Adding Fast Parity Check to BST for Concurrent Monitoring

European Test Workshop 1999

Adding Fast Parity Check to BST for Concurrent Monitoring

Jose M. Vieira dos Santos - ISEP / DEE
(jmvs@dee.isep.ipp.pt)

J. M. Martins Ferreira - FEUP / DEEC
(jmf@fe.up.pt)

Porto - Portugal
Motivation
• The IEEE 1149.1 infrastructure is becoming increasingly reused during circuit operation (e.g. to increase dependability through concurrent monitoring)
• Pushing TCK frequencies and lowering voltages impact scan operations
• Scan-data reliability must be improved to cope with on-line operation requirements

The Proposal
• To check the Parity of transmitted data
 – For each vector shifted into each BS IC, t+1 bits are read by the BST controller
 – The (n+1)th bit represents the parity of the data and will be checked by the BST controller

Parity Generation
Parallel
• Checks final data inside scan cells
 – Detects internal and external errors
 – Overhead is higher
• Checks all data scanned through TDI pin
 – Detects external errors only
 – Small overhead

Series

Option 1
(parallel or series)
• Shift → Exit_1 → Update ...
 – No extra clock cycles are required, but...
 – Erroneous data will be stored before correction

Option 2
(parallel or series)
• Shift → Exit_1 → Pause → Exit_2 → Update (or Shift) ...
 – Extra clock cycles are required, but...
 – In case of error, data will not be stored

Conclusion
• Capability to check the parity of every scan operation means higher reliability
• Pros and cons:
 – Physical overhead: less than 1% of the BST infrastructure
 – Dynamic overhead:
 • None with option 1
 • Two TCK cycles with option 2
 – Drawback: violates the High-Z rule for Exit-1