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Abstract  
The proposed thesis addresses several topics in the field of seismic risk assessment of 

structures. The main objective is to propose probabilistic methods for the seismic risk 

assessment of existing buildings which can be used in the research and development of 

codified procedures addressing this type of structures.  

In light of this wide-scope objective, a preliminary analysis is carried out to 

characterize how the seismic safety assessment of existing structures is addressed within the 

scope of the Eurocodes. In this context, the seismic safety assessment methodology 

defined by Eurocode 8 – Part 3 (EC8-3) is analysed and discussed. Based on the limitations 

identified in the chord rotation demand quantification procedure defined by EC8-3, a study 

is made to analyse several alternative proposals for its quantification. Moreover, the 

definition of the Confidence Factor and its role in the safety analysis is another aspect of 

the EC8-3 features that is addressed with more detail. Based on the interpretation of the 

code procedures, a statistical framework is proposed to reflect the uncertainty of the 

material properties required for the safety analysis in the definition of the Confidence 

Factor.  

The analysis of the code procedures also emphasises the need for adequate methods 

to validate the results obtained by the EC8-3 safety assessment methodology. Such need 

asks for the development of a suitable probabilistic framework aiming to assess the 

reliability of the code procedures and calibrate parameters they involve. In this context, the 

remaining research presented in the thesis introduces several contributions to such 

probabilistic framework involving the development and enhancement of methods for the 

probabilistic performance assessment of structures.  

The aspects of the probabilistic performance assessment addressed in the proposed 

thesis are the adequate characterization of probabilistic models for the structural demand 

of building response under earthquakes, the seismic risk assessment of building 

components, and the seismic risk and loss assessment of building systems, combining both 

component-level and system-level criteria. With respect to the characterization of 

probabilistic models for the structural demand of building response parameters, an in-

depth analysis of the common assumption that structural demand conditional to a seismic 

intensity level follows a lognormal distribution is performed using adequate statistical 

methods. Having established the type of statistical distribution of the demand parameters, 

an extensive study is also performed to address the characterization of the parameters of 

such distributions using robust estimation methods. In the context of the seismic risk 

assessment of building components, methodologies defining analytical closed form 

expressions for the risk and the exceedance probability of structural component limit states 

are developed. The proposed procedures use a strategy similar to that of the well known 

SAC-FEMA method, but extend that approach by introducing different functional forms 

to represent the earthquake hazard and by addressing the issue of force-based limit states. 
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Finally, a probabilistic methodology is proposed to analyse the seismic performance of 

existing buildings using global metrics to determine if the behaviour conforms to a given 

limit state. The considered performance metrics are the probability of occurrence of the 

limit state, the corresponding loss associated to the repair of the building, and the 

corresponding number and type of mechanisms that occur. Based on these latter 

parameters, a number of possible scenarios corresponding to the limit state occurrence are 

established, which can then be combined to obtain a global performance value representing 

the expected loss over a given reference period of time.  

The topics addressed throughout the thesis are illustrated with several application 

examples involving reinforced concrete structures. These structures were selected in order 

to include both regular and irregular structures of different heights, as well as 

non-seismically designed structures and structures designed according to modern seismic 

design methods. 
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Resumo 
O objectivo principal desta dissertação consiste na proposta de metodologias 

probabilísticas para a avaliação do risco sísmico de edifícios existentes que possam ser 

utilizadas no desenvolvimento de procedimentos regulamentares dirigidos para este tipo de 

estruturas. Neste âmbito, foram abordadas e analisadas várias temáticas no contexto da 

avaliação do risco sísmico de estruturas tendo sido, nomeadamente, caracterizada a forma 

como a avaliação da segurança sísmica de estruturas existentes é tratada no âmbito dos 

Eurocódigos.  

Neste contexto, foi analisada a metodologia de avaliação da segurança sísmica 

proposta na Parte 3 do Eurocódigo 8 (EC8-3), sendo discutidas algumas das suas 

limitações. Assim, o procedimento proposto pelo EC8-3 para a quantificação da rotação da 

corda de elementos estruturais foi analisado num estudo mais detalhado em que foram 

discutidas diferentes alternativas para a sua determinação. Paralelamente, o Factor de 

Confiança e o seu papel na avaliação da segurança foram igualmente analisados com maior 

detalhe. Para tal, foi estabelecido um enquadramento de base estatística para a definição do 

Factor de Confiança, o qual reflecte a incerteza das propriedades materiais que têm de ser 

determinadas para proceder à avaliação da segurança sísmica. 

A análise dos procedimentos regulamentares salientou a necessidade de existirem 

métodos adequados que permitam validar os resultados obtidos pela metodologia de 

avaliação da segurança sísmica do EC8-3. Assim, conclui-se que é necessário estabelecer 

um enquadramento de base probabilística que permita avaliar a fiabilidade dos 

procedimentos regulamentares e calibrar os parâmetros envolvidos. Neste contexto, a 

presente dissertação apresenta, ainda, diversas contribuições para o estabelecimento duma 

formulação probabilística da avaliação da segurança sísmica, nomeadamente ao nível do 

desenvolvimento e do refinamento de métodos probabilísticos para avaliação do 

desempenho estrutural. Os conceitos abordados envolvem a caracterização probabilística 

da resposta estrutural de edifícios sujeitos à acção sísmica, métodos para a avaliação do 

risco sísmico de elementos estruturais e métodos para a avaliação do risco sísmico e das 

correspondentes perdas económicas em edifícios. A caracterização de modelos 

probabilísticos para a resposta estrutural de edifícios foi tratada em detalhe utilizando 

métodos estatísticos adequados, sendo analisada a legitimidade da hipótese 

generalizadamente assumida relativa à distribuição da resposta estrutural obtida para um 

determinado nível da acção sísmica seguir uma distribuição lognormal. Após estabelecer o 

tipo de distribuição estatística da resposta estrutural, foi realizado um estudo alargado que 

abordou a caracterização dos parâmetros das referidas distribuições estatísticas utilizando 

métodos de estatística robusta. No contexto dos métodos para a avaliação do risco sísmico 

de elementos estruturais foram abordadas diversas metodologias analíticas que permitiram 

o desenvolvimento de expressões para a avaliação do risco e da probabilidade de 

ocorrência de diferentes estados limite. Os procedimentos propostos foram desenvolvidos 
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com base na formulação do método SAC-FEMA, sendo alargada a aplicabilidade desta 

abordagem com a introdução de expressões alternativas para a representação da 

perigosidade sísmica e ao estabelecer propostas especificamente dirigidas para estados 

limite definidos em termos de esforços. Finalmente, é proposta uma metodologia 

probabilística para a avaliação do desempenho de edifícios existentes através da utilização 

de indicadores globais que determinam se o comportamento da estrutura verifica as 

condições de segurança associadas ao estado limite em análise. Os indicadores globais 

considerados são a probabilidade de ocorrência do estado limite, as perdas económicas 

associadas à reparação do edifício e o número e o tipo de mecanismos locais que ocorrem. 

Com base nestes parâmetros, é então possível definir diversos cenários que correspondem 

à ocorrência do estado limite em análise, os quais, posteriormente, podem ser combinados 

para obter um indicador global do desempenho do edifício.   

Os diferentes assuntos abordados ao longo da dissertação são ilustrados com recurso 

a várias aplicações que envolvem estruturas de betão armado. As estruturas envolvidas 

neste estudo foram seleccionadas de modo a incluir estruturas regulares e irregulares de 

diferentes alturas, e estruturas com e sem dimensionamento sísmico. 
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Chapter 1 
Introduction  

 

 

1.1 General overview 

Earthquakes are, without a doubt, among the most impressive and powerful natural 

phenomena striking the Earth. The burst of energy released by major earthquakes is so 

large that it can lead to a redistribution of the Earth’s mass with significant implications on 

the planetary dynamics (Chao et al., 1996). For example, the energy released by the 2004 

magnitude MW 9.1 Sumatra earthquake - equivalent to more than 63 million Hiroshima 

atomic bombs (USGS, 2009) - was found to have shortened the length of a day by 6.8 

microseconds and to have shifted the Earth's figure axis (the axis about which the mass of 

the Earth is balanced) by about 7 centimetres (NASA, 2011). Similar effects were also 

observed after the more recent 2010 magnitude MW 8.8 Chile earthquake - the day length 

was shortened by 1.26 microseconds and the Earth's figure axis was shifted by about 8 

centimetres - and the 2011 magnitude MW 9.0 Tohoku earthquake in Japan - the day length 

was shortened by 1.8 microseconds and the Earth's figure axis was shifted by about 17 

centimetres, (NASA, 2011). Although changes in the Earth's rotation also occur due to 

several other natural phenomena, e.g. due to seasonal shifts in ocean currents, atmospheric 

jet streams or solar and lunar tides (Stephenson, 2003), and do not have any impacts on our 

daily lives, those produced by earthquakes are still significant enough to be accounted for in 

fields such as astronomy, geography and space navigation.  

Aside from these facts, the energy released from earthquakes is best known for its 

destructive power that generates, in many cases, extensive human and economic losses 

spread across large areas. In order to have an idea about the extent of the areas devastated 

by earthquakes, Fig. 1.1 presents several visual comparisons involving data obtained from 

recent earthquakes and records associated to other natural and man-made disasters. As can 

be observed, the scale of the affected areas by some of these earthquakes is overwhelming 
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when compared to that of the other examples. However, the size of the areas devastated 

does not reflect entirely the scale of the global consequences of these disastrous events.  
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Figure 1.1. Areas affected by recent earthquakes compared to that of other natural and man-made disasters 
(adapted from http://www.informationisbeautiful.net/). 

 

To obtain a more general perspective about the considerable impact of some of these 

events, Fig. 1.2 presents visual comparisons of the estimated economical loss (in billions of 



1.3 

US$), the number of people that were affected and the number of fatalities associated to 

the four earthquakes, the 2010 Australian floods and the Chernobyl nuclear accident that 

are referred in Fig. 1.1. To complement this analysis, Fig. 1.2 also presents the extent of the 

areas devastated by these six events previously presented in Fig. 1.1.  
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devastated areas for the four earthquakes, the 2010 Australian floods and the Chernobyl nuclear accident 

referred in Fig. 1.1 (Source: http://bit.ly/vNO350) 
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With respect to the Japan 2011 earthquake, it is noted that over 90% of the fatalities 

resulted from drowning as a consequence of the tsunami. In what concerns the Chernobyl 

nuclear accident, the number of people affected is that of residents of the Belarus, the 

Russian Federation and the Ukraine territories that were contaminated by the Chernobyl 

fallout, the 235 billion US$ loss refers to losses over thirty years for Belarus alone, and the 

4000 fatalities are estimated over a period of more than twenty years (IAEA, 2006). 

By analysing the data presented in Fig. 1.2, it can be seen that earthquakes can be far 

more deadly than other disasters and that the value of their immediate economic losses can 

also be seen to be considerably large. Although earthquake ground shaking has a number 

of damaging effects that involve, for example, different types of soil failure (e.g. landslides, 

liquefaction, surface fault rupture or general settlements) and tsunamis, a significant part of 

the human losses (injuries and fatalities) can be associated to one main factor: the existence 

of man-made structures and infra-structures lacking appropriate seismic design that will, 

inevitably, exhibit inadequate behaviour when subjected to earthquakes. When focussing 

on the behaviour of buildings only, the importance of this factor can clearly be observed 

when analysing the reasons for the fatalities of the 2010 Haiti and Chile earthquakes. The 

severe death toll of the Haiti earthquake has been largely credited to a lack of adequate 

earthquake-resistant design practice and to the poor quality of a large part of the building 

inventory (ARUP, 2010; Eberhard et al., 2010). On the other hand, the low number of 

deaths (when compared to the number of people affected) resulting from the 2010 Chile 

earthquake can be seen to be a consequence of the relatively good performance of modern 

earthquake-resistant structures, which can then be attributed to the adequacy of building 

codes and standards adopted in that country (Elnashai et al., 2010; Kato et al., 2010; Rojas et 

al., 2010). Still, a significant number of non-engineered masonry and adobe constructions 

suffered extensive damage and collapsed as a result of that earthquake (RMS, 2010; Tanner 

and Carboni, 2011). A similar analysis can be made for the outcomes of the New Zealand 

earthquake of 2011. Findings for this event also show that modern earthquake-resistant 

structures were seen to exhibit adequate seismic behaviour, while unprepared constructions 

(e.g. unreinforced masonry buildings) did not (Chouw et al., 2011; Clifton et al., 2011; 

EERI, 2011). Analyses of this sort have also been made for other earthquakes (Spence and 

So, 2009; Pomonis et al., 2011) and the results have shown that vulnerable housing is the 

main cause of human casualties and injuries. In light of these findings, and as frightening as 

this prospect might be, it has to be acknowledged that Nick Ambraseys’ 1968 observation 

on the fact that “earthquakes don't kill people, buildings do” (Bilham, 2006) is as valid today as it 

was then, if modern earthquake-resistant design practices are not considered. 

