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Abstract 
In aquatic environments, every natural or artificial underwater surface is subjected 

to a successional colonization by micro and macroorganisms in a process called 

biofouling. Biofouling represents one of the current issues in the marine environment due 

to the biocidal properties of the effective antifouling (AF) agents inducing toxic responses 

in organisms (e.g. tributyltin (TBT), booster biocides) and also due to the strong negative 

impact on the economical level leading to large investments worldwide estimated at 150 

billion USD per year. Thus, there is a growing need of alternative non-toxic and 

environmentally friendly AF coatings based on natural bioactive compounds.  

Cyanobacteria is a group of prokaryotic microorganisms that produce a wide range 

of secondary metabolites with recognized bioactivity towards a wide range of biological 

responses and although not so explored in terms of potential AF properties. Regarding 

this, the aim of this work was to test several strains of cyanobacteria for potential AF 

properties using anti-settlement bioassays with adult, juvenile and plantigrade larvae of the 

biofouling mussel Mytilus galloprovincialis.  

This study was conducted by animal exposure for 15 hours to extracts of different 

cyanobacterial strains using experimental sets adapted to each developmental stage. 

Post-exposure settlement was determined by the production/non-production of byssal 

threads by each test individual, determining the potential of each strain to inhibit mussel 

adhesion. Promising extracts were then fractioned by a gradient of polarity and new 

assays were performed testing each obtained fraction. Active fractions continued to be 

fractioned and tested in order to obtain an AF substance was achieved and characterized.   

Results showed some promise cyanobacteria crude extracts and fractions with 

anti-settlement activity of both juvenile and plantigrade larvae of Mytilus galloprovincialis. 

Despite this fact, results revealed different levels of sensibility from the two development 

stages as plantigrade displayed lower settlement percentages in almost every bioassay 

performed. LEGE06077 strain (Nostoc sp.) revealed high levels of thread inhibition 

throughout the project, from preliminary assays with adult individuals to fraction and sub-

fraction bioassays using the two earlier stages. Cultured biomass from LEGE06077 was 

submitted to three fractioning processes through VLC and HPLC. Final assays showed 

positive results in plantigrade stage, induced by two sub-fractions that were then 

characterized by 1NMR.  
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On the basis of these results, it can be concluded that this bioassay-guided 

screening showed effectiveness in the detection of new potential natural AF agents. 

 

Keywords: Biofouling; Antifouling; Natural Compounds; Cyanobacteria; Mytilus 

galloprovincialis   
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Resumo 
Em ambientes aquáticos, qualquer superfície submersa é sujeita a uma 

colonização sucessiva por micro e macroorganismos, num processo chamado biofouling. 

Biofouling representa, atualmente, um sério problema no ambiente marinho devido aos 

agentes antifouling usados (como tributilestanho (TBT)) que contêm propriedades 

biocidas e induzem respostas tóxicas em organismos marinhos. Este fenómeno causa 

também impactos a nível económico muito negativos com perdas de 150 biliões de 

dólares por ano. Deste modo, há cada vez mais a necessidade de agentes antifouling 

alternativos não tóxicos, ambientalmente aceitáveis e com base em compostos naturais 

bioativos.    

As cianobactérias são um grupo de microorganismos procarióticos que produzem 

uma vasta gama de metabolitos secundários já identificados como bioativos e que 

induzem variadas respostas biológicas. No entanto este grupo continua sem ser 

explorado ao nível de propriedades anti-incrustantes. Com base nisto, o objetivo deste 

projeto foi testar várias estirpes de cianobactérias em bioensaios de anti-fixação com o 

intuito de encontrar substâncias com potenciais características antifouling. Para tal foram 

utilizados indivíduos adultos, juvenis e larvas plantigrade da espécie Mytilus 

galloprovincialis.  

Este estudo foi conduzido por exposição do animal durante 15 horas a um meio 

enriquecido com diferentes extratos de cianobactéria, utilizando desenhos experimentais 

adaptados a cada uma das fases de desenvolvimento. Após exposição, a produção/não 

produção de fiadas de bisso por cada um dos indivíduos determinou a sua fixação e o 

potencial de inibição de cada estirpe. Extratos promissores foram fracionados por um 

gradiente de polaridade e novos bioensaios foram realizados com as frações obtidas. 

Frações ativas foram continuadamente fracionadas até compostos com propriedades 

antifouling terem sido alcançados e caracterizados.    

Os resultados obtidos demonstraram alguns extratos brutos e frações promissores 

com atividade anti-incrustante em indivíduos juvenis e larvas plantigrade. Apesar deste 

facto, os resultados revelaram também diferentes níveis de sensibilidade da parte destes 

dois estados de vida, com as larvas plantigrade a obterem percentagens de fixação mais 

baixas do que os juvenis em quase todos os bioensaios realizados. LEGE06077 (Nostoc 

sp.) demonstrou níveis elevados de inibição de produção de fiadas ao longo de todo o 
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projeto, desde os bioensaios preliminares com indivíduos adultos, até aos testes com 

frações e sub-frações usando os dois estados de vida anteriores. Biomassa cultivada de 

LEGE06077 foi submetida a três processos de fracionamento, através de cromatografias 

líquidas por vácuo e cromatografias líquidas de alta performance. Bioensaios finais 

mostraram resultados positivos no estado larvar, induzidos por duas sub-frações que 

foram posteriormente caracterizadas por espectroscopia de ressonância magnética 

nuclear (1H).    

Com base nestes resultados, pode ser concluído que estes bioensaios se 

mostraram eficazes na deteção de novos compostos naturais com propriedades 

antifouling. 

 

Palavras-chave: Biofouling, Antifouling, Compostos Naturais, Cianobactérias; 

Mytilus galloprovincialis   
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1. Introduction 

1.1 Biofouling  
 

Biofouling can be described as an undesirable accumulation and fixation of 

microorganisms, plants or animals on artificial underwater surfaces (Yebra, Kiil et al. 

2004). Particularly in aquatic environments, every natural or artificial surface, at least 

partially underwater is easily and rapidly colonized by micro and macro organisms 

(Dobretsov, Dahms et al. 2006). This process is generally described as a four-step 

process that can be initiated within minutes from the material immersion (Rosenhahn, 

Schilp et al. 2010), (Fig. 1).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The first stage is the prompt adsorption of organic molecules and inorganic 

compounds to the newly submerged surfaces, creating a conditioning film (Martín-

Rodríguez, González-Orive et al. 2014). This modified surface will then be colonized by 

bacteria and diatoms, forming a complex biofilm that will be essential for further species 

settlement (Gittens, Smith et al. 2013). The third biofouling step is the arrival of secondary 

colonizers like protozoa and algae spores that will lead to the fourth stage, the settlement 

and growth of macrofouling organisms like marine invertebrates and multicellular algae 

(Harris, Tozzi et al. 2013). This represents a critical survival process for many organisms 

Fig. 1 - Biofouling process. Adapted from (Abarzua and Jakubowski 1995). 
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given that it is an essential step in their life cycles, normally after an initial planktonic 

existence (Chambers, Stokes et al. 2006). 

The initial biofilm establishment appears to be a fundamental stage functioning as 

a subtract indicator to the following micro and macrofoulers (Chambers, Stokes et al. 

2006, Dobretsov, Dahms et al. 2006). These biofilms are aggregations of microorganisms 

set in a gelatinous matrix of extracellular polymers which contribute to surface chemical 

composition modification and also provides nutrient access, predator protection and higher 

biocide resistance (Yebra, Kiil et al. 2004). The formation of the conditioning layer and 

subsequent biofilm are key stages that depend on the surrounding environmental 

conditions (Semiao, Gazzola et al. 2012). This means that the biofilm structure, like its 

chemical or biotic composition can be very diverse, fact that will also influence the fouling 

communities that will settle in the following stages (Dobretsov, Dahms et al. 2006).  

Although divided into these four steps, biofouling is considered to be a very 

dynamic and complex process that may be not entirely sequential (Martín-Rodríguez, 

González-Orive et al. 2014). Environmental characteristics and species interactions are its 

two major components (Briand 2009). 

 Despite the biological importance of this process, biofouling brings several 

inconveniences to maritime industries, where men-made constructions are heavily 

colonized (Gittens, Smith et al. 2013). The naval industry is particularly susceptible to 

biofouling that occurs on ship’s hulls representing economic losses of millions of dollars 

every year (Schultz, Bendick et al. 2011). The roughness created by the fouling organisms, 

including invertebrates, leads to a higher frictional resistance which decreases the ships 

top speed and range, and that can only be compensated by an increase in fuel 

consumption (Callow and Callow 2002). In addition to the performance losses and the 

higher pollution outputs, biofouling accelerates material degradation leaving ships more 

vulnerable to chemical phenomenon like oxidation and corrosion (Rosenhahn, Schilp et al. 

2010). This means that more frequently dry-docking operations are required because of 

the higher deterioration rate of the hulls (Chambers, Wharton et al. 2014), producing a 

significant amount of toxic waste (Yebra, Kiil et al. 2004) 

Other industries, like aquacultures may also be jeopardized by biofouling as well as 

activities involving cooling water systems, where the fouling organisms can impair the 

heating exchanges (Rosenhahn, Schilp et al. 2010). In countries with drinking water 

shortage, water purification or reverse osmosis membranes can be rapidly degraded by 

biofouling, causing its frequent replacement and therefor an increase in the final water cost 
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(Rosenhahn, Schilp et al. 2010).  

 Biofouling brings not only economic concerns but an important ecological threat as 

well. The fixation of organisms in ships hulls might contribute to the introduction of new 

species in different habitats, endangering global biodiversity (Briand 2009).  

 

 

1.2 Antifouling 
 

In order to mitigate these ecological and economic issues, several substances 

were applied for the prevention of biofouling through history. 

Going back 2000 years, ship hulls were covered with lead, whale oils, sulfur and 

arsenic to prevent the fouling of these organisms. Several recipes were then patented and 

commercialized and by the 18th century, with the evolution of wooden hulls to metal, the 

demand for antifouling (AF) substances increased even more  (Castro, Westphal et al. 

2011). 

For this reason, copper and zinc derivatives were implemented in the navy 

industry. However its short durability led to a continuum research for other substances that 

could persist longer. So, in the 60’s, the first organotin –based AF substance was 

introduced in the market (Chapman and Guillette 2013). 

The AF process is conducted by a progressive release of the biocide paint from 

ship hull’s to the environment which contributes to a large input of these substances in 

enclosed spaces like docs and harbors (Yebra, Kiil et al. 2004). Suspension particles are 

especially damaging when concerning non-selective filter-feeders (Parks, Donnier-

Marechal et al. 2010).  

The tributyltin (TBT) or triphenyltin (TPT) were the main active ingredients of these 

new paints that rapidly became of common use (Qian, Xu et al. 2010). Its high efficiency 

and long durability provided a huge economical advantage above the until then used 

biocides (Castro, Westphal et al. 2011). 

It was only in the 80’s that the consequences caused by organotin derivatives, like 

TBT were discovered. The decline and extinction of mollusk populations, in coastal areas 

was for the first time associated with TBT exposure attributed to a phenomenon called 

imposex (Abidli, Lahbib et al. 2013). Imposex or pseudohermaphroditism is the 

superimposition of male characteristics in female individuals (Chapman and Guillette 
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2013). TBT acts as endocrine disruptor that can increase the testosterone hormone and 

therefor led to the development on penis and vas deferent in female aquatic gastropods 

(Santos, Vieira et al. 2004). In extreme cases these new male organs can overgrow the 

female ones causing sterility (Bettin, Oehlmann et al. 1996). 

