherical coarse-grained model of solutes in the cell with reaction models, retaining the capability

of the former to accurately represent diffusional behaviour in the crowded cellular environment,

with kinetic information of enzyme-catalysed reactions. To implement such model, agent-based

modelling (ABM) was considered among the different types of modelling methods.

2.1.1 Types of modelling

Different classes of modelling can be separated with basis on different criteria, such as whether it

considers dynamic or steady-state responses, or is deterministic or stochastic. In terms of methods,

they can be in mathematical or direct computational models [12, 13].

Mathematical models encompass a large range of models, including some of the most tradi-

tional and popular methods in biological and metabolic modelling. Kinetic metabolic models are

examples of the application of differential equations, while constraint-based methods, like flux-

balance analysis, are based on linear algebra [14]. Kinetic models can take into account mass

action laws or stochastic processes. They are dependent on a detailed characterization of enzymes

and their mechanisms, which are commonly modelled with ordinary differential equations (ODEs)

or partial differential equations (PDEs). Mogilevskaya et. al approaches the building of kinetic

models for the metabolism of E. coli [15], and Link et al. reviews the recent advances and chal-

lenges in integrating kinetic information in kinetic models [16]. Despite being able to represent the

dynamics of biological phenomena in a quantitive manner, they typically imply handling complex

mathematical formulas that are difficult to implement. This happens especially when the number

of enzymes and reactions increases, which is necessary to create relevant biological models of

pathways.

Constraint-based stoichiometric methods have the significant advantage of scalability and their

use is widespread in metabolic modelling [17, 18]. Genome-scale information of metabolic path-

ways can be incorporated in stoichiometric models and analysed with linear algebra. However, this

approach overlooks many important kinetics of biomolecular interaction, such as regulation and

inhibition phenomena. Furthermore, it is only valid under assumption of steady-state and the in-

herent linearity of stoichiometric models does not correctly characterize the non-linear behaviour

of biological systems [14].
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Mathematical models differ from direct computational models, which represent a constituent

part of a system as an "agent". In terms of application, a key difference is that mathematical

models treat populations as homogeneous [19]. Due to this feature, it is hard to incorporate or

study the biological phenomena related to individual variation or complex interactions.

2.1.2 Agent-based modelling (ABM)

Agent-based modelling (ABM) is an example of direct computational modelling method. It re-

sembles cellular automata (CA) models, but represents agents in a continuous environment and

is capable of asynchronous interactions . It is also known as individual or particle based model.

It is related to multi-agent systems (MAS). ABM has been applied to distinct fields like social

sciences, economics, operational research and management, ecology, environmental studies and

biology [20].

The main potentialities of ABM when applied to the biological scenario are its intuitive nature,

suitability to depict emergence of biocomplexity with the establishment of a set of relatively simple

rules [21], and implicit modelling of the spatial scale [1].

Intuitiveness is an important feature of the model, because it increases the usefulness of the

model by easing its interpretation [14]. This is particularly important, as models are created and

used by multidisciplinary teams [8]. The intuitive nature of direct computational models is due to

the fact that the modelling efforts occur mainly at the level of the attributes of individual agents,

which matches a reductionist perception of biomolecular systems. In fact, at the biomolecular

level a large part of the current understanding and available data arises from reductionist research,

focusing on individual biomolecules, their properties and their most immediate interactions. Due

to the ABM capacity to represent complex behaviours emerging from simple rules and individ-

ual interactions, it becomes an ideal methodology to utilize available reductionist data and long-

standing conceptual models that focus on individual molecules. ABM can be used concurrently

with recent experimental technologies, such as single-molecule enzymology and single-molecule

tracking [22, 23], which explore the stochastic nature of enzymatic catalysis [24] and the motion

of molecules across cellular membranes and in the cytoplasm [25, 26].

ABM was applied in many of the different levels of biological modelling. For example, at the

multicellular organism level, there are ABMs of the behaviour of ant colonies [27, 28]. ABM was

applied to the cell-cell interaction in the epithelial tissue [29, 30], the inflammation response in

diabetic ulcers [31] and to model the bacterial colonizations of plant’s roots [32]. Hellweger et. al

published a review on 46 ABMs applied to microbe populations, including bacteria in wastewater

treatment, biofilms and food [33]. Previous works using ABM at the biomolecular scale included

the modelling of the oxygen response in E. coli [34], the emergence of the competency phenotype

in Bacillus subtilis [35] and an assessment of the effect of intracellular crowding in the eukari-

otic metabolism [36]. General tools to perform ABM in biomolecular scenarios include software

programs like AgentCell [37], M-Cell [38], Smoldyn [39], the Cellular Dynamic Simulator [40]

and ReaDDY [41]. Despite the advances in the area of agent-based biomodelling, there are some

recurring limitations. These include a gap between the required inputs by the models and the
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biological data that is actually available, the lack of validation or application of the proposed mod-

elling approach to real biological scenarios, or the development of models of excessively complex

biological scenarios, reducing the generality of the modelling approach and hampering the appli-

cation of the developed model to other biological scenarios.

2.2 Structure of a biomolecular ABM

ABM have simple structures, comprised of three main elements: agents, rules and behaviour [42].

The application of this structure will vary with the biological level and process modelled. In a

biomolecular metabolic ABM, the agents are the biomolecules involved in reactions and pathways,

with special focus on enzymes and metabolites, and the model is focused on their behaviour and

interactions in the cellular environment (Table 2.1). Alternatively, the biomolecular system can

be an in vitro assay, an environment in which the catalytic and kinetic properties of enzymes are

commonly determined [43, 44].

Table 2.1: ABM structure applied to the biomolecular scenario

GENERIC ABM BIOMOLECULAR ABM
Agents Molecules (enzymes, metabolites, co-factors)
Behaviour rules Molecular diffusion
Interaction rules Enzyme kinetics
Shared environment Cytosol, membranes

The rules aim to portray computationally conceptual models of biochemistry and biophysics

(Figure 2.1). The motion of agents should be equivalent to the diffusion of the modelled biomolecules.

Interaction between agents varies in nature, with its core being defined by enzyme’s physiological

reactions, arranged in metabolic networks. Enzyme kinetics characterize the dynamics of part of

the interactions, namely the binding between enzyme and metabolites. The binding of co-factors

to the enzyme influences the kinetics of binding between substrate. The definition of specific rules

require data of chemical and biological nature, specific to the enzyme, pathway or organism which

is desired. These information and data should be easily and routinely determined in the laboratory,

publicly available and, preferably, organised in programmatically accessible databases.
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Figure 2.1: Interaction logic of a biomolecular ABM, in which all agents move, co-factors and
substrates can bind to the enzyme, and agents rebound of each other.

The agents are represented as spheres, based on their hydrodynamic volume. Hydrodynamic

volume is a good measure of the actual space occupied by the molecule in its reaction media, be it

water in an enzymatic assay or the intracellular space. The spherical approximation is an effective

way to create middle-out, coarse-grained models of the cell, in a compromise between realistic di-

mensions and computer tractability [9]. The volume of the spheric agents was determined by the

hydrodynamic radii (Rh), or van der Waals radii (RvdW ). This radius was approximated by corre-

lations with molecular weight (MW, in Dalton units), in the case of enzymes (eq. 2.1) [45] , and

with the formula and rings in the structure, in the case of small organic metabolites (eq. 2.2) [46].

Rh(nm) = 0.0515MW 0.392 (2.1)

Rh(nm) =
3

√
3

4.π
.
[
(∑atom

i VvdWi)−5.92NB−14.7RA−3.8RNA

]
(2.2)

where VvdWi is the van der Walls volume (i.e., hydrodynamic volume) of each atom of the

metabolite, the NB the number of bonds, RA the number of aromatic rings and RNA the number of

non-aromatic rings. The van der Walls radii of each atom was calculated by Bondi [47, 46]
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2.2.1 Motion of biomolecular agents

In the computational model, the motion of the biomolecule agents is defined by velocity (number

of simulation unit distance moved per time step). However, in biological terms, the motion of

biomolecules is quantified in terms of diffusion. This relates to the concept of random-walk, or

Brownian motion [48]. Due to collisions with the molecules of the solvent (water or air), molecules

have a random trajectory and a null average displacement. The squared average displacement

(<R2>) is a measure of the absolute distance the molecule is likely to travel in any given direction.

Eq. 2.3 shows its relation with the diffusion coefficient (Dc) and the time (t) during which the

displacement occurred.

< R2 >= 6Dc.t (2.3)

where t is the time of motion and Dc the diffusion coefficient.

The diffusion coefficient can be calculated using the Einstein-Stokes equation (eq. 2.4), where

kB is the Boltzmann constant, T the absolute temperature and η the viscosity of the solvent media.

Dc =
kB.T

6π.η .Rh
(2.4)

2.2.2 Kinetics of biomolecular agents

Enzyme kinetics are related to a key issue in biomolecular ABMs, being one of the fields where

the gap between computational inputs and common biological data is wider. Most models and

tools for creating biomolecular ABMs require the intrinsic (or individual) rates of each catalytic

mechanism step [39, 40], which are not commonly determined in the lab [49]. Therefore, there

is a shortage of information. There is also no current efforts to build a systematized repository of

individual rates values.

Most kinetic parameters of enzymes are determined in terms of Michaelis-Menten parameters,

taken from the historical derivation of enzyme’s catalytic behaviour. This mechanism features a

simple isomerization reaction, in which a substrate molecule (S) binds to an enzyme (E), giving

origin to an enzyme-substrate complex (ES). Under the assumption that the intermediate enzyme-

product complex is negligible, the ES complex dissociates, forming one product molecule (P) and

freeing the enzyme (eq. 2.5). k1, k−1 and k2 are the individual rate constants of each step of the

catalysis mechanism.

E +S
k1−−⇀↽−−
k−1

ES k2−→ E +P (2.5)

Given this reality, it would be particularly interesting to be able to implement a biomolecular

ABM in such a way that Michaelis-Menten kinetic parameters can be used as inputs to model the

interactions between enzymes and substrates. There are two Michaelis-Menten parameters, the



2.3 Data availability and assessment: proof of concept 9

Michaelis constant, Km (eq. 2.6), and the maximum velocity, Vmax. Vmax is related to the turnover

number, kcat , and the concentration of enzymes, [Et] (eq. 2.7).

Km =
k−1 + k2

k1
(2.6)

Vmax = kcat .[Et ] = k2.[Et ] (2.7)

The velocity is limited by diffusion when the conversion of substrate to product is fast (high

kcat) and substrate is present at saturating concentration, making Km influence on reaction ve-

locity negligible. Diffusion-limited enzymes are close to kinetic perfection, with the parameter

of kcat /Km being equivalent to the encounter rate constant, Keq. The values of Keq for enzyme-

substrate systems is reported as between 109 and 1010 M−1.s−1 [50].