Another aspect of the data in Fig. 1.2 that must be highlighted is the considerably 

large value of earthquake related losses. Two factors can be seen to be related to such large 

amounts of economical losses: the extent of the area that is affected by the earthquake and 

its level of development. To illustrate further the extent of earthquake related economic 

losses, Fig. 1.3 presents maps displaying worldwide earthquake related economic losses for 



1.5 

some of the earthquakes with magnitude MW higher than 6.0 that occurred between 1985 

and March 2011 and that involved losses over one billion US$, according to data found in 

NGDC (2011) and Ferreira, (2012). The map of Fig. 1.3a) represents thirty events, where 

some of them are identified, while Fig. 1.3b) does not represent the events with the three 

largest losses (the 2011 Tohoku, Japan, earthquake, the 1995 Kobe, Japan, earthquake and 

the 2008 Sichuan, China, earthquake) to have a more detailed view of the remaining events. 

It should be noted that, although the number of earthquakes with magnitude MW higher 

than 6.0 during the considered time period is 604, reliable data about the economic losses 

they have caused could only be obtained for 133 events (NGDC, 2011). Therefore, the true 

representation of worldwide earthquake losses over one billion US$ could be far more 

significant than that of Fig. 1.3. The data in Fig. 1.3a) represents a total loss close to 835 

billion US$ (i.e. about 75% of the European Union budget for the period 2007-2013) and 

the three largest losses represent 70% of this total loss.  

As can be observed by these numbers, earthquake related economic losses can be of 

overwhelming and economically disruptive proportions. Moreover, in earthquakes where 

the main cause of damage is due to ground shaking (i.e. in cases where secondary effects 

such as tsunamis were not felt), the share of such losses which corresponds to direct losses 

to the building stock can also be seen to be significant. For example, in the case of the 1994 

Northridge earthquake, the global estimated losses are about 40 billion US$ and more than 

60% are estimated to be losses to the building stock (Wu and Lindell, 2004). Similarly, the 

building stock losses from the 1995 Kobe earthquake are also close to 60% of the global 

estimated losses which, in this case, are 131 billion US$ (Otani, 1999). Likewise, the 1999 

Athens earthquake caused over 2.5 billion US$ (fib, 2006) in losses to the building stock 

which are close to 60% of the 4.5 billion US$ of global estimated losses (Gurenko, 2011).  

Although limited, the presented data indicates that more recent structures designed 

according to modern earthquake resistant design codes have been able to reduce the risk to 

human life. However, the large monetary losses resulting from many recent earthquakes 

indicate that the issue of economical losses is not adequately addressed by such earthquake 

resistant practice. Moreover, the human and monetary losses resulting from the inadequate 

seismic behaviour of older sub-standard constructions emphasize the need to develop 

adequate procedures addressing the seismic safety assessment and strengthening of these 

existing structures.  

With the intention of answering these needs, the past fifteen years have witnessed the 

development and the wide dissemination of the performance-based earthquake engineering 

(PBEE) philosophy which is a conceptual framework that involves the design, assessment 

and construction of engineered structures. The fundamental principles inherent to PBEE 

aim to improve the adequate quantification of the behaviour of structures subjected to 

earthquake loading in order to predict their performance with sufficient confidence and to 

contribute for the development of more effective seismic risk mitigation measures. The 

development of the PBEE concept was triggered by several reasons (Krawinkler, 1997). 
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Among those, acknowledging that seismic risk in urban areas was increasing and reaching 

unacceptably high socio-economic levels was decisive. This awareness is a consequence of 

the analysis of the effects of significant earthquakes that occurred since the 1980s (Bertero 

and Bertero, 2004), with special emphasis on the effects of the 1989 Loma Prieta, USA, the 

1994 Northridge, USA, and the 1995 Kobe, Japan, earthquakes. The unexpected large 

monetary losses resulting from these events were paramount for the considerable changes 

that earthquake engineering practice and research have been undergoing from then on.  
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Figure 1.3. Earthquake related economic losses for earthquakes with magnitude MW higher than 6.0 that 
occurred between 1985 and March 2011 and that involved losses over one billion US for the full range of the 

losses (a), and removing the events with the three largest losses (b), NGDC (2011) and Ferreira (2012). 

b) 

a) 
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In order to reverse the progression of seismic risk, it was acknowledged that new 

structures should be designed using more reliable seismic standards and code provisions 

that should reflect the more up-to-date research-based knowledge about earthquake 

occurrences, ground motions and structural response characteristics. However, it is noted 

that a number of these developments did not target the issues and the potential risk 

associated with existing constructions.  

It is agreed by earthquake engineering experts, public authorities and general public 

alike that the assessment of the seismic safety and performance of the built environment is 

a matter of high priority. The current widespread interest in methodologies addressing the 

assessment and the retrofit of existing constructions reflects the global perception that such 

constructions are exposed to inadequate levels of seismic risk. The need for rational and 

cost effective interventions on the built environment has led to the development of several 

normative documents and guidelines addressing specifically the seismic performance 

assessment of existing buildings over the past fifteen years (ATC 40, 1996; FEMA 273, 

1997; FEMA 274, 1997; FEMA 310, 1998; FEMA 356, 2000; BRI, 2001a; BRI, 2001b; 

ASCE, 2003; OPCM 3274, 2003; EC8-3, 2005; OPCM 3431, 2005; NZSEE, 2006; ASCE, 

2007; NTC, 2008; ATC, 2009). In the context of the Eurocodes, Part 3 of Eurocode 8 

(EC8-3) (EC8-3, 2005) was developed specifically to address this matter. Most of the 

referred documents include modelling, analysis and verification procedures that are more 

detailed and lengthy than those commonly used in the design of new structures. Hence, 

extensive practical application of such procedures must be carried out to observe their 

adequacy and to determine if some of them need to be re-examined or modified. In the 

case of EC8-3, as noted by Franchin et al. (2010), the document should be seen as an 

experimental one that will be subjected to further progress in the near future based on the 

results of applications and studies regarding the procedures involved. However, few 

comparative applications of the code procedures (Chrysostomou, 2005; Mpampatsikos et 

al., 2008a; Masi et al, 2008; Elefante, 2009) and a reduced number of critical discussions 

addressing some of the key features of EC8-3 (Pinto and Franchin, 2008; Franchin et al., 

2010; Jalayer et al., 2011) have appeared until now. Therefore, research addressing the 

evaluation and validation of the code safety assessment procedures is needed, both in terms 

of their practical applicability and reliability. 

In addition to these standards and guidelines, the research promoted by the 

introduction of the PBEE concept, namely towards the development of methodologies for 

seismic risk reduction, also led to considerable advancements in the use and dissemination 

of probabilistic approaches in earthquake engineering. One of the key outcomes of these 

advancements was the development of the formal probabilistic framework for risk and/or 

loss assessment defined by the Pacific Earthquake Engineering Research (PEER) Center 

(Cornell and Krawinkler, 2000). The PEER framework involves several stages such as 

quantifying the earthquake hazard, characterizing the structural response and predicting the 

expected damage to the construction and to its contents, as well as the resulting 
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consequences (financial losses, fatalities, and business interruption). Each stage of the 

framework is addressed in probabilistic terms and can be handled separately, based on the 

fundamental assumption that each stage is independent from the others. Although some 

aspects of the framework might require conceptual adjustments (Kiureghian, 2005), and 

aside from the fact that the independence of the stages should be carefully analysed in 

some cases (Baker, 2005), the PEER framework has the merits of introducing several 

simplifications in the way seismic risk was addressed in the past, and of establishing a 

common language for the widespread dissemination of the many concepts involved. 

Furthermore, it should be noted that, over the past decade, the development of this 

framework has led to a considerable increase in research addressing the several stages of 

this probabilistic approach. 

One of the most recent outcomes of this research was the methodology developed 

by the Applied Technology Council in the ATC-63 project (Deierlein et al., 2008; Kircher 

and Heintz, 2008; ATC, 2009) for the quantification of building performance and the 

analysis of response parameters to be used in seismic design. The methodology embodies 

incremental dynamic analysis (Vamvatsikos and Cornell, 2002) and probabilistic methods 

to evaluate seismic fragility margins of the building system against collapse and to calibrate 

appropriate values of design-related parameters such as the behaviour factor and other 

parameters affecting the response of the building. 

 

 

1.2 Objectives and Scope 

The main objective of the thesis is to propose probabilistic methods for the seismic 

risk assessment of existing buildings which can be used in the research and development of 

codified procedures addressing this type of structures. In light of this wide-scope objective, 

a preliminary analysis is required to characterize how the seismic safety assessment of 

existing structures is addressed in the scope of the Eurocodes. Within this context, the 

seismic safety assessment methodology defined by EC8-3 is analysed and some of the 

procedures proposed therein are discussed. Based on the findings of this analysis, issues 

that require additional research are identified and proposals are made to address some of 

them, namely for the chord rotation demand quantification and for the characterization of 

the Confidence Factor.  

The analysis of the code procedures combined with the reduced number of existing 

studies addressing the application of such procedures emphasises the need for an adequate 

validation of the results obtained by the EC8-3 safety assessment methodology. Such 

condition asks for the development of a suitable probabilistic framework aiming to assess 

the reliability of the code procedures and to calibrate parameters they involve. Therefore, 

several contributions are presented in the thesis towards the definition of such probabilistic 

framework. The aspects of the probabilistic methodologies addressed in the thesis are key 
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features of the seismic risk assessment process and involve both proposals for new 

approaches as well as for the enhancement of existing ones. An important probabilistic 

performance assessment feature that is analysed herein is the adequate characterization of 

probabilistic models for the structural demand of building response under earthquakes. 

Based on the findings of this analysis, methodologies with different levels of detail and 

complexity are proposed for seismic risk assessment. At first, several methodologies are 

proposed for the seismic risk assessment of building components for different levels of 

performance. Such approaches are best suited for a component-by-component analysis 

which can be used to calibrate code procedures that are essentially based on component-

level safety verifications. Finally, a methodology is proposed for the seismic risk and loss 

assessment of building systems for multiple performance levels, combining component-

level and system-level criteria. By involving a more general approach to characterize 

building performance, this methodology can be used to analyse the adequacy of the system-

level risk and of the loss that can be expected when applying the code procedures for 

seismic safety assessment.   

 

 

1.3 Thesis Outline 

The present thesis analyses a wide variety of topics under the common theme of 

seismic safety assessment. The topics are addressed over ten chapters that can be divided 

into two parts. The first part, comprising Chapters 2 to 4, addresses the EC8-3 procedures 

for the seismic safety assessment of existing structures. The second part, which consists of 

Chapters 5 to 9, addresses several matters in the context of probabilistic seismic demand 

characterization and probabilistic seismic risk assessment. The topics addressed throughout 

the chapters are illustrated with a number of application examples involving reinforced 

concrete structures. These structures were selected in order to include both regular and 

irregular structures of different heights, as well as non-seismically designed structures and 

structures designed according to modern seismic design methods. 

Chapter 2 provides a general overview of the seismic safety assessment methodology 

defined by EC8-3 and discusses several issues and limitations related to the code procedure 

for chord rotation demand quantification. Upon these findings, a study is made to analyse 

several alternative proposals for its quantification. Given the significance of the shear-span 

in the referred study, a sensitivity analysis of the EC8-3 limit state capacity models with 

respect to this parameter is also carried out to examine the importance of its accurate 

quantification. Results and findings of this chapter were published in Romão et al. (2010a). 

Chapter 3 presents an application study of the EC8-3 seismic safety assessment 

methodology. Besides testing the applicability of some of the code procedures, the study 

also aims to assess the possibility of establishing conclusions regarding the consistency and 

reliability of the safety levels that are obtained when using the EC8-3 methodology. Based 
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on the application of the deterministic procedure, the study aims to determine if the 

considered methods of analysis lead to similar safety results and to identify the factors that 

may affect these results. To reach these objectives, the application of the EC8-3 procedure 

is complemented with a probabilistic approach to obtain the fragility values corresponding 

to the deterministically assessed safety levels. Results and findings of this chapter were 

published in Romão et al. (2010b). 

Chapter 4 discusses the definition of the Confidence Factor and its role in the EC8-3 

seismic safety assessment methodology. Following a detailed interpretation of the code 

survey procedures associated to the characterization of the Confidence Factor, a statistical 

framework is proposed to reflect the uncertainty involved in the evaluation of the material 

properties required for the safety analysis in the definition of the Confidence Factor. 

Results and findings of this chapter were submitted for publication in Romão et al. (2012a). 

Chapters 5 to 7 involve the adequate characterization of probabilistic models for 

structural demand under earthquake loading. Chapter 5 presents an in-depth analysis of the 

common assumption that structural demand conditional to a seismic intensity follows a 

lognormal distribution using adequate statistical methods. In addition to this analysis, the 

normal distribution hypothesis is also addressed. The statistical methods considered in this 

analysis were selected based on results of an extensive statistical study previously carried 

out that is presented in Appendix A. Results and findings of Chapter 5 were published in 

Romão et al. (2011) while those of Appendix A were published in Romão et al. (2010c). 

Having established the type of statistical distribution of the demand parameters, an 

extensive study was then performed to address the characterization of the parameters of 

such distributions. In this context, Chapter 6 addresses the statistical characterization of the 

central value of structural demand under earthquake loading using estimation methods 

from the field of robust statistics. These methods were selected for their ability to account 

for the occurrence of anomalous data (i.e. outliers). Results and findings of this chapter 

were published in Romão et al. (2012b). 

In order to complement the study presented in Chapter 6, Chapter 7 addresses the 

statistical characterization of the dispersion of structural demand under earthquake loading 

also using estimation methods from the field of robust statistics. Results and findings of 

this chapter were published in Romão et al. (2012c). 