Tin (Sn4+) organic derivatives as TBT are characterized by the presence of 

covalent bonds between three carbon atoms and a tin atom. Organotin toxicity is 

correlated with the presence and number of organic groups in the molecule (Sousa, 

Ikemoto et al. 2009, Sousa, Pastorinho et al. 2014). In aquatic environment, TBT is easily 

removed from the water column and adsorbed to dissolved particles or sediments because 

of its high specific gravity, low solubility and high octanol-water partition coefficient  (kow) of 

4.4 (Antizar-Ladislao 2008). Thus, it is rapidly absorbed by organic material including 

bacteria, algae and zooplankton from where it accumulates through the food chain. Also, 

TBT adsorption onto sediments is a reversible process, as these sediments act like a long 

term source of the compound, that is constantly resuspended it into the water column 

moved by hydrodynamics (Filipkowska, Kowalewska et al. 2014). TBT’s half-life can be up 

to 5 months in aerobic conditions and reach tens of decades under anaerobic conditions 

(Santos, Vieira et al. 2004, Sousa, Ikemoto et al. 2009). It is the most known toxic 

organotin and it affects both target and non-target organisms (Santos, Enes et al. 2009), 

being responsible for several toxic effects like growth, development and reproduction 

deficiencies in aquatic species like the bivalve Mytilus edulis and Scrobicularia plana 

(Smith, Bolam et al. 2008).  

Given the recognized TBT toxic effects, its wide distribution, high hydrophobicity 

and long persistence (Santos, Enes et al. 2009), TBT-based paints restriction began in the 

90’s, not showing significant results until September 2008 when the International Maritime 

Organization (IMO) totally banned the use of organotin compounds (Cho, Lam et al. 2014). 

The coatings containing TBT had to be removed and traffic was restricted to ships TBT 

free (Smith, Bolam et al. 2008, Sousa, Laranjeiro et al. 2009, Castro, Westphal et al. 

2011). Despite these restrictions, several developing countries continue to use these very 

effective AF paints, as well as other countries that didn’t join the IMO (Cruz, Moreira et al. 

2014). 

However, prior restriction organotin levels reached up to 500ng/L in European and 

North American harbors, values that dropped down to a maximum of 100ng/L in water 

samples, after the TBT’s prohibition by the IMO (Antizar-Ladislao 2008). 
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1.2.1 Biocides and Boosters  
 

 After the ban of TBT, the demand for new biocides began to grow. Copper-based 

alternatives have become the most used compounds in AF paints after the TBT 

prohibitions (Dafforn, Lewis et al. 2011), gaining importance in this market.  

Copper (Cu) is an essential metal needed at small levels to allow the proper 

functioning of all organisms. However it shows high toxicity when presented in high 

concentrations and therefor it has been used as an AF compound (Guardiola, Cuesta et al. 

2010), normally in the form of cuprous oxide in a silicone polymer matrix (Gittens, Smith et 

al. 2013). Although it has proven to be a more eco-friendly alternative to TBT, copper-

based biocides have also shown some environmental consequences, like effects on non-

target species and significant concentrations accumulated in coastal areas (Vivien W.W. 

Bao, Kenneth M.Y. Leung et al. 2011). Copper toxicity to aquatic organisms is also 

correlated to factors like pH, salinity, among others that influence its speciation, which 

concerns the metal chemical state. This means that different Cu molecules can present 

distinct bioavailable forms and so different levels of toxicity (Reeder, Schoonen et al. 2006, 

Castro, Westphal et al. 2011). The use of copper-based biocides has also a negative 

impact because of the colonization advantage that is given to the metal tolerant species. 

This means that invasive species became able to settle and survive in copper polluted 

areas and native species began to disappear. In conclusion, the toxic tolerance levels are 

inversely proportional to the biodiversity presented by the polluted region and loss of 

native species might occur (Dafforn, Lewis et al. 2011). Thus, the entrance of these 

compounds in trophic chains through aquatic organism can be a seriously problem 

especially concerning species with high commercial importance and edible for humans 

(Dafforn, Lewis et al. 2011).  

To control the Cu resistance displayed by some biofouling organisms and enlarge 

its action, most of the biocides paints were supplemented with new substances called 

“boosters” (Yebra, Kiil et al. 2004, Parks, Donnier-Marechal et al. 2010). These are 

generally agrochemicals (Omae 2003), and are used to control several species like algae 

and diatoms that present a higher resistance to copper (Guardiola, Cuesta et al. 2010). 

Organic boosters (i.e. Irgarol 1051, Diuron and Sea Nine) started to be incorporated into 

AF paints (Vivien W.W. Bao, Kenneth M.Y. Leung et al. 2011). According to the Biocides 

Directive (98/8/EC), biocides are active substances or preparations that are intended to 

destroy, deter, render harmless and exercise control or prevent the action of any other 
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harmful organism through chemical or biological means. Although the use of booster 

biocides was meant to be a less toxic alternative to TBT-based paints, some studies show 

that substances like Irgarol 1051 can be more harmful to several species than the 

organotins compounds (Balakrishnan, Takeda et al. 2010). Irgarol 1051 and Diuron are the 

two major booster biocides used worldwide (Gatidou, Thomaidis et al. 2007) and its 

toxicity levels to the environment have been of great public concerning (Gatidou, 

Thomaidis et al. 2007).   

 Irgarol 1051 is a ubiquitous herbicide (2-methylthio-4-tert-butylamino-6-

cyclopropylamino-s-triazine) that interferes with photosynthetic activity of autotrophs like 

algae and diatoms. It can act both on fresh and sea water and can rapidly dilute and 

disperse into the aquatic surroundings becoming bioavailable in larger areas. Significant 

concentrations can be found either on the water column as well as sediments which make 

each particle a source of continuum release of the toxic (V.Thomas, McHugh et al. 2002, 

Yebra, Kiil et al. 2004).    

This booster biocide interferes with the transport of captured electrons within 

chloroplasts of the photosystem-II (PSII) thus inhibiting photosynthesis (Konstantinou and 

Albanis 2004). This brings severe consequences to marine biodiversity given that primary 

producers like phytoplankton communities can be seriously affected by even small 

concentrations like 50 ng/l (Liu, Pacepavicius et al. 1999, Yebra, Kiil et al. 2004, Zamora-

Ley, Gardinali et al. 2006). Adding to the factors mentioned above, Irgarol 1051 has a 

persistence due to its long half-life time (about 200 days) which enhances its toxicity 

(Zhang, Leung et al. 2008), however might be degraded by slow biodegradation, 

hydrolysis and sunlight photodegradation. The major and more stable product of this 

degradation is M1 (2-methylthio-4-tert-butylamino-6-amino-s-triazine) that has been found 

as well in high concentrations in coastal areas (Gatidou, Thomaidis et al. 2007, Zhang, 

Leung et al. 2008). Although M1 is also considered a highly toxic compound, some studies 

show that this by-product is not as dangerous to the environment as Irgarol 1051 (Yebra, 

Kiil et al. 2004). However, there is not much information yet about M1 and its risks to the 

environment and further studies should be conducted. The Irgarol 1051 use as already 

been restricted in several countries but due to its high persistence, dangerous 

concentrations of this chemical continue to be found in coastal areas (Chambers 2008).  

   Diuron (1-(3,4-dichlorophenyl)-1,1-dimethylurea) is a substituted urea based 

herbicide that has been also used as an AF substance (Yebra, Kiil et al. 2004). It is a non-

ionic compound with moderate solubility and high resistance to degradation (V.Thomas, 
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McHugh et al. 2002). Like Irgarol 1051, Diuron interferes with the photosynthesis process 

and studies show that it has a similar toxicity to the previous booster biocide, also affecting 

non-target species (Konstantinou and Albanis 2004). Considerable concentrations can be 

found in the marine environment, however not only from AF usage, given that agricultural 

activities can also be a great source of Diuron inputs (Dafforn, Lewis et al. 2011). Diuron is 

considered a hazard substance by the European commission and its use has been 

restricted in several countries like UK and France (Balakrishnan, Takeda et al. 2010). 

 4,5-dichloro-2-n-octyl-4-isothiazolin-3-one (DCOIT) is the active compound of Sea 

Nine ® AF paint (Guardiola, Cuesta et al. 2010). It is a compound from natural origin and 

has high anti-microbial activity and a similar toxicity to both phytoplankton and zooplankton 

with effects in a wide range of bacteria, fungi and algae (Castro, Westphal et al. 2011, 

Dafforn, Lewis et al. 2011). Sea Nine® won the U.S “Green Chemistry Challenge Award’’ 

and it is considered to be the less armful booster biocide (Konstantinou and Albanis 2004).  

It has low environmental risk due to its rapid degradation with a half-life time of less 

than 24h (Dafforn, Lewis et al. 2011). Its degradation products can be up to five times less 

toxic than DCOIT and its toxicity can rapidly be reduced to non-significant levels (Yebra, 

Kiil et al. 2004). Furthermore it binds strongly to sediments becoming immobile and less 

bioavailable (Gatidou, Thomaidis et al. 2007). Despite the environmental advantages 

shown by DCOIT, some studies demonstrate that it can also affect non-target species like 

sea urchin (Kobayashi and Okamura 2002) and even be more toxic then Irgarol 1051 and 

Diuron to some organisms. Because of this, Sea Nine® has been given, in some 

countries, the same regulatory status as Diuron (Konstantinou and Albanis 2004).   

 Chorothalonil (2,4,5,6-tetrachloroisophthalonitrile) is a broad-spectrum fungicide 

commonly used in agriculture (Guardiola, Cuesta et al. 2010). It can be acutely toxic to 

some organism like fish and due to its high toxicity at low concentrations and persistency 

(with a half-life time of four weeks) its use has been banned in some countries (Castro, 

Westphal et al. 2011, Dafforn, Lewis et al. 2011). 

 Dichlofluanid (N-dichlorofluoromethylthio-N0-dimethyl-N-phenylsulphamide) is a 

fungicide considered to be one of the less toxic AF booster biocides (Parks, Donnier-

Marechal et al. 2010). It has a high degradation rate, especially by photodegradation, even 

when bond to sediments (Hamwijk, Schouten et al. 2005, Castro, Westphal et al. 2011). 

The use of dichlofluanid has become more popular as an AF substance since the 

implemented restrictions to the use of Diuron, Irgarol 1051 and Chorothalonil (Parks, 

Donnier-Marechal et al. 2010). However not many Dichlofluanid and its by-products 
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information is available so further studies should also be conducted (Parks, Donnier-

Marechal et al. 2010). 

The most important metal-based booster biocides are the salts of pyrithione, mainly 

zinc and copper (Yebra, Kiil et al. 2004). They have algaecide, fungicide and bactericide 

effects and are quite toxic to aquatic plants and animals (Guardiola, Cuesta et al. 2010). 

