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Abstract 

This project was developed at SINTEF, Oslo (Norway) in the Sorbent Technologies department 

framed within the Novel Materials for Utilization of Natural Gas and Hydrogen project funded 

by the Research Council of Norway.  

Nowadays, CO2 emissions to the atmosphere are of great concern. Carbon-capture and storage 

(CCS) is been considered as an intermediate solution until technologies for generating energy 

from renewable sources are fully available. Following, the objective of this thesis is the 

development of two different porous adsorbents to selectively separate carbon dioxide from 

different streams. The synthetized materials were a mesh-adjustable molecular sieve (MAMS) 

[1] and a sodium-based sorbent supported in alumina (SBSSA), material which had minimal 

information about preparation disclosed. All the synthetized samples were fully 

characterized.  

Some difficulties were encountered in reproducing the selected MAMS samples with the same 

reported performance and in larger production amounts (0.2 g/batch). MAMS project ended 

with these results. 

The SBSSA production method can be improved, however, after some breakthrough 

measurements it was noticed that the samples are able to capture some CO2 but this process 

is enhanced by the H2O presence due to the carbonate/bicarbonate cycle. Still, it was noticed 

that the samples capacity for CO2 is inversely proportional to the sodium carbonate weight in 

the sample. Nonetheless, the water working capacity increases according to N40 > N10 > N20. 

For a better understanding of both materials, it would be also necessary to further 

characterize the samples. As a consequence of this project, the Sorbent Technologies 

department on SINTEF will continue the research on SBSSA. 
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1 Introduction 

It has been already proven that the global warming effect is caused by the large emission of 

greenhouse gases (GHG) to the atmosphere. From the GHG, carbon dioxide is the most 

abundant and thus, strategies to avoid its emissions represent one of the most important 

challenges of mankind. 

However, controlling emissions of CO2 is not an easy task. The sources and operating 

conditions (temperature, pressure, other gases, etc.) of the streams emitting carbon dioxide 

are so diversified that almost any technology can find a niche market in this arena.  

In this sense, the objective of this thesis has been focused in the development of two very 

different porous materials aiming to separate carbon dioxide from very different streams.  

The first material termed as MAMS (mesh-adjustable molecular sieve) [1] has been 

synthesized with the aim of removing carbon dioxide from other gases at low temperature. 

The material has been reported to have unique features of separating molecules at cryogenic 

temperatures. In that sense, MAMS can be used in the selective removal of carbon dioxide in 

the natural gas industry, particularly when the final product is liquefied natural gas (LNG).    

The second material, carbonate salts dispersed in alumina matrices, aims to capture carbon 

dioxide at milder temperatures (~70 °C) which is closer to the temperature of the flue gases 

emitted in power stations (90 °C in natural gas combined cycles power plants and 110 °C in 

coal-fired power plants). Regeneration in this case is done with heat at higher temperatures 

that is also available in the power plant, at the expense of less energy generation (negative 

penalty).   

In this sense, the thesis tackles two major sources of carbon dioxide emission: upgrading of 

natural gas, particularly interesting to Norway, and decarbonizing energy production which is 

a more global problem. 

 

1.1. Project Presentation 

The most important part of this work is related to the synthesis of MAMS metal-organic 

framework and carbonate salts dispersed in alumina. None of these materials were previously 

prepared in the Sorbent Technologies department so there was no experience in their 

synthesis. For this reason, it was known from the beginning that the contents of the thesis 

were highly depending on the success of synthesis where minimal information about 
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preparation is disclosed. In that sense, the major objectives of the thesis were to develop the 

synthesis, characterization and utilization of two different porous materials.    

1.2. Company Presentation 

The SINTEF group is the largest independent non-commercial research organization in 

Scandinavia and one of the largest in Europe with over 2000 employees. SINTEF carries out 

contract research for the industrial and public sectors in Norway and overseas. SINTEF vision 

is "Technology for a better society". The SINTEF group is divided in eight different brands, 

from which SINTEF Materials and Chemistry is the largest one with approx. 450 employees.  

The thesis was developed within the Department of Sorbent Technologies in the sector of 

Sustainable Energy Technologies of Materials and Chemistry. The department has around 15 

employees having "cradle-to-grave" capabilities in synthesis, characterization, formulation 

and utilization of solids for different processes (including reactor and process modelling and 

design).  

 

1.3. Contributes of work 

During this internship, some difficulties were encountered on the BELPREP-vacII equipment 

operation. This is a gas/vapour adsorption pre-treatment instrument that contains the Micro-

controller X – PXR3 as a temperature controller. This temperature controller was blocked 

precluding the heating rate option during the particles activation. Thus, this equipment was 

fixed enabling the heating rate control.  

The TGA equipment used, SETARAM TGA92-16.18, had some problems on the temperature 

measurements due to its large distance to the sample. Then, it was made a new 

thermocouple that could be closer to the sample in order to obtain better results on all the 

samples measurements. 

The system for the breakthrough curve measurements was also modified for these 

experiences in order to obtain signal measurements from the outlet of one column instead of 

the sum of two columns (R and D as represented in Figure 3-5 and Figure 3-6). 

 

1.4. Organization of the thesis 

Chapter 2 starts to appoint some types of solid sorbent to capture and storage carbon dioxide 

(CCS). On this chapter it is briefly explained MOFs’ concept as an introduction to the 

promising material – MAMS, and also sodium-based sorbent concept. 
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Chapter 3 describes the materials synthesis as well as the methods used to characterize the 

samples such as X-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron 

microscopy (SEM) and  surface area, isotherm and breakthrough measurements.  

Chapter 4 presents and discusses the experimental results obtained as well as the calculations 

performed for materials characterization. 

Chapter 5 concludes all the work realized on this thesis aiming to answer the initial goals.  
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2   State of the art 

Nowadays, there are solid adsorbent materials capable of adsorbing carbon dioxide such as 

zeolites, mesoporous materials, activated carbon, metal organic frameworks (MOFs), 

carbonates, etc. 

The goal for the best carbon capture and storage (CCS) sorbent selection implies high CO2 

capacity and selectivity, fast adsorption and desorption kinetics, good mechanical properties, 

high hydrothermal and chemical stability and low cost of synthesis [2].   

 

Metal-Organic Frameworks 

MOFs materials have a large surface area and have potential for being employed in numerous 

applications such as adsorption, gas storage, separation, drug delivery, crystallography and 

catalysis. However the major disadvantage is in the cost of synthesis. 

MOFs structure, as represented in Figure 2-1 [4] is formed by 

nodes on the lattices made of metal elements which are 

connected by organic molecules. MOFs’ pores are intended to 

store gases and the framework to channel  the gas sorption, 

thus defining the mesh size for the gas entrance. MOFs’ pore 

shape and size can be adjusted through appropriate selection 

of metal nodes and organic ligands in order to achieve the 

desirable material properties [3]. 

MAMS – Mesh Adjustable Molecular Sieve, is a MOF compound 

which one of its major advantages is that it has been 

reported that the pore size can be tuned with the operation 

temperature. Shengqian Ma et al. [1],  reported an innovative 

MAMS-1 that has a graphitic MOF structure made with nickel as the metal element (nickel 

nitrate hexahydrate as the reagent that after reaction forms a metal ions/clusters) and 

5-tert-butyl-1,3-benzenedicarboxylic acid (H2(bbcd)) as the organic molecule. This organic 

molecule is an amphiphilic ligand, i.e., it has hydrophilic and hydrophobic ends, in which the 

hydrophilic one is functionalized. The functionalized hydrophilic end is the one that attaches 

the metal ions/clusters by covalent bonds thereby creating continuous 2D layer. Then, two 

layers will sandwich the metal elements constructing a trilayer, where are located the 

channels for the gas to pass. Two trilayers are then connected by Van der Waals interactions 

where the chambers are located for gas storing, as represented in Figure 2-2. 