Chapter 8 presents several methodologies for the seismic risk assessment of building 

components. Two approaches are presented, termed Methodology 1 and Methodology 2, 

which involve the analytical definition of closed form expressions for the quantification of 

limit state exceedance probabilities at the structural component level. The procedures use a 

strategy similar to that of the method presented by Cornell et al. (2000), but extend that 

approach by introducing different functional forms to represent the earthquake hazard and 

by addressing the issue of force-based limit states probabilities. Methodologies 1 and 2 

differ mainly on the hypotheses made to represent the earthquake hazard and on the level 

of mathematical tractability that can be achieved based on these hypotheses. Results and 
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findings of Chapter 8 associated to the development of Methodology 1 were published in 

Romão et al. (2008). Additional insights on the theoretical background of Methodologies 1 

and 2 were also published in Delgado et al. (2010). 

Finally, Chapter 9 proposes a probabilistic methodology for the seismic performance 

assessment of buildings systems. The proposed methodology analyses the seismic safety of 

a building using global performance metrics to determine if its behaviour conforms to a 

given limit state. The considered performance metrics are the probability of occurrence of 

the limit state, the corresponding expected loss associated to the repair of the building, and 

the corresponding number and type of mechanisms that are developed and that establish a 

possible scenario for the occurrence of that limit state.   

The final chapter presents a summary of the main conclusions and findings of the 

previous chapters, alongside proposals and recommendations for future research on some 

of the topics addressed in this thesis. 
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Chapter 2 
Practical aspects of  demand and capacity 

evaluation in the context of  EC8-3  
 

 

2.1 Introduction 

The current widespread interest in methodologies addressing the assessment and the 

retrofit of existing constructions reflects the global perception that such constructions are 

exposed to inadequate levels of seismic risk. The need for rational and cost effective 

interventions on the built environment led to the development of several normative 

documents and guidelines specifically addressing the seismic performance assessment of 

existing buildings (ATC 40, 1996; FEMA 273, 1997; FEMA 274, 1997; FEMA 310, 1998; 

FEMA 356, 2000; BRI, 2001a; BRI, 2001b; ASCE, 2003; OPCM 3274, 2003; EC8-3, 2005; 

OPCM 3431, 2005; NZSEE, 2006; ASCE, 2007; NTC, 2008; ATC, 2009). Most of these 

documents include modelling, analysis and verification procedures that are more detailed 

and lengthy than those commonly considered in the design of new structures. Hence, 

extensive practical application of such procedures must be carried out to observe their 

adequacy and to determine if some of them need to be re-examined or modified.  

As previously referred, part of the present thesis addresses the procedures proposed 

in Part 3 of Eurocode 8 (EC8-3) (EC8-3, 2005) for structural safety assessment. In this 

context, some of the procedures associated to the seismic safety assessment of reinforced 

concrete (RC) structures are analysed herein and in the following two chapters. As seen in 

the following, the chord rotation demand plays an important role in the EC8-3 safety 

assessment procedure. Since there are several issues regarding its evaluation, as will be 

shown in later sections, the present chapter proposes a detailed study of its quantification. 

Given the significance of the shear-span in the referred study, a sensitivity analysis of the 

EC8-3 limit state capacity models with respect to this parameter is also carried out to 

examine the importance of its accurate quantification. 
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2.2 Brief outline of the EC8-3 procedures for seismic safety 

assessment of existing structures 

Before presenting the study proposed in the current chapter, a brief overview of the 

more important aspects of the EC8-3 procedure for seismic safety assessment of existing 

structures is presented in the following to provide some context. 

In global terms, the methodology proposed by EC8-3 for seismic safety assessment 

of existing structures involves a sequence of four levels of decision and analysis. The first 

level corresponds to the selection of the limit states that are going to be considered for a 

given structural performance assessment problem. EC8-3 defines three limit states that 

represent fundamental performance requirements of the structure, where each one is 

associated to a corresponding damage state. These limit states are the Near-Collapse (NC), 

the Significant Damage (SD) and the Damage Limitation (DL) limit states. The limit state 

of NC refers to a state of the structure that is close to its actual collapse, and corresponds 

to the full exploitation of the deformation capacity of the structural elements, while the 

definition of the SD limit state is roughly equivalent to what is called Ultimate limit state 

(or no-collapse) in the design of new buildings. The limit state of DL corresponds to a 

situation of light structural damage without significant yield of the members. The return 

periods of the design seismic action indicated in EC8-3 as appropriate for the three limit 

states and for buildings of ordinary importance are 2475, 475 and 225 years, respectively. 

However, each country may assign different values to the return periods in its National 

Annex.  

The second decision level is associated to an important distinctive feature of existing 

structures when compared to new ones: the fact that their material properties may be 

known with varying degrees of accuracy, depending on the situation. This fact raises the 

questions of how to define quantitatively the available knowledge and how to account for 

such knowledge in the assessment. For this purpose, EC8-3 establishes three Knowledge 

Levels (KL), for which a number of survey procedures with different degrees of detail must 

be performed in order to achieve the required knowledge. By selecting a certain KL to be 

achieved and performing the referred survey procedures, EC8-3 assigns to the assessment 

problem a parameter called Confidence Factor that reflects the existing KL and will play 

the role of a partial safety factor in the subsequent safety verification stage. For the three 

KLs, denoted by KL1, KL2 and KL3 in increasing order of comprehensiveness, EC8-3 

recommends Confidence Factor values of 1.35, 1.2 and 1.0, respectively. Further details are 

presented in Chapter 4 where a study addressing this specific topic is presented.  

The third level of the EC8-3 procedure involves selecting the structural analysis 

method that will be used to perform the assessment. In terms of the admissible analysis 

methods, options range from linear to nonlinear methods, either static or dynamic. The 

admissibility of a given method of analysis depends also on the available KL. For example, 

if the available information can only meet the KL1 conditions, EC8-3 only allows the use 
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of linear analysis. Still, to be able to use linear methods for structural assessment, besides 

the requirements defined for new structures in Part 1 of Eurocode 8 (EC8-1) (EC8-1, 

2004), an additional condition must also be met. This condition states that for the method 

to be applicable, the ratio   between the bending moment demand D and the 

corresponding capacity C must be sufficiently uniform across all the primary resisting 

elements of the structure, i.e. the ratio max min   must not exceed a value in the range 

between 2 and 3 (considering only values 1  ) (EC8-3, 2005). The assumption 

underlying this approach is that if the structure goes into the inelastic range with an 

approximately uniform distribution of inelastic demands (expressed in terms of the D C  

ratios), the structural response, in terms of displacements, is found to be acceptably 

accurate. This is an extension of the equal displacement rule, approximately valid for a 

single-degree-of-freedom oscillator, to a whole building, hence the condition that geometry, 

stiffness and mass distributions have to be regular. When linear analysis is not applicable, 

the alternative is to use nonlinear analysis, either static (pushover) or dynamic.  

In terms of the pushover analysis, there are no conditions of applicability related to 

structural regularity in elevation. However, a spatial structural model is requested for the 

case of in-plan non-regular buildings. To use pushover analysis, EC8-3, by referring to 

what is defined in EC8-1, requests the use of at least two lateral force patterns: a uniform 

one (i.e. corresponding to a rigid translational mode) and a modal one (i.e. corresponding 

to the inertia forces pattern from the first mode in the direction under consideration). The 

structural element safety verifications are then carried out for the most unfavourable result. 

Each pushover analysis yields a capacity curve, i.e. a curve relating the lateral force resultant 

(the base shear) with the displacement at the top of the structure, that must be computed 

for a maximum displacement equal to 150% of the target displacement td . The target 

displacement represents the seismic demand and is obtained from the ordinate of the 

elastic displacement response spectrum at the effective period *T of the structure. This 

latter is evaluated using the stiffness of the bi-linearized capacity curve and the modal mass. 

The value of td  is assumed to be equal to the elastic response displacement if *
CT T , 

where CT  is the period that separates the constant acceleration from the constant velocity 

branches of the spectrum, while for *
CT T   a correction factor is applied (EC8-1, 2004). 

When nonlinear dynamic analysis is selected, besides the additional complexity of the 

mathematical model of the structure, the major issues arise in terms of defining the seismic 

action. For this purpose, EC8-3, by referring also to specific rules defined in EC8-1, allows 

the consideration of either artificial or recorded accelerograms, in a minimum of three 

accelerograms. Structural demand must be assessed for all accelerograms and member 

safety verifications are then carried out for the most unfavourable result. In cases where at 

least seven accelerograms are considered, member safety verifications can be carried out 

for the average demand. In addition to defining a number of required accelerograms to be 
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used for seismic safety assessment, EC8-1 also specifies the following additional conditions 

these accelerograms should comply with: 

 The mean of the zero period spectral response acceleration values (calculated from 

the individual accelerograms) must not be smaller than the value of ga S  for the 

site in question, where ga  is the design ground motion acceleration, hereon termed 

peak ground acceleration (PGA), on type A soil and S is the soil factor. 

 In the range of periods between 10.2T  and 12T , where 1T  is the fundamental 

period of the structure in the direction where the accelerogram will be applied, no 

value of the mean 5% damping elastic spectrum, calculated from all accelerograms, 

should be less than 90% of the corresponding value of the 5% damping elastic 

response spectrum.  

As also noted by Iervolino et al. (2008), based on these conditions, it appears to be easier to 

meet these spectrum requirements using artificial spectral-matching accelerograms or by 

numerically altering real recorded ones to reduce the spectral mismatch of the time series, 

e.g. see Hancock et al. (2006). 

The fourth and final level of analysis of the EC8-3 methodology corresponds to the 

safety verification stage where the conformity of each structural mechanism is checked 

involving procedures which depend on the nature of the mechanisms. In this context, it is 

appropriate to distinguish the two cases of linear and nonlinear methods of analysis. When 

linear analysis is used, the action effects (the demand D) on ductile and brittle mechanisms 

must be evaluated differently according to a capacity design philosophy aiming to check the 

occurrence of undesirable failure mechanisms. The demand on ductile mechanisms is the 

chord rotation at the member ends which is obtained directly from the analysis. On the 

contrary, demand in brittle mechanisms is obtained by means of equilibrium conditions, 

considering the actions transmitted by the relevant ductile components. These actions are 

those from the analysis, if the ductile element satisfies the condition 1   (i.e. if the 

element remains below yielding). On the other hand, if 1  , these actions are to equal the 

capacity of the element, evaluated with mean values of the material properties multiplied by 

the Confidence Factor. From the capacity side, ductile mechanisms are checked in terms of 

deformations, and the capacity values for the different limit states are obtained from given 

expressions computed using mean values of the mechanical properties divided by the 

Confidence Factor. On the other hand, brittle mechanisms are checked in terms of 

strength, and the values of the capacities are obtained from given expressions computed 

using mean values of the mechanical properties divided by both the usual partial safety 

factor and by the Confidence Factor. If a nonlinear method of analysis is used instead, the 

only difference is that demand for both ductile and brittle mechanisms is directly obtained 

from the analysis (to be carried out using mean values of the mechanical properties).  
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2.3 Review of the chord rotation demand quantification  

The previous review of the procedure for seismic safety assessment established by 

EC8-3 emphasizes the important role of the member chord rotation demand. Therefore, 

its quantification according to EC8-3 is examined in the following along with several 

alternatives. The need for these alternative formulations is demonstrated by presenting 

example situations where the EC8-3 proposal is difficult to apply. The effectiveness of the 

proposed approaches is assessed by comparing their performance with that of the EC8-3 

procedure in cases where the application of the latter is straightforward. The comparisons 

are performed for a RC example structure that is analysed using nonlinear static and 

nonlinear dynamic methods, and for earthquake intensity levels associated to the three 

previously referred limit states. Several recommendations for the chord rotation demand 

evaluation are then defined based on the results of the application.  

 

 

2.3.1 The Exact Integral Method (EIM)  

The quantification of the chord rotation   at a given section A of a structural 

member, A , involves the consideration of a second cross section B within the member. 

