Delamination behaviour of composites
Related titles:

Multi-scale modelling of composite material systems
Predictive modelling provides the opportunity both to understand better how composites behave in different conditions and to develop materials with enhanced performance for particular industrial applications. This important book focuses on the fundamental understanding of composite materials at the microscopic scale, from designing micro-structural features, to the predictive equations of the functional behaviour of the structure for a specific end-application. Chapters discuss stress and temperature-related behavioural phenomena based on knowledge of physics of microstructure and microstructural change over time.

Impact behaviour of fibre-reinforced composite materials and structures
This study covers impact response, damage tolerance and failure of fibre-reinforced composite materials and structures. Materials development, analysis and prediction of structural behaviour and cost-effective design all have a bearing on the impact response of composites and this book brings together for the first time the most comprehensive and up-to-date research work from leading international experts.

Mechanical testing of advanced fibre composites
(ISBN 978-1-85573-312-1)
Testing of composite materials can present complex problems but is essential in order to ensure the reliable, safe and cost-effective performance of any engineering structure. *Mechanical testing of advanced fibre composites* describes a wide range of test methods which can be applied to various types of advanced fibre composites. The book focuses on high modulus, high strength fibre/plastic composites and also covers highly anisotropic materials such as carbon, aramid and glass.

Details of these and other Woodhead Publishing materials books, as well as materials books from Maney Publishing, can be obtained by:

- visiting our web site at www.woodheadpublishing.com
- contacting Customer Services (e-mail: sales@woodhead-publishing.com; fax: +44 (0) 1223 893694; tel: +44 (0) 1223 891358 ext: 130; address: Woodhead Publishing Ltd, Abington Hall, Granta Park, Great Abington, Cambridge CB21 6AH, England)

If you would like to receive information on forthcoming titles, please send your address details to: Francis Dodds (address, tel. and fax as above; e-mail: francisd@woodhead-publishing.com). Please confirm which subject areas you are interested in.

Maney currently publishes 16 peer-reviewed materials science and engineering journals. For further information visit www.maney.co.uk/journals
Delamination behaviour of composites

Edited by
Srinivasan Sridharan

Published by Woodhead Publishing and Maney Publishing on behalf of
The Institute of Materials, Minerals & Mining

CRC Press
Boca Raton Boston New York Washington, DC

WOODHEAD PUBLISHING LIMITED
Cambridge England
Contents

Contributor contact details xvii

Introduction xxiii

S Sridharan, Washington University in St. Louis USA

Part I Delamination as a mode of failure and testing of delamination resistance

1 Fracture mechanics concepts, stress fields, strain energy release rates, delamination initiation and growth criteria 3

I S Raju and T K O’Brien, NASA-Langley Research Center, USA

1.1 Introduction 3

1.2 Fracture mechanics concepts 4

1.3 Delaminations 10

1.4 Future trends 23

1.5 Concluding remarks 24

1.6 References 25

2 Delamination in the context of composite structural design 28

A Riccio, C.I.R.A. (Centro Italiano Ricerche Aerospaziali – Italian Aerospace Research Centre), Italy

2.1 Introduction 28

2.2 Physical phenomena behind delamination onset 30

2.3 Physical phenomena behind delamination growth 36

2.4 Introduction to delamination management in composites design 39

2.5 Impact induced delamination resistance in composites preliminary design 42
5.5 Conclusion 134
5.6 References 135
5.7 Appendix: Nomenclature 136

Part II Delamination: detection and characterization

6 Integrated and discontinuous piezoelectric sensor/actuator for delamination detection 141
 P Tan and L Tong, University of Sydney, Australia
 6.1 Introduction 141
 6.2 Typical patterns for piezoelectric (PZT) or-piezoelectric fiber reinforced composite (PFRC) sensor/actuator 143
 6.3 Constitutive equations and modelling development for a laminated beam with a single delamination and surface-bonded with an integrated piezoelectric sensor/actuator (IPSA) 146
 6.4 Parametric study 149
 6.5 Experimental verification 157
 6.6 Conclusions 165
 6.7 Acknowledgment 165
 6.8 References 165
 6.9 Appendix 167

7 Lamb wave-based quantitative identification of delamination in composite laminates 169
 Z Su, The Hong Kong Polytechnic University, Hong Kong and L Ye, The University of Sydney, Australia
 7.1 Introduction 169
 7.2 Lamb waves in composite laminates 170
 7.3 Lamb wave scattering by delamination 177
 7.4 Lamb wave-based damage identification for composite structures 180
 7.5 Design of a diagnostic lamb wave signal 181
 7.6 Digital signal processing (DSP) 182
 7.7 Signal pre-processing and de-noising 186
 7.8 Digital damage fingerprints (DDF) 187
 7.9 Data fusion 193
 7.10 Sensor network for delamination identification 198
 7.11 Case studies: evaluation of delamination in composite laminates 202
 7.12 Conclusion 211

Woodhead Publishing Limited; proof copy not for publication
Part III Analysis of delamination behaviour from tests

9 Experimental study of delamination in cross-ply laminates
 A J Brunner, Empa-Swiss Federal Laboratories for Materials Testing and Research, Switzerland

9.1 Introduction 281
9.2 Summary of current state 282
9.3 Experimental methods for studying delaminations 285
9.4 Fracture mechanics study of delamination in cross-ply laminates 286
9.5 Discussion and interpretation 300
9.6 Structural elements or parts with cross-ply laminates 304
9.7 Summary and outlook 305
9.8 Acknowledgments 305
9.9 References 305
Contents

10 Interlaminar mode II fracture characterization 310
 M F S F DE MOURA, Faculdade de Engenharia da Universidade do Porto, Portugal
 10.1 Introduction 310
 10.2 Static mode II fracture characterization 311
 10.3 Dynamic mode II fracture characterization 321
 10.4 Conclusions 324
 10.5 Acknowledgements 324
 10.6 References 325

11 Interaction of matrix cracking and delamination 327
 M F S F DE MOURA, Faculdade de Engenharia da Universidade do Porto, Portugal
 11.1 Introduction 327
 11.2 Mixed-mode cohesive damage model 332
 11.3 Continuum damage mechanics 338
 11.4 Conclusions 341
 11.5 References 342

12 Experimental studies of compression failure of sandwich specimens with face/core debond 344
 F AVILÉS, Centro de Investigación Científica de Yucatán, A C, México and L A CARLSSON, Florida Atlantic University, USA
 12.1 Introduction 344
 12.2 Compression failure mechanism of debonded structures 344
 12.3 Compression failure of debonded sandwich columns 346
 12.4 Compression failure of debonded sandwich panels 353
 12.5 Acknowledgments 362
 12.6 References 362