 

Figure 2-1 - Metal Orgnanic 

Framework scheme (extracted 

from [4]) 
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Figure 2-2 - Crystal structure of MAMS-1. a) Structure of the nickel cluster. b) Structure of 

solvated and desolvated trilayers. c) Two trilayer displays hydrophilic channels along the a 

axis forming hydrophobic chambers. d) Top and e) side views of bbdc pairs (extracted 

from [1]) 

 

However, the hydrophobic chamber can only be accessed after activation that implies 

dehydration at 200 °C under vacuum, i.e., it is necessary to remove the water molecules that 

are occupying the channels. 

The production of MAMS-1 is conducted by a solvothermal reaction between the organic and 

metal compounds, that are 5-tert-butyl-1,3-benzenedicarboxylic acid (H2(bbdc)) and nickel 

nitrate hexahydrate (Ni(NO3)2 6H2O) respectively, in a Teflon-lined covered by a autoclave, in 

a programmable oven at 210 °C for 24h with a heating rate of 2 °C/min. 

In order to define the gate opening of the material with the temperature, Shengqian MA et al. 

[1], measured some isotherms with different gases at variable temperatures. Considering the 

different gas molecules size and the MAMS selectivity shown in their isotherms results, they 

reported an experimental linear equation relating mesh size with temperature (Equation 2-1): 

             

(2-1) 

Where D and D0 correspond to the mesh size at temperature T (in Kelvin) and at zero Kelvin, 

respectively; α is a constant. Adjusting D0 and α they expected to result in some MAMS which 

might be omnipotent for gas separation at near-ambient temperatures. 

The MAMS-1 is expected to have a mesh range between 2.9-5 Å adjustable with the 

temperature range of 77 K to 300 K. 

a) 

e) 

c) 

d) b) Gate 
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Sodium-based sorbent  

Carbonate minerals are natural materials present in earth containing the carbonate ion    
  . 

The principles of the carbon dioxide capture using alkali-based sorbent process lies in the 

reversible reaction between the carbonate and bicarbonate on a carbon dioxide and water 

environment.  

One possible alkali-based sorbent is sodium carbonate and the carbonate/bicarbonate cycle is 

represented by the following reactions [5],[6]: 

 

      ( )     ( )     ( )         ( )             
                  ⁄  

(2-2) 

       ( )        ( )     ( )     ( ) 

(2-3) 

This regenerable sorbent is able to remove the carbon dioxide from a stream at ambient 

pressure as shown in equation 2-2. The regeneration produces just water and carbon dioxide, 

as represented in equation 2-3. Posteriorly the water can be removed by condensation 

producing a pure stream of carbon dioxide ready to be used or to be sequestered [6]. 

However, there are some possible secondary reactions at equation 2-2 conditions [5]: 

 

      ( )     ( )            ( ) 

(2-4) 

      ( )  
 

 
   ( )  

 

 
   ( )  

 

 
                  ( ) 

(2-5) 

      ( )  
 

 
   ( )  

 

 
   ( )  

 

 
              ( ) 

(2-6) 

As reported, the reactions 2-2 and 2-3 happen in the temperature range of 60-70 °C and 

120-200 °C respectively [7]. Nonetheless, on the IEA’s report, it was recommended to disperse 

the sodium carbonate on alumina in order to provide attrition resistance, thereby increasing 

the carbonate performance. They also reported that “supported sorbents should combine 

attrition resistance inherent to support material and reactivity of carbonate material”. 
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3   Materials and Methods 

In this experimental work, it was produced two different solid sorbents: mesh-adjustable 

molecular sieves and sodium-based sorbent supported in alumina. These materials were 

submitted to some characterization tests in order to define their structure, distribution and 

to be tested their performance. 

 

3.1. Materials 

The solid sorbents materials: Mesh-Adjustable Molecular Sieves (MAMS) and Sodium-based 

sorbent supported in alumina (SBSSA), were experimentally produced. For MAMS production it 

was followed a reported recipe [1] and some process variables were tested in order to analyse 

its effect on the product features. For SBSSA production there was not found any recipe, thus 

it was produced by assumptions, considering the desired product features. 

 

3.1.1. MAMS 

The following procedure has been used to produce MAMS [1]. Dissolve the nickel nitrate 

hexahydrate (Ni(NO3)2 6H2O) and the 5-tert-butyl-1,3-benzenedicarboxylic acid (H2(bbdc)) in 

water and ethylene glycol (4:1 v/v), in this order, with the magnetic stir bar in a magnetic 

stirrer. Add the nickel solution to the organic solution with constant magnetic stirring. Place 

the solution in a teflon container and sealed in an autoclave. After, put the autoclave in a 

programmable oven with a heating rate of 2 °Cmin-1 from 30 °C to 210 °C and maintain this 

final temperature for 24 hours before the autoclave be slowly cooled to room temperature 

again. The light-green crystals obtained should be washed with distilled water and methanol 

in a centrifuge and the final product should dry at ambient temperature in a fume hood.  

This experimental procedure has some process variables such as the amount of organic 

compound (H2(bbdc)), the amount of nickel(II) nitrate hexahydrate, mixing temperature and 

temperature and time of crystallization. There are also some variables associated to the 

process but which amendment requires changing the real process such as the solvent of the 

organic compound, the amount of solvents and the wash solution.  

In order to understand better the effect of this variables on the product features, there were 

made some trials changing some of these variables such as the amount of reagents and 

solvents, mixing temperature, oven temperature and time of crystallization. The conditions 

associated to each trial are represented in Table 3-1. 
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Table 3-1 – MAMS production conditions for each sample. Organic and nickel compound 

weight (mH2(bbdc) and mNi(NO3)2∙6H2O), solvents volume (VEt Glicol and VH2O), mixing temperature 

(Tmix), temperature and time of crystallization (Tcryst and tcryst). 