According to CEB (1996), A  is the angle between the chord connecting the centroid of 

the two sections and the tangent to the member axis at section A. In analytical terms, A  

can be written as: 

  
B

A

x

B
A

B Ax

x x
x dx

x x
 

 
   
  (2.1) 

where Ax  and Bx  are the abscissas of the two sections and  x  represents the curvature 

evolution between sections A and B. EC8-3 proposes a similar definition, specifying 

section B as that corresponding to the point of contraflexure. Considering this definition of 

section B, the chord rotations 1  and 2  of the two member ends, which are the sections 

of interest according to EC8-3, are: 
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where 
sLx  is the abscissa of the point of contraflexure, and the abscissas of the two 

member ends are equal to zero and to the member length L, respectively. Details leading to 

Eq. (2.3), which is not directly obtained from Eq. (2.1), are found in CEB (1996).  
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2.3.2 The Exact Geometrical Method (EGM)  

Alternatively, the chord rotation at a given section A can also be defined, in a more 

geometrically related fashion, as the member deflection at the abscissa Bx  (section B) with 

respect to the tangent to the member axis at section A, divided by Bx . Again, considering 

the definition of the sections according to EC8-3, chord rotation 1 , for example, can be 

defined as the member deflection at 
sLx  with respect to the tangent to the member axis at 

the corresponding member end, 1 , divided by 
sLx . Considering the simple case of 

Fig. 2.1a) which represents a member with only transversal displacements at the member 

ends, i.e. the simplified interpretation of the deformation of a column, 1  is obtained by: 

   *
1 1tan x   (2.4) 

Since *

sLx x , in this case, and under the hypothesis that 1  is small, the following 

simplification can be made to Eq. (2.4): 

  1 1 1 1tan Lsx       (2.5) 

In a more general case where both the rotation and the transversal deformation of the 

member ends are present, Fig. 2.1b), 1  is still obtained by Eq. (2.4), which, also under the 

hypothesis that 1  is small, now leads to the following simplifications: 

 
 1 1

1 1*

tan
Ls
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x x

 
 

 
 

 (2.6) 

Since calculating 1  may not be simple, 1  is defined by the following equivalent 

approach: 

 1 1 1a b     (2.7) 

where 1a  represents the contribution of the deflection at 
sLx  with respect to the initial 

member configuration and 1b  corresponds to the nodal rotation, considering clockwise 

rotations to be positive. Similarly, 2  is defined by: 

 2 2 2a b     (2.8) 

where 2a  and 2b  have the meaning of 1a  and 1b , respectively. In addition to the cases 

of Figs. 2.1a) and b), Fig. 2.1c) presents another example of chord rotation quantification 

that will be addressed in the next Section.  
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Figure 2.1. Examples of the chord rotation definition. 

 

Although the approaches defined by Eqs. (2.2) and (2.3) are equivalent to those 

defined by Eqs. (2.7) and (2.8), there are several situations where their application is not 

straightforward. In this context, attention is first drawn to the EC8-3 definition of the 

point of contraflexure based on the moment-shear ratio M V  at the end section, usually 

identified as the shear-span sL . It is known that 
sLx  and sL  will only coincide under 

certain conditions, namely if the member under analysis is not subjected to any transversal 

loading, i.e. for the case of a typical frame column. In beams, which are usually subjected to 

gravity loading, the approximation of 
sLx  by sL  may produce acceptable results under 

some conditions, e.g. when the influence of the gravity loads is small when compared to 

that of the earthquake loading. In situations where the level of gravity loading is significant, 

two points of contraflexure, with abscissas 1sLx  and 2sLx , may occur within the member 

length, instead of only one. In such cases, the value of 
sLx  associated to Eqs. (2.2), (2.3), 

(2.7) and (2.8) must be replaced by that of 1sLx , for the case of 1 , and by that of 2sLx , for 

the case of 2 . 

Further difficulties may arise in the quantification of the chord rotation in cases 

where there is no point of contraflexure within the member span. For example, by 
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considering the bending moment diagrams represented in Figs. 2.2a) and b), typically found 

in columns, the value of 
sLx  (the abscissa that would correspond to a moment equal to 

zero) can be negative or larger than the member length. The case represented in Fig. 2.2c) 

is another possibility which may occur in short beams. In this case, 
sLx  is undefined. 

Under such conditions, the quantification of the chord rotation following the EC8-3 

procedure (i.e. where 
sLx  is based on M V ) may lead to inadequate results. 

From this discussion, the adequate evaluation of the chord rotation can be seen to 

depend on a suitable definition for 
sLx . The alternative approaches proposed in the next 

Section aim to overcome the observed difficulties.  
 

distance leading to x   < 0Ls

M1

M2

location of x   Ls,alt      a) 
 

M2

M1

x    Ls,alt distance leading to x    > LLs      b) 
 

M1

M2

x    Ls,alt       c) 

Figure 2.2. Examples of moment diagrams causing difficulties in the chord rotation evaluation. 

 

2.4 Alternative approaches for chord rotation demand  

Two alternative approaches are presented in the following for an adequate evaluation 

of the chord rotation. The first approach defines alternative interpretations for the value of 

sLx  enabling the application of Eqs. (2.2), (2.3), (2.7) and (2.8) in the presence of the 

previously observed difficulties. The second approach defines alternative chord rotation 

evaluation methods which do not require the quantification of 
sLx . Following the 

definition of the several methods for chord rotation quantification, an example application 

is presented in Section  2.5 in order to assess their relative performance.  
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2.4.1 Alternative interpretations for 
sLx  

From a theoretical point of view, the chord rotation quantification according to 

EC8-3 is undefined for the cases represented in Fig. 2.2. Subsequently, the proposed 

approximations only aim to circumvent the issues of numerical applicability of the EC8-3 

safety assessment procedure arising in such cases, providing reasonable values of  . 

Nonetheless, it is noted that such alternative values of 
sLx  imply that Eqs. (2.2) and (2.3) 

may no longer yield the results of Eqs.  (2.7) and (2.8), respectively.  

When the point of contraflexure is undefined, the proposed alternative value of 
sLx  

is that corresponding to the distance between the end section under consideration and the 

section of minimum moment (in terms of absolute value). For columns this means that, for 

the situations of Figs. 2.2a) and b), the member safety assessment in terms of deformation 

is only relevant at the section with the higher absolute bending moment (section 2 for the 

case of Fig. 2.2a) and section 1 for that of Fig. 2.2b), identified as ,sL altx  in both cases). 

This hypothesis reflects the assumption that column geometry and reinforcement are 

constant along the member, as it is commonly found. In this situation, the value of 
sLx  

reflects the entire length of the member, with respect to the end section of interest. Hence 

sLx  is equal to zero, for the case of Fig. 2.2a), and equal to L, for the case of Fig. 2.2b) 

(considering that 
sLx  is measured from left to right). The application of this proposal with 

Eqs. (2.2) and (2.3) does not require any additional conditioning. On the other hand, the 

application of Eqs. (2.7) and (2.8) requires that only the expression of the relevant end 

section is evaluated. For beams, Fig. 2.2c), and since both end sections are significant in 

this case, the proposed alternative defines 
sLx  as the abscissa ,sL altx  corresponding to that 

of the section closer to having a zero moment, i.e. closer to being a point of contraflexure. 

In this case, the application of this approximation with Eqs. (2.2), (2.3), (2.7) and (2.8) does 

not require any additional conditioning.  

 

 

2.4.2 Evaluation of the chord rotation without quantifying 
sLx  

The following three alternative approximate methods are proposed for the evaluation 

of the chord rotation without requiring the quantification of 
sLx .  

 

 

2.4.2.1 The Approximate Geometrical Method that considers member Drift and 

nodal Rotations for beams and columns (AGM-DR) 

This first method is adapted from the displacement-deformation relationship under 

large displacements proposed in Filippou and Fenves (2004) for frame elements. In the 
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chord rotation example represented in Fig. 2.1c), it can be seen that 1 2a a  . In this 

situation, this component of the chord rotation can be obtained without evaluating 
sLx  by: 

 1 2a a yd L    (2.9) 

where yd  represents the relative transversal displacement of sections 1 and 2, neglecting 

the contribution of the axial deformation of the member (Filippou and Fenves, 2004). 

Assuming these approximations for 1a  and 2a , Eqs. (2.7) and (2.8) can be applied 

without further difficulties.  

 

 

2.4.2.2 The Approximate Integral Method (AIM) 

The second alternative method is especially suited for structures modelled by 

nonlinear frame elements with plastic hinges (lumped plasticity) where the nonlinear 

behaviour is defined by moment-curvature relations. In this type of modelling approach, 

the curvature demand is usually considered to be uniform along the plastic hinge length 

plL  and equal to a value that can be obtained, for example, by the midpoint integration 

rule. Assuming that the most important contribution to the chord rotation comes from the 

plastic hinge deformation, the values of 1  and 2  can be approximately obtained by: 

 1 1 ,1plL    ; 2 2 ,2plL    (2.10) 

where 1  and 2  represent the constant curvature of the two member ends, and ,1plL  and 

,2plL  are their corresponding plastic hinge lengths.  

 

 

2.4.2.3 The Approximate Geometrical Method that considers member Drift for 

columns and nodal Rotations for beams (AGM-DcRb) 

The third method is a variant of the AGM-DR (application of Eqs. (2.7) and (2.8) 

considering Eq. (2.9)) combined with the assumptions proposed in the study presented by 

Mpampatsikos et al. (2008a). For the case of typical columns under seismic loading, this 

study states that the contribution to the chord rotation demand coming from 1a  and 2a , 

Eqs. (2.7) and (2.8), is more significant than that coming from 1b  and 2b , respectively. 

Hence the study suggests that, for simplicity, the chord rotation demand of column end 

sections could be obtained by 1a  and 2a  only. Furthermore, since, according to 

AGM-DR, the quantification of these components is approximated by Eq. (2.9), the third 

method proposed considers Eq. (2.9) for the evaluation of the chord rotation demand in 

columns. It is noted that this approximation implies that both column ends have the same 

chord rotation demand. For the case of beams, the third approach follows the suggestion 
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proposed by Mpampatsikos et al. (2008a). Therefore, the contribution of components 1a  

and 2a  of Eqs. (2.7) and (2.8) is neglected and the chord rotation of beam end sections is 

approximated by the corresponding nodal rotations, i.e. components 1b  and 2b .  

 

 

2.5 Example application: the ICONS frame 

2.5.1 General description  

The ICONS frame is a four-storey, three-bay RC frame designed and built at the 

Joint Research Center in Ispra, Italy, for pseudo-dynamic testing (Carvalho et al., 1999). 

The structure is representative of the design and construction common practice until the 

late 1970's in southern European countries and was designed for vertical loads only. The 

reinforcement details were specified in accordance to the normative available and to the 

construction practice at that time. The elevation view of the structure is presented in 

Fig. 2.3. For additional information concerning the frame characteristics and cross section 

reinforcement details, the reader is referred to Carvalho et al. (1999).  

 

 

Figure 2.3. Elevation view of the ICONS frame. 

 

2.5.2 Numerical modelling  

The nonlinear response analysis of the frame under earthquake loading was carried 

out using a computer programme developed during previous research studies (Varum, 

1997; Romão, 2002; Rodrigues, 2005) which include the simulation of several experimental 

tests performed on the ICONS frame (Rocha et al., 2004). This computer programme is a 

two-dimensional analysis platform for the study of the nonlinear response of multi-storey 
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RC buildings. Column and beam elements are modelled as member-type nonlinear 

macro-models with three zones: one internal zone with linear elastic behaviour and two 

plastic hinges, located at the member ends, where inelastic flexural behaviour is considered. 

Control sections are located at each member end according to the numbering presented in 

Fig. 2.3 (numbers in italic refer to end sections of beams). Nonlinear analyses are carried 

out considering an event-to-event strategy with modification of the structure’s stiffness 

matrix at each event and using the standard Newmark integration method for the dynamic 

analyses. Prior to a dynamic or pushover analysis, a nonlinear static analysis is carried out 

for the gravity loads acting on the structure, the results of which become the initial 

conditions for the subsequent analysis. 

Since the purpose of this application example is not to represent the actual behaviour 

of the original ICONS frame, some simplifications were considered. Based on the original 

mechanical material properties of the ICONS frame, concrete of class C16/20 and steel of 

class S235 were selected, considering the mean values of the relevant structural material 

properties. The inelastic behaviour of the plastic hinges is represented by moment-

curvature relations. Trilinear skeleton curves associated with monotonic loading and with 

an initial slope reflecting the secant-to-yield stiffness were obtained following the work 

presented in Arêde and Pinto (1996). Both asymmetric bending for beams and axial load 

effects for columns were considered. In beams, the elastic behaviour of the internal macro-

model region was defined in order to reflect the cracked stiffness of the central part of the 

members when their bottom reinforcement is under tension. Slab participation to the beam 

tension flange was not considered. To assess the influence of the confined concrete 

characteristics, separate analyses were carried out for the two different models that can be 

considered according to EC8-3. The first model is defined in Part 1 of Eurocode 2 (EC2-1, 

2004), referred hereon as the “EC2-1 model”, and the second is defined in EC8-3, referred 

hereon as the “EC8-3 model”. Details on these models can be found in EC2-1 (2004) and 

EC8-3 (2005), and are omitted here for the sake of brevity.  

Hysteretic flexural behaviour of the members was modelled by the piecewise linear 

hysteretic Costa-Costa model (Costa and Costa, 1987; CEB, 1996) which is a generalized 

Takeda-type model. Stiffness degradation and pinching effects were considered in the 

hysteretic behaviour of the structural members. With respect to the considered plastic 

hinge length, although EC8-3 proposes expressions for its evaluation as a function of the 

selected confined concrete model, their consideration for the analyses is not 

straightforward since they depend on the shear-span (point of contraflexure) which is not 

known beforehand. Hence, plL  values were considered equal to the depth of the member 

cross section for beams and equal to half of the depth of the member cross section for 

columns. For limit states leading to higher levels of inelastic demand, i.e. the limit states of 

SD and NC, most damping is due to hysteretic dissipation. Hence, viscous damping was 

not considered for these limit states. On the other hand, for the limit state of DL, for 
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which lower levels of inelastic demand are expected, viscous damping was accounted for. 

In this case, damping was assumed to be of Rayleigh type and the damping parameters 

were calculated for the first and second mode periods of the structure and considering a 

fraction of critical damping equal to 3% for both periods. Periods were obtained assuming 

the mass of the structure to be distributed on the beams and the stiffness of the members 

to be defined by their secant-to-yield stiffness. Gravity loading was defined for each 

structure according to the values set in Carvalho et al. (1999).  