Part IV Modelling delamination

13 Predicting progressive delamination via interface elements 367
 S HALLETT, University of Bristol, UK
 13.1 Introduction 367
 13.2 Background to the development of interface elements 367
 13.3 Numerical formulation of interface elements 368
 13.4 Applications 373
 13.5 Enhanced formulations 380
Contents

13.6 Conclusions 382
13.7 Acknowledgements 382
13.8 References 382

14 Competing cohesive layer models for prediction of delamination growth 387
S Sridharan, Washington University in St. Louis, USA and Y Li, Intel Corporation, USA
14.1 Introduction 387
14.2 UMAT (user material) model 388
14.3 UEL (user supplied element) model 391
14.4 Double cantilever problem 394
14.5 UMAT model: details of the study and discussion of results 394
14.6 UEL model: details of the study and discussion of results 403
14.7 Delamination of composite laminates under impact 407
14.8 Conclusion 427
14.9 References 427

15 Modeling of delamination fracture in composites: a review 429
R C Yu, Universidad de Castilla-La Mancha, Spain and A Pandolfi, Politecnico di Milano Italy
15.1 Introduction 429
15.2 The cohesive approach 431
15.3 Delamination failure in fiber reinforced composites 432
15.4 Delamination failure in layered structures 440
15.5 Summary and conclusions 450
15.6 Acknowledgement 451
15.7 References 452

16 Delamination in adhesively bonded joints 458
B R K Blackman, Imperial College London, UK
16.1 Introduction 458
16.2 Adhesive bonding of composites 458
16.3 Fracture of adhesively bonded composite joints 460
16.4 Future trends 479
16.5 Sources of further information and advice 480
16.6 References 481
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>Delamination propagation under cyclic loading</td>
<td>485</td>
</tr>
<tr>
<td></td>
<td>P P CAMANHO, Universidade do Porto, Portugal and A TURON and J COSTA, University of Girona, Spain</td>
<td></td>
</tr>
<tr>
<td>17.1</td>
<td>Introduction and motivation</td>
<td>485</td>
</tr>
<tr>
<td>17.2</td>
<td>Experimental data</td>
<td>486</td>
</tr>
<tr>
<td>17.3</td>
<td>Damage mechanics models</td>
<td>488</td>
</tr>
<tr>
<td>17.4</td>
<td>Simulation of delamination growth under fatigue loading using cohesive elements: cohesive zone model approach</td>
<td>490</td>
</tr>
<tr>
<td>17.5</td>
<td>Numerical representation of the cohesive zone model</td>
<td>491</td>
</tr>
<tr>
<td>17.6</td>
<td>Constitutive model for high-cycle fatigue</td>
<td>493</td>
</tr>
<tr>
<td>17.7</td>
<td>Examples</td>
<td>498</td>
</tr>
<tr>
<td>17.8</td>
<td>Mode I loading</td>
<td>498</td>
</tr>
<tr>
<td>17.9</td>
<td>Mode II loading</td>
<td>502</td>
</tr>
<tr>
<td>17.10</td>
<td>Mixed-mode I and II loading</td>
<td>504</td>
</tr>
<tr>
<td>17.11</td>
<td>Fatigue delamination on a skin-stiffener structure</td>
<td>505</td>
</tr>
<tr>
<td>17.12</td>
<td>Conclusions</td>
<td>510</td>
</tr>
<tr>
<td>17.13</td>
<td>Acknowledgments</td>
<td>510</td>
</tr>
<tr>
<td>17.14</td>
<td>References</td>
<td>511</td>
</tr>
<tr>
<td>18</td>
<td>Single and multiple delamination in the presence of nonlinear crack face mechanisms</td>
<td>514</td>
</tr>
<tr>
<td></td>
<td>R MASSABÒ, University of Genova, Italy</td>
<td></td>
</tr>
<tr>
<td>18.1</td>
<td>Introduction</td>
<td>514</td>
</tr>
<tr>
<td>18.2</td>
<td>The cohesive- and bridged-crack models</td>
<td>515</td>
</tr>
<tr>
<td>18.3</td>
<td>Characteristic length scales in delamination fracture</td>
<td>528</td>
</tr>
<tr>
<td>18.4</td>
<td>Derivation of bridging traction laws</td>
<td>535</td>
</tr>
<tr>
<td>18.5</td>
<td>Single and multiple delamination fracture</td>
<td>539</td>
</tr>
<tr>
<td>18.6</td>
<td>Final remarks</td>
<td>553</td>
</tr>
<tr>
<td>18.7</td>
<td>Acknowledgement</td>
<td>555</td>
</tr>
<tr>
<td>18.8</td>
<td>References</td>
<td>555</td>
</tr>
<tr>
<td>Part V</td>
<td>Analysis of structural performance in presence of delamination and prevention/mitigation of delamination</td>
<td>561</td>
</tr>
<tr>
<td>19</td>
<td>Determination of delamination damage in composites under impact loads</td>
<td>561</td>
</tr>
<tr>
<td></td>
<td>A F JOHNSON and N TOSO-PENTECÔTE, German Aerospace Center (DLR), Germany</td>
<td></td>
</tr>
<tr>
<td>19.1</td>
<td>Introduction</td>
<td>561</td>
</tr>
<tr>
<td>19.2</td>
<td>Composites failure modelling</td>
<td>563</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Woodhead Publishing Limited; proof copy not for publication
Contents

19.3 Delamination damage in low velocity impact 570
19.4 Delamination damage in high velocity impact 576
19.5 Conclusions and future outlook 583
19.6 References 584

20 Delamination buckling of composite cylindrical shells 586
A TAFRESHI, The University of Manchester, UK
20.1 Introduction 586
20.2 Finite element analysis 588
20.3 Validation study 597
20.4 Results and discussion: analysis of delaminated composite cylindrical shells under different types of loadings 597
20.5 Conclusion 614
20.6 References 616

21 Delamination failure under compression of composite laminates and sandwich structures 618
S SRIDHARAN, Washington University in St. Louis, USA, Y LI, Intel Corporation, USA and El-Sayed, Caterpillar Inc., USA
21.1 Introduction 618
21.2 Case study (1): composite laminate under longitudinal compression 619
21.3 Case study (2): dynamic delamination of an axially compressed sandwich column 628
21.4 Case study (3): two-dimensional delamination of laminated plates 635
21.5 Results and discussion 644
21.6 Conclusion 647
21.7 References 648