Label mH2(bbdc) VEt Glicol mNi(NO3)2∙6H2O VH2O Tmix Tcryst tcryst 

A1 
0.15 g 

3 mL 

0.3 g 

12 mL 

Tamb 

210 °C 

24 h 

A2 70 °C 

B1 
0.15 g 

0.3 g 

Tamb B2 0.5 g 

B3 0.21 g 0.3 g 

C1 
0.15 g 0.3 g 

Tamb 

C2 70 °C 

C3 
0.15 g 

0.5 g 70 °C 

C4 0.2 g 70 °C 

C5 0.09 g 
0.3 g 

70 °C 

C6 0.21 g 70 °C 

D1 

0.15 g 

0.3 g 
Tamb 

18 h 

D2 70 °C 

D3 
0.5 g 

70 °C 

D4 Tamb 

D5 
0.2 g 

70 °C 

D6 Tamb 

E1 
0.15 g 

0.3 g 

Tamb 

180 °C 

24 h 

E2 70 °C 

E3 
0.21 g 

70 °C 

E4 Tamb 

E5 
0.09 g 

70 °C 

E6 Tamb 

F1 
0.15 g 

0.3 g 

Tamb 

210 °C 

F2 0.2 g 

F3  0.3 g 

H1 

0.15 g 

3 mL 

0.3 g Tamb H2 6 mL 

H3 10 mL 

I1 

0.15 g 

3 mL 

0.3 g 

12 mL 
Tamb 

72 h I2 
 15 mL 

I3 70 °C 

K1 
0.90 g 

18 mL 
1.8 g 

72 mL Tamb 
72 h 

K2  90 mL 70 °C 

O1 
0.15 g 

3 mL 
0.3 g 

12 mL Tamb 

24 h O2  15 mL 70 °C 

O3 0.9 g 18 mL 1.8 g 72 mL Tamb 



Utilization of new adsorbent materials for CO2 capture 

 

 
 

9 

3.1.2. Sodium-based sorbents 

Following the recommendation of the IEA GHG report [7], three samples of the sodium 

carbonate supported in alumina (SBSSA) were prepared. Samples were produced containing 

10 wt%, 20 wt% and 40 wt% of sodium carbonate, reaching a total product weight of 5 g with 

distilled water as a solvent. These samples were named N10, N20 and N40 respectively. 

These sorbent materials were obtained weighing the desired amount of sodium carbonate 

(Na2CO3) and dissolving it with the minimum amount of distilled water in a beaker. Then, the 

desired amount of alumina (Al2O3) was weighted in a petri dish. The carbonate solution was 

carefully added to the alumina with the pasteur pipette, stirring constantly with a glass rod 

and heating at 80 °C. This solution was then placed into the oven to dry overnight at around 

90 °C. The samples were filtered in the sieves with the aid of a metal spoon in order to obtain 

uniform particles with a diameter range of 90-210 μm. 

The experimental amounts of reagents and solvents used for each sample production are 

presented in Table 3-2. 

 

Table 3-2 – Reagents and solvent weights as well as final product mass for the three 

carbonate samples. 

Product 
Name 

Na2CO3 mNa2CO3 (g) mAl2O3 (g) VH2O (mL) mproduct (g) 

N10 10 wt.% 0.50 4.50 3 4.93 

N20 20 wt.% 1.00 4.00 6 4.90 

N30 40 wt.% 2.00 3.00 12 4.94 

 

3.2. Methods 

The synthetized solid sorbent materials were submitted to some characterization tests in 

order to define the particles structure, distribution and materials performances using the 

X-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscopy 

(SEM), surface area measurement, isotherms and breakthrough measurements. 

 

3.2.1. X-Ray Diffraction 

X-Ray Diffraction – XRD, is a versatile, non-destructive analytical method with the aim of 

analysing the material features such as phase composition, structure, texture, among others 

for the powder, solid or liquid samples.  
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The identification of phases is reached by comparing the experimental results with some 

reference patterns through some available databases like the International Centre of 

Diffraction Data (ICDD), known as the wider database, as well as by creating new standards 

with pure samples [8]. 

The crystal structure consists of a unit cell periodically repeated and regularly arranged in 

three dimensions leading to a large-range order as well as clear diffraction peaks. On the 

other hand, the amorphous structure has only a short-range order of atoms leading to a broad 

humps in the diffraction pattern. Thus, crystallinity means the percentage of the crystal part 

in a mixture of crystalline and amorphous sample. 

Powder diffractometry is a XRD technique for structural characterization of materials. This 

technique consists of launching X-ray beams in the sample at a certain angle (2θ), radiating 

it, and then these x-rays are diffracted by the phase of the sample and received by the 

detector giving a certain intensity. 

The XRD measurements were performed on a 

PANalytical Empyrean diffractometer as represented in 

Figure 3-1. The system is equipped with a PIXcel3D 

solid state detector. The measurements were carried 

out in Bragg-Brentano geometry with a step size of 

0.013° and an accumulation time of 0.54 s/step, using 

CuKα radiation (l=1.54187 Å). 

 

3.2.2. TGA 

Thermogravimetric analysis – TGA, is thermal analysis 

method that measures weight changes in the material as 

a function of temperature (or time) while the 

temperature is being increased at a known rate, under a 

controlled atmosphere.  

The TGA equipment used – SETARAM TGA92-16.18 (Figure 

3-2), consists of a small platinum basket connected to a 

very precise balance. After the sample is inside of the 

basket and pre-weighed, the basket is placed into a 

furnace with known environment (pressure, stream 

composition and its flow). The TGA equipment is 

connected to a computer, where a test is programmed on 
Figure 3-2 – SETARAM TGA92-16.18 

equipment  

Figure 3-1 - PANalytical Empyrean 

diffractometer equipped with a 

PIXcel3D solid state detector 
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Figure 3-3 - Nova NanoSEM 650 equipment with 

OXFORD Instruments X-Max (50mm2) 

incorporated (a). 

a) 

Setsoft 2000 software, describing the desired temperature range as well as the heating and 

cooling rates. 

 

3.2.3. Scanning Electron Microscope 

Scanning electron microscopy (SEM) is a characterization method that with a scanning 

electron microscope it is produced an image of the sample’s surface by using a focused beam 

of electrons that consequently produce some signals at its surface. There are 3 basic types of 

signal: backscatter electrons (BSE), secondary electrons (SE) and X-rays. Then, the detection 

system converts them into a digital signal that is sent to the associated software on the 

computer. 

The BSE signals are detected by a circular backscatter detector (CBS) providing element 

contrast images according to the atomic weight average of each compound, considering that 

a higher number corresponds to a “brighter” intensity of BSE [9].  

The SE signals are detected by a Everhart-Thornley detector (ETD) characterizing the surface 

topography, i.e., this method provides information about the surface, shape and features of 

the sample. 

The X-rays signals are detected by an energy-disperse detector that coverts the individual 

x-rays into electrical voltages of proportional size. The electrical pulses correspond to the 

characteristic x-rays of the element, being able to find the chemical composition of the 

samples, creating element composition maps. This technique, named Energy Disperse X-ray 

spectroscopy (EDS), is performed in an external equipment incorporated SEM equipment [10]. 

Before any analysis, the sample should be submitted to a thin carbon coating in vacuum in 

order to increase the samples conductivity for better signal detection. 

The equipment used – Nova NanoSEM 650 is 

connected to the computer that has the 

xTmicroscope control v4.7.4 build 

2452-msta software (Figure 3-3). This 

system provides images produced by CBS 

and ETD detectors. 

EDS analysis was performed with the 

OXFORD Instruments X-Max (50mm2) 

equipment (Figure 3-3-a)  incorporated in 

the Nova NanoSEM 650 and its data was 

treated in the INCA-Mapping software. 
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3.2.4. Surface area measurement 

Brunauer, Emmett and Teller – BET is a characterization method that enables the 

determination of specific surface area of a sample through its physical adsorption. 