According to EC8-3, the safety assessment for the limit state of DL in terms of 

deformations must be carried out with a numerical model where the stiffness of the 

members is taken as the average effective (secant-to-yield) stiffness Keff given by 
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where My is the yield moment, the indexes 1 and 2 refer to the two end sections of the 

member and the apexes + and – refer to positive and negative bending, respectively. For 

the particular case of a column with the same top and bottom reinforcement at both ends, 

i.e. ,1 ,1 ,2 ,2y y y y yM M M M M        and ,1 ,1 ,2 ,2y y y y y           , subjected to an 

antisymmetric moment distribution, i.e. ,1 ,1 ,2 ,2s s s s sL L L L L       , Eq. (2.11) reduces to 

the well known expression  3y s yM L  . In a more general situation, and given that sL  

may be taken as 2L  (EC8-3, 2005), Eq. (2.11) can be simplified into: 
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where DL  is the yield chord rotation defined by (EC8-3, 2005): 
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in which y  is the yield curvature of the section, sL  is the shear span taken constant and 

equal to half of the member length, h is the section depth, db is the mean diameter of the 

tension reinforcement, fy is the estimated steel yield strength and fc is the estimated value of 

the concrete compressive strength. In columns, the consideration of effK  according to 

Eq. (2.12) presents no difficulties, assuming that top and bottom reinforcement are equal in 

both end sections and considering that the axial load N necessary for the computation of 

yM  can be set to the value obtained for the gravity loads only. This axial load value is 

assumed to be a good approximation to the average value of N that a column may 

experience under earthquake loading (Mpampatsikos et al., 2008a). On the other hand, the 

application of Eq. (2.12) in beams may lead to inadequate structural behaviour results. 
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Since, in beams, the top and bottom reinforcement of a given end section may be different, 

the corresponding values of yM  and y  may lead to considerably different values of 

positive and negative bending secant-to-yield stiffnesses. The consideration of Eq. (2.12) in 

this situation can then result in a value of Keff that is excessively low to adequately represent 

the behaviour of the member. In a limit situation, this effK  value may lead to the yielding of 

the member under the vertical loading alone. Hence, the plastic hinges of beams were 

modelled with different average values of effK  for positive and negative bending. The 

behaviour of the internal macro-model region was defined as referred previously. 

Finally, one aspect of the numerical implementation of the EIM and the EGM 

defined by Eqs. (2.2), (2.3), (2.7) and (2.8) is additionally noted. In order to observe the 

influence of the simplifications introduced by the AIM in the quantification of the chord 

rotation, the application of the EIM requires a more rigorous characterization of the 

curvature demand along the members, namely for situations where 
sLx  is small or falls 

within plL . Hence, an approach defining a more detailed evolution of the curvatures along 

plL  was selected for the EIM. Such evolution was represented by the incremental 

step-by-step recording of the curvature, in agreement with the moment distribution, in a 

number of points np along plL . For the case of the EGM, the step-by-step recording of 

the displacements in a number of points np along plL  was also necessary to account for the 

cases where 
sLx  falls within plL . A sensitivity study was carried out to determine a value 

of np leading to stable results of the chord rotation demand. Several tests were made with 

np values of 5, 10, 20 and 30. Results obtained with the EGM were rather insensitive to the 

selected value of np for the computation of the displacements along plL . Hence, an np 

value of 10 was selected. On the other hand, results obtained with the EIM were seen to be 

more sensitive to the value of np. In situations where 
sLx  is small or falls within plL , as the 

np value goes from 5 to 30, the proximity of the results obtained with the EIM and those 

obtained with the EGM increases. Although an np value of 30 does not lead to the exact 

values obtained with the EGM in some cases, it was considered to yield results with 

sufficient accuracy.  

 

 

2.5.3 Seismic demand 

Seismic demand was set for Zone 1 of the Italian territory considering a soil of type 

B. According to OPCM 3274 (2003), the PGAs defined for the different limit states are 

0.14g, 0.35g and 0.525g for the limit states of DL, SD and NC, respectively. Depending on 

the selected analysis method, the effective seismic demand was defined in different ways. 

When pushover analysis was considered, the effective seismic demand was characterized by 
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a set of target displacements defined for each PGA value and for each force pattern. 

Pushover analysis of the frames was performed using the uniform and the modal force 

patterns previously referred. When nonlinear dynamic analysis was considered, two 

different sets of accelerograms were used to evaluate the structural demand. The first set is 

made of seven artificial spectrum-compatible accelerograms with fifteen seconds for each 

limit state. These accelerograms were computed in order to meet the spectral-matching 

requirements defined by EC8-3. Figure 2.4a) shows the response spectra of the seven 

artificial accelerograms for the limit state of SD and their average response spectrum 

against the EC8-1 elastic response spectrum with  10% bounding limits. The second set 

has also seven records and corresponds to one of the unscaled real ground motion sets 

compatible with the EC8-3 spectral matching criteria proposed by Iervolino et al. (2008). 

As for the first set, Fig. 2.4b) presents the response spectra for this set, hereon termed the 

ReLUIS set, for the limit state of NC along with the average response spectrum, the EC8-1 

elastic response spectrum and the  10% bounding limits. Since the original ground motion 

set is defined for the PGA corresponding to the limit state of SD, a scaling factor equal to 

0.525g/0.35g was considered for this case. 
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Figure 2.4. Response spectra of the artificial records for the limit state of SD (a), and of the ReLUIS records 
for the limit state of NC (b), along with the average spectra and the EC8 elastic response spectrum +/- 10%. 

 

2.6 Structural analysis results 

2.6.1 Initial considerations  

The general trends and conclusions that were observed from the detailed comparison 

of the several methods for chord rotation quantification are presented herein, along with 

representative figures illustrating the more important findings. For the sake of brevity, only 

a sample of the results is shown. For the purpose of the presentation of the results, the 

considered chord rotation quantification methods (CRQMs) are termed according to the 

following: 
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 EGM - the chord rotation obtained using Eqs. (2.7) and (2.8), considering the 

alternatives proposed in Section  2.3.1 when necessary; 

 EIM - the chord rotation obtained using Eqs. (2.2) and (2.3), considering the 

alternatives proposed in Section  2.3.1 when necessary; 

 AGM-DR - the chord rotation obtained using Eqs. (2.7) and (2.8) combined with 

Eq. (2.9);  

 AIM - the chord rotation obtained using Eq. (2.10); 

 AGM-DcRb - the chord rotation obtained by the proposals of Section  2.4.2.3;  

 EGM-APC - the chord rotation obtained using Eqs. (2.7) and (2.8), considering an 

Approximate abscissa for the Point of Contraflexure defined by M V ; 

 EIM-APC - the chord rotation obtained using Eqs. (2.2) and (2.3), considering an 

Approximate abscissa for the Point of Contraflexure defined by M V . 

The performance assessment of the different CRQMs was carried out for the control 

sections identified in Fig. 2.3 and for the limit states of DL, SD and NC, based on the 

results of pushover and nonlinear dynamic analyses, the latter considering both artificial 

and real earthquake records. In cases where the alternative proposals of Section  2.3.1 are 

not required, this assessment involves comparisons between the approximate (i.e. those 

defined in Section  2.4.2) and the exact CRQMs (EGM and EIM) to determine the best 

approximate approach. Otherwise, the results of the previous comparison are used to 

determine the validity of the alternative proposals of Section  2.3.1 and to confirm the 

performance of the approximate approaches. In these comparisons, distinction is made 

between beam and column sections and between positive and negative chord rotations 

(positive chord rotations are considered to be those associated to clockwise rotations). The 

presented chord rotation values represent the maxima obtained for each section during the 

analysis under consideration. For the case of nonlinear dynamic analysis, comparisons were 

made for each record and also considering the average demand of a given set of records. It 

is recalled that the latter is the recommended demand measure to be used in the safety 

assessment according to EC8-3 for record sets of the considered size. In addition to the 

section level comparisons, a global efficiency measure, defined by the mean squared error 

(MSE), was also computed for the approximate methods of a given analysis case. As stated 

previously, both the EC2-1 and the EC8-3 confined concrete models were considered in 

the analyses. Since no significant differences were found between the results of both 

modelling approaches, the presented results are those obtained considering the EC8-3 

confinement model, unless stated otherwise. 
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2.6.2 Presentation and discussion of the results  

To demonstrate the occurrence of the problematic situations illustrated in Fig. 2.2, 

Fig. 2.5 presents the frame bending moment diagrams obtained from the pushover analysis 

with the modal loading pattern (from left-to-right), for the limit state of NC and for the 

load-step in which the corresponding target displacement is reached. The highlighted 

column and beam diagrams exhibit the referred 
sLx  definition issues. Similar moment 

configurations were also obtained from the dynamic analyses.  

 

 

Figure 2.5. Example of a bending moment diagram obtained from pushover analysis illustrating the 
difficulties for chord rotation evaluation. 

 

The performance of the EGM, the EIM, the AGM-DR, the AIM and the 

AGM-DcRb obtained from pushover analyses is illustrated in Figs. 2.6 and 2.7, for the limit 

state of NC under the modal loading pattern and for the limit state of DL under the 

uniform loading pattern, respectively. By examining Fig. 2.6, the results of the column 

sections obtained with the EGM, the EIM, the AGM-DR and the AIM are seen to show a 

good agreement. On the other hand, the results of the AGM-DcRb can be seen to deviate 

from those of the remaining methods in some of the sections, exceeding significantly the 

chord rotation values in such cases. Similar findings were observed in other pushover 

analysis results associated to limit states involving larger earthquake intensities (i.e. the SD 

and the NC). In beam sections, all methods are in good agreement. When observing 

Fig. 2.7, the results of column sections indicate that the AGM-DR performs well when 

compared to the EGM and the EIM, while the AIM and the AGM-DcRb have the tendency 

to, respectively, underestimate and overestimate the chord rotation. For the beam sections, 

the AGM-DR and the AGM-DcRb show a good performance when compared to the EGM 

and the EIM. On the other hand, the AIM tends to underestimate the chord rotation in 

some cases. Comparable trends were observed in the remaining pushover analysis results 

associated to the limit state of DL. From these analyses, it was also observed that the EGM 

and the EIM results are in good agreement for members where 
sLx  definition issues were 
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identified. However, such situation was not always observed in the results obtained from 

nonlinear dynamic analyses, as shown further ahead in this Section.  
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Figure 2.6. Performance of several CRQMs for the limit state of NC considering pushover analysis with 
modal loading pattern, for column (a) and beam (b) sections. 
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Figure 2.7. Performance of several CRQMs for the limit state of DL considering pushover analysis with the 
uniform loading pattern, for column (a) and beam (b) sections. 

 

The performance of the EGM, the EIM, the AGM-DR, the AIM and the 

AGM-DcRb obtained from nonlinear dynamic analyses is illustrated in Figs. 2.8 and 2.9, for 

the limit state of NC and one of the artificial records, and for the limit state of DL and one 

of the ReLUIS records, respectively. The results obtained for these cases exhibit general 

trends similar to those obtained for the pushover analyses. By examining the results of each 

record, those obtained for the limit states of SD and NC indicate that, in some of the 

column sections, the AGM-DcRb also yields results with larger deviations from those of the 

remaining methods, while, in beams, all methods continue to exhibit a general good 

agreement. For the case of the limit state of DL, the results obtained for column sections 

indicate that, on average, the AGM-DR performs best, while the AIM and the AGM-DcRb 

seem to under- and overestimate, respectively, the values of the EGM and the EIM. In 

beams, the AGM-DR and the AGM-DcRb show a good performance, while the AIM 

presents results with larger deviations from those of the remaining methods, 

underestimating the chord rotation demand. After analysing the results of the AGM-DR, 

the AIM and the AGM-DcRb, the following can be noted about their performance: 
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 the AGM-DR performs well, both in column and in beam sections; 

 the AIM underestimates the chord rotation for the limit state of DL since a 

significant part of the member rotation is neglected by considering the plastic hinge 

contribution only; 

 the AGM-DcRb overestimates the chord rotation in columns because the nodal 

rotation contribution is not considered by this approach. On the other hand, its 

good performance in beams indicates that the gravity loading influence can be 

neglected without a significant loss of accuracy.  
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Figure 2.8. Performance of several CRQMs for the limit state of NC considering one of the artificial records, 
for column (a) and beam (b) sections. 

 

1 2 3 4 5 6 7 8 17 18 19 20 21 22 23 24 33 34 35 36 37 38 39 40 49 50 51 52 53 54 55 56
−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

Column sections

C
ho

rd
 r

ot
at

io
n

 

 

EGM EIM AGM−DR AIM AGM−D
c
R

b

 a)   
9 10 11 12 13 14 15 16 25 26 27 28 29 30 31 32 41 42 43 44 45 46 47 48

−0.01

−0.008

−0.006

−0.004

−0.002

0

0.002

0.004

0.006

0.008

0.01

Beam sections

C
ho

rd
 r

ot
at

io
n

 

 

EGM
EIM
AGM−DR
AIM
AGM−D

c
R

b

b) 

Figure 2.9. Performance of several CRQMs for the limit state of DL considering one of the ReLUIS records, 
for column (a) and beam (b) sections. 