2.3 Data availability and assessment: proof of concept

The previous sections outlined how agents can be characterised and the key conceptual models

of basic biological phenomena to be portrayed in a biomolecular ABM, such as diffusion and

reactions. A second part of the work consists of a review to provide a systematic and comprehen-

sive overview of available resources for the modelling of metabolic events at the molecular scale.

The objective is to evaluate the feasibility of the application of the proposed model to a complete

metabolic pathway, from a point of view of data availability. In order to be useful, the required

data by the model in its present implementation should be available for all or most biomolecules

involved in a given pathway. Gathering data on a specific pathway also provides insight of the

prevalence of more complex biological phenomena, whose implementation is not covered in the

scope of the present work, and thus provides a direction for future work.

The glycolysis and pyruvate metabolism pathways of E. coli serves as case study. E. coli is

one of the most well-studied microorganisms, and is widely used in both laboratorial setting and

in industrial applications. Similarly, glycolysis and pyruvate metabolism are central to the carbon

metabolism, and are well-characterized pathways. The required data by the present implementa-

tion of the model is surveyed for the enzymes and metabolites of the two pathways. The procedure

of collecting such data, the resources available, the effort involved in curation and the availability

and uniformity of the data are discussed.
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Chapter 3

Methods

The Methods chapter cover the model building, the simulation scenarios and the guidelines fol-

lowed to retrieve cellular and biomolecular data in a systematic manner. The rationale behind the

order of simulations performed was:

1. Defining a relation between computational and biological time, using a virtual enzyme with

maximum catalytic efficiency;

2. Defining a relation between the kinetic parameter kcat (s−1) and its computational equiva-

lent, a simkcat (ts);

3. Defining a procedure to assign a velocity to each agent, so that the average displacement of

the agents is equivalent to the theoretically predicted by the Stokes-Einstein equation;

4. Assessing which computational variables could be equivalent to the aggregated kinetic pa-

rameter Km;

5. Recreating the Michaelis-Mente behaviour and kinetic parameters for two enzymes, the 2-

hydroxymuconate tautomerase [51] and steroid δ -isomerase [52].

3.1 Model building

The proposed model was developed in the MASON (Multiagent Simulation of Neighborhoods) [53].

A previous implementation for the biomolecular scenario, considering a two-dimensional environ-

ment, is available [1].

The physical scale of the model was scaled relative to the hydrodynamic radius of a wa-

ter molecule, which is of 0.16 nm [46]. Therefore, one simulator distance unit is equivalent to

1.6×10−10 m [54]. For each simulation, the shape and size of the simulation environment must be

defined. To simulate a reactor carrying an enzymatic assay, the simulation environment was cubic.

The edges of the reactor took the values of 550 and 600 simulator distance units for different sim-

ulations. Thus, the volume of the simulation environment was 6.81×105 nm3, for the first set of

simulation with a virtual enzyme, and 8.85×105 nm3 for the remaining simulations. Enzymes and

11
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substrates are represented in the model as spherical agents. The size of agents is defined based on

the correlations for the hydrodynamic radii of enzymes (eq. 2.1) and for substrate hydrodynamic

radius (eq. 2.2).

The hydrodynamic radius of the molecules defines the physical radius of the agent. An ad-

ditional reaction radius can be defined, as a multiple of the physical radius of the agent. Within

the volume defined by this reaction radius, a enzyme agent can "capture" substrate to form an ES

agent.

Collisions between the spherical agents are detected based on the Pythagorean Theorem for

triangles, which calculates the squared distance (d2) taking into account the coordinates in the ith

dimension of a first agent, a1, and a second agent, a2 (eq. 3.1).

d2 =
3

∑
i=1

(a1i−a2i)
2 (3.1)

For all the simulations, a simple enzymatic isomerization reaction is defined. A collision

between enzyme agent and substrate agent can form another agent, the enzyme-substrate complex

(ES) - a "successful" collision. To simplify the computational implementation, the ES agent was

considered to have the same size as the enzyme agent alone. The fraction of collisions between

enzyme and substrate that form ES agents is subject to the ABM rules, and can vary from 0 to

100% of all collisions. The ES can either dissociate back into enzyme and substrate, or enzyme

and product. The ratio of these outcomes and time steps that it takes to dissociate are also subject

to ABM rules.

The product and substrate have the same size and velocity, as the reactions represent merely

structural changes in the substrate molecule, without loss or gain of mass. Structural changes that

could alter the size of the molecule, such as change in the ring structures, were not considered.

Non-reacting collisions can occur between two enzyme agents, two substrate agents, enzyme

and product agents, substrate and product agents, non-reacting enzymes and substrates (a fraction

of reacting collision of 0%), or randomly between enzymes and substrates agents with a ratio of

reacting collisions above 0% and below 100%. Non-reacting collisions result in the rebound of

the agents, they are reoriented in a new randomly chosen direction.

3.2 Simulations

3.2.1 Relation between computational and biological time

The simulation environment was populated with 5 virtual enzymes (equivalent to 1.22×10−2 mM)

and 20 000 molecules of a generic substrate (equivalent to 4.87×10−2 mM). This relation of 4

orders of magnitude between enzyme and substrate concentrations is similar to the ones verified

in enzymatic assays where the concentrations are specified [55, 56, 57]. The relatively few number

of enzymes in the simulation allowed for the maintenance of an appropriate ratio, while keeping

within computational constraints in the possible number of agents. The initial number of product
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agents is zero. Upon a collision between a substrate and enzyme, an enzyme-substrate complex

enzyme is formed

The radius of the enzyme agent was defined as 3.579 nm, based on a molecular weight (MW)

of 50 kDa, which is a reasonable size for an enzyme (for a comparison with enzymes of common

metabolic pathways, refer to Table 4.11 or Table 4.12 in Chapter 4) The substrate agent has a radius

of 0.589 nm, which would be roughly equivalent to a chemical compound with 70 Da and similar

to pyruvate or ethanol (Table 4.13). The proper definition of velocities of agents is discussed in the

next section, in the simulation of a real enzyme and substrate. For this first group of simulations,

a velocity was estimated from the numeric value of the of the diffusion coefficient an equivalent

molecule would have. This velocity assured that the distance covered by the agent in each discrete

time step was inferior to the diameter of the smallest agent. The practical reason behind this was so

that no collision could be missed, in a given time step where the discrete "leap" of the agent could

not go over entirely another agent, without testing a possible reaction or altering its direction.

The reaction radius for the virtual enzyme and substrate was set to 1.15 (a 15% increase relative

to the hydrodynamic radius). The ratio of formation of ES agent was set to 100%. Thus, all the

collisions between enzyme and substrate formed an ES agent. The focus of this simulation was the

computational variable of the time between the formation of ES agent and dissociation to enzyme

and product (simkcat). Small values of simkcat were tested, to simulate a very fast isomerase: 1,

2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 and 30 ts. In a total of 14 individual simulations were run

for each of the simkcat . For each simulation, it was tracked the number of substrate, enzyme, ES

and product agents at every time step, during a total of 1 000 time steps. The reaction’s velocity

for each simulation was determined as the slope of a linear regression of the product formed as

a function of time steps. The linear regression was forced through the origin (0,0 coordinates),

except in the simulations with simkcat of 1 and 2 ts.

Additionally, the relative occupancy of enzymes was calculated for given points of each sim-

ulation (10, 50, 100, 200, 500 and 1 000 time steps). The relative occupancy of enzymes, ES/Et ,

is defined as the fraction of enzymes engaged in enzyme-substrate complexes, within the total

population of enzymes.

The real velocity of a diffusion-limited reaction was calculated as in eq. 3.2.

V = Keq.[E].[S] =
= 1010M−1.s−1×1.22×10−5M×4.87×10−2M =

= 5.94×10−3M.s−1

(3.2)

in which Keq is the collision constant of a enzyme-substrate system [50], and [E] and [S] the

concentration of enzyme and substrate in the simulation environment.

The simulations’ velocities (dP/dt) were converted from the units of agent/ts to M/ts by diving

by the reactor volume and the Avogadro constant (6.022×1023).

The relation between biological and computational time was calculated, as in eq. 3.3.
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Real time velocity
Simulation velocity

=
5.94×103M.s−1

2.89×10−6M.ts−1 =

= 2.05×109ts.s−1
(3.3)

This relation between the time step and second was used to calculate the kcat of the simula-

tions from their velocities, by multiplying the velocity value by 2.05×109 ts/s and the number of

enzymes in the simulation (5 agents).

The relative occupancy of enzymes (ES/Et) was calculated by the average of ES agents in

a simulation, up to several point designed by time steps (10, 50, 100, 200, 500 and 1 000), and

divided by the total enzyme agents in the simulation environment, either free or engaged in the

enzyme-substrate complex.

To assess the relation between simkcat and kcat , the relation between two consecutive (denoted

by the i index) simkcat and the inverse of consecutive kcat were calculated. Without limitation by

diffusion, the two relations should be equivalent (eq. 3.4). The deviation between the two resulting

values was calculated.

simkcat i+1

simkcat i
=

kcat i

kcat i+1
(3.4)

3.2.2 Velocity of agents, diffusion and Brownian motion

The assignment of agent velocities in simulation scenarios with different number of substrate

agents was carried out in a cubic simulation environment, with a volume of 8.85 ×105 nm3.

All reactions between enzyme and substrate agents were disabled, by setting the ratio of react-

ing collisions to 0%.

The enzyme and substrate agents physical dimensions were defined according to a real en-

zyme and its substrate, a 2-hydroxymuconate tautomerase (EC 5.3.2.6) from Pseudomonas putida,

coded by the gene 2-hydroxymuconate, that catalyses the conversion of 2-hydroxy-muconate to

2-oxo-3-hexenodiate. The enzyme’s molecular weight is 225 kDa, and the radius 2.62 nm. The

product agent has a radius of 0.93 nm.

Simulations with 750, 1 000, 1 250, 2 500, 5 000, 10 000 and 20 000 substrate agents were

run. For each simulation, it was tracked for each type of agent the initial and final positions in

each of the 3 cartesian coordinates (x, y and z), during 1 000 time steps, and whether it had hit the

reactor boundary or not.

The displacement (R) of each agent was calculated by the eq. 3.5.

R = 2
√

(x f − xi)2 +(y f − yi)2 +(z f − zi)2 (3.5)
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where x, y and z are the cartesian coordinates, and the subscript i denotes the initial coordinate and

f the final coordinate.

Averages of the squared displacement (in µm2) were calculated for enzymes and substrates,

enzymes and substrates that didn’t hit the reactor boundary, and enzyme and substrates that had

hit the reactor boundary.

The simulation diffusion coefficient was calculated using the squared displacement of enzymes

and substrates that didn’t hit the reactor boundary, by the eq. 2.3, in which t is the time during

which the agents were moving (1000 time steps, or 4.88×10−7 s).

This simulation diffusion coefficient was compared to the theoretical diffusion coefficient,

calculated by the Stokes-Einstein equation (eq. 2.4, taking into account the radii of the agents, a

temperature of 37 °C (310.15 K), and the viscosity of water at 37 °C.