Stephen Brunauer, Paul Emmett and Edward Teller developed this isotherm model respecting 

the following assumptions [11],[12]:  

1. Each adsorbed molecule provides a site for the adsorption of the molecule in the layer 

above it; 

2. All sites on the surface have the same adsorption energy for the adsorbate, which is 

usually argon (Ar), krypton (Kr) or nitrogen gas (N2) and the surface site is defined as 

the area on the sample where one molecule can adsorb onto; 

3. Each active site can be occupied only by one particle; 

4. Adsorption at each site is independently of adsorption at neighbouring sites; 

5. No interactions between the adsorbate molecules; 

6. Adsorbates form a monolayer; 

7. Gas molecules will physically adsorb on a solid in layers infinitely; 

8. The different adsorption layers do not interact; 

Adsorption consists on the attachment of atoms or molecules of gas to a surface and the 

amount adsorbed depends on the exposed surface area, temperature, gas pressure and 

strength of interaction between the gas and the solid. In BET surface area analysis N2 is 

usually used considering its availability in high purity and its strong interaction with most 

solids. The lower relative pressure is obtained by creating conditions of partial vacuum [12].  

The data is treated according to the BET adsorption isotherm equation: 

 

*  (
  
 
  )+

 
   

   
 
 

  
 

 

   
 

(3-1) 

In which    corresponds to the volume of gas adsorbed at standard temperature and pressure 

(STP – 273.15 K and 1.013x105 Pa), in millilitres;   is the partial vapour pressure of adsorbate 

gas in equilibrium with the surface at 77 K (considering that it was used nitrogen as a gas 

stream and 77 K is liquid nitrogen boiling point), while    is the saturated pressure of 

adsorbate gas, both in Pascal;   is de dimensionless constant that is related to the enthalpy 

of adsorption of the adsorbate gas on the powder sample and    is the volume of gas 

adsorbed at STP to produce an apparent monolayer on the sample surface, in millilitres.  

The representation of 
 

*  (
  
 
  )+

  as a function of 
 

  
, considering the linear part of the 

adsorption isotherm, results in a linear function in which 
   

   
 is the slope and 
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intercept value. Thereby, it is possible to obtain experimentally   and    values considering 

that the correlation coefficient r2  should not be less than 0.9975. 

The BET surface area -      in m2/g, is then determined by the following equation: 

     
      
  

 

(3-2) 

In which    represents the Avogadro’s number (6.022x1023 mol-1);    is the adsorption cross 

section area for an adsorbed N2 molecule (0.162 nm2) and    is the molar ideal volume for 

N2 (22.414 L/mol) 

The isotherm measurements were performed on BELSORP-mini II equipment, with the sample 

pre-activated on BELPREP-vacII equipment that contains the Micro-controller X – PXR3 as a 

temperature controller. 

 

3.2.5. Isotherms 

The Isotherm measurements were performed on the 

BELSORP-max equipment (Figure 3-4), which is high 

performance surface area and porosity analysis instrument 

which has a volumetric adsorption method as a 

measurement principle. This equipment is connected to a 

computer where the results were obtained by the program 

BelMasterTM. 

The isotherm represents the evolution of the amount of 

adsorbate molecules adsorbed (na in mol/kg) with the 

relative pressure (p/p0) at a constant temperature. 

 

3.2.6. Breakthrough 

The performance of the sodium-based sorbent supported in alumina samples: N10, N20 and 

N40, was analysed in a column with controlled temperature by an external oven, which exit 

was connected to VG ProLab with a mass range of 1-300 amu as shown in Figure 3-5. This 

equipment is a mass spectrometer analyser – MS. The system, shown in Figure 3-5 was 

programmed in the BIGCCS software as schematically represented in Figure 3-6. 

Figure 3-4- BELSORP-max 

equipment. 
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The BIGCCS program is a method to control gases flow 

rate, valve, oven set-point temperature as well as the 

gases humidity (bypass or saturated, considering that it is 

possible to make a gas flow pass through a water recipient 

at constant temperature and it captures the vapour 

of water in equilibrium making it humid). 

This system consists of 2 columns – reactor (R) and dummy 

(D), inside of an oven with programmable temperature; 

6 different streams that, after passing through their mass 

flow controllers, connected to just one stream – line 1, 

and one stream of N2 that after its mass flow controller is 

named line 2; one valve; one saturator responsible for 

providing the water to the system (humidity); 

4 thermocouples (inside of the reactor) and a MS analyser. 

The reactor can be fed by a humid or dry stream choosing the valve position – through 

saturator or bypass, before entering the column. However, the stream that feeds the Dummy 

has to be dry.  

The 6 possible gas feeds that join line 1 are: N2 , Mix(CO2), CH4, H2, CO and Ar. However the 

second one is the most used – Mix(CO2) constituted by 90.09 % of N2 and 9.91 % of carbon 

dioxide (CO2). 

The filling of the reactor (R) - Figure 3-7, starts to place the tube b) into column a) in order 

to support the sample that stays around the middle of the column. Then, the filter c) is 

placed properly thus, it does not turn and after, it should be put some quartz wool on the 

filters top to protect the system, followed by the pre-weighed sample. Then, the tube that 

supports the thermo elements (e) can be placed, carefully inside of the tube, taking care not 

to damage the sample, followed by the thermo elements (f) and to finish the connection at 

the end of the column to connect the tube to MS analyser as well as exhaust. 

 

Figure 3-5 – Breakthrough 

measurements system. 
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Figure 3-6 – BIGCCS programme with a scheme of breakthrough curve measurement. 

 

 

Figure 3-7 – a) Column used on the sodium-based sorbent samples tests; b) tube to support 

the sample inside of the column; c) filter to put on the top of “b” element; d) sample N10 

placed inside of a glass container; e) tube to support the thermocouples inside of the 

column; f) metal tube with four thermocouples; g) connection between the end of the 

column and the MS tube. 

 

The MS analyses the exit of the column and reads the signal in intensity, saving the data 

considering 18, 28, 32 and 44 as ionization numbers for H2O, N2, O2 and CO2 respectively.  

In order to analyse the data in terms of percentage of each gas, the read signal, in intensity, 

was divided by the sum of all signals at each time. 
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(3-3) 

The total molar concentration at the entrance of the column is determined using the ideal 

gases law (equations 3-4 and 3-5). 

       

(3-4) 

   
  
   

 

(3-5) 

In which   ,    and    represents the total molar concentration, pressure and temperature at 

the entrance of the column, respectively and    is the constant of ideal gases. 

The molar concentration of each gas at the entrance of the column, can be obtained 

multiplying CE by the feed percentage of this gas, as shown in the follow equation: 

                  

(3-6) 

Likewise, the molar concentration of each gas, at each recorded time, can be obtained by 

multiplying CE by the gas percentage at the same time, as shown in the follow equation: 

         

(3-7) 

If the breakthrough curve was an ideal stoichiometric front, the same amount of solute that 

enters the column would be retained during the stoichiometric time, test: 

            ∫ (  
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(3-8) 

The total capacity of the material, i.e., the total amount of solute adsorbed until complete 

exhaustion, qtotal is then obtained by the following equation. 

       
    ∫ (     
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(3-9) 
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4 Results and discussions 

4.1. MAMS 

The yield based on the ligand (  (    )) is shown in Figure 4-1 as a function of the reagents 

amounts and mixture temperature. On these samples (A1 to C6, F1 to F3 and H1) it was 

maintained the total amount of solvent (15 mL) and the crystallization parameters (24h, 

210 °C).  

The ligand is the limiting reagent, thus it was expected the yield increases with the amount 

of ligand at ambient temperature as mixing parameter. However, increasing the mixing 

temperature to 70 °C, the yield decreased with the ligand amount beyond the reference 

quantity. On the other hand, these two samples (prepared with more amounts of organic and 

at both of mixing temperatures – B3 and C6) have the same XRD results matched not only with 

the reference trial but also with the supporting information [13]. The TGA analysis was not 

possible for the sample C6 because of the total quantity of product; however the B3 sample 

fitted with the reported results, differing only in 5 % over the final percentage of compound 

left. 