 

Even though 
sLx  definition issues occur frequently during the dynamic analyses, 

particularly in columns, the corresponding results indicate that the maxima of the demand 

are seldom governed by such issues. With respect to these cases, it is emphasized that, in 

general, the EGM and the EIM may not yield similar results for columns, while for beams 

their results are much closer. It is noted that sections for which results of the EGM and the 

EIM differ correspond to situations where one of the two following conditions occurred:  
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 a 
sLx  definition issue occurred and led, simultaneously, to maximum demand for at 

least one of the CRQMs;  

 a small 
sLx  occurred and led, simultaneously, to maximum demand for at least one 

of the CRQMs due to the numerical issues referred in Section  2.5.2. 

To illustrate these conditions, reference is made to column section 50 of Fig. 2.8a) 

for which the EGM and the EIM are seen to yield different results for both positive and 

negative chord rotation demands. For the negative chord rotation, a small 
sLx  occurred 

and led to maximum demand for the EIM while for the positive one, a 
sLx  definition issue 

occurred and led to maximum demand also for the EIM. In both cases, the chord rotation 

demand obtained by the EGM is not governed by the same condition. The differences in 

the results of sections 6 and 22 of Fig. 2.8a) are also due to the occurrence of small 
sLx  

values that led to maximum demand for the EIM. It should be emphasized that the 

occurrence of such conditions for a given section does not necessarily implies differences 

between the results of the EGM and the EIM. For example, positive demand of sections 2 

and 4 of Fig. 2.8a) are governed by the occurrence of a small 
sLx  for the EGM and the 

EIM, and the results of both methods exhibit negligible differences. Moreover, the negative 

demand of section 17 of Fig. 2.8a) is governed by a 
sLx  definition issue for the EGM and 

the EIM and, again, both approaches led to the same results. Based on these observations 

and on its lower sensitivity to numerical issues, the EGM is seen to yield more accurate 

results when 
sLx  definition issues or small 

sLx  values occur.  

With respect to the average chord rotation demand based on the nonlinear dynamic 

analysis results, the observed trends are similar to those identified from the analysis of each 

record individually. For these cases, Figs. 2.10 and 2.11 illustrate the performance of the 

EGM, the EIM, the AGM-DR, the AIM and the AGM-DcRb for the limit state of DL, 

considering the ReLUIS records, and for the limit state of SD, considering the artificial 

records, respectively.  
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Figure 2.10. Performance of several CRQMs for the limit state of DL considering the average results from 
the ReLUIS records, for column (a) and beam (b) sections. 
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Figure 2.11. Performance of several CRQMs for the limit state of SD considering the average results from the 
artificial records, for column (a) and beam (b) sections. 

 

As previously referred, given the performance variability of the different approximate 

CRQMs from section to section, the MSE was computed for each analysis case in order to 

obtain a global efficiency measure of the methods. Separate MSE values were calculated for 

column and beam sections as well as for positive and negative chord rotation values. The 

MSE values were defined by: 

  2

,
1

1
MSE

i

ns

CRQM i j j
j

CRQM EGM
ns 

   (2.14) 

where ns represents the number of sections, ,i jCRQM  is the value of the AGM-DR, the 

AIM and the AGM-DcRb obtained for section j when i is 1, 2 or 3, respectively, and 

jEGM  is the value of the EGM obtained for section j. Given the aforementioned, the 

EGM is considered as the reference method for the calculation of the MSE values. In 

order to illustrate the MSE values that were obtained, Figs. 2.12 to 2.15 present several 

examples that include different types of analysis, different limit states and MSE values for 

both positive and negative chord rotations. Figure 2.12 presents MSE values (in log scale) 

for two limit states and pushover analysis cases. Figures 2.13 and 2.14 present MSE values 

(in log scale) obtained for the seven artificial records and for the limit states of NC and DL, 

respectively. Figure 2.15 presents MSE values (in log scale) for all the limit states and for 

the two record sets, based on the average chord rotation demand. The analysis of these 

results shows that, in beams, MSE values exhibit a somewhat stable variability across the 

analysis types, the limit states and the ground motion records. On the other hand, the MSE 

values of the columns become larger as the limit state intensity increases and the 

record-to-record variability seems to be more important for the limit state of DL. In the 

overall, the MSE values confirm the conclusions obtained from the section-by-section 

analysis. 
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Figure 2.12. Mean squared error (MSE) values, Eq. (2.14), of the alternative CRQMs for two limit states and 
the pushover analysis cases, for column (a) and beam (b) sections. 
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Figure 2.13. Mean squared error (MSE) values, Eq. (2.14), of the alternative CRQMs for the limit state of NC 
from the seven ReLUIS records, for column (a) and beam (b) sections. 
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Figure 2.14. Mean squared error (MSE) values, Eq. (2.14), of the alternative CRQMs for the limit state of DL 
from the seven artificial records, for column (a) and beam (b) sections. 
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Figure 2.15. Mean squared error (MSE) values, Eq. (2.14), of the alternative CRQMs for all the limit states, 
for the two record sets based on the average chord rotation demand, for column (a) and beam (b) sections. 

 

With respect to the comparison of the performance of the EGM-APC and the 

EIM-APC with that of the EGM and the EIM, it is referred that 
sLx  values of the EGM-

APC and the EIM-APC were computed separately for each member end by: 
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 ,1 1 1Lsx M V   ; ,2 2 2Lsx M V  (2.15) 

where 1M , 2M , 1V  and 2V  are the member end bending moments and shear forces. The 

considered convention assumes that clockwise moments and upward shear forces are 

positive. Moreover, if any of the obtained 
sLx  values was larger than L, the considered 

sLx  value was considered to be L. If the 
sLx  value was negative for a given section, the 

chord rotation was not computed for that section. In order to illustrate the results 

obtained, Fig. 2.16 presents the performance of the EGM, the EIM, the EGM-APC and 

the EIM-APC for the limit state of DL and one of the ReLUIS records. As expected, 

chord rotation demand in columns is not affected by the way 
sLx  is computed, as long as 

the aforementioned exceptions are considered for larger than L and negative 
sLx  values. 

On the other hand, the situation is different for beam sections. There are considerable 

differences in the positive demand of some of the member left-end sections (e.g. sections 9 

and 11) and in the negative demand of some of the right-end sections (e.g. sections 10 and 

12). To understand the reason for such situation, Fig. 2.17 presents the moment diagrams 

of common cases in columns and beams. Each diagram includes the bending moments and 

the shear forces with their considered signs and the location of the true 
sLx . It can be seen 

that when applying Eq. (2.15) to the cases of Figs. 2.17a) and b), adequate 
sLx  values are 

obtained. On the other hand, for the cases of Figs. 2.17c) and d), a negative value is 

obtained for one of the sections (the left-end section for Fig. 2.17c) and the right-end 

section for Fig. 2.17d)). Problems arise in beams due to the presence of vertical loads that 

lead to shear forces of the same sign at both member ends. Since the direct consideration 

of Eq. (2.15) is not appropriate for beams, an alternative method was considered instead. 

For a given section i of a beam, the proposed alternative considers that when ,sL ix  is 

negative, its value should be replaced in the chord rotation calculations by ,sL jL x , 

where ,sL jx  represents the 
sLx  value of the other end section. After repeating the analyses 

of Fig. 2.16 considering this alternative, the chord rotations of the several CRQMs are now 

in good agreement, as can be seen from Fig. 2.18. Nonetheless, there are still some 

differences between the results of the EGM and the EIM and those of the EGM-APC and 

the EIM-APC. These are due to the approximate values of 
sLx  given by Eq. (2.15).  

Finally, in order to illustrate the range of differences that can be expected by selecting 

the EC2-1 confined concrete model instead of the EC8-3 model, Fig. 2.19 presents the 

demand obtained with the EGM considering both models, for the limit state of NC and 

one artificial record. The presented results correspond to one of the cases where the 

influence of the confinement model is more significant. In the remaining analysis cases, the 

agreement between both modelling approaches is better.   
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Figure 2.16. Performance of the EGM, the EIM, the EGM-APC and the EIM-APC for the limit state of DL 
considering one of the ReLUIS records, for column (a) and beam (b) sections. 

 

M1

M2
(+)

(+)

V1

(-)

V2

(+)

x   Ls,1 x   Ls,2  a)      

M1

(-)

M2
(-)

V2

(-)

V1

(+)

x   Ls,1 x   Ls,2  b) 

 

M1

M2
(+)

(+)

V2

(+)
V1

(+)

x   Ls,1 x   Ls,2  c)      

M1

(-)

M2
(-)

V2

(+)
V1

(+)

x   Ls,1 x   Ls,2  d) 

Figure 2.17. Moment diagrams with corresponding moments, shear forces and contraflexure points in 
columns a), b) and beams c) and d). 
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Figure 2.18. Performance of the EGM, the EIM, the EGM-APC and the EIM-APC for the limit state of DL 
considering one of the ReLUIS records for beam sections. 
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Figure 2.19. Comparison of the demand from the EGM considering the EC8-3 and the EC2-1 confinement 
models, the limit state of NC and one of the artificial records for column (a) and beam (b) sections. 

 

The comparison of the performance of the different CRQMs based on the results of 

pushover and nonlinear dynamic analyses carried out for the several limit states, based on a 

section-by-section analysis and on the MSE values, leads to the following conclusions:  

 With respect to the use of the theoretical approaches with the alternative proposals 

of Section  2.4.1, the EGM is preferred since it leads to results that are more regular 

and less sensitive to numerical issues than those of the EIM;  

 With respect to the use of the approximate CRQMs defined in Section  2.4.2, the 

AGM-DR is recommended since it exhibited the best overall performance in 

columns and in beams. The AGM-DR is straightforward to compute after running 

the pushover or the dynamic analyses (i.e. in a post-processing stage) as long as the 

nodal displacements are stored at each step during the analyses; 

 With respect to the use of the theoretical methods with 
sLx  defined by M V , this 

approach was seen to lead to adequate results in columns. In beams, adequate 

results were obtained by considering an alternative formulation when the relation 

between the bending moment and the shear force is not that which is expected in a 

seismic loading situation. In any case, the application of this approach is not 

straightforward and requires the consideration of a specific algorithm to handle 

cases where 
sLx  is negative or larger than L.  

 

 

2.7 Analysis of the EC8-3 capacity models of RC structures  

Given the importance of the shear-span in the previously analysed situations, a 

sensitivity analysis of the EC8-3 limit state capacity models with respect to this parameter is 

carried out and discussed in the following. Furthermore, this analysis also aims to assess the 

validity of the simplifications proposed by a previous research study (Mpampatsikos et al., 

2008a) for the quantification of the EC8-3 limit state capacity values. 
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2.7.1 Review of the EC8-3 capacity models  

Ductile capacities are defined in terms of the admissible DL, SD and NC member 

chord rotations while brittle capacities are characterized by the admissible NC shear force. 

For the quantification of the DL chord rotation capacity DL , and assuming that no shear 

cracking is expected to precede flexural yielding, EC8-3 proposes the expression defined by 

Eq. (2.13). For the quantification of the NC chord rotation capacity NC , EC8-3 proposes 

empirical and semi-empirical expressions. The former is defined by:  
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where el  is 1.5 for primary members,   is the normalized axial force,   and '  are the 

mechanical reinforcement ratios of the tension and compression, respectively, longitudinal 

reinforcement, ywf  is the stirrup yield strength, sx  is the ratio of transverse steel area sxA  

parallel to the direction of loading, d  is the steel ratio of diagonal reinforcement (if any) in 

each diagonal direction and   is the confinement effectiveness factor (EC8-3, 2005). The 

semi-empirical approach defines NC  by: 
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 (2.17) 

where u  is the ultimate curvature of the member end section. The definition of u  and of 

plL  depends on the selected confined concrete model. For the case of the SD limit state, 

EC8-3 states that the corresponding chord rotation capacity SD  is defined as 75% of NC ,. 

With respect to the shear force capacity VNC for the limit state of NC, EC8-3 

proposes the formulation defined by: 
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where Ac is the cross section area taken as wb d  (d is the structural depth), N is the axial load 

(equal to zero for tension), pl  is the ratio between the plastic part of the chord rotation 

demand and the yield chord rotation given by Eq. (2.13), tot  is the total reinforcement 

ratio and Vw is the contribution of transverse reinforcement to shear resistance (EC8-3, 

2005). The term h x  represents the distance between the member compression centres 

and is assumed to be equal to 2h/3.  
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2.7.2 Significance of the sensitivity analysis  

The presented capacity models are seen to depend on geometrical and mechanical 

properties of the structural members as well as on parameters that depend on the seismic 

demand D. Since the capacity values may change from one analysis to the other, they 

should not be considered as member properties. Furthermore, if a single demand value is 

used for each control section when using nonlinear dynamic analysis, e.g. the mean value, 

the quantification of the capacity C of a given limit state may present some difficulties 

(Mpampatsikos et al., 2008a). To overcome this, an approach similar to that presented by 

Mpampatsikos et al. (2008a) can be selected where, instead of the mean demand, the ratio 

D C  was computed for each ground motion based on their maximum demand. Then, the 

mean value of the ratios was chosen to characterize the safety measure of each section. 

Given that such approach can be computationally intensive, Mpampatsikos et al. (2008a) 

attempted to eliminate the demand-capacity coupling by testing several simplifications. 