Despite its toxicity, pyrithiones have rapid degradation rates, especially to sunlight which 

results in less toxic compounds. It has low water solubility and low accumulation on 

sediments due to its easy reduction under anaerobic conditions. However, polluted or 

deep water areas with no UV light penetration may present higher pyrithiones 

concentrations (Yebra, Kiil et al. 2004).  

 

1.2.2 Natural Antifouling 
 

With all these ecological consequences and biocide restrictions, new and more 

environmentally friendly AF compounds are needed (Qian, Xu et al. 2010). One of the 

approaches currently in study is by using biomimetics, replicating mechanisms already 

used by nature (Gittens, Smith et al. 2013). In fact, several marine animals have 

developed the capacity to maintain its body surface free from biofouling. This colonization 

by other organisms (epibiosis) lead to respiration problems, drag increasing, nutrient 

absorption among others (Yebra, Kiil et al. 2004). Two different inhibition mechanisms are 

described: passive and active inhibition (Gademann 2007). Sharks, rays and other species 

of Elasmobranchii, have their skin surrounded by placoid scales that inhibit the fixation of 

fouling organism (Magin, Cooper et al. 2010). Its body surface it’s naturally modified to 

prevent colonization and therefore to passively act against biofouling. Sessile organisms 

like sponges, cnidarian and algae can control biofouling through secondary metabolites 

that act enzymatically as chemical defenses (Limna Mol, Raveendran et al. 2009, 

Chapman, Hellio et al. 2014). This ability to prevent settlement and fixation by other 

organisms is now being explored as AF technology (Fusetani 2003, Soliman, Mohamed et 

al. 2014) for the substitution of the TBT-based AF or booster biocides that were used in 

the last decades (Soliman, Mohamed et al. 2014). Many marine compounds with 

bioactivity have been identified and isolated in the last decades from marine bacteria, 

algae, sponges and others. (Tan, Goh et al. 2010, Xua, Hea et al. 2010).  
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 This bioactivity might be exerted by different mechanisms of action in the target 

biofouling species that are being explored. The capacity of inactivate surface key proteins 

and peptides in the adhesion process (Gittens, Smith et al. 2013); the multicellular control 

exhibited by some marine bacteria interfering with the thickness of biofilms therefore 

preventing biofouling in its first stages; spore germination of some macroalgae and the 

important bacteria regulatory system, quorum sensing, can also be prevented by biogenics 

produced by other organism (Bhadury and Wright 2004, Dobretsov, Teplitski et al. 2011); 

protection from fouling of host’s soft body by epibiotic bacteria living in association 

(Dobretsov, Dahms et al. 2006); among others.  

Despite the proved efficacy of natural products as AF substituents, the large 

amount of organisms involved in the biofouling process acts as an obstacle to natural AF, 

given that secondary metabolites usually inhibits only a restricted group of fouler 

organisms (Camps, Briand et al. 2011). As so, synergies between different compounds 

should be studied to better understand and replicate the natural defenses present in 

marine ecosystems (Chambers, Stokes et al. 2006). 

Also, despite its natural presence in the environment, some marine compounds 

proved to be highly toxic, as happens with some natural-based booster biocides (e.g. Sea 

nine@) (Callow and Callow 2002). Therefore before approval, any natural AF has to be 

intensely studied and its properties established. Its stability, solubility, LC50/EC50 ratio and 

degradation speed should be all well determined before its entrance in the market and also 

at least its main mechanism of action in one or more target species (Qian, Xu et al. 2010).  

These natural AF compounds would have to be incorporated in a paint matrix and 

a progressive releasing process should also be created (Chambers, Wharton et al. 2014). 

The biological material supply appears to be another issue in the progress of natural AF 

paints, given that some species are hard to cultivate in large amounts in short periods of 

time (Dobretsov, Dahms et al. 2006, Fusetani 2011).  

All these requirements bring economic issues to this type of research (Dafforn, 

Lewis et al. 2011), and the costs of this technology should also be sustainable (Yebra, Kiil 

et al. 2004). 

Microorganisms are known to produce several active compounds and new 

applications are constantly being discovered (Gademann 2007), pointing them as a 

sustainable and easily cultivable source of compounds with biotechnological and 

pharmaceutical interest (Costa, Garcia et al. 2014). 
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In this context, organisms like cyanobacteria that can be cultivated in high scales 

(Xua, Hea et al. 2010) and that produce a wide range of secondary metabolites with 

recognized bioactivity towards a wide range of biological responses, can represent one 

practical solution for the demand of new green AF products (Gademann 2007). 

 

 

1.3 Cyanobacteria 
 

Cyanobacteria are a vast group of gram-negative and photoautotroph bacteria that 

can be found in almost every habitat. From terrestrial habitats, to hot spring waters and 

artic environments, these prokaryotic organisms can survive and dominate (Lopes, 

Fernández et al. 2010, Lopes, Ramos et al. 2012). Once called blue-green algae due to a 

blue photosynthetic pigment, phycocyanin, that combined with the existing chlorophyll a 

returns a blue and green color (Madigan, Stahl et al. 2010), it is assumed that they were 

the first oxygenic photosynthetic organism in our planet, being responsible by the 

formation of the present atmosphere (Madigan, Stahl et al. 2010). In our days, 

cyanobacteria are responsible, on a global scale for a significant percentage of fixed CO2 

and N2 (Shih, Wu et al. 2013). These primary producers have a photosynthetic system 

similar to eukaryote organisms with the presence of chlorophyll a and photosystems I and 

II (Willey, Sherwood et al. 2008). Although the majority of this group presents as 

photoautotrophs, some cyanobacteria can grow in dark conditions by using sugar like 

glucose as energy source (Madigan, Stahl et al. 2010). 

As an estimated 3 billion years old group, cyanobacteria must have endured a high 

evolution and adaptation process throughout time and this is the cause for their great 

biodiversity (Leão, Ramos et al. 2013).  

This group’s classification has been very controversial (Oren 2011). Cyanobacteria 

were first considered blue-green algae under the Botanical Code, based on their 

morphologically characteristics (Palinska, Thomasius et al. 2006). However, these 

phenotypical characteristics are susceptible to be changed by environmental factors and 

data collected from cyanobacterial cultures can be distinct from organisms growing in 

nature because culture conditions can have strong influence over their morphological 

features (Zapomělová 2006, Komárek 2011). 
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Recently, biochemical, genetic and physiological analyses have proven 

cyanobacteria to be prokaryotic organisms, revealing the presence of a peptidoglycan cell 

wall, a typical feature from gram-negative Eubacteria (Vincent 2009). This forced the 

classification system to be reconsidered and so cyanobacteria began to be characterized 

under the Bacterial Code (Komárek 2006). The two classification methods are not easily 

combined and both molecular and morphological features should be taken in consideration 

when classifying cyanobacteria (Komárek and Mares 2012). Table I shows a botanical 

taxonomic classification in which cyanobacteria are distributed amongst five different 

groups that correspond to sub-sections of Phylum BX, which corresponds to cyanobacteria 

in the bacteriological scheme (Castenholz, Wilmotte et al. 2001, Vincent 2009).  

 

Table I - Cyanobacteria classification (Vincent 2009) 

Order Characteristics Genera 

Chroococcales 
Coccoid cells that reproduce 

by binary fission or budding 

Aphanocapsa, Aphanothece, 

Gloeocapsa, Merismopedia, 

Microcystis,Synechococcus, 

Synechocystis 

Pleurocapsales 

Coccoid cells, aggregates or 

pseudo-filaments that 

reproduce by baeocytes 

Chroococcidiopsis, 

Pleurocapsa 

Oscillatoriales 
Uniseriate filaments, without 

heterocysts or akinetes 

Lyngbya, Leptolyngbya, 

Microcoleus, Oscillatoria, 

Phormidium, Planktothrix 

Nostocales 

Filamentous cyanobacteria 

that divide in only one plane, 

with heterocysts; false 

branching in genera such as 

Scytonema 

Anabaena, Aphanizomenon, 

Calothrix, Cylindrospermopsis, 

Nostoc 

Stigonematales 

Division in more than one 

plane; true branching and 

multiseriate forms; heterocysts 

Mastigocladus (Fischerella), 

Stigonema 
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Cyanobacteria from different genera may vary in size from 1 to 10µm and can be 

unicellular, form filaments or colonies (Gupta, Ratha et al. 2013). Several symbiotic 

relations with organisms like fungus and lichen have also been described (Willey, 

Sherwood et al. 2008).  

Ecologically, cyanobacteria can be distribute over three groups: mat-forming, 

bloom-forming and picocyanobacteria (Vincent 2009).  

Mat-forming cyanobacteria, like Chroococcus and Leptolyngbya create biofilms 

over rocks, sediments or plants that can reach up to several centimeters in thickness 

(Madigan, Stahl et al. 2010).  

Bloom-forming, i.e. Anabaena and Microcystis occur mostly in eutrophic waters 

and represent a serious human health concern (Bláha, Babica et al. 2009). Under certain 

conditions, like proper temperatures, hydrodynamics and light conditions, these 

cyanobacteria begin to multiply and accumulate rapidly which can lead to the formation of 

blooms (Wang, Huang et al. 2010). These cyanobacteria blooms represent a serious 

threat to aquatic ecosystems and to any animal capable of drinking such waters. 

Recreation activities or fishing in cyanobacteria contaminated areas are two major 

concerns to human health (Vasconcelos, Morais et al. 2011). Although blooms occur 

mostly in freshwaters, estuary and marine environments can also be affected (Ismael 

2012). 

Picocyanobacteria, such as Synechococcus and Prochlorococcus, are believed to 

be the most abundant oxygenic photosynthetic organism on earth and have less than 2 µm 

of diameter (Willey, Sherwood et al. 2008). These cyanobacteria simplicity and small size 

provides them with a significant advantage in light capture and in low nutrient conditions 

(Vincent 2009). 

Cyanobacteria present adaptable mechanisms through specialized cells like 

heterocytes. These structures are typical of filamentous species and are responsible for 

nitrogen fixation (Gupta, Ratha et al. 2013). Some species also produce resting spores 

called akinetes that are used for survival under stress conditions. Small motile fragments 

of filamentous cyanobacteria, called hormogonia are used for asexual reproduction and 

dispersal (Willey, Sherwood et al. 2008). These photosynthetic bacteria are also capable 

of synthesize UV protection compounds and can resist extreme light and nutrient 

conditions, being considered water quality indicators (Leão, Ramos et al. 2013).  

Cyanobacteria can colonize and compete in almost every habitat known (Dvornyk 

and Nevo 2003) and for that reason they also had to develop several defense mechanisms 
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towards a wide range of organisms (Burja, Banaigs et al. 2001). These defenses include 

opposing herbivory, prevent plant growth, among others (Yadav, Sinha et al. 2011). For 

this purpose a high amount of secondary metabolites showing numerous modes of action 

such as photosynthesis inhibition, cellular paralysis or oxidative stress among others can 

be synthetized by these organisms (Gupta, Ratha et al. 2013). Studies show that species 

with a higher growth rate produce less chemical defenses than the ones with slower rates 

which can be explained by the greater and more extended need of protection from the last 

(Burja, Banaigs et al. 2001). These metabolites are also toxic to humans making 

cyanobacteria a human health problem (Martins, Fernandez et al. 2007). These 

cyanotoxins can include hepatotoxins, neurotoxins, cytotoxins and dermatotoxins among 

others (Yadav, Sinha et al. 2011). However, despite the potential danger that these 

compounds represent, several new properties have been discovered in the last years that 

made cyanobacteria become a valuable source of these unique bioactive natural products 

(Jones, Gu et al. 2009, Brito, Ramos et al. 2012). These metabolites can be aminoacids, 

lipopeptides, fatty acids, among others (Lopes, Fernández et al. 2010). Anti-viral activity, 

as well as anti-algae, anti-bacterial, fungicide and anti-tumor properties have been 

demonstrated by these cyanobacterial-derived compounds (Dahms, Ying et al. 2006). 