 

Figure 4-1 –Yield of samples A1 to C6 and F1 to H1 according to reagents amount and mixing 

temperature, maintaining the amount of solvent (15 mL) and the crystallization parameters 

(24 h, 210 °C). 

 

The change in the amount of metal compound (  (   )      ), at 70 °C as mixing 

temperature – samples C4, C2 and C3, causes an increase in yield. However the XRD and TGA 
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analysis of the sample C3 (better yield), has not matched properly with the reference results 

[13] even though presenting the expected appearance. Using ambient temperature as a 

mixing parameter, it was noticed that the decrease of the nickel compound (F2) compared to 

the reference (F1), is directly proportional to the yield. On the other hand, the increase of 

this metal compound (B2) compared to the F1 not only causes a decrease of the yield as it has 

also a not matched TGA result with MAMS-1 [13]. 

The produced samples A1, B1, C1, F1 and H1 using ambient temperature as a mixing 

parameter and using the reference reagents ratio, were selected as having the best match 

between the XRD and TGA analysis as well as good reproducibly. 

The change on the amount of solvent, was made at ambient temperature as a mixing 

parameter, and it was crystallized during 24 hours at 210 °C. On these samples (H1, H2 and 

H3) it was maintained the reagents and distilled water reference amounts. The yield result as 

a function of ethylene glycol volume is presented in Figure 4-2. 

 

Figure 4-2 – Yield of samples H1, H2 and H3, according to the volume of solvent, maintaining 

the reference reagents ratio, mixing temperature (Tamb), crystallization parameters (24h, 

210 °C) 

 

The product obtained with 6 mL of ethylene glycol (H2) was a grey gel and the one with 

10 mL (H3) was grey powder with some black particles. The total product obtained in both of 

them was too small for XRD and TGA analysis. 

The change in the crystallization temperature to 180 °C, maintaining the other variables 

constant, had no effect since no product was found – samples E1 to E6. Thus, it was evaluated 

the crystallization time for trials with the reference reagents ratio maintaining the 
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crystallization temperature at 210 °C, changing with the mixing temperature as shown in 

Figure 4-3. 

 

Figure 4-3 – Yield of samples A1, A2, B1, C1, C2, D1, D2, F1, H1 and  I1  according to 

crystallization time – tcrystallization,  and to the mixing temperature, maintaining the reference 

reagents ratio, volume of solvent (15 mL) and the crystallization temperature (210 °C) 

 

The yield increase with the cooking temperature for these samples at both mixing 

temperatures, however, at 70 °C it is slightly higher than the one at ambient temperature. 

Considering that the mixing temperature does not make a noticeable difference, it was 

decided to produce sample I1 in larger amounts (produced with ambient temperature as a 

mixing parameter). 

After changing some process variables on these tests (reagents ratio, mixing temperature, 

volume of ethylene glycol solvent as well as time and temperature of crystallization) and 

before testing sample I1 in larger amounts, two trials were performed producing it with only 

water as a solvent – I2 and I3 which results are shown in Figure 4-4. 
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Figure 4-4 - Yield of samples I1, I2 and I3 according to the mixing temperature and type of 

solvent, maintaining the reference reagents ratio, total volume of solvent (15 mL) and the 

crystallization parameters (72 h, 210 °C). 

 

The sample I3, made just with water as a solvent and at 70 °C as a mixing temperature, is the 

highest, however the product formed was a brown needle-like crystal with a very few 

light-green needle-like crystals, while the sample I1 is a light-green needle-like crystal as 

reported [1]. On the other hand, the sample I2, made also just with water as a solvent but at 

ambient temperature as a mixing parameter, looked completely brown. These brown crystals 

are assumed to be mainly result of the ligand precipitation as suggested by Shengqian Ma et 

al. [1]. However, the XRD results for I3 sample matched with the reported one with just a 

slightly different on the second peak intensity. 

Then, it was decided to produce samples I1 and I3 in larger amounts - samples K1 and K2 - in 

order to produce around 0.20 g/batch instead of just 0.05 g/batch. These larger samples 

were produced with the same ratio between the reagents and solvent as the smaller ones and 

crystallized at 210 °C for 72 h. The yield results for smaller samples (I1 and I3) and larger 

samples (K1 and K2) are shown in Figure 4-5. 
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Figure 4-5 - Yield of smaller samples (I1 and I3) and larger samples (K1 and K2) according 

with the type of solvent used, maintaining reference reagents ratio as well as solvents ratio, 

and the crystallization parameters (72 h, 210 °C). 

 

The samples I1 and K1 have the same appearance. The XRD result for both samples obtained 

by Highscore plus software, were compared to the expected reported result [13] as shown in 

Figure 4-6 and Figure 4-7.  

In these figures, the blue line corresponds to samples I1 and K1, respectively, while the red 

and green lines correspond to fresh sample and activated at 200 °C [13], respectively. As 

shown in Figure 4-6, there is a match between the reported fresh sample and the sample I1, 

not only on the peaks position but also on their intensity, making it possible to assert that 

these particles are the same. In Figure 4-7 it is possible to see the same resemblance 

although there is just a small difference in the intensity of the second peak that could be 

associated to their packing for the characterization test. 

The small and larger XRD results were compared with each other as shown in Figure 4-8. 
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Figure 4-6 - XRD results for sample I1 (blue), MAMS-1 fresh sample [13] (red) and activated at 

200 °C [13] (green). 

 

 

Figure 4-7 - XRD results for sample K1 (blue), MAMS-1 fresh sample [13] (red) and activated 

at 200 °C [13] (green). 
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Figure 4-8 – XRD results for the sample I1 (blue line) and K1(red line). 

 

As can be seen, both results show peaks on the same positions. Considering that the peaks 

position is a periodic arrangement indicative, it is possible to say that samples I1 and K1 have 

the same arrangement. The slightly difference between both XRD results on the second peak 

intensity, does not have relevant meaning, because it could be just related to the amount 

analysed or even the samples packing for the characterization test. 

On the other hand, samples I3 and K2 had a completely different appearance. The I3 sample, 

as previously described, appear like brown needle-like crystal with a very few light-green 

needle-like crystals while K2 sample appear like very light-green big needle-like crystal as 

shown in Figure 4-9. 

 

Figure 4-9 – Picture of K2 sample made just with distilled water as a solvent and referent 

reagents ratio, mixing temperature at 70 °C, crystalized at 210 °C for 72h. 

 

The XRD results for K2 sample were completely different comparing with the reported one 

and with I1 and K1 samples. Its results show the main peaks at different positions, intensity 

and total amount.  
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TGA analysis of produced samples, was performed 

with the equipment shown in Figure 3-2, under 

50.0 mL/min flow of N2 in a temperature range 

20-550 °C (heating rate 2 °C/min). Considering that 

the balance system of SETARAM TGA92-16.18 was 

quite sensitive, the tests in this equipment were 

performed with higher initial weight of sample as the 

reported one (25.2 mg and 41.9 mg for I1 and K1 

samples, instead of 9.8 mg as reported [13]). The 

results for these three samples are presented in 

Figure 4-11. 

 

 

 

Figure 4-11 - TGA for produced MAMS samples (I1: blue, K1: red) and 

reference  curve (black) [13]. 