Among other aspects, the study addressed the influence of considering a simplified value 

for: 

 the axial load of the columns, by using the value obtained from gravity loads, 

instead of considering a more relevant value which varies during the analysis; 

 y , by using the value obtained from empirical expressions, instead of considering 

a more exact value obtained from a moment-curvature section analysis; 

 sL , by using the value of 2L , instead of considering the value of M V  which 

varies during the analysis. 

Although the results of the referred study appear to favour the adoption of these 

simplified approaches, some aspects regarding the consideration of the proposal for sL  are 

unclear. The study does not report difficulties similar to those presented in Section  2.6 with 

respect to the use of M V  to define 
sLx  (i.e. sL ). Since the study results are presented in 

the form of global percentages of unsafe/safe members, no indication of the influence of 

such simplification at the section level can be inferred, namely with respect to the closeness 

of 2L  and M V . Furthermore, the study concludes that the use of 2L  with Eq. (2.17) 

is fundamental since it is very sensitive to small values of M V . In view of these results, 

there is a definite need for a more detailed characterization of the relation between 2L  

and M V  (or 
sLx ) and for a discussion regarding the behaviour of the capacity model 

expressions to variations of parameter sL . Moreover, the need for such characterization is 

also important for capacity assessment in situations where an approximate CRQM that 

does not require the computation of 
sLx  is used.  



2.28 

Although the values of M V  and 
sLx  are not always the same (e.g. in beams), their 

differences can be seen to have little practical influence, according to the previously 

presented methods and results for the EGM-APC and the EIM-APC. Hence, the following 

analysis of the capacity models and of the characterization of parameter sL  is based on the 

values of 
sLx  obtained from the EGM. To observe the variation of 

sLx  from one analysis 

to another, Figs. 2.20 and 2.21 present the 
sLx  values associated to each section as a 

percentage of the member span obtained, respectively, from the ReLUIS records and the 

limit state of DL, and from the artificial records and the limit state of NC. Positive and 

negative values refer to 
sLx  values associated with positive and negative chord rotation 

demand, respectively. In addition, the average value of each set of 
sLx  values is also 

presented for each section. In general, the record-to-record variability of 
sLx  is not 

significant, with the exception of few sections. However, the average values are far from 

2L  in several cases, especially in beams. In light of these results, attention is brought to 

the conditions that are implicit in the development of the several EC8-3 capacity models, 

Eq. (2.13) and Eqs. (2.16) to (2.18). According to fib (2003a), the experimental results used 

to calibrate these models come either from simple- or double-cantilever specimens, or 

from simply-supported beams loaded at mid-span. In these tests, the geometrical and 

loading conditions correspond to a 
sLx  value of 2L  and to a moment distribution that is 

linear. For columns, such conditions reflect situations which are, in many cases, in 

agreement with the demand. On the other hand, in beams, the assumptions behind the 

referred capacity models are inconsistent with the analysis of the demand.  
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Figure 2.20. Comparison of the 
sLx  values obtained from the ReLUIS records for the limit state of DL, for 

column (a) and beam (b) sections.  
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Figure 2.21. Comparison of the 
sLx  values obtained from the artificial records for the limit state of NC, for 

column (a) and beam (b) sections.  

 

2.7.3 Results of the sensitivity analysis  

For a comprehensive understanding of the behaviour of the capacity models to 

variations of sL , a sensitivity analysis of their expressions is presented in the following. For 

DL , that is defined by Eq. (2.13), the sensitivity DL sL   is given by 
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which, by considering that 1C L h , that y  can be approximated by 2 syC h  and that 

sL k L   (with 0 1k  ), can be reorganized into: 
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In order to observe the variation of DL , the evolution of the term of Eq. (2.20) 

between parentheses is presented in Fig. 2.22a). Without loss of generality, 1C  values of 8, 

10 and 12, 2C  values of 1.75 and 2.1 (Priestley, 2003; Biskinis, 2007) and 0.002sy   are 

considered. It can be seen that larger variations of DL  occur for 0.2sL L , below which 

DL  decreases considerably, and that for 0.4sL L , the rate of increase of DL  is almost 

constant. For larger or smaller values of sy , the difference is that DL  starts to increase, 

respectively, at a smaller or larger, value of sL , usually between 0.1L  and 0.2L .  

For NC  defined by Eq. (2.16), the sensitivity NC sL   is given by 
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in which only the term 0.65
sL  is seen to be relevant. Based on the evolution of this term 

presented in Fig. 2.22b), it can be seen that NC  increases throughout the whole range of 
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sL , although larger variations occur for 0.2sL L . For the case where NC  is defined by 

Eq. (2.17), the sensitivity NC sL   is given by 

  
2

2

1

2
plNC DL

u y
s el s s

L

L L L

   


  
    

   
 (2.22) 

which, by setting 3pl sL C L   and  pl u y y     , leads, without loss of generality, to 
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where 1C , 2C  and k are as previously defined. In order to observe the variation of NC , 

the evolution of the term of Eq. (2.23) between parentheses is presented in Fig. 2.22c), for 

1C  values of 8, 10 and 12, for 3C  values of 0.05, 0.3 and 0.6, for 2 1.75C   and for 

0.002sy  . It can be seen that larger variations, as well as a significant decrease of NC , 

occur for 0.2sL L , above which the rate of increase of NC  is almost constant. The 

amount of decrease, which is governed by the term of Eq. (2.23) that includes parameter 
2k , can be such as to lead to NC  values that are lower than DL  or even negative, as also 

reported by Mpampatsikos et al. (2008a). The comparison of Figs. 2.22a) and c) indicates 

that, for small values of plL , NC  will be mostly controlled by the contribution of DL . 

Furthermore, the comparison of Figs. 2.22b) and c) shows that small values of sL  have 

opposite implications on the results of Eqs. (2.16) and (2.17).  
 

0 10 20 30 40 50 60 70 80 90 100
−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

 L
s
  (% of the span)

∂θ
D

L
/∂

L
s

 

 

C
2
 = 1.75 C

2
 = 2.1

     a)  
0 10 20 30 40 50 60 70 80 90 100

1

2

3

4

5

6

7

8

9

10

11

∂θ
N

C
/∂

L
s

 L
s
  (% of the span)    b) 

0 10 20 30 40 50 60 70 80 90 100
−0.2

−0.1

0

0.1

 L
s
  (% of the span)

∂θ
N

C
/∂

L
s

 

 

C
3
 = 0.05

C
3
 = 0.3

C
3
 = 0.6

     c)  
0 10 20 30 40 50 60 70 80 90 100

−400

−350

−300

−250

−200

−150

−100

−50

0

∂V
N

C
/∂

L
s

 L
s
  (% of the span)    d) 

Figure 2.22. Sensitivity analysis of Eq. (2.13) (a), Eq. (2.16) (b), Eq. (2.17) (c) and Eq. (2.18) (d) to variations 
of parameter sL .  
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For the case of VNC defined by Eq. (2.18), the sensitivity NC sV L   is given by 
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in which constants 1K , 2K  and 3K  are defined as follows 
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Although parameter 2K  is not truly constant, as pl  depends on the value of DL , it was 

considered as so since, for 0.2sL L , pl  is most likely to be governed by the minimum 

admissible value and, for 0.2sL L , the variations of DL  are much smaller and can be 

neglected in this analysis. Since both terms of Eq. (2.24) are negative, only the term 2
sL  is 

seen to be relevant. Based on the evolution of this term presented in Fig. 2.22d), it can be 

seen that VNC decreases throughout the whole range of sL , though larger variations occur 

for 0.2sL L .  

Based on the results of the sensitivity analysis, it is concluded that, for  0.2sL L , 

the approximation 2sL L  yields capacity results with an acceptable accuracy. Moreover, 

for the case of NCV , since the consideration of 2sL L  for 0.2sL L  will lead to 

conservative safety assessment results, the use of this approximation is recommended 

throughout the whole range of sL  values. On the other hand, this recommendation is not 

applicable to the deformation capacity models. Although chord rotation demand in 

columns leads to 
sLx  values that are, on average, close to 2L , in beams, 

sLx  values lower 

than 0.2L  are more frequent and their average evolution is not as clear. Results, thus, 

indicate that 
sLx  should be computed for an adequate application of the deformation 

capacity models. Therefore, the results of this analysis do not validate the general use of 

2sL L  as proposed by Mpampatsikos et al. (2008a). It is emphasized that the evaluation 

of 
sLx  in a post-processing stage is straightforward, as long as M and V distributions are 

stored during the analysis. Furthermore, in light of the previously referred conditions that 

are implicit in the EC8-3 capacity models, and since the evolution of NC  according to 

Eqs. (2.16) and (2.17) may lead to inconsistent results for small values of sL , the validity of 

these expressions, and of that of Eq. (2.13) due to its influence, should be re-examined 

based on additional experimental results, namely using results that reproduce demand 

conditions closer to those of beams. 
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2.8 Conclusions 

The present chapter addressed the EC8-3 safety and demand assessment procedures 

based on an application for RC structures. The practical quantification of the member 

chord rotation according to EC8-3 was examined in detail along with several simplified 

alternative formulations. The performance of the several CRQMs was analyzed for a RC 

example structure, considering static and dynamic nonlinear analysis methods, and for 

earthquake intensity levels associated to the EC8-3 limit states. The comparison of the 

different CRQMs led to the following recommendations:  

 The use of the EGM with the alternative proposals of Section  2.4.1 is preferred 

over the EIM, since it leads to results that are more regular and less sensitive to 

numerical issues; 

 The AGM-DR is the recommended approximate method to use in columns and in 

beams; 

 The use of the theoretical methods with 
sLx  defined by M V  is recommended for 

columns and for beams. However, an alternative formulation needs to be 

considered to obtain adequate results in beams.  

In addition, a sensitivity analysis of the EC8-3 limit state capacity models was carried 

out with respect to the shear-span in order to validate the results of previous research. 

Based on the results of the sensitivity analysis, it is concluded that, for 0.2sL L , the 

approximation 2sL L  will yield capacity results with an acceptable accuracy. Moreover, 

this approximation is recommended throughout the whole range of sL  values for the case 

of NCV . On the other hand, such recommendation is not applicable to the deformation 

capacity models since results indicate that 
sLx  values lower than 0.2L  are more frequent, 

especially in beams. Hence, these results do not validate the general use of 2sL L  as 

proposed by Mpampatsikos et al. (2008a). Finally, given the different evolution of the two 

NC  expressions for small values of sL , their validity should be re-examined based on 

additional experimental results. 
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Chapter 3 
A comparative application of  the EC8-3 

seismic safety assessment procedures  
 

 

3.1 Introduction 

Following the previous chapter where the procedures for seismic safety assessment 

of existing structures proposed in Part 3 of the Eurocode 8 (EC8-3) (EC8-3, 2005) were 

introduced, the current chapter presents an application study of this methodology. Besides 

testing the applicability of some of the code procedures, the proposed study also aims to 

assess the possibility of establishing conclusions regarding the consistency and reliability of 

the safety levels that are obtained when using the EC8-3 proposed methodology. Based on 

the application of the deterministic procedure, the study aims to determine if the 

considered methods of analysis lead to similar safety results and to identify the factors that 

may affect these results. To reach these objectives, the application of the EC8-3 procedure 

is complemented with a probabilistic approach to obtain the fragility values corresponding 

to the deterministically assessed safety levels. By comparing the results obtained by the two 

approaches, the study aims to assess if similar deterministic results, defined in terms of 

demand-to-capacity ( D C ) ratios, lead to similar probabilistic results (fragility values). 

Furthermore, the study tries to determine if a correlation can be established between 

deterministic D C  ratios and the expected fragility values.  

The proposed application of the EC8-3 procedures is performed for two reinforced 

concrete (RC) structures. The structures were defined in order to be representative of this 

type of construction without being excessively complex, thus facilitating the presentation of 

the results and the drawing of conclusions.  

In the following application, the terms deterministic and fragility are used with specific 

meanings. The term deterministic is used when referring to the EC8-3 safety assessment 

procedure. Although such procedure is semi-probabilistic, since partial safety factors and 

confidence factors are involved, the term deterministic is used in order to emphasize the 
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differences between this procedure and the probabilistic approach that is also considered. 

With respect to the fragility term, it is first reminded that a fragility curve represents the 

evolution of the probability of exceeding a given state of performance conditional to a 

parameter describing the intensity of the ground motions (Pinto et al., 2004). A fragility 

value then refers to one ordinate of the fragility curve associated to a certain limit state 

describing structural performance. More specifically, in the context of the proposed 

application, this term is used when referring to the fragility value for the ground motion 

intensity in agreement with the return period associated to the considered limit state. 

Alternatively, this fragility value can also be defined as the probability of failure associated 

to a certain limit state, conditional to a demand distribution that was obtained from ground 

motions that are compatible with the return period of the considered limit state.  

 

 

3.2 General conditions, structures and methods of analysis 

considered for the deterministic assessment 

The EC8-3 deterministic procedure was applied for the safety assessment of two RC 

one-bay-four-storeys planar frame structures of similar geometry that can be considered to 

be part of larger structures. The seismic safety of the selected structures was assessed for 

both deformation- (ductile) and strength- (brittle) based limit states. In the former, the 

selected demand parameter was the member chord rotation, while in the latter, demand 

was assessed in terms of shear force. In terms of deformation demand, the three previously 

referred limit states (Near-Collapse (NC), Significant Damage (SD) and Damage Limitation 

(DL)) were considered while in terms of force demand only the NC limit state was selected, 

as defined in EC8-3. For all the considered limit states, capacities were defined according 

to the EC8-3 proposed expressions defined in Chapter 2 and that will be repeated in the 

current chapter for completeness.  