Differences between the theoretical and simulation diffusion coefficients were expressed as a

deviation from theoretical diffusion and by division.

If the absolute deviation of the substrate agents was superior to 15%, a new iteration of the

simulation was run. The new values of velocity for the agents were calculated by multiplying the

current velocities by the square root of the division between theoretical and simulation diffusion

coefficients. The number of iterations for each of the initial substrate scenarios varied from 3 to 5.

3.2.3 Calibration of Km

The calibration of Km was performed in groups of simulations with different initial substrate

agents, resembling wet lab kinetic assays.

The simulation environment was cubic, with a volume of 8.85 ×105 nm3. The size of the

agents was modelled after 2-hydroxymuconate and its substrate, as discussed in the previous sub-

section.

Using the inverse linear relation established between simkcat and kcat , in the simulations with

the virtual enzyme, the kcat of 2-hydroxymuconate of 1.39×106 s−1 [51] was converted to a

simkcat of 1086 ts.

Three implementations were tested to assign a modelling variable to the simKm, a computa-

tional equivalent to the kinetic parameter Km.

In the first and the second implementations, simKm was defined as the probability of a collision

between an enzyme and substrate agent originating a ES agent. The difference between them

is that, in the first implementation, each possible collision was tested in each time step. This

implementation was tested for simKm values of 100%, 75%, 50% and 25%, with initial substrates

of 750, 1000, 1250, 2500, 5000 and 10 000. In the second implementation of simKm, only one

collision was resolved in each time step. This implementation was testes for simKm values of

100%, 75%, 50% and 25%, 10%, 1% and 0.1% with initial substrates of 750, 1000, 1250, 2500

and 5000 agents.

A third implementation was tested, in which simKm was the probability of a ES agent disso-

ciate into enzyme and product agents, as opposed to enzyme and substrate. Both dissociations
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happened after the computational time defined by simkcat . In this case, the dissociation happened

at the 1 086th time step after the formation of the ES.

For each individual simulation, with a different combination of simKm and initial substrate

agents, the reaction velocity, dP/dt, was calculated and converted to real units (mMProd .s−1) as

discussed previously.

The velocity of reaction as a function of initial substrate was fit to the Michaelis-Menten

equation, by non-linear least squares regression [58], and by linear transformations of Lineweaver-

Burke, Eadie-Hofstee and Hanes-Woolf [59]. Values determined by the non-linear method were

used for comparison between simulations with different simKm.

3.2.4 Reaction radii and non-reactive agents

2-hydroxymuconate was simulated again in a cubic environment, with 8.85 nm3, and 10 000

substrate-sized agents. Different scenarios of initial substrate concentrations were achieved by re-

placing substrate agents with non-reactive agents (simKm of the enzyme 0% towards these agents),

in the necessary ratio. Scenarios with 25, 50, 100, 250, 500, 750, 1 000, 1 250, 2 500, 5 000 and

10 000 substrate agents were tested. This group of scenarios were tested for different reaction

radius: 2, 4 and 10.

Simulation reaction velocity (dP/dt) was calculated as previously, in the linear velocity portion

of the scenario of 25 substrate agents. Reaction velocity was calculated for each of the three

replicate simulations. The linear velocity portion was deemed to occur from the beginning of the

simulation up to 6000 time steps.

The velocity of reaction (average and standard deviation of the triplicates) as a function of ini-

tial substrate was fit to the Michaelis-Menten equation, by non-linear least squares regression [58],

and by linear transformations of Lineweaver-Burke, Eadie-Hofstee and Hanes-Woolf [59]. Values

determined by the non-linear method were used for comparison between simulations with different

simKm.

Noise assessment consisted on following the rate of product formation of each of the replicates,

in the total of the followed time steps and in the first 6 turnover events (6 000 time steps).

The standard deviation of samples from product existence at a given time step was calculated,

and the relative deviation was the result of diving the standard deviation by the average of product.

This was measured from the first turnover event (at time step of 1 086) to the end of the linear

portion of velocities (at time step of 6 000). The average of relative deviation was calculated

within this portion.

3.2.5 Simulation of steroid δ -isomerase enzyme

Steroid δ -isomerase was simulated again in a cubic environment, with 8.85 nm3, and 2 000

substrate-sized agents. 5 enzyme agents were used, as in the previous simulations. Different

scenarios of initial substrate concentrations were achieved by replacing substrate agents with non-

reactive agents (simKm of the enzyme 0% towards these agents), in the necessary ratio. Scenarios



3.3 Data retrieval and curation 17

with 10, 15, 20, 25, 50, 100, 250, 500, 1 000 and 2 000 substrate agents were tested. Reaction

radius was set to 4. simkcat was set to 54122, in accordance to the published value of kcat [52].

Simulation reaction velocity (dP/dt) was calculated as previously, in the linear velocity portion

of the scenario of 10 substrate agents. Reaction velocity was calculated for each of the three

replicate simulations. The linear velocity portion was deemed to occur from the first turnover

event (time step of 55 000) of the simulation up to 180 000 time steps.

The velocity of reaction (average and standard deviation of the triplicates) as a function of ini-

tial substrate was fit to the Michaelis-Menten equation, by non-linear least squares regression [58],

and by linear transformations of Lineweaver-Burke, Eadie-Hofstee and Hanes-Woolf [59]. Values

determined by the non-linear method were used for comparison between simulations with different

simKm.

Noise assessment consisted on following the rate of product formation of each of the replicates,

in the total of the followed time steps and in the first 6 turnover events (180 000 time steps).

The standard deviation of samples from product existence at a given time step was calculated,

and the relative deviation was the result of diving the standard deviation by the average of product.

This was measured from the first turnover event (at time step of 55 000) to the end of the linear

portion of velocities (at time step of 180 000). The average of relative deviation was calculated

within this portion.

3.3 Data retrieval and curation

The data of the simulated enzymes, 2-hydroxymuconate and steroid δ -isomerase, were initially

extracted from the BRENDA database. Additional information was collected from the respective

source publications identified in BRENDA [51, 52].

In order to assess the availability of data to perform ABM simulations of a full pathway, the

enzymes and metabolites involved in glycolysis and pyruvate metabolism of E. coli were col-

lected, according to map00010 (Glycolysis/Gluconeogenesis) of KEGG [60], "Pathway: glycol-

ysis I (from glucose-6-phosphate)" and "Pathway: mixed acid fermentation" from EcoCyc [61].

Enzymes are identified by the Enzyme Commission (EC) number and with the corresponding

gene identifier. Metabolites were identified by a non-standard readable name and the PubChem

CID [62]

After collecting the participating biomolecules, the following data was collected on the en-

zymes: substrates and products of in vivo reaction, the kinetic parameters of the in vivo reaction,

the molecular weight of the enzymes and the number of subunits.

Substrates and products were specified in the pathway maps or the source publication. The

kinetic parameters were initially collected from the BRENDA [63] and EcoCyc [61] databases,

and checked individually in the respective source. The molecular weight was extracted from Eco-

Cyc [61]. Molecular weight values were available either as direct experimental values of the

multimer (when the quaternary structure of the protein is composed of more than one of the in-

dividually coded polypeptide), experimental values of the polypeptide or values inferred from the
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aminoacid sequence. When molecular weights were available only for the individual polypeptide,

a final molecular weight was calculated by multiplying the molecular weight of the polypeptide by

the number of subunits. Molecular weight of the enzymes was used to calculate the hydrodynamic

radius, according the correlation described by The number of subunits is available in EcoCyc and

UniProt [64]. UniProt data was preferred, as it keeps references for the stored value. There was

one practical case of conflict in the curated data, the ackA enzyme.

From the substrate and product list, a final list of metabolites was collected. Size data was

collected for each of the biomolecules. The method to calculate the VvdW required the chemical

formula and the number of aromatic and non-aromatic rings in the structure [46].

3.3.1 Kinetic data

Kinetic data was available in terms of Michaelis-Menten parameters, kcat (s−1) and Km (mM).

BRENDA and EcoCyc have kinetic data values. EcoCyc was searched by the coding gene ID and

BRENDA by the EC number. To distinguish isoenzymes (enzymes catalysing the same reaction,

but with different aminoacid sequence, size and kinetic properties), the UniProt identifier in the

BRENDA register of literature sources was checked. When the field is empty, the information was

searched for in the original source.

Kinetic data is very heterogeneous. In this work, the original works cited as sources for the

data were checked individually, to assess the existing variables in the parameter determination.

Table 3.1 organizes the possible criteria in the individual experiments of parameter determination,

and the desired values for an hypothetical simulation of the pathway. These criteria were followed

to choose parameters’ values from all the available sources (for full data, see supplementary ma-

terial A.7).
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Table 3.1: Criteria for selecting kinetic data from different published literatures and experimental
variables

Order Criteria 1st preference Other acceptable values
(ordered)

1 Substrate of en-
zyme assay

Same as in vivo
reaction

-

2 Origin of corre-
sponding gene

E. coli K-12
MG1655

E. coli K-12 (any sub-
strain), E. coli (any
strain), proteins men-
tioned in literature to
be very similar, mutated
enzymes from E. coli
genes, gene from the
phylogenetically closest
organism to E. coli

3 Available in-
formation on a
given paper

Pair of Km

and kcat for
the enzyme in
direct and re-
verse direction,
for the same
conditions.

Km and kcat pair, direct
and reverse direction pairs
for one of the parameters,
isolated parameters

4 pH of enzy-
matic assay

7.4 (physiologi-
cal)

Mesophilic range
and higher than 7.4,
mesophilic range and
below 7.4, physiological
range

5 Temperature of
enzymatic assay

37 °C Closest to 37 °C,
mesophilic range

6 Detection
method

Direct assays NADPH-detecting
coupled-enzyme spec-
trophotometry assay,
others

7 Parameter de-
termination
method

Non-linear fit
to Michaelis-
Menten con-
stant

Linear plots

8 Co-factor pres-
ence

Physiological
concentrations

Closest available
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Chapter 4

Results and Discussion

This chapter covers the results obtained from simulations and the literature review. The individual

results are discussed, as well as their implications in the methods of the following subsections.

4.1 Simulations

The simulations tested a simple reaction, with a single substrate and product, emulating the be-

haviour of a generic isomerase in an in vitro enzymatic assay, carried in a microscale biorreactor

and aqueous media. This simple reaction was used to validate the physical, chemical and biologi-

cal assumptions of the model without unnecessary complexity.

The model aims to replicate an enzymatic assay, mimicking the conditions under which the

kinetic parameters are determined in laboratory settings, and as such molecular crowding was not

accounted for.