 

The first weigh loss of approximately 10 % from 50 °C to 150 °C corresponds to the loss of free 

H2O molecules, followed by the weight loss of approximately 6 % from 150 °C to 350 °C 
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Figure 4-10 – Sample K1 placed in the 

platinum basket at furnace entrance 

of SETARAM TGA92-16.18 equipment.   
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corresponding to the loss of coordinated H2O molecules. Further than 400 °C, both 

frameworks (I1 and K1) decompose completely. The final weight percentage should represent 

the nitrate oxide and some organic compound polymerized.  

At the end, both experimental frameworks stayed with approximately 33-34 % of the initial 

weight whereas the reference result ended with approximately 29 % of the initial weight [13]. 

This difference between experimental and reported samples may be due to the heating rate 

which was not supplied. On the other hand, both experimental TGA results, for samples I1 

and K1, have some differences. The biggest weight loss in short time (slope in the curve 

presented in Figure 4-11) of K1 and I1 samples differs in 20 °C, i.e., the I1 sample start to 

decompose at 20 °C after K1 and it ended at less 2 % of the initial weight.  

Even with this dissimilarity on the TGA slope it is not possible to assert that I1 and K1 samples 

are different, considering that they also have the same appearance and quite the same XRD 

result. 

On the other hand, the TGA result for K2 sample was completely different from I1 and K1 

samples as well as the reported result. K2 sample results just show one big slope around 

250 °C and it ended at around 3 % of the initial weight. 

 

A surface area measurement was performed to I1, K1 and K2 samples by measuring the 

isotherm of each sample with N2 at 77 K on BELSORP-mini II equipment. The measured 

samples (I1, K1 and K2) were previously activated at 200 °C, with 2 °C/min as heating rate, 

overnight under vacuum on the BELPREP-vacII equipment that is a gas/vapour adsorption pre-

treatment instrument that contains the Micro-controller X – PXR3 as a temperature controller. 

The isotherm result is represented in Figure 4-12. 

The isotherm points at low relative pressure, of each isotherm (before the Inflexion point), 

are represented in Figure 4-13 as well as its trend line according to equation 3-1. 
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Figure 4-12 - Adsorption/desorption isotherms for MAMS samples - I1, K1 and K2, performed 

with N2 at 77K on BELSORP-mini II equipment. 

 

Figure 4-13 - BET plot for MAMS samples - I1, K1 and K2, performed with N2 at 77K 

performed with N2 at 77K on BELSORP-mini II equipment. 
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The results according to the equations 3-1 and 3-2 are presented in Table 4-1. 

 

Table 4-1 – BET results for MAMS samples – I1, K1 and K2. 

MAMS manlysis (g) Vm (cm3(STP)/g) C SBET (m
2/g) 

I1 0.02 1.73 72.77 7 

K1 0.04 0.67 3.76 3 

K2 0.04 0.72 2.38 3 

 

According to the result for the volume of gas adsorbed at STP to produce an apparent 

monolayer on the sample surface (Vm) as well as the surface area of the sample (SBET), it is 

concluded that I1 sample has larger surface area and consequently bigger Vm.. The results for 

K2 sample are not so trustable due to its correlation coefficient that is smaller than 0.9975 as 

presented in Figure 4-13. 

 

Another K1 sample was submitted to an isotherm adsorption measurement of N2 at 77 K on 

BELSORP-max equipment. The sample was previously activated at 200 °C, with 2 °C/min as 

heating rate, overnight under vacuum on the BELPREP-vacII equipment and reactivated on the 

BELSORP-max at 200 °C, with 2 °C/min as heating rate for 14 hours. The desired adsorption 

temperature – 77 K, was maintained with the aid of an external liquid nitrogen bath. Isotherm 

result showed that any N2 gas molecule was adsorbed on the sample. 

Then, it was made another measurement with the same sample but testing the carbon 

dioxide (CO2) adsorption at 253 K, reactivating the sample again on the BELSORP-max at 

200 °C, with 2 °C/min as heating rate for 14 hours. However, the results showed that any CO2 

molecule was also adsorbed on the sample. 

Unfortunately it was not possible to measure the I1 CO2 adsorption because the equipment 

was not available. However, one of the authors of MAMS’ article was contacted by e-mail in 

order to clarify some results and doubts. Regarding the larger sample (K1), Shengqian Ma. 

said “I encountered some difficulties to scale-up to larger than even 0.1 g/batch (…) I used 

multi-autoclaves to scale it up.”.  

 

4.2. Sodium-based sorbents 

The sodium-based sorbent supported in alumina samples (N10, N20 and N40) were submitted 

to some characterization tests in order to obtain information about their crystallinity and 

possible presence of secondary products – XRD; sodium carbonate distribution on the alumina 
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surface as well as samples’ shape, appearance and element distribution – SEM analysis and 

EDS; and the surface area of the samples – BET. Then, samples performance was tested with a 

breakthrough measurement inside of a column. 

 

The XRD results obtained by Highscore plus software, for N10, N20 and N40 samples are 

represented in Figure 4-14. This software with the ICDD data base enables the identification 

of some expected components in the material according to the equations 2-4 to 2-6 [5] as 

shown in Figure 4-15.  

 

 

Figure 4-14 – XRD results for samples N10 (10 wt.%), N20 (20 wt.%) and N40 (40 wt.%) 

obtained by Highscore plus software. 

 

For these particles, there was not a reference result to compare with. However, the results 

shows that, as expected, the sodium carbonate signal increase with the amount of this 

compound in the sample (N10 to N40) and it is also possible to see the sodium bicarbonate 

presence which implies that at least the secondary reaction, represented by the equation 2-4, 

occurs at this production conditions. 
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Figure 4-15 – XRD results for samples N10 (10 wt.%), N20 (20 wt.%) and N40 (40 wt.%) 

obtained by by Highscore plus software with the ICDD data base. 
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Posteriorly there was made a SEM analysis in order to understand the sodium carbonate 

dispersion in alumina surface. The images produced by CBS and ETD detectors are presented 

in Figure 4-16 and Figure 4-17, respectively. 

The expected compounds in the samples were sodium carbonate (Na2CO3) with 106 g/mol as a 

molecular weight and 20 as a molecular atomic weight average; and alumina (Al2O3) with 

102 g/mol as molecular weight and 17 as a molecular atomic weight average. Considering the 

proximity of molecular atomic weights, it is not obvious the perception of their positions on 

CBS images, however it is expected that the “brighter” part of the image is associated to the 

alumina due to its higher atomic number. The background of the image corresponds to the 

carbon tape where it was placed the sample (with 12 as atomic weight average number). 

Among the three analysed samples, it is not possible to distinguish them so much only with 

CBS images because of the proximity of elements atomic numbers.  

The ETD images show the shape of the samples providing the idea of approximately spherical 

particles with a diameter around 100 μm for the three of them which was also the size of 

alumina used. 

However, only SEM images are not enough to describe the material and to understand if the 

sodium carbonate is really disperse in the alumina surface and the difference between the 

samples. In order to answer to these questions, it was carried out EDS analysis with the 

OXFORD Instruments X-Max (50 mm2) equipment incorporated in the Nova NanoSEM 650 

(Figure 3-3) in which the data was treated in the INCA-Mapping software. With this technique, 

Al, Na, O and C are detected. As shown in Figure 4-18 to Figure 4-20 it is possible to see the 

dispersion of Na and Al in each particle in the sample according to the light colour in the 

images b and c.  
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Figure 4-16 - CBS images of sodium-based sorbent supported in alumina samples. a), c) and e) 

represent the images for N10, N20 and N40 respectively with a magnification of 500 times. 

b), d) and f) represent the images for N10, N20 and N40 respectively with a magnification of 

750 times. 