Given that cyanobacteria appears to be a polyphyletic group with high diversity 

(Leão, Ramos et al. 2013), and that even different strains of the same species can 

produce different compounds, the biochemical potential of these photosynthetic bacteria is 

yet to be totally exploited (Zapomělová 2006). Adding to its great biodiversity 

cyanobacteria shows relative easy culture conditions (Dahms, Ying et al. 2006), appealing 

to the continuum research of these bioactive compound sources. 

Recent studies have demonstrated that some cyanobacteria strains can prevent 

micro and macrofouling formation (Gademann 2007, Xua, Hea et al. 2010). The 

cyanobacteria Lyngbya majuscula has already been tested as an AF agent, showing 

positive outcomes (Tan, Goh et al. 2010). Further studies on this topic might show more 

promising results from other species given that cyanobacteria has already proven to have 

antibacterial activity, therefore preventing the early stages of biofouling process. This could 

lead to a possible replacement of the currently used booster biocides and other toxic 

substances like TBT, by a new and ecofriendly compound (Volk and Furkert 2006). 

Nevertheless, studies concerning AF properties against aggressive macrofoulers like 

mussels of the genus Mytilus are underexploited and ought to be conducted. 
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1.4 Mytilus galloprovincialis (Lamarck 1819)  
 

The genus Mytilus represents marine bivalve mollusks, generically called mussels, 

that are widely distributed in intertidal and subtidal areas that play an important role in 

marine food webs and are also used for human consumption (Ciocan 2002, Osswald, S. 

Rellán et al. 2008). There are three species in the genus Mytilus: M. edulis L. 1758 (blue 

mussel), M. galloprovincialis Lamarck 1819 (Mediterranean mussel) and M. trossulus 

Gould 1850 (Baltic mussel) (Beaumont, Gjedrem et al. 2006). M. edulis and M. 

galloprovincialis are the most similar and their distribution areas frequently overlap which 

leads to hybridization resulting in fertile individuals (Bierne, David et al. 2002). Due to their 

easy culture conditions and appealing taste, mussels became very explored by 

aquaculture industries being considered today one of the most farmed aquaculture species 

(Wonham 2004), with approximately 1 800 000 tones produced in 2012 and valued at 

more than $2 billion USD (FAO 2013). Mussels beds can have up to 2400 individuals per 

m2 distributed in multiples layers and provide habitat for several other species (O’Connor, 

Crowe et al. 2006). Studies show that they have a high ecological plasticity (Sukhotin and 

Portner 1999) and adaptability degree (Bhaby, Belhsen et al. 2014). Mytilus communities 

are constantly submitted to a wide range of variables like temperature, air and wave 

exposure (Steffani and Branch 2003). This variability tolerance combined with the species 

fast growth and reproduction rate provided it with great invasive capacity which led to its 

inclusion in the World’s Worst 100 Invasive Alien Species (GISD 2012). Mytilus poses a 

severe threat worldwide not only because of its invasive characteristics but also due to its 

fouling potential (Briand 2009). With the constant increasing of world trades, many coastal 

areas have been subjected to the introduction of alien species by ship’s hulls (Yebra, Kiil 

et al. 2004). M. galloprovincialis, in particular, has been very successful at establishing 

itself in new habitats and becoming a competitor with many indigenous species (Bownes 

and McQuaid 2006). 

 

Mussels are sedentary filter feeders with 4 to 5 cm long, usually dark blue or brown 

(Aral 1999, GISD 2012). A 5cm mussel can filter about 5 litre per hour of water (FAO 

2010). They accumulate and concentrate filtered food and for that reason are used as 

bioindicators (Osswald, S. Rellán et al. 2008). Both valves are identical in shape and size 

and become firmly closed when the animal is exposed to air by a posterior adductor 



FCUP l 29 
                         Searching for cyanobacterial natural antifouling compounds against Mytilus galloprovincialis settlement  

 

muscle (Beaumont, Gjedrem et al. 2006). They attached themselves to the hard 

substratum by producing about 50 to 100 threads in adults each with 3 to 4 cm, that 

combined form the byssus (Waite, Andersen et al. 2005). The threads emerge from the 

ventral gap, being secreted by glands in the mussel’s foot and take less than five minutes 

to be formed (Dalsin and Messersmith 2005). The fixation of each thread to the substratum 

is made by an adhesion plaque that usually has 1 to 2 mm of diameter (Waite, Andersen 

et al. 2005). Multiple threads are constantly being produced when the individual is already 

settled, to enhance the byssus stability and to replace any broken or damaged one 

(Steffani and Branch 2003). The organism’s settlement represents a fundamental key in 

the organism survival (O’Connor, Crowe et al. 2006), because it allows them to remain 

attached to the surface while filtering the surrounding water for phytoplankton and other 

organic matter (FAO 2010). They can detach and reattach in different locations by using 

the foot, a mobile organ, to scan the substratum and by producing new threads to form a 

new byssus (FAO 2010). If a direct connection was made amongst the mollusk and the 

hard substratum, the stiffness disparity between the two would cause the softer one to 

deform. This way the byssus acts like a common interface between the solid surface and 

the mussel’s soft body preventing the deformation of the last (Waite, Andersen et al. 

2005).  

Mytilus species reproduce by external fertilization (Oyarzún, Toro et al. 2014) with 

both male and female spawning at the same time and millions of gametes being released 

into the surrounding waters (GISD 2012). This usually occurs when the water temperature 

rises which can be explained by the presence of higher food concentrations, given that 

gametogenesis has been proven to require a great amount of effort and food uptake by 

mussel individuals (Ros, Bressan et al. 1985). Sexual distinction of the animals is possible, 

however not totally assured, by gonad color analyses. Usually male mussels present 

white-yellowish gonads while female ones are red-yellowish (Ciocan 2002).  
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After fertilization, mussels life cycle (Fig. 2) start by different pelagic naupliar larval 

stages and the first settled mussel larvae are called pediveligers or veligers (Bayne 1976) 

which are selective about its settlement site (Carl, Poole et al. 2011). Settlement is 

described as the process in which larvae attach permanently to the substratum and after 

which metamorphosis occur (T. A. Lasiak and Barnard 1995) being a fundamental step for 

the organism survival (Robinson, Branch et al. 2007). After settlement, pediveligers 

metamorphose into plantigrades (Bayne 1976) that can reattach in several sites before 

becoming stablished and evolve as adult mussels (Carl, Poole et al. 2011).  

Settlement and metamorphosis are two crucial steps in mussel life cycle and 

factors like temperature, salinity or predation can have a significant impact on the larvae 

growth and mortality rates (Chicharo and Chicharo 2000). This is especially relevant given 

the specie’s importance in aquaculture industries (FAO 2010). Another pertinent aspect is 

the factors responsible for the larval settlement and metamorphosis. Besides substratum 

texture, local hydrodynamics among other physical factors (Robinson, Branch et al. 2007), 

studies show that these essential steps can be mediated by natural cues like biofilms 

(Bao, Satuito et al. 2007) or macroalgae (Yang, Satuito et al. 2007) and also induced by 

substances like GABA (gamma-aminobutyric acid) and epinephrine (García-Lavandeira, 

Silva et al. 2005). 

Fig.  2 - Mytilus life cycle, adapted from (Bertness 1999) 
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1.5 Objectives 

 
Considering the global need for effective eco-friendly AF compounds and also the 

great potential demonstrated by cyanobacteria in producing a wide range of promise 

secondary metabolites, the main aim of this work was to screen several cyanobacterial 

strains for their AF potential using a bioassay-guided approach in order to reach a promise 

AF substance. The AF activity was tested as the success of attachment (byssal threads 

production/non-production) of two life stages of the biofouling species Mytilus 

galloprovincialis.  

In order to pursue this main objective, specific objectives were established: 

 Cyanobacterial strains (LEGE culture collection) culture in large-scale; 

 Production of organic and aqueous cyanobacterial extracts; 

 Performing preliminary bioassays using adult mussels (Mytilus 

galloprovincialis), to validate a suitable AF bioassay. 

 Performing AF bioassays with two earlier life stages of M. galloprovincialis, 

plantigrade larvae and juveniles, using the inhibition of attachment induced by 

cyanobacterial strains and fractions as endpoint; 

 Fractioning of promising extracts using vacuum liquid chromatography (VLC) 

and high performance liquid chromatography (HPLC) techniques; 

 Characterizing promising fractions by Nuclear Magnetic Resonance (NMR).  
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2. Material and methods 

2.1 Cyanobacterial culture and biomass achievement 
 

Cyanobacterial strains from Portuguese Atlantic estuaries, intertidal rocky beaches 

and freshwater waterways (LEGE culture collection) were cultured in aerated Z8 or BG110 

liquid medium (Appendix 1) under laboratory conditions at 25ºC, light/dark cycle of 14/10 h 

and light intensity of approximately 25x10-6 E m-2 s-1 (Lopes, Ramos et al. 2012) . 

The initial material was grown in 100ml Erlenmeyer flasks with 40ml of growth 

medium, being re-inoculated into larger recipients for up-scaling. Containers of 1L with 

500ml, 6L with 4L and 20L with 15L of medium were used (Fig. 3). The material was 

collected and again inoculated repetitively until the required biomass was achieved (table 

II). 

 

All the material used in the inoculation process was previously sterilized by 

autoclaving, dried in a 60ºC drying chamber and subjected to UV radiation for 20 minutes. 

The flasks with the Z8 components were sterilized as well before every inoculation. Also, 

filters with 0,22µm were used in the aeration system to minimize contamination. 

Fig. 3 - Cyanobacterial Culture Room 
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When achieved maximum capacity, the biomass was collected by centrifuging 

(Thermo Fisher Scientific, Sorval Legend RT Centrifuge) at 4600 rpm in 7 minutes cycles 

or filtered through a planktonic net with 15µm depending on the cyanobacterial strain. 

Some strains form biofilms or large vesicles that could easily be filtered while others grew 

dispersed in the medium needing centrifugation.  

After collection, the gathered material was stored at -80ºC and freeze-dried. 

 

Table II - Cyanobacterial strains and achieved weights. 