Whether the assumptions of the Michaelis-Menten catalytic mechanism, such as a relative

higher concentration of free substrate, and the kinetic parameters determined in vitro can capture

the kinetics of enzymes inside the cell is debatable [65, 66, 67]. However, the determination of

kinetic constants in in vitro assays that resemble the cytoplasmic environment has been shown to

improve significantly the kinetic modelling of yeast [67]. If published kinetic parameters of in

vitro experiments allow for the determination of intrinsic enzyme characteristics, the simulation

of the same enzymes in an environment closer to the cytoplasmic composition could offer insight

into the kinetic behaviour of enzymes in vivo, and by extension the kinetics of metabolic pathways

and cellular systems.

4.1.1 Relation between computational and biological time

The first aim of this work was to define the duration of one simulation time step in seconds.

This relation is important because the temporal scale of reactions, determined by enzyme kinetics,

should be consistent with the movement velocity of the agents.

The strategy to get such result was to simulate a diffusion-controlled enzymatic reaction. The

time step should represent a sufficiently small fraction of the second in order to be able to simulate

21
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super-efficient enzymes, i.e. diffusion-controlled enzymes with second-order rate constants of 108

to 1010 M−1.s−1 [50].

However, if the time step represents an excessively small fraction of biological time, it will

create an unnecessary computational burden in the simulation. As such, the first step was testing a

virtual enzymatic reaction which consisted of an isomerization, with a single substrate and single

product, to which the Michaelis-Menten equation can be applied directly, and occurring in the

limit of the catalytic efficiency.

From the value of Keq, the maximal velocity of reaction in a real biological system of enzyme

and substrate can be estimated. The real reaction velocity can be then compared to the simulation

reaction velocity of an equivalent system, with a fast enzyme whose reaction rate is limited by

diffusion.

In order to simulate enzymes with high catalytic efficiencies, a virtual enzyme with different

simkcat ranging from 1 to 30 ts.

The rate of product formation, dP/dt, corresponds to the number of product agents produced

per time step - the simulation’s reaction velocity. It will decrease as the simkcat increases (Fig-

ure 4.1). The parameters of the linear regression, namely the slope and regression coefficient, are

presented in Table 4.1.
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Figure 4.1: Plot of product agents as a function of time steps, in simulations with the virtual
enzyme and several simkcat (1 to 30 ts).
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Table 4.1: Linear regression parameters of dP/dt of simulations for different simkcat

simkcat (ts) dP/dt (P.ts−1) R2

1 1.707 97.07%

2 1.925 99.22%

3 1.585 99.99%

4 1.187 99.99%

5 0.982 100%

6 0.824 100%

7 0.706 100%

8 0.617 100%

9 0.549 100%

10 0.495 100%

15 0.329 99.99%

20 0.246 99.98%

25 0.196 99.97%

30 0.163 99.96%

The boundary of diffusion control was established by three different analysis: the linearity of

the dP/dt regression, as measured by the regression coefficient, the relative occupancy of enzymes

and the influence on velocity of simkcat . Relative occupancies reaching and maintaining 100% are

indicative that turnover number is the limiting step, and thus indicate the boundary of diffusion

control. From the simkcat of 5 ts on, the relative occupancies are maintained at 100% throughout

the simulation (Figure 4.2).
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ent simkcat , at different points in the simulation.
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The influence of simkcat on velocity was assessed on basis of the following reasoning: if

turnover number is the limiting step, the velocity of the reaction on the simulation scenario varies

in a direct inverse proportion of the simkcat . The deviation between the relation of values of cal-

culated kcat and its inverse of simkcat approaches 0% as the reaction ceases to be controlled by

diffusion. The results (Table 4.2) corroborate the conclusions extracted from the relative occupan-

cies.

Notably, the existence of such relation between two simkcat and their equivalent kcat allows to

estimate the resulting kcat from using a certain simkcat as input, and vice-versa, with reasonable

accuracy. The practical significance of this is that the kcat can be used directly as an input in the

simulations. A pair of simkcat and kcat values from simulated enzymes, above the diffusion control

limit, and a simple proportion is an efficient way to calculate the simkcat of a new enzyme to be

simulated.

Table 4.2: Relation between simkcat and equivalent kcat

simkcat

(ts)

kcat

(P.E−1.s−1)

simkcat i+1/

simkcat i

kcat i/

kcat i+1

Deviation (%)

1 7.01×108 2.00 0.89 -55.7%

2 7.90×108 1.50 1.21 -19.0%

3 6.51×108 1.33 1.34 0.16%

4 4.87×108 1.25 1.21 -3.33%

5 4.03×108 1.20 1.19 -0.61%

6 3.38×108 1.17 1.17 -0.07%

7 2.90×108 1.14 1.14 0.15%

8 2.53×108 1.13 1.12 -0.08%

9 2.25×108 1.11 1.11 -0.18%

10 2.03×108 1.50 1.51 0.37%

15 1.35×108 1.33 1.34 0.43%

20 1.01×108 1.25 1.25 0.32%

25 8.04×107 1.20 1.20 0.37%

30 6.67×107

The value of kcat for the enzymes with simkcat below 5 should be comparable to the kcat of real

enzymes that are very close to kinetic perfection, such as catalase. The highest reported value of

kcat for a catalase in the BRENDA database is around 3×106s−1 (EC number 1.11.1.6), i.e. there

is a difference of two orders of magnitude between the perfect simulation kcat and the maximum

kcat occurring in reality.

Full data is available as supplementary material S1 (A.1).
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4.1.2 Velocity of agents, diffusion and Brownian motion

The motion of biomolecules in aqueous or intracellular media follows a random-walk behaviour

(Brownian motion). In the simulation space, the solvent molecules of water are not explicit. This

is due to the computational cost of creating agents, and representation all solvent molecules as

agents would render the simulations intractable.

In this simulation environment, Brownian motion is created by collision between the agents,

and the velocity of each agent species is iterated upon until the resulting diffusive behaviour

matches the one expected for that particular molecule sizes and environment constants, such as

temperature and viscosity of the simulated reaction medium. Achieving a realistic diffusive be-

haviour is relevant to simulate a real enzyme. In this section of the work, the diffusive behaviour

was approximated to that of a real isomerase, 2-hydroxymuconate tautomerase (EC 5.3.2.6), tak-

ing into account the real dimensions of the enzyme and its substrate, the chemical compound

2-hydroxymuconate.

Given this, each simulation scenario with a different number of agents needs to have the agent’s

velocity calibrated to, within that scenario, yield an average displacement of each type of agent that

is equivalent to the one predicted by the diffusion coefficient, as calculated by the Stokes-Einstein

equation.

The random trajectories of the agents arise from collisions between the agents, as can be seen

in the time-lapse tracking of an enzyme agent trajectory (Figure 4.3A). The trajectories of agents

in the simulation are consistent with the expected random movement (Figure 4.3B,C), and are

comparable to the path reconstructed from single-enzyme tracking (Figure 4.3D) [68].



26 Results and Discussion

Figure 4.3: Trajectories of an agent in the three dimensional simulation environment in a) 4D
perspective, b) 3D perspective, c) 2D perspective. For comparison, d) trajectory reconstruction of
a fluorescent-labeled enzyme from experimental tracking (Source: Peneva et al, 2008).
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Besides visual inspection of the trajectory of the agents, the convergence of the average value

or an increasing number of displacement observations, from a single observation to the average of

displacements of all the identical agents.

The convergence of the accumulated average can be seen in Figure 4.4 for each of the simula-

tions with different substrate number. From the graph, it is possible to observe that convergence to

an average displacement happens before 750 substrate agents are considered to the accumulated

average. This number was the minimum of substrate agents in a simulation scenario.

Figure 4.4 shows the same data, with more detail of the initial convergence around 300 sub-

strate agents considered.

The iterative process of assigning agents with velocity was applied to the following groups of

simulation, which related reaction velocity with substrate concentration.

However, to determine Michaelis-Menten parameters, simulations with substrates below 1.38

mM were needed, as the Km values for the simulated enzymes were 0.145 mM and 0.050 mM.

Simulations with initial substrate concentrations near the Km value are needed to obtain velocities

limited by substrate availability. So, a complementary strategy was used, in which part of the

substrate-like agents were converted in non-reactive agents, i.e. these agents became obstacles.

The velocity of the agents was determined iteratively for the scenario with highest number of

substrate agents, and remained so for the rest of simulation runs.

Table 4.3: Velocities defined for enzyme and substrate agents, in 2-hydroxymuconate tautomerase
simulation scenarios with different numbers of initial substrate, and deviation of the resulting
diffusion coefficient from theoretical values

Initial

substrate

agents

Velocity

enzyme

(µm.s−1)

Deviation

(enzyme)

Velocity

substrate

(µm.s−1)

Deviation

(substrate)

20 000 8444 22% 16271 -5%

10 000 6170 5% 10663 9%

5000 4930 10% 7939 0%

2500 4205 9% 6770 5%

1250 3386 7% 6248 5%

1000 3641 10% 5942 2%

750 3414 14% 5750 0%

Full data can be found in the supplementary material S2 (A.2).
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4.1.3 Calibration of Km

The calibration of simKm to Km was based on the reproduction of experimental assays to determine

Michaelis-Menten kinetic parameters, which measure the velocity of the reaction for different

initial concentrations of substrate, at the substrate saturation level and lower.

The strategy to find a relation between the simKm and Km uses the biological meaning of the

parameter, that represents the substrate concentration at which the velocity of the reaction is half of

the maximal velocity. Maximal velocity is given by kcat , which quantifies the conversion velocity

of the enzyme’s active site, multiplied by the concentration of enzymes.

Three implementations were tested to assign a modelling variable to the simKm, a computa-

tional equivalent to the kinetic parameter Km.

In the first and the second implementations, simKm was defined as the probability of a collision

between an enzyme and substrate agent originating a ES agent. The difference between them is

that, in the first implementation, each possible collision was tested in each time step. The distinc-

tion between the two implementations is irrelevant at probabilities of 100%, as it was implemented

in the previous simulations. In the first implementation, the resulting Michaelis-Menten kinetic

parameters were not sufficiently different across different simKm, as can be seen in the Table 4.4.

Table 4.4: Michaelis-Menten kinetic coefficients for different values of simKm, implemented as
the probability of an enzyme and substrate forming a ES agent, with all possible collisions tested
per each time step

simKm Km (mM) kcat (s−1)

100% 2.39 2.09×106

75% 1.08 1.99×106

50% 1.10 1.99×106

25% 1.21 1.99×106

A third implementation was tested, in which simKm was the probability of a ES agent disso-

ciate into enzyme and product agents, as opposed to enzyme and substrate. Both dissociations

happened after the computational time defined by simkcat .

However, this implementation of simKm altered the resulting kcat significantly, instead of lim-

iting its influence to the affinity of the enzyme agent towards the substrate (Table 4.5).