22 Self-healing composites 650
M R KESSLER, Iowa State University, USA
22.1 Introduction 650
22.2 Self-healing concept 652
22.3 Healing-agent development 657
22.4 Application to healing of delamination damage in FRPs 661
22.5 Conclusions 670
22.6 References 671
Contributor contact details

(* = main contact)

Introduction
S. Sridharan*
Department of Mechanical, Aerospace and Structural Engineering
Washington University in St. Louis
St. Louis, MO 63130
USA
E-mail: ssrid@seas.wustl.edu

Chapter 1
I. S. Raju* and T. K. O’Brien
NASA-Langley Research Center
Hampton, VA 23861
USA
E-mail: ivatury.s.raju@nasa.gov

Chapter 2
A. Riccio
CIRA (Centro Italiano Ricerche Aerospaziali – Italian Aerospace Research Centre)
Via Maiorise, S/N
81043
Capua (Caserta)
Italy
E-mail: a.riccio@cira.it

Chapter 3
P. Davies
Materials and Structures Group (DOP/DCB/ERT/MS)
IFREMER Centre de Brest
BP 70
29280 Plouzané
France
E-mail: peter.davies@ifremer.fr

Chapter 4
C. Sun
School of Aeronautics and Astronautics
Purdue University
West Lafayette, IN 47907
USA
E-mail: sun@purdue.edu

(*) = main contact
Contributor contact details

Chapter 5
R. Ganesan
Concordia Centre for Composites
Department of Mechanical and Industrial Engineering
Concordia University
Room EV 4 - 211, 1515 St Catherine West
Montreal
Quebec H3G 2W1
Canada
E-mail: ganesan@encs.concordia.ca

Chapter 6
P. Tan* and L. Tong*
School of Aerospace Mechanical and Mechatronic Engineering
University of Sydney
NSW 2006
Australia
E-mail: ltong@aeromech.usyd.edu.au
pingtan@aeromech.usyd.edu.au

Chapter 7
Z. Su
The Department of Mechanical Engineering
The Hong Kong Polytechnic University
Hung Hom Kowloon
Hong Kong
E-mail: mmsu@polyu.edu.hk
szq@aeromech.usyd.edu.au;

* Ping Tan is currently working as a research scientist at the Australian Defence Science and Technology Organisation

Chapter 8
L. Ye*
Centre for Advanced Materials Technology (CAMT)
School of Aerospace Mechanical and Mechatronic Engineering (AMME)
The University of Sydney
NSW 2006
Australia
E-mail: ye@aeromech.usyd.edu.au

J. Bohse*
BAM – Federal Institute for Materials Research and Testing
Division V.6 Mechanical Behaviour of Polymers
Unter den Eichen 87
D-12205 Berlin
Germany
E-mail: juergen.bohse@bam.de

A. J. Brunner
Laboratory for Mechanical Systems Engineering
Empa – Swiss Federal Laboratories for Materials Testing and Research
Ueberlandstrasse 129
CH-8600 Duebendorf
Switzerland
E-mail: andreas.brunner@empa.ch
Chapter 9
A. J. Brunner
Laboratory for Mechanical Systems Engineering
Empa – Swiss Federal Laboratories for Materials Testing and Research
Ueberlandstrasse 129
CH-8600 Duebendorf
Switzerland
E-mail: andreas.brunner@empa.ch

Chapters 10 and 11
Marcelo Francisco de Sousa Ferreira de Moura
Departamento de Engenharia Mecânica e Gestão Industrial
Faculdade de Engenharia da Universidade do Porto
Rua Dr. Roberto Frias s/n, 4200-465 Porto
Portugal
E-mail: mfmoura@fe.up.pt

Chapter 12
F. Avilés*
Centro de Investigación Científica de Yucatán, A.C.
Unidad de Materiales
Calle 43 # 103
Col. Chuburná de Hidalgo
C.P. 97200.
 Mérida
Yucatán
México

L. Carlsson
Department of Mechanical Engineering
Florida Atlantic University
Boca Raton, FL 33431
USA
E-mail: faviles@cecy.mx
carlsson@fau.edu

Chapter 13
S. Hallett
Advance Composites Centre for Innovation and Science
University of Bristol
Queens Building
University Walk
Bristol BS8 1TR
UK
E-mail: Stephen.Hallett@bristol.ac.uk

Chapter 14 and 21
S. Sridharan*
Department of Mechanical, Aerospace and Structural Engineering
Washington University in St. Louis
St. Louis, MO 63130
USA
E-mail: ssrid@seas.wustl.edu

Y. Li
Intel Corporation
Chandler, AZ 85224
USA
E-mail: yupeng.lizzy.li@intel.com

Contributor contact details xvii
Chapter 20
A. Tafreshi
School of Mechanical
Aerospace and Civil Engineering
The University of Manchester
P.O. Box 88
Sackville Street
Manchester M60 1QD
UK

E-mail: azam.tafreshi@manchester.ac.uk

Chapter 22
M. Kessler
Iowa State University
Materials Science and Engineering
2220 Hoover Hall
Ames, IA 50011-2300
USA
E-mail: mkessler@iastate.edu

Chapter 23
H. Liu*
Centre for Advanced Materials
Technology
School of Aerospace
Mechanical and Mechatronic
Engineering
The University of Sydney
Sydney
NSW 2006
Australia

E-mail: hong-yuan.liu@usyd.edu.au

Chapter 24
M. R. Wisnom
University of Bristol
Advanced Composites Centre for
Innovation and Science
Queens Building
University Walk
Bristol BS8 1TR
UK

E-mail: M. Wisnom@bristol.ac.uk

Chapter 25
S. Mall
Air Force Institute of Technology
AFIT/ENY
Bldg. 640
2950 Hobson Way
Wright-Patterson AFB, OH 45433
USA

E-mail: wenyi.yan@eng.monash.edu.au

Contributor contact details xix
E-mail: shankar.mall@afit.edu

Introduction

S S R I D H A R A N, Washington University in St. Louis, USA
Laminated composites are becoming the preferred material system in a variety of industrial applications, such as aeronautical and aerospace structures, ship hulls in naval engineering, automotive structural parts, micro-electro-mechanical systems as also civil structures for strengthening concrete members. The increased strength and stiffness for a given weight, increased toughness, increased mechanical damping, increased chemical and corrosion resistance in comparison to conventional metallic materials and potential for structural tailoring are some of the factors that have contributed to the advancement of laminated composites. Their increased use has underlined the need for understanding their modes of failure and evolving technologies for the continual enhancement of their performance.