 

 

a) b) 

c) d) 

e) f) 
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Figure 4-17 - ETD images of sodium-based sorbent supported in alumina samples. a), c) and 

e) represent the images for N10, N20 and N40 respectively with a magnification of 500 times. 

b), d) and f) represent the images for N10, N20 and N40 respectively with a magnification of 

750 times. 

 

 

a) b) 

c) d) 

e) f) 
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Figure 4-18 - EDS images of N10 sample. a) reference image; b) element intensity map of 

sodium (Na); c) element intensity map of aluminium (Al). 

 

 

Figure 4-19 - EDS images of N20 sample. a)  reference image; b) element intensity map of 

sodium (Na); c) element intensity map of aluminium (Al). 
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Figure 4-20 – EDS images of N40 sample. a)  reference image; b) element intensity map of 

sodium (Na); c) element intensity map of aluminium (Al). 

 

With these images (b and c) it is possible to verify an increase in the amount of sodium, from 

the N10 sample to N40 as well as a decrease in the amount of aluminium, as expected.  

This method also highlights the intensity of each compound in each particle (marked in Figure 

4-18 to Figure 4-20 according to the sample) as shown in Figure 4-21 to Figure 4-23. As 

expected, the carbon signal is maintained approximately constant and represents the thin 

carbon coating and the carbonate ion (   
  ); the oxygen signal is quite intense due to its 

presence in the alumina compound (     ) and carbonate ion; however, the sodium and 

aluminium presences in the samples are not homogeneous, i.e., there are some particles that 

are mostly made of alumina (spectrum 8, 5 and 11 according to the sample N10, N20 and N40 

respectively), some others are just made of sodium carbonate (spectrum 2 and 5 for the 

samples N20 and N40, respectively) and there are some particles with sodium carbonate 

dispersed in the alumina surface approximately according to the average percentage of 

reagents used in each sample (spectrum 5, 9 and 8 for the samples N10, N20 and N40, 

respectively). 

The sum of elements intensity for each sample, represents, as expected, an increase in the 

amount of sodium and a decrease in the amount of aluminium from the sample N10 to N40. 

 

a)  

Na  
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Al  
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Figure 4-21 – N10 Elements intensity of particles 5 and 8 as well as the sum spectrum with 

the average element intensity, respectively generated by the INCA-Mapping software. 

 

 

  

Figure 4-22 – N20 Elements intensity of particles 2, 5 and 9 as well as the sum spectrum with 

the average element intensity, respectively generated by the INCA-Mapping software. 
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Figure 4-23 – N40 Elements intensity of particles 11, 5 and 8 as well as the sum spectrum 

with the average element intensity, respectively generated by the INCA-Mapping software. 

 

It was then concluded that there is not homogeneity in each sample, i.e., for each one there 

are some particles just made with alumina, others just made with sodium carbonate and 

there are some particles that really have the sodium carbonate disperse in alumina surface. 

Between the samples and as expected, it was observed that the average of sodium amount 

increased from N10 to N40 measurements, as well as the aluminium decreased. It was 

expected that the 0.4 for ration between sodium and aluminium amount, however it was 

observed that the average amount of sodium is bigger than the aluminium amount. This leads 

to the conclusion that it is not possible to make inferences about all the sodium-based 

sorbent prepared due to their heterogeneity.  

 

In order to determine the samples surface area, it was conducted an isotherm measurement 

with N2 at 77 K on BELSORP-mini II equipment. The measured samples were previously 

activated on BELPREP-vacII equipment, with the aim of dehydrate it. Since that previously, 

the sample was drying on the oven at 90 °C, the activation was performed at 60 °C for 18 h. 

The adsorption/desorption isotherm results for N10, N20 and N40 samples are plotted in 

Figure 4-24. The isotherm points at low relative pressure of each adsorption result (before 

the Inflexion point) are represented in Figure 4-25 as well as the its trend lines according to 

equation 3-1. 
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Figure 4-24 – Adsorption/desorption isotherms for N10, N20 and N40 samples, performed 

with N2 at 77 K. 

 

Figure 4-25 – BET plot for N10, N20 and N40 samples performed with N2 at 77 K. 
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The surface area value determined by BET method (equation 3-2) is presented in Table 4-2 as 

well as the intermediary values – Vm and C. 

 

Table 4-2 – BET results for the three carbonate samples 

Na2CO3 manlysis (g) Vm (cm3(STP)/g) C SBET (m
2/g) 

10 wt.% 0.12 17.55 152.79 45 

20 wt.% 0.11 15.06 141.20 65 

40 wt.% 0.10 10.30 108.22 76 

 

The carbonates surface area increased with the amount of sodium carbonate. However, the 

volume of gas adsorbed at STP to produce an apparent monolayer on the sample surface (Vm) 

decreased. 

 

In order to test the samples performance, it was measured a breakthrough curve in a column 

(Figure 3-7) which outlet was connected to a MS analyser as represented in Figure 3-5. 

A program was run on BIGCCS software (Figure 3-6) considering a flow rate of 50 mL/min, 

starting with just nitrogen (N2) as a feed gas and increasing the temperature until 178 °C for 

180 minutes (heating rate of 5 °C/min) in order to activate the particles, i.e., to release all 

the water and carbon dioxide that could have been taken on the production and storage. 

After, the system was cooled down to 75 °C and stabilized for 30 minutes. Then the reactor’s 

feed was changed to the Mix(CO2) with humidity, at the same flow rate of 50 mL/min for 200 

minutes, corresponding to the adsorption step (equation 2-2) Then, the sample was 

regenerated again at 178 °C for 180 minutes with a heating rate of 5 °C/min (equation 2-3) 

and it was started a new cycle. The measured results for samples N10, N20 and N40 are shown 

in Figure 4-29 to Figure 4-28. 
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Figure 4-26 – Gas concentration at the exit of the column for sample N10 (H2O: blue, N2: red, 

O2: light-green and CO2: purple) as well as the current set point of the oven’s temperature 

(orange line) and measured temperature on thermocouples inside of the column (dark-green) 

according to the programmable steps (dashed line). 

 

 

Figure 4-27 - Gas concentration at the exit of the column for sample N20 (H2O: blue, N2: red, 

O2: light-green and CO2: purple) as well as the current set point of the oven’s temperature 

(orange line) and measured temperature on thermocouples inside of the column (dark-green) 

according to the programmable steps (dashed line). 
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Figure 4-28 - Gas concentration at the exit of the column for sample N40 (H2O: blue, N2: red, 

O2: light-green and CO2: purple) as well as the current set point of the oven’s temperature 

(orange line) and measured temperature on thermocouples inside of the column (dark-green) 

according to the programmable steps (dashed line). 

 

The gas concentration at the exit of the column was calculated through equations 3-3 to 3-7.  

Considering that the gas mixture (N2/O2) can be approximated to air, the percentage of water 

on the gas mixture at the entrance of the column (       ) was calculated through the 

determination of the saturation pressure of water vapour at its temperature (11.8 °C) as 

shown in the following equations. 