Table 4.5: Michaelis-Menten kinetic parameters resulting from simulations with different values
of simKm, implemented as the probability of an ES agent dissociating into enzyme and product
agents

simKm Km (mM) kcat (s−1)

100% 1.48 2.05×106

75% 0.897 1.46×106

50% 0.485 9.72×105
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Table 4.5: Michaelis-Menten kinetic coefficients for different values of simKm, implemented as
the probability of an ES agent dissociating into enzyme and product agents

simKm Km (mM) kcat (s−1)

25% 0.278 4.66×105

The most successful implementation of simKm was its definition as the probability of an ES-

forming collision, with one collision resolved per time step. The results suggest that a logarithmic

scale would be more appropriate in the manipulation of this computational parameter, as in the

results for simKm from 75% to 25% there is no clear difference or trend between the resulting Km

in the simulation. Figures 4.6 and 4.7 show the corresponding Michaelis-Menten (Figure 4.6) and

Lineweaver-Burke graphs (Figure 4.7) show the increase of substrate concentration influence over

the velocity of reaction, as the simKm decreases. The numeric values of the Michaelis-Menten

parameters are presented in the Table 4.6.

Full data is available in supplementary material S4 (A.4), namely the original simulation data

and the subsequent calculation of velocities and Michaelis-Menten parameters.

Table 4.6: Kinetic parameters resulting from simulations with different simKm, defined as the
probability of a collision of an enzyme and substrate agent reacting and forming an ES agent, with
one collision resolved per time step

simKm kcat (s−1) Km (mM)

100% 2.09×106 1.00

75% 2.01×106 0.69

50% 1.99×106 0.69

25% 2.06×106 0.94

10% 2.03×106 0.92

1% 1.93×106 1.18

0.1% 2.93×106 6.16
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4.1.4 Reaction radii and non-reactive agents

It was observed that while there was a variation of the resulting Km for different values of simKm,

as intended, the set of simulation runs with simKm of 100% resulted in a Km superior to the

published value of 0.145 mM. To increase the affinity of the enzyme agent, the concept of reaction

radius was applied.

The reaction radius defines a volume external to the enzyme and within which this agent

anticipates potential reactive collisions. The input of this parameter was inserted in the model as a
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multiple of the hydrodynamic radius of the enzyme. The concept is similar to the encounter radius

of Smoldyn, a point-like particle-based modelling tool [39].

As previously discussed, to recreate low Km values there is a need to simulate scenarios with

low initial substrate concentrations. Without compromising the random motion of the agents, low

substrate concentrations can be accomplished by taking a high substrate simulation scenario and

replacing a fraction of substrate agents for non-reactive agents.

To reproduce the Michaelis-Menten kinetic parameters for 2-hydroxymuconate, the reaction

radius of 1.15 was increased to 2, 4 and 10 times that of the hydrodynamic radius of the enzyme.

The resulting Michaelis-Menten plots are shown in the Figure 4.8, and the values of the kinetic

parameters in the Table 4.7. The increase of reaction radii lowered the resulting Km, without

altering kcat values in a significant way.

The simulation with a reaction radius of 2 comes close to reproducing the kinetic behaviour of

the 2-hydroxymuconate enzyme.
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Table 4.7: Values of kinetic parameters for the simulation of 2-hydroxymuconate tautomerase with
different reaction radius

Reaction

radius

Km (mM) Deviation

from

published

value (Km)

kcat (s−1) Deviation

from

published

value (kcat)

2 1.50×10−1 6% 1.65×106 19%

4 1.10×10−1 22% 1.68×106 21%

10 3.00×10−2 79% 1.87×106 35%

4.1.5 Simulation of steroid δ -isomerase enzyme

Like the previous enzyme, steroid δ -isomerase is an isomerase enzyme with a high kcat , which

expedited the validation of the modelling hypothesis at the present stage of the work.

The process developed for reproducing the kinetic parameter Km of the 2-hydroxymuconate

enzyme was applied to another simple isomerase, the steroid δ -isomerase. The kinetic parameters

for the conversion of 5-androstene-3,17-dione to 4-androstene-3,17-dione by steroid δ -isomerase

were reported to be 0.050 mM for Km and 2.79×104 for kcat [52]. The kcat was converted to a

simkcat with the previously established relation. Unlike kcat , the Km can not be simply converted

to a single computational variable. However, an iterative approach can be used.

Published Michaelis-Menten parameters were used to predict the how the velocity of reaction

would vary with various concentrations, and from that data it was possible to select the num-

ber of initial substrate agents for different simulation scenarios. Based on the previous results

for 2-hydroxymuconate, the simulations of steroid δ -isomerase enzyme had their simKm defined

to 100% and a reaction radius of 4. The Michaelis-Menten plot of these simulations is shown

in Figure 4.9. The Km obtained in the simulation was of 9.32×10−3 mM, and the kcat was of

3.60×104 s−1.

4.1.6 Assessment of spatial noise

A spatial agent-based model at the biomolecular scale is suitable for assessing intrinsic stochastic

noise. ABM would be a suitable method to portray the fluctuations in conformational structure

of enzymes, that lead to stochastic catalytic activities[69]. However, along with that source of

variability, an ABM allows for the assessment of local substrate concentrations fluctuations an its

role in metabolic intrinsic noise [70, 71].

The average relative deviation of the number of product agents was calculated to assess the

impact that the initial substrate concentration has on product formation (Table 4.8). Relative devi-

ations at each time step vary with the catalytic cycle, with small increases at higher concentrations,

and higher and delayed perturbations at lower concentrations (Figure 4.10).
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Table 4.8: Average of relative deviation in product formation for simulations with different ini-
tial concentrations of substrate, for the 2-hydroxymuconate tautomerase simulation (with reaction
radius of 2)

Concentration

substrate (mM)

Average of relative

deviation

in product forma-

tion

0.0469 81%

0.0938 20%

0.188 31%

0.469 28%

0.938 6.0%

1.41 6.0%

1.88 2.3%

4.69 1.2%

9.38 0.1%

18.8 0.0%

Figure 4.11, from the simulation 2-hydroxymuconate enzyme, shows product formation for

triplicate simulations at low, intermediate and high initial substrate concentrations. While at high

concentrations product formation is highly homogeneous at the high concentration scenario, it be-

comes more random as the initial substrate concentration lowers to an intermediate concentration

of 0.469 mM, while the simulations of lowest concentration stabilize early in the simulation, due to

substrate limitations. The effect of variability is more noticeable in the detail of 6 initial turnovers

(Figure 4.12). The same behaviour can be observed in the simulations of steroid δ -isomerase

(Figure 4.13).
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At high concentrations, the turnover events of replicate simulations are highly synchronized,

with 5 additional product agents appearing near the time step of possible turnover (multiples of

simkcat), due to the simultaneous capture of substrate by the 5 enzyme agents. Turnover events are

spread across time steps at lower concentrations, with the predictable cyclic nature of turnovers

practically disappearing at the lowest concentration.

In the 2-hydroxymuconate tautomerase simulation, for a small concentration of substrate,

6.09×10−2 mM, the deviation in product formed is above 50%, and the deviation decreases as

more substrate is available in the simulation. Given that the enzyme agent will form an enzyme-

substrate complex if it detects any substrate agent, as specified by a simKm of 100%, the deviations

in product formation are due to the unavailability of substrate agents within the reaction radius.

While the mathematical modelling of enzymatic reactions accounts for the lowering of product

formation rate resulting from lower availability of substrate, it does not account for the higher

variability. The results show that there are considerable fluctuations in the availability of sub-

strate, despite the fact that the three simulations had identical starting conditions, including same

initial substrate concentration and homogeneous spatial distribution. Low substrate concentrations

are not negligible in in vivo reactions, where as intracellular metabolite concentrations in the or-

der of 10−2 mM or below are common, including metabolically important metabolites such as

glycerol-3- phosphate and NADP+ [72]. It is worth to note that the present assessment of vari-

ability takes place in the simulation of an in vitro assay, with water as its reaction medium. It is

expectable that the intracellular environment is a more crowded medium, with higher viscosity,

making the heterogeneity of local substrate concentrations more relevant [73].
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4.2 Data retrieval and curation

In order to determine the feasibility of the implemented model from a standpoint of the available

biological data on the enzymes and metabolites was collected or estimated. Presented in the fol-

lowing tables, the collected values review are the necessary the primary biological data needed

for an agent-based model of the glycolysis pathway and pyruvate metabolism for E. coli. It also

contains the transformations into usable inputs, as is the case of size-related data. Of all the data

collected, values on most parameters are fairly straightforward to find and that can be retrieved

programatically. Manual curation was required for the kinetic data for enzymes and the determi-

nation of the metabolites’ radii.

To define the logic of interactions, it is necessary to collect data on the pathway’s enzymes

and their in vivo reactions (Table 4.9 and Table 4.10). The computational parameters regarding

reactions would be set to zero for all possible interactions that are not specified by the pathway’s

reactions. These parameters include reaction radius, simKm and simkcat .

Table 4.9: Reaction data for glycolysis pathway in E. coli

EC Enzyme’s
gene

Substrates Products

2.7.1.2 glk β -D-glucose + ATP β -D-glucose-6-P +

ADP

5.3.1.9 pgi β -D-glucose-6-P β -D-fructose-6-P

2.7.1.11 pfkB β -D-fructose-6-P +

ATP

β -D-fructose-1,6-2P +

ADP

3.1.3.11 glpX β -D-fructose 1,6-2P +

H2O

β -D-fructose-6-P + Pi

3.1.3.11 fbp β -D-fructose-1,6-2P +

H2O

β -D-fructose-6-P + Pi

4.1.2.13 fbaB β -D-fructose-1,6-2P glycerone-P +

D-glyceraldehyde-3-P

4.1.2.13 fbaA β -D-fructose-1,6-2P glycerone-P +

D-glyceraldehyde-3-P

5.3.1.1 tpiA glycerone-P D-glyceraldehyde-3-P

1.2.1.12 gapA D-glyceraldehyde-3-P

+ NAD+ + Pi

1,3-2P-D-glycerate +

NADH + H+

2.7.2.3 pgk ADP +

1,3-2P-D-glycerate

ATP +

3-P-D-glycerate

5.4.2.11 gpmA 3-P-D-glycerate 2-P-D-glycerate

5.4.2.12 gpmM 3-P-D-glycerate 2-P-D-glycerate

4.2.1.11 eno 2-P-D-glycerate P-enolpyruvate + H2O
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Table 4.9: Reaction data for glycolysis pathway in E. coli

EC Enzyme’s
gene

Substrates Products

2.7.1.40 pykF P-enolpyruvate +

ADP + H+

pyruvate + ATP

2.7.1.40 pykA P-enolpyruvate +

ADP + H+

pyruvate + ATP

2.7.9.2 ppsA P-enolpyruvate +

AMP + Pi

pyruvate + ATP +

H2O

Table 4.10: Reaction for pyruvate metabolism in E. coli

EC Enzyme’s
gene

Substrates Products

1.1.1.28 ldhA pyruvate + NADH +

H+

(R)-lactate + NAD+

2.3.1.54 tdcE pyruvate + CoA acetyl-CoA + formate

2.3.1.54 pflB pyruvate + CoA acetyl-CoA + formate

2.3.1.8 pta acetyl-CoA + Pi CoA + acetyl-P

2.3.1.8 eutD acetyl-CoA + Pi CoA + acetyl-P

2.7.2.1 purT ADP + acetyl-P ATP + acetate

2.7.2.1 ackA ADP + acetyl-P ATP + acetate

1.2.1.10 mhpF acetyl-CoA + NADH

+ H+

acetaldehyde + CoA +

NAD+

1.1.1.1 adhP acetaldehyde + NADH ethanol + NAD+

1.1.1.1 adhE acetaldehyde + NADH ethanol + NAD+

The physical dimensions of the agents, as well as their motion, is defined by their shape.