The principal mode of failure of layered composites is the separation along the interfaces of the layers, viz. delamination. This type of failure is induced by interlaminar tension and shear that develop due to a variety of factors such as: Free edge effects, structural discontinuities, localized disturbances during manufacture and in working condition, such as impact of falling objects, drilling during manufacture, moisture and temperature variations and internal failure mechanisms such as matrix cracking. Hidden from superficial visual inspection, delamination lies often buried between the layers, and can begin to grow in response to an appropriate mode of loading, drastically reducing the stiffness of the structure and thus the life of the structure. The delamination growth often occurs in conjunction with other modes of failure, particularly matrix cracking.

A study of composite delamination, as does any technological discipline, has two complementary aspects: An in depth understanding of the phenomenon by analysis and experimentation and the development of strategies for effectively dealing with the problem. These in turn lead to a number of specific topics that we need to consider in the present context. These comprise of:

1. An understanding of the basic principles that govern the initiation of delamination, its growth and its potential interaction with other modes of failure of composites. This is the theme of the first chapter, but several authors return to this theme in their own respective contributions.
2. The determination of material parameters that govern delamination initiation and growth by appropriate testing. These must necessarily be interfacial strength parameters which govern interlaminar fracture initiation and interlaminar fracture toughness parameters, viz. critical strain energy release rates that must govern interlaminar crack growth. The book contains several valuable contributions from leading international authorities in the field of testing of composites.
3. Development of analytical tools: What are the methodologies one may employ to assess the possibility of delamination onset and growth under
Introduction

typical loading scenarios? This may be approached from the points of view of fracture mechanics, damage mechanics, cohesive modeling approach and approaches which draw from and combine these. In particular, the cohesive modeling approach has proven to be a powerful and versatile tool in that when embedded in a nonlinear finite element analysis, it can trace the two-dimensional delamination growth without user interference, is robust from the point of view of numerical convergence, and can potentially account for a variety of interfacial failure mechanisms. This subject is discussed thoroughly in several authoritative contributions.

4. Detection of delamination: Ability to diagnose the presence of delamination and to be able to capture in graphical terms the extent of delamination damage is a desideratum towards which the composite industry is continuing to make progress. Several nondestructive evaluation tools are available and have been used with varying degrees of success. Acoustic emission, Lamb-wave and Piezo-electric technologies are discussed in the context of delamination detection in the present work.

5. Prevention of delamination: Several techniques of either inhibiting delamination or altogether suppressing it are available. The book contains a section treating the following techniques of delamination prevention/inhibition: ‘Self-healing’ composites which internally exude adhesive material as soon as crack advances thus effectively arresting the crack; Z-pin bridging in which fibers are introduced across the interlaminar surfaces, liable to delaminate, artfully tapering off discontinuities which are sources of potential delamination and the use of toughened epoxies.

6. Delamination driven structural failure: Certain loading scenarios can cause delamination growth if there is some preexisting delamination in the structural component which in turn can lead to structural failure. Typically these are: Impact, cyclic loading (delamination due to fatigue), compressive loading causing localized buckling in the vicinity of delamination and dynamic loading in the presence of in-plane compression. Impact loading and any form of dynamic loading in the presence of significant compressive stress in sandwich structures are known to trigger delamination failure which is abrupt and total. These aspects have been discussed in several contributions.

The book has been divided into several sections to address the issues mentioned in the foregoing. It has been a pleasure to work with a number of authors of international standing and reputation who had spent a great deal of effort in developing their respective chapters. The references cited at the end of each chapter should supplement and corroborate the concepts developed in the chapter. We hope that researchers and engineers who are concerned to apply state of the art technologies to composite structural analysis, design and evaluation of risk of failure will find this book useful and a valuable source of insight.
11.1 Introduction

Laminated composite materials have high strength-to-weight and stiffness-to-weight ratios. They can be considered as laminar systems with weak interfaces. Consequently, they are very susceptible to interlaminar damage designated by delamination. In the presence of delaminations the material stiffness and, consequently, of the associated structure, can be drastically reduced which can lead to its catastrophic failure. Moreover, delamination is an internal damage and is not easily detected, which increases the associated risks.

11.1.1 Damage mechanism

In the majority of real applications delamination does not occur alone. It is known that matrix cracking inside layers and delamination are usually associated and constitute a typical damage mechanism of composites (Takeda et al., 1982; Joshi and Sun, 1985), especially when structures are submitted to bending loads. In fact, although the phenomenon can occur under tensile loading it acquires a remarkable importance under bending loads, e.g. low velocity impact (Choi et al., 1991a). It is commonly accepted that there is a strong interaction between matrix cracking inside layers and delamination between layers. This coupling phenomenon is initiated by matrix cracking, i.e., shear and/or bending cracks in the early stages of the loading process. These cracks can originate delamination and significantly affect its propagation. Delamination occurs between layers with differing fibre orientations. In fact, when a bending or shear crack in a layer reaches an interface between two differently oriented layers it is unable to easily penetrate the other layer, thus propagating as a delamination. On the other hand, two adjacent laminae having different fibre angles induce extensional and bending stiffness mismatch which, combined with the low strength of the matrix, make composite materials very sensitive to delamination at those interfaces. In general, the delamination...
resistance of a given interface decreases with the increase of its stiffness mismatching degree (Liu and Malvern, 1987). During delamination propagation extensive micro-matrix cracks are generated in the adjacent layers.

It is worth noting that this complex interaction damage mechanism can occur in different forms depending on the bending stiffness of the structure. Flexible components respond primarily in a flexural mode, inducing significant tensile stresses at farther layers from the loaded surface. Therefore, the cracks located in these outermost layers are vertical and caused by bending effects (Choi and Chang, 1992) and their initiation and growth occur in an almost mode I fracture process. These cracks will generate a delamination along the upper adjacent interface, which will interact with other matrix cracks of the neighbour upper ply, leading to delamination on the second interface and so on (see Fig. 11.1). Delamination patterns in flexible laminates present a frustum-conical shape, where delaminations’ size increases towards the lower face of the laminate (Levin, 1991). A different failure mechanism occurs for stiffer laminates. In this case, only small deflections take place and damage initiates near to the loaded surface as a result of contact forces. Shear cracks develop near to the impact indentation and propagate through the upper ply up to the neighbour interface degenerating in a delamination. This delamination extends from the loaded region until it also deflects into a lower ply by shear and inclined cracks (see Fig. 11.2). Further delamination growth in stiff laminates occurs in a barrel shape region by growth of delaminations around the midplane (Olsson et al., 2000).