       (      
 

 
)   ⁄  

(4-1) 

       
   
 

 

(4-2) 

In which     is the saturation pressure of water vapour (Pa); A, B, E and F are constants 

associated to this equation (77.3450, 0.0057, 7235 and 8.2 respectively); T is the temperature 

of the air vapour mixture (K) [14]. 

The instrument was not calibrated for the gas mixture, thus the percentage of gas had to be 

adjusted through interpolation according to the expected values: 9.77 % of CO2 and 1.43 % of 

H2O in a N2 environment. 

The breakthrough results in molar concentration ratio (C/C0) for the first cycle of N10, N20 

and N40 samples are shown in Figure 4-29 to Figure 4-31 as well as the corresponding current 
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set point of the oven (CSP-T) and average of the temperature measured on the thermocouples 

(Thermocouples), in function of the time divided in steps. 

 

 

Figure 4-29 – Breakthrough curve of CO2 and H2O for N10 sample and respective 

stoichiometric time as well as the current set point of oven temperature (CSP-T) and average 

temperature measured in thermocouples inside of the column (Thermocouples) 

 

 

Figure 4-30 - Breakthrough curve of CO2 and H2O for N20 sample and respective 

stoichiometric time as well as the current set point of oven temperature (CSP-T) and average 

temperature measured in thermocouples inside of the column (Thermocouples) 
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Figure 4-31 - Breakthrough curve of CO2 and H2O for N40 sample and respective 

stoichiometric time as well as the current set point of oven temperature (CSP-T) and average 

temperature measured in thermocouples inside of the column (Thermocouples) 

 

The CO2 curve makes a first step and after the water signal starts to appear, the normalized 

concentration of CO2 increases again. The feed ratio between the CO2 and H2O is around 6.8, 

which means more amount of CO2. According to equation 2-2, the adsorption reaction 

requires one molecule of CO2 and one molecule of H2O for one molecule of sodium carbonate. 

Thus, it is possible to suppose that the first step represents the exceeded CO2 that can also 

adsorb at the beginning, and the second step that appears at the same time as the water, 

represents the CO2 that was adsorb due to the adsorption reaction (equation 2-2) and to the 

changes that H2O could cause in the particle surface. 

The initial adsorbent weigh placed in the column and the feed concentrations of CO2 and H2O 

to the column are presented in Table 4-3. The adsorption results for CO2 and H2O determined 

by equations 3-8 and 3-9, are represented in Table 4-4 and Table 4-5. 

 

Table 4-3 – Initial conditions for the breakthrough curve measurements. 

 madsorbent (g) Ct (mol/L) 

CO2 H2O 

yCO2 
C0  

(mol/L) 
yH2O 

C0  
(mol/L) 

N10 2.916 

0.04 0.098 3.89x10-3 0.014 5.67x10-4 N20 2.834 

N40 2.616 
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Table 4-4 – CO2 adsorption/desorption results for 2 cycles of each SBSSA samples. 

 

1th cycle 2th cycle 

Adsorption Dessorption Adsorption Dessorption 

t est  
(min) 

q total  

(molCO2 /kgadsorvent ) 
q total  

(molCO2 /kgadsorvent ) 
t est  

(min) 
q total  

(molCO2 /kgadsorvent ) 
q total  

(molCO2 /kgadsorvent ) 

N10 17.7 1.18 0.21 13.3 0.89 0.20 

N20 15.5 1.07 0.62 16.2 1.12 0.59 

N40 9.7 0.72 0.17 5.2 0.39 0.18 

 

Table 4-5 – H2O adsorption/desorption results for 2 cycles of each SBSSA samples. 

 

1th cycle 2th cycle 

Adsorption Dessorption Adsorption Dessorption 

t est  
(min) 

q total  

(molH2O /kgadsorvent ) 
q total  

(molH2O /kgadsorvent ) 
t est  

(min) 
q total  

(molH2O /kgadsorvent ) 
q total  

(molH2O /kgadsorvent ) 

N10 44.3 0.43 0.25 43.2 0.42 0.24 

N20 53.6 0.54 0.31 45.6 0.46 0.31 

N40 32.5 0.35 0.27 37.0 0.40 0.04 

 

The CO2 capacity of the sample is inversely proportional to the sodium carbonate weight in 

the sample. However the water capacity increases from N10 to N20 sample and decreases 

from N20 to N40. It was also noticed that the desorption amount is smaller than the adsorbed 

for all samples and both gases. However, on the second cycle the sample is able to adsorb 

more amount then the one that desorbed but less than the one that adsorb on the first cycle.  
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5   Conclusions 

Controlling CO2 emissions has been a global concern due to its effect as a GHG on the global 

warming effect. In this sense, the objective of this thesis has focused on the development of 

two very different porous adsorbents aiming to separate carbon dioxide from very different 

streams emitters of CO2 – Mesh-adjustable molecular sieves (MAMS) and Sodium-based sorbent 

supported in alumina (SBSSA). 

MAMS [1] enables the carbon dioxide adsorption at low temperature, being promising due to 

its selective removal of carbon dioxide in the natural gas industry, particularly when the final 

product is liquefied natural gas (LNG). On this thesis it was tried to reproduce the 

experimental procedure reported for MAMS-1 [1], testing also the influence of some 

production variables. 

The samples I1 and I3 were selected as best ones considering the reported features. Still, it 

was encountered some difficulties in reproducing them with the same reported performance 

and in larger production amounts (0.2 g/batch). However, one of the authors of the original 

article describing this adsorbent upon being contacted by e-mail contact responded, 

“I encountered some difficulties to scale-up to larger than even 0.1 g/batch (…) I used multi-

autoclaves to scale it up”. 

SBSSA, aimed to capture carbon dioxide at milder temperatures (75 °C) that is closer to the 

temperature of the flue gases emitted in power stations (90 °C in natural gas combined cycles 

power plants and 110 °C in coal-fired power plants).  

3 samples of SBSSA were prepared changing the sodium carbonate weight fraction: 10 wt.% 

(N10), 20 wt.% (N20) and 40 wt.% (N40). It was found that the particles are not completely 

homogeneous concerning sodium carbonate layer thickness. The breakthrough curve tests 

showed that as expected the water has an impact on the CO2 capture. However, it would be 

necessary to run more tests in order to understand what really happens on the particles 

during long lasting adsorption/desorption experiments. 

 

5.1. Goals Achieved 

The MAMS production tests showed that as expected from the article’s authors [1], it is not 

possible to “scale it up”. However, even the samples produced in small amounts but still 

more than the amount produced by the authors, do not have capabilities to adsorb carbon 

dioxide. 
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The SBSSA production method conducted didn’t have good results in homogeneity. Still, it was 

observed that at 70 °C the particles are able to adsorb carbon dioxide. However it would be 

necessary to run some more tests to observe the durability of the material. 

 

5.2. Limitations and Future Work 

During this internship it was possible to learn not only in a scientific level but also how the 

work in real life carried out. In research it is not easy to make some trials and run some tests 

whenever possible. Thus, some parts of the work has to be stopped for some time waiting for 

available equipment or even to make decisions about the next step. 

Nevertheless, it was possible to perform several experiments and characterization tests on 

both types of solid sorbents (MAMS and SBSSA). However, some more tests would be necessary 

to run for a better understanding of particles behaviour. 

MAMS project ended with these results while the research work carried out in SBSSA will be 

continued by Sorbent Technologies department on SINTEF. 
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