Tables 4.11, 4.12 and 4.13 present relevant size-related information for the participating molecules.

Precise measurements and descriptions of size of molecules are not systematized. Further-

more, molecule shape is not standard [74]. Depicting the molecule as a spherical agent is a com-

promise between detail and computational tractability [9]. In order to estimate a radii that would

render an agent with a reasonable approximation of the hydrodynamic radius of the molecule, two

correlations were used for enzymes and small organic chemical compounds, as detailed in the

Introduction and Methods chapters. From the perspective of data curation, it was important that

the correlated variables were consistently determined for the majority of molecular species, and it

was simple to automatize.

The molecular weight of enzymes is an ideal candidate. Its determination is common to iden-

tify and characterize proteins, and relies on laboratory methods such as SDS-Page, mass chro-
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matography or size-exclusion spectrophotometry [75]. In case of multimeric proteins (composed

of more than one of the polypeptide that was individually translated from the genetic sequence,

resulting in a quaternary structure), the experimental determination of molecular weight can be

either of the multimer or of its subunits. In addition to the experimental methods of determination,

a reasonable estimate of molecular weight can be inferred from the aminoacid sequence. This is

featured, for example, in the EcoCyc [61] and UniProt [76] databases.

To compare estimates of molecular weight from amino acid sequence with experimental de-

terminations, the reader can refer to the full curated data for inputs in the glycolysis pathway, in

the supplementary material S7 (A.7).

The selected choice to determine the radius of the sphere-approximation of metabolites is the

method described by Zhao et. al [46]. The equation requires the number of aromatic and non aro-

matic rings in the chemical structure, which in this work was determined by visualization of the

chemical structure as available in databases of chemical compounds, such as PubChem [62] and

ChEBI [77]. InChl and SMILES are structure identifiers, from which may be possible to deduce

the structure and the number and type of intramolecular cyclizations, which can be aromatic or

non-aromatic. Further manual curation might be necessary to select close chemical compounds,

specially in matters of cyclized structures and conjugate acid and bases. For example, D-glucose

exists both with an open-chain and cyclized structure. The cyclized structure is prevalent in aque-

ous and intracellular media [78]. Additionally, the exact formula of organic acids and compounds

with phosphate is dependent on the pH of the solvent media and the compound’s pKa. ChEBI

Onthol ogy systematizes information on conjugated acid base pairs, but none of the surveyed

databases collects data on pKa. As a rule of thumb, organic acids were modelled after the con-

jugated bases, such as glycerate, pyruvate, formate and acetate. Cases like this raise problems in

the accurate au tomatic collection of metabolite data, though the error should be negligible when

compared to the spheric approximation of the metabolites and other computational simplifications.

For example, the difference between open-chain and cyclized glucose is of 0.077 nm, which would

translate in an additional 0.365 nm3 in volume if the open-chain structure was used to model the

metabolite.
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Table 4.11: Size and motion data for enzymes of the glycolysis pathway in E. coli

EC Enzyme’s
gene

MW
(kDa)

Rh (nm) D (m2.s−1)
water, 37 °C

2.7.1.2 glk 35 † 1.80 1.82×10−19

5.3.1.9 pgi 125 † 6.44 5.10×10−20

2.7.1.11 pfkB 71 † 3.66 8.98×10−20

3.1.3.11 glpX 80 † 4.12 7.97×10−20

3.1.3.11 fbp 150 † 7.73 4.25×10−20

4.1.2.13 fbaB 305 § 15.70 2.09×10−20

4.1.2.13 fbaA 78 § 4.03 8.14×10−20

5.3.1.1 tpiA 54 § 2.78 1.18×10−19

1.2.1.12 gapA 142 § 7.32 4.48×10−20

2.7.2.3 pgk 41 § 2.12 1.55×10−19

5.4.2.11 gpmA 49 † 2.52 1.3×10−19

5.4.2.12 gpmM 61 † 3.14 1.04×10−19

4.2.1.11 eno 91 § 4.70 6.98×10−20

2.7.1.40 pykF 203 § 10.45 3.14×10−20

2.7.1.40 pykA 190 † 9.79 3.35×10−20

Table 4.12: Size data for enzymes of the pyruvate metabolism in E. coli

EC Enzyme’s
gene

MW
(kDa)

Rh (nm) D (m2.s−1)
water, 37 °C

2.7.9.2 ppsA 168 ‡ 4.33 7.59×10−20

1.1.1.28 ldhA 37 § 1.88 1.74×10−19

2.3.1.54 tdcE 85 † 4.38 7.50×10−20

2.3.1.54 pflB 170 ‡ 4.38 7.50×10−20

2.3.1.8 pta 484 † 24.93 1.32×10−20

2.3.1.8 eutD 36 § 1.86 1.77×10−19

2.7.2.1 purT 84 ‡ 4.32 7.61×10−20

2.7.2.1 ackA 87 § 4.46 7.36×10−20

1.2.1.10 mhpF 54 † 2.76 1.19×10−19

1.1.1.1 adhP 142 ‡ 7.29 4.50×10−20

1.1.1.1 adhE 3845 ‡ 198.02 1.66×10−21

‡ from experimental values of the polypeptide monomer and multiplied by subunit number
§ from values inferred from aminoacid sequence for the polypeptide and multiplied by number of subunits
† from experimental values
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Table 4.13: Size data for the metabolites involved in the glycolysis and pyruvate metabolism
pathways in E. coli

Metabolites PubChem CID RvdW (nm) D (m2.s−1)

H+ 1038 0.058 5.70×10−18

Pi 1061 0.194 1.69×10−18

H2O 962 0.138 2.38×10−18

CO2 280 0.304 1.08×10−18

ATP 5957 2.799 1.17×10−19

ADP 6022 2.431 1.35×10−19

AMP 6083 2.064 1.59×10−19

NADH 439153 4.045 8.12×10−20

NAD+ 925 4.024 8.16×10−20

β -D-glucose 5793 1.215 2.70×10−19

β -D-glucose-6-P 439427 1.583 2.07×10−19

β -D-fructose-6-P 440641 1.583 2.07×10−19

β -D-fructose-1,6-2P 10267 1.951 1.68×10−19

glycerone-P 4643300 1.038 3.16×10−19

D-glyceraldehyde-3-P 439168 1.038 3.16×10−19

1,3-2P-D-glycerate 439191 1.475 2.23×10−19

3-P-D-glycerate 439183 1.108 2.96×10−19

2-P-D-glycerate 439278 1.108 2.96×10−19

P-enolpyruvate 1005 1.017 3.23×10−19

pyruvate 1060 0.649 5.06×10−19

formate 283 0.314 1.04×10−18

acetyl-CoA 444493 5.118 6.41×10−20

CoA 6816 4.647 7.07×10−20

acetyl-P 186 0.830 3.96×10−19

acetate 175 0.382 8.60×10−19

acetaldehyde 177 0.392 8.37×10−19

ethanol 702 0.483 6.79×10−19

4.2.1 Kinetic data

Kinetic data is highly heterogeneous, as the determination of Michaelis-Menten kinetic parameters

has many variables in their experimental procedures.

The procedure used to collect the data in Table 4.14 and Table 4.15 is summarized in the

Methods chapter (see Table 3.1). It was defined along the collection of kinetic data and the survey

of the original sources in published literature.
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Table 4.14: Kinetic data for enzymes of the glycolysis pathway in E. coli

EC Enzyme’s
gene

Km (mM)
forward

Km (mM)
reverse

kcat

(s−1)
forward

kcat

(s−1)
reverse

Source

2.7.1.2 glk (0.78, ATP),

(3.76, β -D-

glucose)

N/A 92.17 N/A Meyer1997 [79]

5.3.1.9 pgi 1.018 0.078 684 N/A Ogawa2007 [80]

2.7.1.11 pfkB (0.018, β -

fructose-6-P),

(0.012, ATP)

(0.14,

β -fructose-

1,6-2P)

62 N/A Rivas-

Pardo2011 [81],

Babul1978 [82]

3.1.3.11 glpX (0.1 β -fructose-

1,6-2P)

N/A 14.6 N/A Kelley-

Loughane2002 [83]

3.1.3.11 fbp (0.0154, β -

fructose-1,6-

2P)

N/A 24 N/A Hines2007 [84]

4.1.2.13 fbaB (0.19, β -

fructose-1,6-

2P)

N/A 8.17 N/A Platter1999 [85]

4.1.2.13 fbaA (0.02 β -

fructose-1,6-

2P)

N/A 0.35 N/A Platter1999 [85]

5.3.1.1 tpiA 1.03 N/A 5.4×104 N/A Alvarez1998 [55]

1.2.1.12 gapA (0.045, NAD),

(0.89, 3-PGA),

(0.53 Pi)

N/A 268 N/A Eyschen1999 [86]

2.7.2.3 pgk N/A (0.24,

MgATP)

N/A 328.94 Fifis1978 [87]

5.4.2.11 gpmA (200, 3-PGA) (190, 2-

PGA)

330 220 Fraser1999 [88]

5.4.2.12 gpmM (210, 3-PGA) (97, 2-PGA) 22 10 Fraser1999 [88]

4.2.1.11 eno 0.1 N/A 197.8 N/A Spring1971 [89]

2.7.1.40 pykF (0.13, PEP) N/A N/A N/A Malcovati1969 [90]

2.7.1.40 pykA (0.82, PEP) N/A N/A 3480 Somani1977 [91]

2.7.9.2 ppsA N/A (0.83,

pyruvate),

(0.028, ATP)

N/A 7.84 Berman1970 [92]
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Table 4.15: Kinetic data for enzymes of the pyruvate metabolism in E. coli

EC Enzyme’s
gene

Km (mM)
forward

Km (mM)
reverse

kcat

(s−1)
forward

kcat

(s−1)
reverse

Source

1.1.1.28 ldhA (2.6, pyruvate) N/A 410 N/A Furukawa2014 [93]

2.3.1.54 tdcE N/A N/A N/A N/A

2.3.1.54 pflB (2.05, pyru-

vate), (0.0068,

CoA)

(24.5, for-

mate),

(0.051,

acetyl-CoA)

1100 280 Campos-

Bermudez2010 [94]

2.3.1.8 pta (2.1 Pi, 0.0449

acetyl-CoA)

(0.9, acetyl-

P), (0.0672

CoA)

29.6 227.6 Campos-

Bermudez2010 [94]

2.3.1.8 eutD (0.0095, acetyl-

CoA)

(0.3117,

acetyl-P),

(0.0327,

CoA)

119 415.5 Bologna2010 [95]

2.7.2.1 purT (0.16, acetyl-P),

(0.5, ADP)

(7, acetate),

(0.07, ATP)

3033 2333 Fox1986 [96]

2.7.2.1 ackA N/A N/A N/A N/A

1.2.1.10 mhpF (38, acetalde-

hyde), (90,

CoA), (0.25,

NAD+)

N/A 15.70 N/A Fischer2013 [97]

1.1.1.1 adhP (0.03, acetalde-

hyde)

(0.7,

ethanol)

163.33 67.5 Shaqfat1999 [98]

1.1.1.1 adhE (5.4, acetalde-

hyde)

(240,

ethanol)

256.34 640.85 Membrillo-

Hernández2000 [99]

When choosing the right kinetic parameters, the most basic requirement is that the enzymatic

assay was performed with the same substrate that is consumed in the physiological reaction that

takes place in the cells. Despite enzyme’s high specificity, the consumption of other substrates

may be studied for industrial interests.