Matrix bending cracks are a predominant mode I fracture process governed by transverse normal tensile stresses whilst matrix shear cracks are governed by interlaminar shear and transverse normal tensile stresses (Choi et al.,

11.1 Schematic representation of damage initiation mechanism in flexible laminates.
11.1.2 Classical prediction methodologies

Two main approaches have been used in order to simulate the damage mechanism described above. One is based on strength of materials concepts where materials are assumed to be free of defects. However, in many situations the problem of stress concentrations nearby to a notch or a flaw leads to mesh dependency in numerical approaches. To overcome this problem the stresses obtained analytically or numerically are used in a point stress or average stress criteria (Whitney and Nuismer, 1974) in order to evaluate the occurrence of failure. In the point stress criterion the stresses are evaluated at a characteristic distance whereas in the average stress criterion they are averaged over a distance. An example is given by Choi et al. (1991b) where quadratic average stress criteria were used to predict matrix cracking when

$$\left(\frac{n \sigma_{23}}{n Y} \right)^2 + \left(\frac{n \sigma_{23}}{n S_i} \right)^2 = 1$$ \hspace{1cm} (11.1)

and delamination when

$$D_a \left[\left(\frac{n \sigma_{23}}{n S_i} \right)^2 + \left(\frac{n+1 \sigma_{13}}{n S_i} \right)^2 + \left(\frac{n \sigma_{22}}{n Y} \right)^2 \right] = 1$$ \hspace{1cm} (11.2)

11.1.2 Schematic representation of damage initiation mechanism in stiff laminates.

1991b). Delamination initiation is controlled by mode I although its growth is typically a mixed shear mode (II and III) fracture process (Choi and Chang, 1992), which is explained by the bending stiffness mismatching between adjacent differently oriented layers.
The subscripts 1, 2 and 3 are the orthotropic local coordinates of the \(n \)th or \((n + 1)\)th layers, which correspond, respectively, to the upper and lower plies of the \(n \)th interface. \(Y \) and \(S \) are the \textit{in situ} ply transverse and shear interlaminar strengths, respectively, and \(D_a \) is an empirical constant which was determined from experiments using a fitting procedure. The stress components are averaged within the ply thickness

\[
\sigma_{ij}^n = \frac{1}{h_n} \int_{h_{n-1}}^{h_n} \sigma_{ij} \, dz
\]

where \(t_n \) and \(t_{n-1} \) correspond to the position of the upper and lower interfaces of the \(n \)th ply, \(h \) is the ply thickness and \(z \) the axis normal to the plate. These criteria were applied in two steps:

- the matrix cracking criterion is initially applied in each layer;
- if matrix cracking is predicted in a given layer, the delamination criterion is applied subsequently considering two different circumstances; this criterion is applied to the lower adjacent interface if a shear crack was predicted and to the upper one if a bending crack was found.

Unlike what happens in strength of materials based approaches, the fracture mechanics approach assumes the presence of an inherent defect in the material. The majority of the proposed works are based on the concepts of strain energy release rate. It is usually assumed that damage propagation occurs when the strain energy at the crack front is equal to the critical strain energy release rate, which is a material property. The strain energy release rates are commonly obtained by using the Virtual Crack Closure Technique (VCCT) (Krueger, 2002). Considering a two dimensional problem (see Fig. 11.3), the strain energies \((G_I \) and \(G_{II} \) can be calculated by the product of the relative displacements at the ‘opened point’ (nodes \(l_1 \) and \(l_2 \)) and the loads at the ‘closed point’ (node \(n \))

\[
G_I = \frac{1}{2B\Delta a} Y_i \Delta \nu_i
\]

\[
G_{II} = \frac{1}{2B\Delta a} X_i \Delta \mu_i
\]

being \(B\Delta a \) the area of the new surface created by an increment of crack propagation (see Fig. 11.3). It should be assured that self similar propagation occurs and an adequate refined mesh should be used. Liu \textit{et al.} (1993) used the VCCT to obtain the strains energy release rates and a linear mixed-mode criterion

\[
\frac{G_I}{G_{Ic}} + \frac{G_{II}}{G_{IIc}} = 1
\]
to simulate the propagation of a small initial delamination crack introduced after the occurrence of the initial matrix cracking failure. \(G_{lc} \) and \(G_{llc} \) represent the interlaminar critical strain energy release rates in modes I and II, respectively. A similar approach was followed by Zou et al. (2002) where a mixed-mode delamination growth is considered when

\[
\left(\frac{G_I}{G_{lc}} \right) ^ \alpha + \left(\frac{G_{ll}}{G_{llc}} \right) ^ \beta + \left(\frac{G_{lll}}{G_{lllc}} \right) ^ \gamma = 1
\]

and \(\alpha, \beta \) and \(\gamma \) are mixed-mode fracture parameters determined from material tests.

The stress and fracture mechanics based criteria present some disadvantages. The stress based methods present mesh dependency during numerical analysis due to stress singularities. On the other hand, the point/average stress criteria require the definition of a critical dimension which depends on the material and stacking sequence (Tan, 1989), and do not have a physically powerful theoretical foundation. Fracture mechanics approach relies on the definition of an initial flaw or crack length. However, in many structural applications the locus of damage initiation is not obvious. On the other hand, the stress-based methods behave well at predicting delamination onset, and fracture mechanics has already demonstrated its accuracy in the delamination propagation modelling. In order to overcome the referred drawbacks and exploit the usefulness of the described advantages, cohesive damage models and continuum damage mechanics emerge as suitable options. These methodologies combine aspects of stress based analysis to model damage.
Delamination behaviour of composites

initiation and fracture mechanics to deal with damage propagation. Thus, it
is not necessary to take into consideration an initial defect and mesh dependency
problems are minimized.