Table III - Previously lyophilized strains from LEGE culture collection 

Strain Code Growth Medium  Dry Weight (g) 

Phormidium autumnale LEGE07200 Z8 4,8548 

Leptolyngbya sp. LEGE07080 Z8 4.0951 

Nostoc sp. LEGE06077 Z8 11,7174 

Nostoc sp. LEGE06077 BG110 3,0218 

Leptolyngbya sp. LEGE06075 Z8 9,3175 

Oscillatoria sp. LEGE03272 Z8  2.3419 

Strain     Code Origin 
Lyofilized 

Biomass (g) 
Organic 

Extract (g) 
Aqueous 

Extract (g) 

Cylindrospermopsis 
raciborskii 

LEGE99043 Freshwater 3 0,776 0,2414 

Microcystis aeruginosa LEGE05195 Freshwater 1,7 0,2261 0,1535 

Phormidium cf.animale LEGE6072 Estuarine  2,3 0,8088 0,1385 

Leptolyngbya sp. LEGE06070 Estuarine  1,66 0,7574 0,2087 

Microcoleus vaginatus LEGE07076 Estuarine  1,64 0,3831 0,0791 

Nostoc sp. LEGE06077 Estuarine  0,65 0,0518 0,0543 

Nodularia sp. LEGE06071 Estuarine  4,2 1,06 0,3084 

Cyanobium sp. LEGE06068 Estuarine  4 0,681 0,8693 

Synechocystis salina LEGE06079 Estuarine  2 0,3481 0,2301 

Leptolyngbya sp. LEGE07084 Estuarine  2 0,4607 0,1432 

Synechocystis cf. Salina LEGE07073 Estuarine  2,3 0,3171 0,718 

Leptolyngbya aff. 
bijugata 

LEGE07085 Estuarine  0,8 0,0888 0,0977 

Phormidium cf. 
chalybeum 

LEGE06078 Estuarine  2,7 0,5762 0,1791 

Microcoleus 
chtonoplastes 

LEGE07092 Estuarine  1,88 0,4353 0,1765 

Leptolyngbya sp. LEGE06069 Estuarine  2 0,1954 0,098 
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 As the time-frame for the achievement of sufficient biomass of the selected strains 

for testing was in some cases incompatible with the period of this thesis, some other 

strains were used from previously cultured and lyophilized material (table III).   

 

 

2.2. Extracts preparation  

2.2.1 Organic extraction 
 

The extraction process was conducted according to Leão, Ramos et al. (2013) using 

the extraction apparatus shown in Fig. 4A. A Büchner funnel, with a Whatman No 1 filter 

paper and a cheese cloth inside was assembled into a vacuum adapter. 

The pre-weighted lyophilized cyanobacteria biomass was placed in a stainless steel 

beaker and 40ml of a 2:1 mixture of dichloromethane and methanol (DCM:MeOH) were 

added per gram of biomass (Fig. 4B). The mixture was stirred for 15 minutes to achieve 

better extraction.  

Solvent contents were decanted and filtered under vacuum through the cheese 

cloth and Whatman No 1 filter paper. The solvent was collected in a 500ml round bottom 

flask and evaporated under reduced pressure by a rotary evaporator (Rotavapor BÜCHI 

RE 111; Rotavapor BÜCHI R. 210). The biomass that remained in the cheese cloth was 

recovered, returned to the beaker and two more extractions were conducted at room 

temperature. The remaining biomass was then repetitively heat-extracted (<40 °C) with the 

help of a hotplate, until the extracted liquid became translucent.  

After all the solvents evaporated, the dried extract was redissolved in a 1:1 mixture of 

isooctane:ethanol and transferred to a previously weighted vial. Using a N2- stream the 

solvent was again evaporated, the crude extract weighed and stored at -20ºC (Fig. 4C). 

 

 

 

 

Leptolyngbya sp. LEGE07080 Estuarine  1,5 0,3858 0,1495 

Leptolyngbya sp. LEGE07075 Estuarine  1,87 0,3786 0,1116 

Synechocystis cf. Salina LEGE06083 Estuarine  2,4 0,3411 0,1031 

Microcystis aeruginosa LEGE91094 Freshwater 21,67 3,486 - 
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A 

C 

B 

Fig. 4 - Extraction apparatus (A, B) and several organic and aqueous extracts (C). 

 

2.2.2 Aqueous extraction  
 

After the organic extraction, 20ml of ultrapure water were added to the remaining 

biomass and let to extract for 30 minutes. The mixture was then decanted and centrifuged. 

The collected supernatant precipitate was stored at -20ºC then freeze-dried, weighed and 

stored again. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AF bioassays were performed as describe in 2.4 and strains showing significant 

differences against the negative controls were fractioned for further testing.  

 

 

2.3 Fractions production  
 

Organic crude extracts were fractioned using a gradient of solvents from the non-polar 

hexanes (Hex) to 100% ethyl acetate (EtOAc) to 100% methanol (MeOH). A vacuum liquid 

chromatography (VLC) apparatus (Fig. 5) was assembled.  
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A silica gel (SiOH Gel) was added to the filtration funel and packed as better as 

possible by turning on the vacuum pump, tapping the funnel sides and adding the first 

mixture of solvents (90% Hex and 10% EtOAc). 

Once the silica was properly packed a Whatman No 1 filter paper was placed on top of 

it. 

This fractionation procedure was applied to 5 strains crude extracts, including 3 from 

previously lyophilized material (LEGE06079, LEGE07084, LEGE91094) and 2 from 

cultured cyanobacteria (LEGE06071 and LEGE06077). This last two strains (LEGE06077 

and LEGE06071) were selected to sub-fractioning after the AF bioassay-based screening 

showed promise results for AF properties.   

 

2.3.1 LEGE06077 sub-fractioning 

2.3.1.1 Vacuum liquid chromatography (VLC) 

Crude extract from LEGE06077 (1,25 g) was resuspended in chloroform, with 

sonication and transferred to the top of the column with a pausteur pipette. The vacuum 

was turn on and when the yellow part of the extract became near the bottom of the 

column, the first fraction started to be collected in a 500ml round bottom flask (Fig. 6). 

Solvents were sequentially added as shown in table IV. Ten fractions (A-J) were achieved, 

Fig. 5  Vacuum Liquid Chromatography apparatus (L. 

M. Harwood, C. J. Moody et al. 1999) 
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evaporated in the rotary evaporator, redissolved in chloroform, dried with a N2-stream and 

stored -80ºC until further use. 

 

  

Fraction Solvent mixture Volume (mL) Biomass/fraction (mg) 

A 10% EtOAc (hex) 250 68,8 

B 20% EtOAc (hex) 200 6,3 

C 40% EtOAc (hex) 200 11,5 

D 50% EtOAc (hex) 200 104,7 

E 60% EtOAc (hex) 200 75,4 

F 80% EtOAc (hex) 200 17,9 

G EtOAc  200 12,9 

H 
25% MeOH 

(EtOAc) 
250 336,1 

I MeOH 450 594,2 

J MeOH 200 190,4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Table IV - Vacuum Liquid Chromatography (VLC) fractionation scheme used in LEGE06077 

Fig. 6 - Fractioning LEGE06077 through Vacuum Liquid Chromatography (VLC). 
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All the fractions (A-J) were screened for AF activity and fraction H was selected for 

further VLC fractioning. LEGE06077/H (330mg) was dissolved in Hex:EtOAc (5:5) and the 

previous process was repeated with the solvent scheme showed in table V. Seven sub-

fractions were obtained (LEGE06077/H/A – LEGE06077/H/G) and new bioassays were 

conducted pointing for sub-fraction H/F.  

 

Table V - Vacuum Liquid Chromatography (VLC) fractionation scheme used in fraction H of LEGE06077  

Sub-fraction Solvent mixture Volume (ml) Biomass/fraction (mg) 

H/A 50% EtOAc (hex) 150 2,2 

H/B 60% EtOAc (hex) 100 1,3 

H/C 80% EtOAc (hex) 100 1,3 

H/D 90% EtOAc (hex) 100 1,5 

H/E EtOAc 100 2,1 

H/F 20% MeOH (EtOAc) 100 50,4 

H/G MeOH 100 161,4 

 

 

2.3.1.2 High Performance Liquid Chromatography (HPLC) 

 

Thus, the sub-fraction LEGE06077/H/F (50mg) was dissolved in methanol and injected 

in a high-performance liquid chromatography (HPLC) (Waters 1525 Binary HPLC Pump; 

Waters 2487 Dual λ Absorbance Detector) with a semi-preparative column (Phenomnex 

Synergy 10µ Hydro-RP 80A; 250x10.00 mm, 10 micron) to achieve new fractioning. 

Wavelength was measured at 254nm and 280nm with a flow rate of 3ml/min and 200µl of 

HF fraction solution were used in each injection. Table VI shows the eluent gradients used, 

and table VII the recovered fractions. Fractions were collected according to the peaks 

displayed in Fig. 7 (Empower TM). 
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Table VI - High Performance Liquid Chromatography’s (HPLC) eluent gradients for LEGE06077/H/F 

Time (m) Solvent mixture Flow Rate (ml/min) 

0 - 10 2% MeCN (water) 3 

10 -11 Gradient to10% MeCN (water) 3 

11 - 15 10% MeCN (water) 3 

15 - 40 Gradient to 100 %MeCN 3 

40 - 60 MeCN 3 

60 - 65 Gradient to 2% MeCN (water) 3 

65 - 90 2% MeCN (water) 3 

 

 

Table VII - Recovered fractions from LEGE06077/H/F 

Sub - Fraction Time (m) Biomass/fraction (mg) 

H/F/ A 2 - 10 0,9 

H/F/ B 10 - 18 0,7 

H/F/ C 18 - 26 1,1 

H/F/ D  26 – 40 2,6 

H/F/ E  40 - 60 24,7 

H/F/ F 60 – 80 6,8 

H/F/ G 80 - 90   

 

Fig. 7 - LEGE06077/H/F fractioning by High Performance Liquid Chromatography (HPLC). Absorbance units (AU) vs time 

 (Minutes).   
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Seven sub-fractions were obtained (HFA – HFG) and new bioassays led, selecting 

two sub-fractions of HFB and HFC). However, as very few biomass was left from the 

previous chromatography, a proper characterization through 13C NMR was not possible, 

although 1H NMR analyses were performed. 

To overcome the biomass shortage, another extraction was made with the 

remaining freeze-dried biomass of this strain and the new crude extract was directly 

purified by HPLC (Fig. 8). The aim was to recover directly the active AF compounds 

present in sub-fractions HFB and HFC without the initial VLC fractioning steps. The same 

semi-preparative column was used, as well as the same HPLC apparatus and eluents as 

previous. A small amount of crude extract was dissolved in 0,5ml of acetonitrile, 

centrifuged (Micro Star 17R), and 10µl were injected in the HPLC and run with a slightly 

different program than before. This preliminary injection was used to confirm the 

information about the required peek's retention time provided by the previous fractioning of 

LEGE06077/H/F. This was necessary because the crude extract represented a much more 

concentrated mixture then the already eluted fractions and the peek's position had to be 

confirmed. The following injections had higher volumes (50, 100 and 200) and were used 

to progressively optimize the eluent gradient and also start the purification process. The 

final program and recovering times are shown in table VIII.  

 

 

 

Fig. 8 - High Performance Liquid Chromatography (HPLC) performed in new LEGE06077 crude extract and collected fractions. 
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Table VIII - High Performance Liquid Chromatography’s (HPLC) eluent gradients for new LEGE06077 crude 

Time (m) Solvent mixture Flow Rate (ml/min) 

0 - 10 2% MeCN (water)  3 

10 - 11 Gradient to 10% MeCN (water)  3 

11 - 15 10% MeCN (water)  3 

15 - 35 Gradient to 100% MeCN 3 

35 - 75 MeCN 3 

75 - 82 Gradient to 2% MeCN (water)  3 

82 - 90 2% MeCN (water)  3 

 

 

 

The new recovered fractions (LEGE06077/a-f) were collected in round bottom 

500ml flasks and evaporated (table IX). 