In this specific proof-of-concept curation, the second most important criteria to obey is that

the enzyme was codified by a gene from E. coli K-12 MG1655. This strain of E. coli is one of

the most widespread strains for laboratory studies, and as such it is likely that a greater number of

enzymatic studies use enzymes of this specific strain, as opposed to other strains of E. coli.

However, due to the general similarity of the amino acid sequence in proteins of strains of the

same organism, genes originating from other E. coli K-12 strains are a subsequent good option,
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followed by any E. coli strain. In isolated occasions, literature covering the enzyme will refer

that the enzyme structure of another species, such as Saccharomyces cerevisae, is very closely

related to that of E. coli [89]. In those cases, and in the absence of more precise information,

kinetic parameters of the mentioned organism can be used. Despite the fact that enzyme mutants

are usually produced or studied under the premise that their kinetic parameters are superior to

wild-type enzyme, most mutants differ by a small number of amino acids. Given this, mutated

enzymes were considered better sources of information than genes belonging to other species

when no information is known about similarity. As a last resort, enzymatic kinetics are taken from

the phylogenetically closest organism for which information is available.

Origin organism is not be confused with host organism, also referred to in many experiments

that use recombinant DNA methods to obtain significant amounts of the enzyme to be studied. A

common host organism is the competent strain E. coli BL21(DE3).

The second criterion is obtaining paired information on Km and kcat on a single paper. It

places importance in defining one given enzyme with data obtained under the same conditions and

experimental procedure. Besides maintaining a more accurate relation between kinetic parameters,

papers that satisfy this requisite will usually have this analysis at its core. This entails that they will

have a more detailed description of all the experimental variables that potentially affect the values

of kinetic parameters, and more careful experiment design and data analysis in what regards the

kinetic parameter determination.

pH and temperature are experimental conditions that directly affect the catalytic efficiency of

enzymes, and are referred in almost all determination experiments. The preferential values aim

to mimic the in vivo conditions of an E. coli culture and to match the conditions of experimental

quantification of intracellular metabolites, such as a temperature of 37 °C at which E. coli was

grown [72, 100].

The pH of E. coli cytoplasm is reported to be between 7.2 and 7.8 [101]. When values in this

range were not found, slightly superior pH was preferred to acidic conditions.

The methods of detection of the reaction rate can be widely variable, and thus hard to compare.

It is considered here that direct assays of substrates or products are less affected by experimen-

tal error and variation than more complex methods, such as coupled-enzyme spectrophotometric

assays. Direct methods can refer to the detection of either a substrate or product by spectropho-

tometry, mass spectrometry, radioactive labelling or any other analytical method that detects and

quantifies the substance of interest from the assay mixture.

The next criterion evaluates the quality of data treatment, originating from the measurement

of reaction velocity as a function of substrate concentration. Non-linear fitting to the original

Michaelis-Menten equation yields the best results, though linear methods are more popular. Gao

et al. performed both determinations, obtaining parameters from a non-linear regression and in-

cluding Lineweaver-Burke plots for visualization [102].

Co-factor concentrations has a significant influence in catalytic efficiency. This is, however,

hard to compare between different enzymes, as experimental design varies in determining the
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influence of co-factors. Ideally, the kinetic parameters would be determined in an assay in which

the co-factor concentration was close to the intracellular concentration [103].



Chapter 5

Final remarks

5.1 Conclusions

The current implementation of the model can successfully reproduce the kinetic behaviour of

isomerases, using their Michaelis-Menten kinetic parameters as inputs. Specifically, two real iso-

merases, 2-hydroxymuconate and steroid δ -isomerase, were successfully simulated.

This was accomplished by establishing a relation between computational and real biological

time. This ensured a match the time scales in diffusion and kinetics.

A simple procedure was developed to use kcat as an input in the simulation, along with an

iterative procedure to convert molecule’s diffusion coefficient.

Different ways of implementing a computational equivalent to the Km were tested. The proba-

bility of a collision between enzyme and substrate forming an enzyme-substrate complex (simKm)

and the reaction radius, as an artificial abstraction of the enzyme’s affinity to substrate, were con-

sidered. Initial values of these computational variables can be estimated from the Km, and the

results tuned further in an iterative manner.

The model’s required inputs for the glycolysis pathway were successfully collected for most

of the parameters, including kinetic ones. For some enzymes, no kinetic studies were found. All

of them have isoenzymes catalysing the same in vivo reaction. The remaining missing parameters

are Km for different substrates for a few number of multisubstrate reactions.

5.2 Future work

Future work will bridge the gap between the carried simulations and the curated data.

The simulated isomerases, 2-hydroxymuconate and steroid δ -isomerase, were used to develop

and test a transferable strategy to use Michaelis-Menten kinetics as input. Other isomerases, with

different kcat and Km, should be tested to further tune the strategy and validate it for a representa-

tive range of Michaelis-Menten parameters [104].

To achieve the metabolic scale, other type of enzymes have to be simulated besides isomerases.

The existence of reaction with multiple substrates also requires a more advanced implementation

47
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of the Km, as each substrate is characterized by its affinity to the enzyme. This also raises the

question of mechanism of reaction. Multiple substrates can bind to enzyme in a random order,

compulsory order or in a double displacement mechanism (also known as ping-pong) [105]. There

are some attempts to systematize information regarding enzymatic mechanisms (MaCIE [106] and

EzCatDB [107] databases), but most of the glycolytic enzymes are not yet covered. The articles

reviewed for kinetic parameter curation are a potential good source for this information.

Cooperative kinetics should also be implemented in the future. These are modelled after Hill

equations, and cannot be explicited in the form of of Michaelis-Menten parameters.

Regulatory effects, such as activation and inhibition, are also present in some of the enzymes.

Finally, to move from a biorreactor, enzymatic assay scenario and simulate the in vivo be-

haviour of enzymes, the simulation volume has to contain agents that resemble the cytoplasmic

concentrations and types of biomolecules.
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Appendix A

Index of supplementary material

The supplementary material is available in the adjoining CD. Main spreadsheets contain an initial

sheet of contents and notes relevant to that content. All spreadsheets contain a "Simulation spec-

ifications" page, detailing the size of agents (enzymes, substrates, products and "dead" agents),

rules (simkcat , simKm, reaction radius), and shape and size of the environment.

A.1 S1 Time relation and kcat calibration

1. S1 Time relation and kcat calibration.xlsx

(a) Contents

(b) Simulation specifications

(c) Results: Product formation for several simkcat values (from 1 to 30 ts). Plot and

calculation of simulation values.

(d) ES Et %: Table of relative occupancy of enzymes for different simkcat values at dif-

ferent points in the simulation (time step). Graph of relative occupancy of enzymes

for different simkcat values and points in the simulation (time steps).

(e) simkcat #: Tracked data in the simulation: substrate, free enzyme, ES, total prod-

uct. Averages of ES along the simulation (for calculation of relative occupancy of

enzymes).

A.2 S2 Diffusion calibration for xylH

1. S2 Diffusion calibration for xylH - 750S-20000S.xlsx

(a) Contents

(b) Simulation specifications

(c) Diffusion calibration results: velocity of agents (enzyme and substrate) for the dif-

ferent scenarios with different number of substrate, and the deviation of the resulting

diffusion coefficient and the theoretical coefficient.

A-3



A-4 Index of supplementary material

2. S2.x.y Diffusion calibration for xylH - xS (iteration y).xlsx

(a) Contents

(b) Simulation specifications

(c) Simulation data: Data tracked during simulations, for each of the agents during 1000

time steps: initial and final positions (in X,Y and Z cartesian coordinates), and whether

they hit the reaction volume boundaries at any time during simulation (HasCrash vari-

able, true or false). Calculation of the displacement (difference between initial and

final position) of each agent in X, Y and Z cartesian coordinates.

(d) Displacement calculus: Calculation of the displacement (difference between initial and

final position) of each agent in X, Y and Z cartesian coordinates. Calculation of aver-

age displacements for enzymes and substrates: all agents, agents that did not hit the re-

actor boundary (HasCrash==false), agents that his the reactor boundary (HasCrash==true).

(e) Diffusion comparison: Calculation of diffusion coefficient of the simulation agents, in

simulation and real units, for: all agents, agents that did not hit the reactor boundary

(HasCrash==false), agents that his the reactor boundary (HasCrash==true). Calcula-

tion of the diffusion coefficient of the equivalent biomolecules (real enzyme and real

substrate) in a reaction medium (water at 37 ºC) with Stokes-Einstein formula. Cal-

culation of deviation between the simulation diffusion coefficient and the theoretical

diffusion coefficient.

(f) Next Vsim (iteration): Values of Vsim for enzyme and substrate agents (current and for

a new iteration of the simulation), in real and simulation units

A.3 S3 Diffusion calibration for ksi

1. S3.y Diffusion calibration for ksi (iteration y)

(a) Contents

(b) Simulation specifications

(c) Simulation data: Data tracked during simulations, for each of the agents during 1000

time steps: initial and final positions (in X,Y and Z cartesian coordinates), and whether

they hit the reaction volume boundaries at any time during simulation (HasCrash vari-

able, true or false). Calculation of the displacement (difference between initial and

final position) of each agent in X, Y and Z cartesian coordinates.

(d) Displacement calculus: Calculation of the displacement (difference between initial and

final position) of each agent in X, Y and Z cartesian coordinates. Calculation of aver-

age displacements for enzymes and substrates: all agents, agents that did not hit the re-

actor boundary (HasCrash==false), agents that his the reactor boundary (HasCrash==true).