11.2 Mixed-mode cohesive damage model

Cohesive damage models are frequently used to simulate damage onset and
growth. They are usually based on a softening relationship between stresses
and relative displacements between crack faces, thus simulating a gradual
degradation of material properties. They do not depend on a predefined
initial flaw unlike conventional fracture mechanics approaches. Typically,
stress based and energetic fracture mechanics criteria are used to simulate
damage initiation and growth, respectively. Usually cohesive damage models
are based on spring (Cui and Wisnom, 1993 and Lammerant and Verpoest,
1996) or interface finite elements (Mi et al., 1998, Petrossian and Wisnom,
1998; de Moura et al., 2000) connecting plane or three-dimensional solid
elements. Those elements are placed at the planes where damage is prone to
occur which, in several structural applications, can be difficult to identify a
priori. However, an important characteristic of delamination is that its
propagation is restricted to a well defined plane corresponding to the interface
between two differently oriented layers; thus leading to a typical application
of cohesive methods. Taking this into consideration, a cohesive mixed-mode
damage model based on interface finite elements is presented.

The formulation is based on the constitutive relationship between stresses
on the crack plane and the corresponding relative displacements

\[\sigma = E \delta \]

where \(\delta \) is the vector of relative displacements between homologous points,
and \(E \) a diagonal matrix containing the penalty parameter \(e \) introduced by
the user. Its values must be quite high in order to hold together and prevent
interpenetration of the element faces. Following a considerable number of
numerical simulations (Gonçalves et al., 2000), it was found that \(e = 10^7 \)
N/mm\(^3\) produced converged results and avoided numerical problems during
the non-linear procedure.

The interface finite element includes a damage model to simulate damage
onset and growth. Equation 11.7 is only valid before damage initiation. The
considered damage model combines aspects of strength-based analysis and
fracture mechanics. It is based on a softening process between stresses and
interfacial relative displacements and includes a mixed-mode formulation.
After peak stress the material softens progressively or, in other words, undergoes
damage (see Fig. 11.4). To avoid the singularity at the crack tip and its
effects, a gradual rather than a sudden degradation, which would result in
mesh-dependency, is considered. It is assumed that failure occurs gradually
as energy is dissipated in a cohesive zone behind the crack tip. This is equivalent to the consideration of a 'Fracture Process Zone', defined as the region in which the material undergoes softening deterioration by different ways, e.g., micro-cracking, fibre bridging and inelastic processes. Numerically, this is implemented by a damage parameter whose values vary from zero (undamaged) to unity (complete loss of stiffness) as the material deteriorates. For pure mode (I, II or III) loading, a linear softening process starts when the interfacial stress reaches the respective strength $\sigma_{u,i}$ (see Fig. 11.4). The softening relationship can be written as

$$\sigma = (I - D)E\delta_i$$

where I is the identity matrix and D is a diagonal matrix containing, on the position corresponding to mode i ($i = I, II, III$), the damage parameter,

$$d_i = \frac{\delta_{i,u,i}(\delta_i - \sigma_{u,i})}{\delta_i(\delta_{i,u,i} - \sigma_{u,i})}$$

where $\delta_{i,u,i}$ and $\delta_{i,u,i}$ are, respectively, the onset and ultimate relative displacements of the softening region (see Fig. 11.4), and δ_i is the current relative displacement. The maximum relative displacement, $\delta_{u,i}$, at which complete failure occurs, is obtained by equating the area under the softening curve to the respective critical strain energy release rate

$$G_{ic} = \frac{1}{2} \sigma_{u,i} \delta_{u,i}$$

In general, structures are subjected to mixed-mode loadings. Therefore, a formulation for interface elements should include a mixed-mode damage model, which, in this case, is an extension of the pure mode model described
above (see Fig. 11.4). Damage initiation is predicted by using a quadratic stress criterion

\[
\left(\frac{\sigma_1}{\sigma_{u,1}} \right)^2 + \left(\frac{\sigma_{II}}{\sigma_{u,II}} \right)^2 + \left(\frac{\sigma_{III}}{\sigma_{u,III}} \right)^2 = 1 \quad \text{if } \sigma_i \geq 0 \\
\left(\frac{\sigma_{II}}{\sigma_{u,II}} \right)^2 + \left(\frac{\sigma_{III}}{\sigma_{u,III}} \right)^2 = 1 \quad \text{if } \sigma_i \leq 0
\]

assumed that normal compressive stresses do not promote damage. Considering Equation 11.7, the first equation 11.11 can be rewritten in function of relative displacements

\[
\left(\frac{\delta_{om,1}}{\delta_{o,1}} \right)^2 + \left(\frac{\delta_{om,II}}{\delta_{o,II}} \right)^2 + \left(\frac{\delta_{om,III}}{\delta_{o,III}} \right)^2 = 1
\]

\[
\delta_{om,i} (i = I, II, III) \text{ being the relative displacements corresponding to damage initiation. Defining an equivalent mixed-mode displacement}
\]

\[
\delta_m = \sqrt{\delta_{I}^2 + \delta_{II}^2 + \delta_{III}^2}
\]

and mixed-mode ratios

\[
\beta_i = \frac{\delta_i}{\delta_1}
\]

the mixed-mode relative displacement at the onset of the softening process \((\delta_{om})\) can be obtained combining Equations 11.12–11.14.

\[
\delta_{om,1} = \delta_{o,II} \delta_{o,III} \sqrt{1 + \beta_{II}^2 + \beta_{III}^2} \\
\delta_{om,II} = \frac{\beta_1 \delta_{om}}{\sqrt{1 + \beta_{I}^2 + \beta_{III}^2}} \\
\delta_{om,III} = \frac{\beta_1 \delta_{om}}{\sqrt{1 + \beta_{II}^2 + \beta_{I}^2}}
\]

The corresponding relative displacement for each mode, \(\delta_{om,i}\), can be obtained from Equations 11.13–11.15.

Once a crack has initiated the above stress-based criterion cannot be used in the vicinity of the crack tip due to stress singularity. Consequently, the mixed-mode damage propagation is simulated using the linear fracture energetic criterion

\[
\frac{G_I}{G_{ic}} + \frac{G_{II}}{G_{ic}} + \frac{G_{III}}{G_{ic}} = 1
\]
The released energy in each mode at complete failure can be obtained from the area of the minor triangle of Fig. 11.4.

\[G_i = \frac{1}{2} \sigma_{um,i} \delta_{um,i} \]
11.18

Considering Equations 11.7, 11.13 and 11.14, the energies (Equations [11.10 and 11.18]) can be written in function of relative displacements. Substituting into Equation 11.17, it can be obtained

\[\delta_{um} = \frac{2(1 + \beta_{II}^2 + \beta_{III}^2)}{\epsilon \delta_{om}} \left(\frac{1}{G_{IC}} + \frac{\beta_{II}^2}{G_{IFC}} + \frac{\beta_{III}^2}{G_{IFC}} \right) \]
11.19

which corresponds to the mixed-mode displacement at failure. The ultimate relative displacements in each mode, \(\delta_{um,i} \), can be obtained from Equations 11.13, 11.14 and 11.19

\[\delta_{um,i} = \frac{\beta_{II} \delta_{om}}{\sqrt{1 + \beta_{II}^2 + \beta_{III}^2}} \]
11.20

The damage parameter for each mode can be obtained substituting \(\delta_{om,i} \) and \(\delta_{um,i} \) in Equation 11.19.