Fig. 9 shows the obtained peaks used to guide the new fraction’s collection. 

 

 

Table IX - Recovered fractions from new LEGE06077 crude 

Fraction Time (m) Biomass/fraction (mg) 

a 0 - 11 2,9 

b 11 - 15 - 

c 15 – 20 - 

d  20 - 23 - 

e 23 - 28 0,5 

f 28 - 90  - 
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Fig. 9 - LEGE06077 crude extract fractioning by High Performance Liquid Chromatography (HPLC). Absorbance units (AU) 

vs time (Minutes). 

 

 

 

2.3.2 LEGE06071 sub-fractioning 

2.3.2.1 Vacuum liquid chromatography (VLC) 

 
LEGE06071 (2,6g) was fractioned using the scheme presented in table XI. Eight (A 

– H) fractions were achieved and LEGE06071/A and LEGE06071/F were selected to 

further fractioning based on AF bioassays. Priority was given to sub-fractioning of 

LEGE06071/F as complementary tests simultaneously performed based on other 

biological activities also indicated some potential regarding this sub-fraction. 
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Table X - Vacuum liquid chromatography (VLC) fractioning scheme used in LEGE06071 

Fraction Solvent mixture Volume (ml) Biomass/fraction (mg) 

A 10% EtOAc (hex) 350 41 

B 20% EtOAc (hex) 250 7,1 

C 40% EtOAc (hex) 250 11,9 

D 50% EtOAc (hex) 250 190,9 

E 60% EtOAc (hex) 250 72,2 

F 80% EtOAc (hex) 250 52,3 

G EtOAc  250 28,2 

H 25% MeOH (EtOAc) 250 8,1 

 

Only 36mg were available from LEGE06071/F that didn’t represent enough 

material for another normal VLC, so a liquid chromatography by gravity was made. This 

type of column, having a much higher number of theoretical plates, allows for a very 

efficient separation (Fig. 10A).  

The fractions were collected in 138 tubes, each with 3 ml (Fig. 10B) and the eluent 

mixtures are shown in table XII. 

 

Table XI – Liquid chromatography (LC) scheme used in fraction LEGE06071/F 

Fraction Eluent mixture Volume (ml) 

1-42 50% EtOAc (hex) 200 

43-61 80% EtOAc (hex) 100 

62-82 EtOAc  100 

83-102 90% EtOAc (MeOH) 100 

103-120 80% EtOAc (MeOH) 100 

121-138 MeOH 130 

 
 

 

2.3.2.2 Thin Layer Chromatography (TLC) 

 
As a large number of fractions were achieved, thin-layer chromatography (TLC) 

was performed for each tube, in order to evaluate their composition and merge the 

contiguous tubes with similar TLC patterns (Fig. 10C).  
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About 10µl were dotted in the bottom of a TLC plate that was then placed in a 

shallow pool of eluent. The initial eluent mixture was 75% Hex and 25% EtOAc and it was 

used from fraction 1 to 23. After that, a more polar mixture was made with 50% Hex and 

50% EtOAc and used from fraction 22 to 138.  

Although the distance that each colored compound completed could be seen by 

bare eye, the silica plate incorporated a highly reactive chromophore that in case of 

reaction with any colorless compounds would be seen in the UV chamber (254nm and 

366nm) (Fig. 9D).  

The TLC process allowed the merge of the 138 tubes into 11 fractions 

(LEGE06071/F/A – LEGE06071/F/K). 

 

2.3.3 Nuclear magnetic resonance (NMR)  
 

After every fractioning process, samples were sent to Centro de Materiais da 

Universidade do Porto (CEMUP) where 1H NMR analyses at 400 MHz were performed to 

determine the chemical structure of the compounds and to evaluate the effectiveness of 

the separation procedure, through the comparison of the NMR spectra of each obtained 

fraction. Checking the presence of each signal in each individual spectra enables to 

establish the distribution of compounds throughout the collected samples; in other words, if 

A B C 

D 

Fig. 10: A – LEGE06071/F liquid chromatography (LC) with a 13,5cm column. B – 138 fractions collected. C – TLC to merge 

fractions with the same compounds.  D – UV chamber. 
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a given signal (or set of signals) appears in the spectra of one of the fractions and in no 

other, means that the compound responsible for those peaks is contained solely in that 

sample. 

 

 

2.4. Antifouling bioassays  

2.4.1 Preliminary bioassays with M. galloprovincialis adults 

 
Preliminary bioassays were conducted using adults of Mytilus galloprovincialis (1 

cm shell length) and organic and aqueous extracts of previously lyophilized cyanobacterial 

biomass provided by the LEGE culture collection as previously mentioned. 

 Adult specimens of M. galloprovincialis were collected in Memória beach (Porto, 

North Portugal) and immediately transported to the laboratory. The animals were placed in 

aerated 30L aquaria with filtered sea water, at 17ºC and fed three times a week with 

commercial food. Before being used in bioassays, mussels were all cleaned from existing 

threads and trials were performed to select only competent animals (mussels that show 

foot crawling behavior). 

Organisms were exposed for 15 hours to 60 ml medium with extracts of different 

cyanobacteria, in a final test solution concentration of 100 µg/ml. 

Each cyanobacterial extract was tested with 15 individuals divided by 5 petri dish. A 

positive control was carried out with 5 µM CuSO4 and a negative control with filtered 

seawater. 

The AF potential of each strain was determined at the end of the trials by the 

success in attachment, given by the production/non-production of byssal threads by the 

mussels. 

 

 

2.4.2 M. galloprovincialis plantigrade larvae and juvenile bioassays 
 

Considering that preliminary bioassays with adults showed promising results but 

presented the constraint of requiring high amounts of extracts biomass to perform the 

trials, a new approach was designed using mussels plantigrade larvae and juveniles 

(between 0.2 and 0.3 cm). Improvements in cyanobacterial test solutions were also 

included to minimize the extracts usage.  
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2.4.2.1 M. galloprovincialis sampling and preparation 

Samples of intertidal sand and adult pedunculate barnacles were collected from rocky 

beaches of the north coast of Portugal, and immediately transported to the laboratory to be 

analyzed for plantigrade and juvenile mussels in a magnifier (LEICA EZ4). 

 

2.4.2.2 Cyanobacterial test solutions 

Cyanobacterial organic extracts and fractions were redissolved in Chloroform 

(100%) or Isooctane-Ethanol (1:1) with sonication (50-100 mg/ml), except fractions H that 

were redissolved in 100% methanol in order to transfer the required biomass for the test 

solutions. 

Test solutions were prepared according to Fig. 11, with final concentrations of 30 

µg/ml for aqueous and organic extracts and 10 µg/ml for organic fractions in filtered 

seawater. Dimethyl sulfoxide (DMSO) was used as solvent as it provides high solubility 

potential, from non-polar to polar compounds, as is considered, almost, as a universal 

solvent. 

 

 

 

 

 

 

 

 

 

 

 

 

 Fig. 11 - Scheme of test solution, working solution and bioassays preparation. 
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2.4.2.3 AF bioassay 

Plantigrade and juvenile M. galloprovincialis individuals were exposed in 24-well 

microplates to 2.5 ml of the cyanobacterial extracts- and fractions-enriched solutions for 15 

hours in the darkness, to maximize byssal threads production (Carl, Poole et al. 2011). 

Four well replicates were used for plantigrades with a single well hosted 5 plantigrades, 

and twelve well replicates hosting only one juvenile. Two negative control conditions were 

used with filtered seawater only and filtered seawater with 0.1% DMSO. A positive control 

was used with a solution of 5 µM CuSO4. 

At the end of the exposure period the number of threads produced by each individual 

was counted using a magnifier with contrast light for juveniles and a microscope for 

plantigrades, to determine if the animal was fixated to the subtract (Fig. 12).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12 - Bioassays: different working solutions being tested in plantigrade and juvenile M. 

galloprovincialis individuals.  
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2.4.3 Statistics 

AF bioassays output data was expressed as the percentage of settlement 

considering the production of byssal threads by all the individuals in the same condition as 

100% of settlement. All data were first checked for normality and homogeneity of variance 

by Kolmogorov-Smirnov and Barlett’s tests, respectively. As these assumptions were not 

fulfilled, even after appropriate data transformations, non-parametric Mann-Whitney (U) 

test was applied to analyse significant differences between all the tested conditions 

(extracts, fractions and controls) and the solvent control. Statistical differences were 

considered significant at p < 0.05 and SPSS 21 software was used for the statistical 

analysis. 
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3. Results 

3.1 Preliminary bioassays with M. galloprovincialis adults 
 

Aqueous and organic extracts from eighteen cyanobacterial strains were tested in 

adult individuals as preliminary bioassays (Fig. 13). M. galloprovincialis adults showed 

altered responses regarding some strains and extracts when compared to mussels in 

control condition. LEGE06077, LEGE07084 and LEGE07085 organic extracts significantly 

inhibited settlement of M. galloprovincialis adults (U= 1.0, p= 0.013; U=3.0, p=0.031 and 

U= 2.0, p= 0.021). No effect was observed for aqueous extracts of the same strains (U= 

12.5, p= 1.000; U=4.5, P=0.080 and U= 11.5, p= 0.811). LEGE99043 and LEGE06079 

aqueous extracts induced a significant inhibition of settlement (U= 2.0, p= 0.020 and U= 

3.0, p= 0.032) but no influence was observed concerning the organic extract (U= 10.0, p= 

0.549 and U= 4.5, p= 0.080). Actually, none of the tested strains showed significant results 

in both organic and aqueous extracts. Some testing conditions like organic LEGE06072 

appeared to induce settlement, showing higher percentages than negative control, 

however no significant differences were found (U= 7.5, p= 0.134). The positive control (5 

µM CuSO4) showed total settlement inhibition (no threads produced) by all the testing 

individuals (U= 0.0, p= 0.005). 
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Fig. 13 - Percentage of settlement of Mytilus galloprovincialis adults after exposure to crude organic and aqueous extracts 

(100 µg/ml) of selected cyanobacterial strain from LEGE culture collection. C(-)= filtered seawater control; C(+)= positive 

control with CuSO4 5µM. *indicates significant differences against C(-) (Mann-Whitney U test, p < 0.05). 

 

 

3.2 M. galloprovincialis plantigrade larvae and juvenile bioassays 

3.2.1 Screening crude organic and aqueous extracts 

 

Regarding the bioassays with the two early life stages, plantigrade larvae and 

juvenile mussels, using extracts of the same eighteen strains previously used (Fig. 14), 

organic extracts from strains LEGE05195, LEGE06077 and LEGE07075 significantly 

inhibited the settlement, of both plantigrade (U= 0.0, p= 0.019; U= 0.0, p= 0.017 and U= 

0.0, p= 0. 019) and juvenile stages (U= 0.5, p= 0.025; U= 0.0, p= 0.017 and U= 0.0, p= 0. 

015), when compared to DMSO control. 