A.4 S4 simKm implementation - probability of E+S to ES A-5

(e) Diffusion comparison: Calculation of diffusion coefficient of the simulation agents, in

simulation and real units, for: all agents, agents that did not hit the reactor boundary

(HasCrash==false), agents that his the reactor boundary (HasCrash==true). Calcula-

tion of the diffusion coefficient of the equivalent biomolecules (real enzyme and real

substrate) in a reaction medium (water at 37 ºC) with Stokes-Einstein formula. Cal-

culation of deviation between the simulation diffusion coefficient and the theoretical

diffusion coefficient.

(f) Next Vsim (iteration): Values of Vsim for enzyme and substrate agents (current and for

a new iteration of the simulation), in real and simulation units

A.4 S4 simKm implementation - probability of E+S to ES

1. S4 simKm implementation - probability of E+S to ES

(a) Contents

(b) Simulation specifications

(c) Individual Michaelis-Menten: velocities of product agent formation (dP/dt) in each

scenario with different substrate, for all the tested simKm (100%, 75%, 50%, 25%,

10%, 1%, 0.1%). Results of least squares non-linear regression and linear transforma-

tions (parameter values and standard error associated with regression) of Lineweaver-

Burke, Eadie-Hofstee and Hanes-Woolf. Michaelis-Menten and Lineweaver-Burke

plots.

(d) Aggregated Michaelis-Menten: table of resulting values for Michaelis-Menten param-

eters (least squares non-linear regression). Michaelis-Menten and Lineweaver-Burke

plots for all the values. Auxiliary values to plot the lines of non-linear fit.

2. S4.x.y simKm implementation - probability of E+S to ES - #% #S

(a) Simulation specifications

(b) Simulation data: Tracked data (number of substrate, enzyme, ES and product agents

per time step). Calculation of dP/dt linear regression parameters (slope and regression

coefficient) in the linear portion of dP/dt of the simulation with 750 substrate agents

(0 to 100000 ts). Plot of dP/dt.

A.5 S5 Velocity vs. substrate for xylH

1. S5.1 Velocity vs. substrate for xylH - reaction radius 4x - Michaelis-Menten and noise.xlsx

(a) Contents

(b) Simulation specifications
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(c) MM plots: Compilation of average velocity (dP/dt) and standard deviation, for in-

dividual simulations with different numbers of substrate agent. Conversion to real

units. Plot of Velocity vs. Substrate in real units. Reported Michaelis-Menten kinetic

parameter values (Whitman1999) and fit to the Michaelis-Menten equation through

1) non-linear least squares regression, 2) Lineweaver-Burke linear transformation, 3)

Hanes-Woolf linear transformation and 4) Eadie-Hofstee linear transformation.

(d) Noise - Product formation: Compilation of number of product agents number at each

time step, for individual simulations of 25, 250 and 10000 initial substrate agents

(triplicates). Graph of evolution of product agents number with time steps for each of

the individual simulations.

(e) Noise - Deviation: Relative standard deviation (standard deviation over the average

of substrates) of product number for each of the individual simulations (25 substrate

agents to 10000 substrate agents) at each time step, during the linear velocity part of

simulation for the simulation with 25 substrate agents (0 to 6000 time steps). Cal-

culation of the average relative standard deviation for simulation scenarios with the

different substrate agents number.

2. S5.1.y xylH simulation RR4x #S.xlsx

(a) Simulation specifications.

(b) Simulation data: Tracked data (substrate, enzyme, ES, product agents per time step)

for the simulation replicates. Calculation of the average product agents formed, stan-

dard deviation and relative standard deviation (standard deviation divided by average).

(c) Results: Linear regression dP/dt parameters (slope and regression coefficient) for each

of the replicates, calculation of the average dP/dt and standard deviation. Plot of dP/dt.

3. S5.2 Velocity vs. substrate for xylH - reaction radius 2x - Michaelis-Menten and noise.xlsx

(a) Contents

(b) Simulation specifications

(c) MM plots: Compilation of average velocity (dP/dt) and standard deviation, for in-

dividual simulations with different numbers of substrate agent. Conversion to real

units. Plot of Velocity vs. Substrate in real units. Reported Michaelis-Menten kinetic

parameter values (Whitman1999) and fit to the Michaelis-Menten equation through

1) non-linear least squares regression, 2) Lineweaver-Burke linear transformation, 3)

Hanes-Woolf linear transformation and 4) Eadie-Hofstee linear transformation.

(d) Noise - Product formation: Compilation of number of product agents number at each

time step, for individual simulations of 25, 250 and 10000 initial substrate agents

(triplicates). Graph of evolution of product agents number with time steps for each of

the individual simulations.
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(e) Noise - Deviation: Relative standard deviation (standard deviation over the average

of substrates) of product number for each of the individual simulations (25 substrate

agents to 10000 substrate agents) at each time step, during the linear velocity part of

simulation for the simulation with 25 substrate agents (0 to 6000 time steps). Cal-

culation of the average relative standard deviation for simulation scenarios with the

different substrate agents number.

4. S5.2.y xylH simulation RR2x #S

(a) Simulation specifications.

(b) Simulation data: Tracked data (substrate, enzyme, ES, product agents per time step)

for the simulation replicates. Calculation of the average product agents formed, stan-

dard deviation and relative standard deviation (standard deviation divided by average).

(c) Results: Linear regression dP/dt parameters (slope and regression coefficient) for each

of the replicates, calculation of the average dP/dt and standard deviation. Plot of dP/dt.

5. S5.3 Velocity vs. substrate for xylH - reaction radius 2x - Michaelis-Menten

• Contents

• Simulation specifications

• MM plots: Compilation of average velocity (dP/dt) and standard deviation, for in-

dividual simulations with different numbers of substrate agent. Conversion to real

units. Plot of Velocity vs. Substrate in real units. Reported Michaelis-Menten kinetic

parameter values (Whitman1999) and fit to the Michaelis-Menten equation through

1) non-linear least squares regression, 2) Lineweaver-Burke linear transformation, 3)

Hanes-Woolf linear transformation and 4) Eadie-Hofstee linear transformation.

• Aggregated MM: Kinetic parameter values for reaction radius of 4x and 2x. Plot

containing the simulation data of S5.1 MM Plots (reaction radius of 4×Rh), S5.2 MM

Plots (reaction radius of 2×Rh) and S5.3 MM Plots (reaction radius 10×Rh).

• Noise - Product formation: Compilation of number of product agents number at each

time step, for individual simulations of 25, 250 and 10000 initial substrate agents

(triplicates). Graph of evolution of product agents number with time steps for each of

the individual simulations.

• Noise - Deviation: Relative standard deviation (standard deviation over the average

of substrates) of product number for each of the individual simulations (25 substrate

agents to 10000 substrate agents) at each time step, during the linear velocity part of

simulation for the simulation with 25 substrate agents (0 to 6000 time steps). Cal-

culation of the average relative standard deviation for simulation scenarios with the

different substrate agents number.
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A.6 S6 velocity vs. substrate for ksi

1. S6 Velocity vs. substrate for ksi - Michaelis-Menten and noise

(a) Contents

(b) Simulation specifications

(c) MM plots: Compilation of average velocity (dP/dt) and standard deviation, for in-

dividual simulations with different numbers of substrate agent. Conversion to real

units. Plot of Velocity vs. Substrate in real units. Reported Michaelis-Menten kinetic

parameter values (Whitman1999) and fit to the Michaelis-Menten equation through

1) non-linear least squares regression, 2) Lineweaver-Burke linear transformation, 3)

Hanes-Woolf linear transformation and 4) Eadie-Hofstee linear transformation.

(d) Noise - Product formation: Compilation of number of product agents number at each

time step, for individual simulations of 10 substrate agents (triplicates), 100 substrate

agents (triplicates) and 2000 substrate agents (duplicates).

(e) Noise - Deviation: Graph of evolution of product agents number with time steps for

each of the individual simulations.

2. S6.y ksi simulation #S

(a) Simulation specifications

(b) Simulation data: Tracked data (substrate, enzyme, ES, product agents per time step)

for the simulation replicates. Calculation of the average product agents formed, stan-

dard deviation and relative standard deviation (standard deviation divided by average).

(c) Results: Linear regression dP/dt parameters (slope and regression coefficient) for each

of the replicates, for the linear portion (55000 to 180000 time steps). Calculation of

the average dP/dt and standard deviation. Plot of dP/dt.

A.7 S7 Data curation

1. S7.1 Data curated for input_high kcat isomerases: Identification, enzyme size, reaction, ki-

netics, simulation inputs, expected behaviour for four different isomerases (2-hydroxymuconate

tautomerase, steroid δ -isomerase, isopentenyl-biphosphate δ -isomerase and triose-phosphate

isomerase).

2. S7.2 Data curated for input_glycolysis E. coli

(a) Contents

(b) Reactions: EC, enzyme’s gene ID, pathway, substrates, products, reaction image (link

to BRENDA database).
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(c) Kinetics: EC, enzyme’s gene ID, Km and kcat in the forward and reverse directions,

Km and kcat reference (author-date), paired Km and kcat references.

(d) Size: EC, enzyme’s gene ID, monomers, molecular weight (polypeptide, inferred

from sequence), molecular weight (polypetide, experimental), molecular weight (mul-

timer, experimental), source of experimental values (Pubmed ID), aminoacid num-

ber (polypeptide), calculation of hydrodynamic radius (Rh) according to Kalwarczyk’s

correlation [45], calculation of diffusion coefficient in water at 37 °C by the Stokes-

Equation.

(e) Substrate size: metabolite name, PubChem CID, molecular weight (MW), chemical

formula, aromatic rings (number), non-aromatic rings (number), RvdW (nm) calcu-

lated by Zhao’s correlation [46], calculation of the diffusion coefficient in water at 37

°C by the Stokes-Einstein equation.

3. S7.3 Sources of kinetic data_glycolysis E. coli

(a) Main: all information, organized by Source ID (author-date) and enzyme’s gene ID.

(b) Data: source ID, enzyme’s gene ID, data field, data value, data value’s standard devi-

ation, data value’s units

(c) Enzyme production and purification: source ID, enzyme’s gene ID, origin organism,

, recombinant protein expression (T/F), protein expression organism, plasmid expres-

sion vector, culture medium for growth of the expression organism, culture duration

for growth of expression organism, culture temperature for growth of expression or-

ganism, separation process, final purity of the purified enzyme.

(d) Kinetic parameter assay: source ID, enzyme’s gene ID, assay volume, enzyme con-

centration, substrate concentration range, temperature at which the kinetic assay was

carried, pH of the kinetic assay medium, co-factor, co-factor presence (T/F), co-factor

concentration, chemical medium of the kinetic assay, data regression, Hill behaviou

(T/F), Hill constant, inhibitor, inhibitor presence (T/F), inhibitor concentration.

(e) Source ID and information: source ID, enzyme’s gene ID, doi, PMID, Open access

(T/F), scope of the literature source, year of publication
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