The interaction between matrix cracking and delamination in (0, 90, 90)\(_4\) carbon-epoxy laminates under low velocity impact was simulated using a cohesive damage model (de Moura and Gonçalves, 2004). Circular clamped plates of 50 mm diameter were tested and damage, identified by X-ray method, was constituted by:

- a longitudinal long crack parallel to fibres direction in the outermost group of equally oriented layers and caused by bending loading;
- an extensive delamination located at the distal interface between differently oriented layers relatively to the loaded surface; the delamination has a characteristic two-lobed shape with its major axis oriented on the direction of the lower adjacent ply.

In the numerical model only half plate was considered due to geometrical and material symmetrical conditions. With the aim to numerically simulate this damage mechanism, interface finite elements were placed at the critical interface in order to simulate the observed delamination, and at the vertical symmetry plane of the used mesh. The objective of these vertical elements was to model the onset and growth of the longitudinal bending crack in the outermost group of equally oriented layers which was observed to be the initial damage (see Fig. 11.5). This crack induces delamination in the adjacent interface as it can be seen in Fig. 11.6. This damage mechanism occurs in a progressive way, i.e., the growth of the vertical crack is associated with an increasing delamination. Numerical results agreed with the experiments.
The shape of the delamination was accurately predicted (see Fig. 11.7). The delamination and crack lengths in function of the maximum load were also in agreement (see Figs 11.8 and 11.10), although some non-negligible differences were noted in the delaminations width (see Fig. 11.9). The global trend was captured for all cases.
11.8 Delamination length (l) in function of maximum load.

11.9 Delamination width (W) in function of maximum load.

11.10 Longitudinal crack length (l_c) in function of maximum load.
Although promising results were obtained with this approach it should be emphasized that it cannot be considered an adequate prediction model for more general applications. In fact, in laminates with several different oriented layers it is not suitable to include numerous vertical interface elements in all layers to predict matrix cracking in any layer. The alternative is to consider that solid elements can also include a damage model in order to simulate damage inside layers. This can be done using continuum damage mechanics which is discussed in the next section.

11.3 Continuum damage mechanics

The classical approaches based on strength of materials usually assume that once matrix cracking arises, a sudden loss of material properties occur, which is generally denominated by ply discount models (Hwang and Sun, 1989). However, it is known that in presence of matrix cracking, the composite does not lose its load carrying capacity immediately. In fact, damage can be considered as the progressive weakening mechanism which occurs in materials prior to failure. It can be constituted by micro-cracking, voids nucleation and growth, and several inelastic processes that deteriorate the material. The analysis of cumulative damage is fundamental in life prediction of components and structures under loading. Tan (1991) proposed a progressive damage model relating the material elastic properties with internal state variables D_i^f and D_i^c $(i = 1, 2, 6)$, ranging between 0 and 1, that are function of the type of damage. When a given failure criterion is satisfied, the material properties are abruptly reduced according to the respective residual strength experimentally observed. Each damage mode is predicted by the subsequent expressions:

Fibre tensile fracture

$$E_{11}^d = D_1^f E_{11}; \quad v_{12}^d = v_{13}^d = 0$$

Fibre compressive fracture

$$E_{11}^d = D_1^c E_{11}; \quad v_{12}^d = v_{13}^d = 0$$

Matrix tensile failure

$$E_{22}^d = D_2^f E_{22}; \quad E_{33}^d = D_2^f E_{33}; \quad v_{12}^d = v_{23}^d = 0$$

$$G_{12}^d = D_6^f G_{12}; \quad G_{13}^d = D_6^f G_{13}; \quad G_{23}^d = D_6^f G_{23}$$

Matrix compressive failure or shear cracking

$$E_{22}^d = D_2^c E_{22}; \quad E_{33}^d = D_2^c E_{33}; \quad v_{12}^d = v_{23}^d = 0$$

$$G_{12}^d = D_6^c G_{12}; \quad G_{13}^d = D_6^c G_{13}; \quad G_{23}^d = D_6^c G_{23}$$
The author (Tan, 1991 and Tan and Perez, 1993) obtained good agreement with experimental results considering $D_T^f = 0.07$, $D_T^c = D_c^f = 0.2$, $D_c^c = 0.14$ and $D_c^c = D_c^c = 0.4$. Although this type of models consider a residual strength in accordance with the physical reality they are mesh dependent during numerical analysis.

To avoid the sudden loss of material properties and mesh dependency, the continuum damage models combining strength of materials and fracture mechanics concepts are an appealing alternative. Material damage is simulated by introducing damage variables into the constitutive equations (Lemaitre and Chaboche, 1985). After the matrix cracking initiation is predicted, a gradual softening post-failure analysis is also performed by appropriately reducing the material properties within the elements where matrix cracking onset occurred.

Ladevèze and Le Dantec (1992) developed a continuum damage mechanics formulation for orthotropic materials to account for ply degradation. Considering a damaged layer in a state of plane stress the strain-stress relationship take the general form

$$\epsilon = S\sigma$$

where ϵ and σ are vectors of elastic strain and stress, respectively. In a local system associated with orthotropy axes it can be written

$$\sigma = (\sigma_{11}, \sigma_{22}, \sigma_{12})^T; \epsilon = (\epsilon_{11}, \epsilon_{22}, 2\epsilon_{12})^T$$

and S the compliance matrix

$$S = \begin{bmatrix}
\frac{1}{E_1(1-d_1)} & \frac{v_{12}}{E_1} & 0 \\
\frac{v_{12}}{E_1} & \frac{1}{E_2(1-d_2)} & 0 \\
0 & 0 & \frac{1}{G_{12}(1-d_{12})}
\end{bmatrix}$$