No significant differences were found between DMSO control and the negative 

control with filtered seawater only in both plantigrade larvae (U= 2.0, p= 0.05) and juvenile 

mussels (U= 8.0, p= 1.000), and so DMSO control was used as reference.  
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Fig. 14 - Percentage of settlement of Mytilus galloprovincialis plantigrade and juvenile after exposure to crude organic 

extracts (30 µg/ml) of selected cyanobacterial strain from LEGE culture collection. C(-)= filtered seawater control; C(DMSO)= 

filtered seawater with 0.1% DMSO. *indicates significant differences against C(DMSO) (Mann-Whitney U test, p < 0.05). 

 

 

Bioassays with aqueous extracts showed higher effectiveness levels in plantigrade 

stages (Fig. 15). None of the tested strains induced significant differences against the 

control in juvenile mussels. LEGE06071 showed the highest potential in both life stages 

with only 5% settlement in plantigrade (U= 0, p= 0.011) and approximately 33% in juvenile, 

despite the last not being statistically significant (U= 3.0, p= 0.129).  

 

*
*

*

*

*

*

*

*

*

0

10

20

30

40

50

60

70

80

90

100
S

e
tt
le

m
e

n
t 
(%

)

Cyanobacterial Strains

Organic Extracts Plantigrade Juvenile



FCUP 2014 | 52 

Searching for cyanobacterial natural antifouling compounds against Mytilus galloprovincialis settlement 

 

 

Fig. 15 - Percentage of settlement of Mytilus galloprovincialis plantigrade and juvenile after exposure to crude aqueous 

extracts (30 µg/ml) of selected cyanobacterial strain from LEGE culture collection. C(-)= filtered seawater control. *indicates 

significant differences against C(-) (Mann-Whitney U test, p < 0.05). 

 

3.2.2 Bioassays with fractions of selected strains 

 Several selected strains (LEGE07084, LEGE06079, LEGE91094, LEGE06071 and 

LEGE06077) were subjected to fractionation and further testing permitted to reach also 

some promise fractions.  

   

LEGE07084 was successfully fractioned into nine fractions (Fig. 16). Statistical 

analyses were performed against DMSO control as no significant differences were found 

with filtered seawater control in both plantigrade and juvenile stages (U= 6.0, p= 0.495 and 

U= 4.0; p= 0.752). Low inhibition potential was showed by all fractions when concerning 

juvenile individuals except fraction D (U= 1.5, p= 0.040). Fractions C, D and F displayed 

the most significant settlement inhibition in plantigrade larvae (U= 0.0, p= 0.015; U= 0.0, 

p= 0.017 and U= 0.0, p= 0.017), with 5%, 15% and 20% of settlement, respectively.  
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Fig. 16 - Percentage of settlement of Mytilus galloprovincialis plantigrade and juvenile after exposure to organic fractions (10 

µg/ml) of LEGE06084. C(-)= filtered seawater control; C(DMSO)= filtered seawater with 0.1% DMSO. *indicates significant 

differences against C(DMSO) (Mann-Whitney U test, p < 0.05). 

  

Regarding LEGE06079, no significant differences were found between filtered 

seawater control and DMSO control in both plantigrade (U= 2.0, p= 0.05) and juvenile 

mussels (U= 3.0, p= 0.096), and as so DMSO control was used as reference. Seven 

fractions were isolated and only fraction A induced significant inhibition of thread 

production in plantigrade larvae (U= 0.0, p= 0.017). None of the fractions showed 

significant differences on juvenile mussel’s settlement compared to the DMSO control (Fig. 

17).  
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Fig. 17 - Percentage of settlement of Mytilus galloprovincialis plantigrade and juvenile after exposure to organic fractions (10 

µg/ml) of LEGE06079. C(-)= filtered seawater control; C(DMSO)= filtered seawater with 0.1% DMSO. *indicates significant 

differences against C(DMSO) (Mann-Whitney U test, p < 0.05). 

 

 

Nine fractions of LEGE91094 were obtained and tested (Fig. 18). Statistical 

analyses revealed no significant differences between the controls and DMSO control was 

used as reference. None of the tested fractions showed significant inhibition of settlement 

in juvenile mussels. Fractions, E, G and H presented significantly low percentages of 

settlement when compared to DMSO control (U= 1.0, p= 0.036; U= 0.0, p= 0.019 and U= 

1.0, p= 0.036).  
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Fig. 18 - Percentage of settlement of Mytilus galloprovincialis plantigrade and juvenile after exposure to organic fractions (10 

µg/ml) of LEGE91094. C(-)= filtered seawater control; C(DMSO)= filtered seawater with 0.1% DMSO. *indicates significant 

differences against C(DMSO) (Mann-Whitney U test, p < 0.05). 

 

 

 

Nine fractions were obtained from LEGE06071 strain and only fraction A and F 

showed significant inhibition of settlement in plantigrade larvae and juvenile mussels, 

respectively (U= 0.0, p= 0.017 and U= 1.0, p= 0.032) (Fig. 19). Fraction A also induced a 

certain degree of inhibition of settlement in juveniles, despite not statically significant. (U= 

5.0, p= 0.343). Controls also do not differ significantly in this bioassay in both plantigrade 

larvae and juvenile mussels (U= 2.0, p= 0.05 and U= 3.0, p= 0.096).  
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Fig. 19 - Percentage of settlement of Mytilus galloprovincialis plantigrade and juvenile after exposure to organic fractions (10 

µg/ml) of LEGE06071. C(-)= filtered seawater control; C(DMSO)= filtered seawater with 0.1% DMSO. *indicates significant 

differences against C(DMSO) (Mann-Whitney U test, p < 0.05). 

 

Ten fractions of LEGE06077 were successfully obtained as represented by NMR 

analyses performed where different compounds can be distinguished thus proving an 

effective separation (Fig. 20).  
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Fig. 20 - NMR spectrum of LEGE06077 fractions. 
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No statistical differences were found between the two control conditions in both 

plantigrade larvae and juveniles, and so results were analyzed against DMSO control. All 

LEGE06077 fractions (Fig. 21), except fraction B, showed high inhibition potential with 

fraction H reaching 15% and 25% of settlement inhibition in plantigrade and juvenile 

respectively (U= 0.0, p= 0.019 and U= 0.0, p= 0.011). 

 

 

Fig. 21 - Percentage of settlement of Mytilus galloprovincialis plantigrade and juvenile after exposure to organic fractions (10 

µg/ml) of LEGE06077. C(-)= filtered seawater control; C(DMSO)= filtered seawater with 0.1% DMSO. *indicates significant 

differences against C(DMSO) (Mann-Whitney U test, p < 0.05). 
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3.2.3 Bioassays with selected sub-fractions  

Due to the promising results provided by fraction H of LEGE06077 strain, this 

fraction was further fractioned and seven sub-fractions were successfully obtained as 

given by NMR analysis (Fig. 22). Bioassays using the obtained sub-fractions are showed 

in figure 23.    

 

  

Fig. 22 – Nuclear Magnetic Resonance (NMR) spectrum of sub-fractions obtained from LEGE06077/H. 

 

 

Control conditions were not significantly different in both stages, as DMSO control 

was adopted as reference. In general, juvenile mussels showed lower settlement levels 

then plantigrade larvae, however, none of the tested sub-fractions had significant inhibition 

effect on juveniles. Concerning plantigrade, three fractions HC, HF and HG, showed 

significant settlement inhibition compared to DMSO control (U= 0.0, p= 0.019; U= 0.0, p= 

0.036 and U= 0.0, p= 0.019). From these three sub-fractions, HF showed the most 

concordant levels between life stages, with 40% of settlement inhibition in plantigrade and 

50% in juvenile mussels. 
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Fig. 23 - Percentage of settlement of Mytilus galloprovincialis plantigrade and juvenile after exposure to organic sub-fractions 

(10 µg/ml) of LEGE06077/H. C(-)= filtered seawater control; C(DMSO)= filtered seawater with 0.1% DMSO. *indicates 

significant differences against C(DMSO) (Mann-Whitney U test, p < 0.05). 

 

Sub-fraction LEGE06077/H/F was successful fractionated into seven new sub-

fractions (Fig. 24). No statistical differences were found between DMSO control and 

filtered seawater control. None of the tested sub-fractions provided statistical relevant data 

in juvenile stage. Sub-fraction HFB and HFC presented significant inhibition levels in 

plantigrade larvae (U= 0.0, p= 0.017 and U= 0.0, p= 0.017) showing the lowest percentage 

of settlement, 35% in both sub-fractions (Fig. 25). 
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Fig. 24 - Nuclear Magnetic Resonance (NMR) spectrum of sub-fractions obtained from LEGE06077/H/F. Sub-fraction 

LEGE06077/H/F/A displays different satellite peaks from the other sub-fractions because, in this sub-fraction, methanol was 

used as solvent instead of chloroform. 

 

 

Fig. 25 - Percentage of settlement of Mytilus galloprovincialis plantigrade and juvenile after exposure to organic sub-fractions 

(10 µg/ml) of LEGE06077/H/F. C(-)= filtered seawater control; C(DMSO)= filtered seawater with 0.1% DMSO. *indicates 

significant differences against C(DMSO) (Mann-Whitney U test, p < 0.05). 
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3.3 Characterization through NMR  

Given the results provided by sub-fraction LEGE06077/H/F/B and 

LEGE06077/H/F/C and the fact that these, by being achieved through three different 

fractionation processes would probably be constituted only by pure compounds, the 

following step was to characterized by NMR these two sub-fractions. Figures 26 and 27 

show the NMR spectrum for the two sub-fractions with peaks highlighted in red 

representing solvent satellites and the ones in blue or grey characterize the compounds 

present in the tested samples. Grey peaks indicate compounds with lower intensities then 

blue. Characterization through 13C NMR would be ideal to achieve better knowledge of the 

compounds structure. However, due to the biomass shortage only 1H NMR analyzes were 

performed providing important but not complete information about the chemical structure 

of the compounds. 

 

 

Fig. 26 - Nuclear Magnetic Resonance (NMR) spectrum of LEGE06077/H/F/B. Peaks highlighted in red represent solvent 

satellites and the ones highlighted in blue correspond to the compounds present in the sub-fraction.  
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Fig. 27 - Nuclear Magnetic Resonance (NMR) spectrum of LEGE06077/H/F/C. Peaks highlighted in red represent solvent 

satellites and the ones highlighted in blue and grey correspond to the compounds present in the sub-fraction. Grey peaks 

signalize compounds with lower intensities then blue. 
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4. Discussion  
 

Preliminary bioassays with mussel adults permitted to consider that M. 

galloprovincialis is a suitable species for an AF bioassay-guided approach showing 

differential responses in the production of threads when comparing mussel from control 

conditions and mussels exposed to cyanobacterial strains enriched-media. These 

bioassays also indicated that 5 µM CuSO4 media is suitable to use as positive control in 

further AF bioassays as mussels showed total settlement inhibition in this condition. 

M. galloprovincialis has been previously used in AF bioassays using other type of 

biological extracts like sponges and macroalgae and even pure compounds like capsaicin 

(Yang, Satuito et al. 2007, Qian, Xu et al. 2010). Copper has been used as an AF agent 

with high levels of effectiveness on organisms like mussels (Sera, Iida et al. 2000, Rosen, 

Rivera-Duarte et al. 2008, Brooks and Waldock 2009). 

 

Still regarding the preliminary bioassay with mussel adults, only three strains 

showed effectiveness with organic extracts, LEGE06077, LEGE07084 and LEGE07085 

from which only LEGE06077 had positive effect when comparing to the results from 

plantigrade larvae and juvenile mussels bioassays. This concordance between the three 

life stages was a good indicator of a promising strain and for that reason LEGE06077 was 

chosen to be fractionated and again tested.   

Concerning aqueous extracts in adults, two different strains, LEGE99043 and 

LEGE06079, presented significant differences and AF potential indicating a differential 

separation of cyanobacteria constituents during the two extraction procedures, including 

potential active compounds. Only LEGE99043 also showed positive results in plantigrade 

larvae but not in juveniles. Conversely to what was observed with the organic extracts, 

aqueous extracts did not provide compliance results. None of the strains was statistically 

significant in all life stages which compromised the selection of promising strains for the 

next step of the project 

 

After testing all the selected strains, the ones presenting better results and/or with 

enough biomass available were fractioned and further tests conducted. Due to the better 

results provided by organic extracts, only those were used in the succeeding assays. 
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LEGE07084 didn’t show significant results in plantigrade or juvenile stages in 

organic extracts bioassays mostly because of the high variability among replicates. 

However it had shown statistically positive results when testing organic extracts in adult 

individuals. For these reasons and also due to biomass availability, it was fractionated and 

tested. Almost every fraction with significant inhibition was only effective on plantigrade 

stage, with fraction C displaying 5% settlement. Despite this value, none of the fractions 

showed results positive enough in both life stages, as to justify further fractionations and 

tests. This strain was already found to inhibited larval growth of the sea urchin 

Paracentrotus lividus (Lopes, Fernández et al. 2010), indicating biological activities other 

than AF caused by the active compounds. 

 

Plantigrade individuals presented low settlement percentages when exposed to 

several strains, fractions and even sub-fractions revealing high levels of sensibility. In 

some cases, like for example LEGE91094 strain, the opposite was registered in juvenile 

stage, where thread production didn’t show almost any influence by the cyanobacteria 

enriched medium. In fact, for some reason inherent to the bioassay and/or to the intrinsic 

characteristics of the species, even filtered seawater control levels showed abnormally low 

levels comparing to what was expected. This had a negative influence in some of the 

obtained test results, since statistical analyses were based on these control levels. In 

certain cases, like LEGE06071 bioassay, where only fraction F was significant in juvenile 

stage, fraction I inhibited 75% of settlement and fraction A 67% of settlement but were not 

considered significantly different from DMSO control. When concerning LEGE06079, none 

of the tested fractions induced significant results in juvenile, despite the settlement levels 

of only 5% and 16% showed by fraction A and C respectively. This means that, due to low 

settlement levels presented by negative controls in some bioassays, some fractions/sub-

fraction’s potential might have been undervalued. 

Despite low settlement levels in some controls, it is a general point that juvenile 

individuals are not as sensitive as plantigrade larvae. This might happen because juveniles 

are a more advanced and evolved step in M. galloprovincialis development than 

plantigrade, and its settlement pressure is lower. Although plantigrade larvae are 

supposed to detach from an initial settlement site and search for more appropriate 

settlement areas (Carl, Poole et al. 2011), the establishing pressure it endures continues 

to be very high and can justify the greater settlement percentages showed by plantigrade 

larvae in negative control when comparing to juvenile. Moreover, the different responses 
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presented by the two tested life stages might be related with distinct responses to the 

external environmental stimulus also inherent to each developmental status and respective 

metabolic complexity.  

 

LEGE06071 (Nodularia sp.) is an heterocystous cyanobacteria with some known 

activities like inducing acute effects on Artemia salina nauplii and inhibit larvae growth on 

Paracentrotus lividus (Lopes, Fernández et al. 2010). When testing this strain, fraction F 

presented high levels of settlement inhibition with one of the most positive results in 

juvenile stage in all bioassays. Despite not displaying the same outcome in plantigrade 

larvae, this fraction was selected due to the potential revealed in juvenile stage.    

 

LEGE06077 was one of the most promising strains since preliminary assays. With 

the exception of fraction B, all LEGE06077 fractions tested provided significant results in 

one life stage or in several cases in all stages. Despite the higher inhibition levels 

displayed by fraction E on plantigrade larvae, fraction H had better results when evaluating 

the two life stages combined. In LEGE06077 bioassay, crude extract was the working 

solution that displayed better results in both stages with none of the its fractions achieving 

the same inhibition levels. This can be explained by synergies between different fractions 

that might enhanced the inhibition potential of the strain. By repeatedly fractionate these 

organic extracts and fractions, several synergies might have been lost. LEGE06077 

(Nostoc sp.) is an heterocystous cyanobacteria and the good results obtained may be 

related to higher quantities of secondary metabolites produced as a more evolved specie 

(Lopes, Ramos et al. 2012). Studies show that this strain can also affect the growth of 

other marine cyanobacterial species like Synechocystis salina, Nannochloropsis sp and 

freshwater species such as Microcystis aeruginosa (Lopes and Vasconcelos 2011).   

Regarding LEGE06077/H bioassay, again low settlement levels were presented by 

both controls in juvenile stage. This combined with high variability in thread production that 

represented high standard deviation values lead to no statistically significant differences 

between DMSO control and all of the tested sub-fractions. From the only three sub-

fractions with significant results in plantigrade larvae, HF showed the highest homogeneity 

level between the two life stages and for that reason was chosen for fractionation and 

further tests.  
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None of the sub-fractions of LEGE06077/H/F had significant inhibition effect in 

juvenile individuals but sub-fractions HFB and HFC demonstrated good inhibition levels in 

plantigrade stage. Fraction LEGE06077/H was collected with a mixture of methanol and 

ethyl acetate which means that the compounds eluted had a medium polarity level. In the 

fractioning performed by HPLC, these two sub-fractions were obtained between minute 10 

and 26 and a reversed-phase chromatography, where polar compounds are eluted first 

was used. This means that the active AF compounds present in sub-fraction HFB and 

HFC have polar characteristics.  

Crude extracts used in organic bioassays, with plantigrade and juvenile, display 

different values from the ones present when testing each strain with its fractions. This fact 

can be justified by the different crude extracts used. Biomass was continuously being 

produced and after the bioassays testing all organic extract in plantigrade and juvenile, 

new crude extracts were needed. New biomass of the same strains was used and 

although conducting the same techniques and processes, the results provided by the new 

crudes were not completely concordant with the ones previously achieved. The differences 

obtained can be explained by slightly changes in culture conditions that lead the organism 

to produce different secondary metabolites. This can be used as an advantage point as a 

much greater variability of compounds can be obtained just by altering conditions like light 

or temperature to which cyanobacteria are exposed.  

NMR outputs proved the fractioning processes to be successful but some difficulty 

was created in their analyses by the sample dilution level, particularly in sub-fractions 

LEGE06077/H/F/B and LEGE06077/H/F/C. Several peaks provided information about 

promising compounds but their intensity was very low due to the limited amount of organic 

biomass present in the tested samples 

So far, screening cyanobacteria for AF compounds has provided positive results 

with several strains displaying promising inhibition levels when concerning the fouling 

mussel M. galloprovincialis. As more biomass continues to be cultured, new AF 

substances can be discovered. 
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5. Future perspectives 
 

Despite the achievement of these two promising sub-fractions, several steps ought 

to be taken before the truly AF potential of the compounds can be reached, and that were 

not possible to complete in the time frame of this thesis. Because of the biomass shortage 

of sub-fraction LEGE06077/H/F/B and LEGE06077/H/F/C, new fractionations needed to 

be performed. Further steps forward include LC-MS analyses in order to identify and purify 

the active AF compounds. After the achievement of the pure active compounds, new 

bioassays should be lead to determine their effectiveness vs toxicity (EC50 and LC50).  

Characterization through carbon nuclear magnetic resonance spectroscopy will also be 

needed to accurately determine the structure of the present molecules.  

In addition, synergies between different active compounds might be explored to 

achieve maximum inhibition and combinatorial chemistry may be applied by structural 

modification of the obtained compounds in order to improve their effectiveness.    

In the meanwhile several other cyanobacterial strains continue to be cultured to 

large scale and new fractionations of promise extracts are being performed to be 

subjected to new series of tests and other potential AF compounds are expected to arise 

from these bioassay-guided approach.   
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7. Appendix 
 

Appendix 1 - Z8 Medium (Kótai 1972) 

 

Composition of stock solutions: 
 
 
Solution A - 10 ml/l 

 
Reagent Name Code g/l g/500mL 

NaNO3 Sodium nitrate N4 46.7 23.35 

Ca(NO3)2.4H2O Calcium Nitrate Tetrahydrate C1 5.9 2.95 

MgSO4.7H2O Magnesium Sulphate Heptahydrate M2 2.5 1.25 

 
 
Solution B - 10 ml/l 

 
Reagent Name Code g/l g/500 ml 

K2HPO4 Potassium phosphate dibasic K1 3.1 1.55 

Na2CO3 Sodium carbonate N3 2.1 1.05 

 
 

 
Fe-EDTA Solution - 10 ml/l 

 
Reagent Name ml/l 800ml 

FeCl3* Iron(III)chloride 10 8ml 

EDTA-Na** Sodium EDTA 9.5 7.6ml 

 
 
 

 
Micronutrients 
Solution – 1ml/l 

 

 

 

Reagent ml/l ml/500ml 

1 a 12 10 5 

13 e 14 100 50 

http://www.sigmaaldrich.com/catalog/product/sial/04248
http://en.wikipedia.org/wiki/Sodium_carbonate
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Composition of basic solutions 

* FeCl3 Solution 

Reagent Code 100ml 200ml 

FeCl3.6H2O F1 2.8g 4.16g 

HCl (0.1 N) H2 100ml 200ml 

 
** EDTA-Na Solution  

Reagent Code 100 ml 200 ml 

EDTA E1 3.9 g 7.8 g 

NaOH (0.1 N) N5 100 ml 200 ml 

 

Solutions 1-14 

Reagent Code g/l g/100 ml  Reagent Code g/l g/100 ml 

1- Na2WO4.2H2O a) N11 0.33 0.033  8- CuSO4.5H2O C6 1.25 0.125 

2-(NH4)6Mo7O24.2H2O M4 0.88 0.088  9- 

NiSO4(NH4)2SO4.6H2O 

N6 1.98 0.198 

3- KBr K2 1.2 0.12  10- Cr(NO3)3.9H2O C5 0.41 0.041 

4- KI K3 0.83 0.083  11- V2O5 V1 0.089 0.0089 

5- ZnSO4.7H2O Z1 2.87 0.287  12- 

Al2(SO4)3K2SO4.24H2Ob) 

A3 4.74 0.474 

6- Cd(NO3).4H2O C2 1.55 0.155  13- H3BO3 H1 3.1 0.31 

7- Co(NO3)2.6H2O C4 1.46 0.146  14- MnSO4.4H2O c) M3 2.23 0.223 

 
 a. Reagent numbered as N11 is NaWO3.2H2O 

 b. Reagent numbered as A3 is Ka(SO4)2.12H2O, the amount to weight should be the double 
indicated. 
 c. Reagent numbered as M3 is MnSO4 mono and not tetra hydrated 

 

 