The damage parameters (d_1, d_2 and d_{12}) define the damage state for the three types of stress loading and varies between 0 (undamaged state) and 1 (complete loss of stiffness). No additional parameter is used to simulate degradation in Poisson’s ratios as they are intrinsically affected during damage progression; v_{12} is reduced by the factor $(1-d_1)$, since for a uniaxial stress σ_{11} it can be shown from Equations 11.25, 11.26 and 11.27 that $-\frac{\epsilon_{22}}{\epsilon_{11}} = v_{12}(1-d_1)$; similarly it can be easily demonstrated that v_{21} is affected by $(1-d_2)$. In order to establish the evolution of damage parameters in function of the damage growth the concept of strain energy density ϕ is used

$$\phi = \frac{1}{2} \sigma^T S \epsilon$$
The theory also includes the concept of ‘thermodynamic forces’, \(Y_1, Y_2, Y_{12} \), associated with the internal damage variables \(d_1, d_2, d_{12} \). Those parameters are also considered as driving forces for damage development and are defined by

\[
Y = \frac{\partial \phi}{\partial d}
\]

where \(Y = (Y_1, Y_2, Y_{12})^T \) and \(d = (d_1, d_2, d_{12})^T \). Combining Equations 11.28 and 11.29 it follows

\[
Y_1 = \frac{\sigma_{11}^2}{2E_1(1 - d_1)^2}; Y_2 = \frac{\sigma_{22}^2}{2E_2(1 - d_2)^2}; Y_{12} = \frac{\sigma_{12}^2}{2G_{12}(1 - d_{12})^2}
\]

11.30

In the absence of fibre breakage, \(d_1 \) is zero throughout the load history and the longitudinal modulus does not degrade; therefore only \(Y_2 \) and \(Y_{12} \) driving forces should be considered to model matrix cracking. A linear combination

\[
\hat{Y} = Y_{12} + b Y_2
\]

11.31

where \(b \) is a material constant, can be used to account for coupling between transverse tension and shear effects. To avoid healing phenomena the maximum value of \(\hat{Y} \) up to the current time \(t \) is defined as

\[
\hat{Y}(t) = \max_{\tau \leq t} (Y_{12} + b Y_2)
\]

11.32

Experimental results for carbon-epoxy laminates showed that damage parameters can be written as

\[
d_{12} = \frac{\sqrt{\hat{Y}} - \sqrt{Y_0}}{\sqrt{Y_C}}, d_2 = \frac{\sqrt{\hat{Y}} - \sqrt{Y_0'}}{\sqrt{Y_C'}}
\]

11.33

where \(Y_0, Y_C, Y_0' \) and \(Y_C' \) are damage evolution parameters. They are determined experimentally performing tension tests on \([\pm 45]_s\) and \([\pm 67.5]_k\) laminates (Ladevèze and Le Dantec, 1992). The model was tested on \([\pm 45]_s\), \([67.5, 22.5]_s\), and \([-12, 78]_s\) laminates under tensile loading and excellent agreement was obtained with the respective experimental \(\text{\sigma-\varepsilon} \) curves.

An approach similar to the one used in the cohesive damage model described in Section 11.2 is proposed by other authors (Crisfield et al., 1997; Pinho et al., 2006; de Moura and Chousal, 2006). In this case there is a softening relationship between stresses and strains instead of between stresses and relative displacements considered in the cohesive model. Consequently, in this case a characteristic length \(l \) must be introduced to transform the relative displacement into an equivalent strain. (see Fig. 11.4)
Interaction of matrix cracking and delamination

\[G_{lc} = \frac{1}{2} \sigma_{u,ij} e_{u,ij} l_c \]

This parameter was considered to be equal to the length of influence of a Gauss point in the given direction and physically can be regarded as the dimension at which the material acts homogeneously. The stress-strain relation can be written considering an equation similar to Equation 11.8

\[\sigma = (I - D) C e \]

being \(C \) the stiffness matrix of the undamaged material in the orthotropic directions. Assuming that matrix cracking occur in mixed-mode I+II the damage model described in Section 11.2 can be adopted. The damage parameter is calculated by an expression similar to Equation 11.9 but considering strains instead of relative displacements. A linear softening law is also used. The properties are smoothly reduced due to the energy released at the FPZ. The material properties at a given Gauss point are degraded according to the assumed criterion. This leads to load redistribution for the neighbouring points, thus simulating a gradual propagation process.

In summary, it can be affirmed that these methods allow simulating damage inside solid finite elements used to model composite layers and can be used to simulate matrix cracking phenomenon. A gradual degradation of properties instead of a sudden one avoids the singularity effects and minimizes the consequent mesh sensitivity.

11.4 Conclusions

Matrix crack and delamination are intrinsically associated in composite materials, namely under bending loads. The interaction between these two modes of damage constitutes a complex damage mechanism that has not been addressed in a realistic level. Such interaction is fundamental to be considered in a failure model prediction because one mode may initiate the other and they may intensify each other. Two different models come out to deal with the referred damage modes. Mixed-mode cohesive damage models join the positive arguments of stress based and fracture mechanics criteria overcoming their inherent difficulties. These models have being used with success to simulate delamination initiation and growth. They are usually based on interface finite elements including a softening relationship between stresses and relative displacements. The continuum damage mechanics is being applied on the simulation of matrix cracking. These models are based on the introduction of damage parameters into the constitutive equations in order to simulate material damage. These damage parameters increase smoothly with growing damage, leading to a slow degradation of material properties instead of an abrupt one which is not realistic and originate mesh dependencies.
In summary, cohesive and continuum damage models are actually the most prominent numerical tools in order to simulate matrix cracking inducing delamination damage mechanism of composites. However, it should be recognized that an accurate methodology addressing all the realistic issues of this complex damage mechanism is still lacking. The solution points to the development of a numerical tool incorporating the two kinds of models. The two methods (cohesive elements and damage mechanics) can coexist. In fact, both models can be implemented via user subroutines in commercial software. When the selected damage criterion in a solid element is satisfied the element fails simulating matrix cracking. This induces important relative displacements at the adjacent interfaces leading to delamination initiation and propagation according to the damage criterion of the cohesive elements. Some aspects should require special attention like the influence of stress concentration at the intersection of a critical matrix crack with a given interface. It is not clear up to now if the coexistence of the two methods will be able to accurately model such particularity. Some efforts should also be dedicated to the development stress and fracture criteria adequate to the specificities of this damage mechanism.

11.5 References

de Moura M F S F, Chousal J A G (2006), ‘Cohesive and continuum damage models...
Interaction of matrix cracking and delamination