For each limit state, the three previously referred Knowledge Level (KL) conditions 

were also considered for safety assessment. With respect to material properties, the Full 

Knowledge conditions, that correspond to KL3 and are associated to a Confidence Factor 

of 1.0, were assumed to be defined by assigning mean material property values to the 

selected material classes. The knowledge conditions corresponding to KL1 and KL2 were 

then assumed to be the KL3 conditions divided by the corresponding Confidence Factor: 

1.35 for KL3 and 1.2 for KL2. These considerations indicate it was assumed that, for each 

KL, the same mean values of the needed material characteristics were obtained, irrespective 

of the fact that, for each KL, they would be based on different amounts of information and 

number of tests (EC8-3, 2005). This situation, although unlikely to occur, serves the 

purpose of assessing the influence of the Confidence Factor of each KL on the safety 

assessment results. In this application, the Confidence Factors values proposed by EC8-3 
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are not questioned. A more detailed study regarding the adequacy of such values is 

addressed in Chapter 4. 

The safety assessment for each limit state and KL combination was performed using 

linear and nonlinear methods of analysis. In the latter case, both pushover and dynamic 

analyses were used, while in the former only static analysis was considered. Although 

EC8-3 states that only linear analyses can be used when KL1 conditions are available, as 

referred in Chapter 2, nonlinear analyses were also considered with this KL in this study to 

obtain a more comprehensive view of the influence of the Confidence Factor of each KL 

on the safety assessment results.  

 

 

3.2.1 Structural configuration and detailing of the selected structures 

The structural characteristics and detailing of these structures aim to simulate 

situations where seismic design was not considered. The two selected frames, hereon 

termed TF1 and TF2, differ only on the orientation of the column cross sections. As 

previously referred, these structures were defined in order to represent simple examples 

facilitating the presentation of the results and the inference of conclusions. By considering 

the referred orientations of the column cross sections, two considerably different 

assessment cases were able to be defined, namely in terms of the global lateral stiffness and 

of the available beam-to-column stiffness ratios. Columns of the first structure, from which 

the frame TF1 is selected, have a gross section of 0.25 0.50  m2, while those from the 

second structure, from which the frame TF2 is selected, have a gross section of 

0.50 0.25  m2. These characteristics and the remaining geometrical and detailing data are 

presented in Fig. 3.1. According to the selected material classes, which are C20/25 for 

concrete and S400 for steel, the following mean material property values were considered 

to characterize the nonlinear behaviour of the structural members: 

 Concrete compressive strength fc : mean 28
cf

MPa    

 Ultimate concrete strain εcu : mean   0.006
cu

 

 Yield steel strength fy : 440
yf MPa   

 Ultimate steel strength fsu : 506
suf MPa   

 Ultimate steel strain εsu : mean   0.09
su
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Figure 3.1. Geometrical and detailing characteristics of frames TF1 and TF2. 

 

 

3.2.2 Numerical modelling and definition of seismic demand 

For the development of a numerical model of the frames for linear analysis, the 

previously presented data is sufficient. Nonetheless, two additional aspects should be 

mentioned. First, for the sake of simplicity, the effect of the lightweight slab-width on the 

beam stiffness and strength was not considered in the numerical modelling. Second, 

according to EC8-3, when carrying out the safety assessment for the limit state of DL in 

terms of deformations, the structural demand (i.e. the chord rotations) must be obtained 

from the analysis of a numerical model where the stiffness of the members is taken equal 

to the mean value of  3y s yM L   at the two ends of the member, where yM  is the yield 

moment of the member, sL  is the shear-span (that, according to Mpampatsikos et al. 

(2008a), may be taken as half of the member length without loss of accuracy) and y  is the 

yield chord rotation. The latter can be defined by the yield capacity expression defined in 

EC8-3 presented in Chapter 2 and that will be presented again in a later Section of the 

present chapter.  

The necessary data for the development of the numerical model of the frames for 

nonlinear analysis, static or dynamic, depends on the analysis programme that is used. For 

the present study, the response analysis of the frames was carried out using the computer 

programme referred in Chapter 2 that was developed during previous research studies 

(Varum, 1997; Romão, 2002; Rodrigues, 2005). This programme is a two-dimensional 

analysis platform for the study of the linear and nonlinear response of multi-storey RC 
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buildings. Column and beam elements are modelled as member-type nonlinear 

macro-models with three zones: one internal zone with linear elastic behaviour and two 

plastic hinges, located at the member ends, where inelastic flexural behaviour is considered. 

The nonlinear hysteretic flexural behaviour of the members was modelled by the piecewise 

linear hysteretic Costa-Costa model (Costa and Costa, 1987; CEB, 1996) which is a 

generalized Takeda-type model. Stiffness degradation and pinching effects were considered 

in the hysteretic behaviour of the structural members. Damping was only considered for 

the analyses involving the low intensity seismic actions of the DL limit state. In such cases, 

damping was assumed to be of the Rayleigh type with parameters computed for the first 

and second mode periods of the frames and a fraction of critical damping equal to 3% for 

both periods. The periods were obtained assuming a lumped mass distribution. Given that 

the considered program deals with moment-curvature member models, the chord rotation 

demand was computed according to the Exact Geometrical Method referred in Chapter 2 

Since nonlinear structural behaviour is expected to develop at the structural member 

ends, the beam reinforcement defined in Fig. 3.1 is that of the end zones. Each structural 

member, defined according to the numbering also presented in Fig. 3.1,  has, therefore, two 

demand control sections located at each end which are termed bot and top, in columns, and 

left and right, in beams. It should be noted that both aspects additionally brought to 

attention for the linear analysis model (the effect of the lightweight slab-width on the 

beams and the member stiffness modification for the safety assessment of the limit state of 

DL in terms of deformations) also apply for the modelling assumptions associated to 

nonlinear analysis. 

The vertical loading considered in the analyses, either linear or nonlinear, consists in 

uniform loads of 30.2 kN/m on the first, second and third storeys, and of 26.6 kN/m in 

the fourth storey. These represent the self-weight of the beams and of the slabs, the 

finishings and the quasi-permanent value of the live load. In addition, a set of concentrated 

loads was considered to represent the self-weight of the columns. 

Seismic demand was set for Zone 1 of the Italian territory and considering a soil of 

type B. According to OPCM 3274 (2003), the peak ground acceleration (PGA) values 

considered for the different limit states are 0.14g, 0.35g and 0.525g for the limit states of 

DL, SD and NC, respectively. It is noted that the PGA for the limit state of DL 

corresponds to a 72 years return period. To illustrate the seismic action definition for such 

conditions, Fig. 3.2 presents the corresponding elastic response spectra. 
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Figure 3.2. Elastic response spectra for the limit states of DL, SD and NC. 

 

Based on these response spectra and depending on the selected analysis method, the 

effective seismic demand for the analysis was defined in different ways. When linear static 

analysis was used, the effective seismic demand was characterized by a set of horizontal 

forces obtained by the same methodology used for the design of new structures, as defined 

in Part 1 of Eurocode 8 (EC8-1) (EC8-1, 2004), and using the previously referred elastic 

response spectra instead of the design one. When pushover analysis was used, the effective 

seismic demand was characterized by a set of target displacements defined for each PGA 

value and for each force pattern. In this study, the safety assessment of the frames was 

performed using the following force patterns:  

 A uniform pattern given by iF   where iF  is the force at the frame level i and   

is the factor that increases the force values; 

 The standard EC8-1 proposed configuration given by i i iF m   , where mi and 

i  are the mass and the modal coordinate at level i;  

With respect to the computation of the target displacements, the following Section 

presents some comments about the procedure proposed by EC8-3 and a few application 

examples. In the cases where nonlinear dynamic analysis was used, five different sets of 

accelerograms were defined to set the effective seismic demand. Details and comments 

regarding the definition of these sets of ground motion records are presented in Section 

 3.2.2.2. 

 

 

3.2.2.1 Definition of the target displacements for pushover analysis 

According to EC8-3, by referring to what is defined in EC8-1, the computation of 

the target displacement for a multi-degree-of-freedom system requires the transformation 

of its capacity curve into an idealized bi-linearized curve, that represents the capacity curve 
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of an equivalent single-degree-of-freedom oscillator (Fig. 3.3), based on the equal energy 

assumption between both curves. A key feature for this transformation is the plastic 

mechanism point (Fig. 3.3) that EC8-3 defines as the point of the capacity curve that 

corresponds to the formation of the plastic mechanism of the structure. EC8-3 does not 

elaborate on the definition of plastic mechanism or on the criteria driving its definition (e.g. 

a global demand parameter, such as the maximum inter-storey drift, a local demand 

parameter, such as a maximum ductility demand in a member, or a combination of local 

demand parameters, such as the formation of a given number of plastic hinges). Depending 

on the assumptions considered regarding the numerical modelling of the structure for the 

nonlinear analysis, it is possible, in some cases, to define visually that the plastic mechanism 

occurs when the evolution of the capacity curve tends to be horizontal. Nonetheless, 

situations may occur when this approximation may not be possible or adequate (e.g. if the 

structure is sensitive to 2nd order effects). Some engineering judgement is thus required to 

define this point which plays an important role in the characterization of the target 

displacement. 

 

dy

Fy

dm

bi-linearized capacity curve

original capacity curve

plastic mechanism point

dy

Fy

dm

bi-linearized capacity curve

original capacity curve

plastic mechanism point

 

Figure 3.3. Original and bi-linearized capacity curves. 

 

EC8-3 presents two procedures to determine the target displacement: a direct 

method and an (optional) iterative procedure. As expected, the direct method yields target 

displacements that are sensitive to the definition of the plastic mechanism point. On the 

other hand, the iterative procedure is able to compute the same target displacements, 

irrespective of the plastic mechanism point initially defined, hence dealing with the 

difficulty in objectively defining it directly by a single estimate. By using this iterative 

procedure, the initial guess of the plastic mechanism point becomes irrelevant, even when 

points corresponding to elastic behaviour of the structure are selected. To illustrate the 

application of the iterative procedure, Fig. 3.4 presents the target displacement of frame 

TF1 under the standard EC8-1 proposed force pattern and for the limit state of SD, 

considering different values for the initial guess of the plastic mechanism point. As can be 

seen, the target displacement that is obtained is the same for all cases (within a 1.0 mm 

tolerance). Besides showing the target displacement and the initial guess for the plastic 

mechanism point, Fig. 3.4 also shows the iterative points obtained before reaching the final 
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target displacement (the initial guess displacement corresponds to the first iteration and the 

final target displacement corresponds to the last iteration). As shown, the importance of an 

objective definition of the plastic mechanism point is now seen to be less relevant for the 

computation of the target displacements. Nonetheless, a formal definition of the plastic 

mechanism point was considered in this study. The plastic mechanism point was 

considered to be the point for which a sufficient number of idealized perfectly plastic 

hinges, i.e. with zero post-yield stiffness, has been developed, thus leading to a situation 

where equilibrium of the structure is not possible.  
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Figure 3.4. Target displacement of frame TF1 under the standard EC8-1 proposed force pattern and for the 
limit state of SD for different initial guesses of the plastic mechanism point. 

 

3.2.2.2 Definition of the accelerograms for nonlinear dynamic analysis 

As previously stated, five different sets of accelerograms were defined to evaluate the 

effective seismic demand for the cases where safety assessment is performed using 

nonlinear dynamic analysis. The first set is made of seven artificial spectrum-compatible 

accelerograms with 15 seconds for each limit state and meeting the spectral-matching 

requirements defined by EC8-3. The second set corresponds to one of the unscaled real 

ground motion sets meeting the previously referred spectral matching criteria that are 

proposed by Iervolino et al. (2008). This set of records will be termed the ReLUIS set. The 

third to fifth sets are made out from seven real ground motion records that consider 

different scaling strategies. These recorded ground motions were considered in order to 

simulate a situation where spectral-matching ground motions are not available. In 
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alternative to more complex numerical techniques such as those proposed by Hancock et al. 

(2006), a possible way of addressing this situation is to consider a set of real records that 

are scaled in order to meet a certain code-compatible criterion. Although this type of 

approach is commonly used in performance-based probabilistic methods for seismic safety 

assessment (Aslani and Miranda, 2005; Luco and Cornell, 2007; Padgett et al, 2008), its 

suitability in the EC8-3 context is examined herein. These ground motions were chosen 

from an existing larger set of records that was established based on moment magnitudes 

and epicentral distances criteria (LessLoss, 2006) in order to have moment magnitudes 

between 5.3 and 5.7 and epicentral distances between 15 km and 30 km. The ground 

motions from the third set are scaled for the PGA of each limit state, those from the 

fourth set are scaled for the 5% damping spectral acceleration value at the fundamental 

period T1,  1aS T , for each limit state, while those of the fifth are scaled for the 5% 

damping spectral acceleration value at an alternative scaling period termed Tinel ,  a inelS T , 

and are only considered when assessing safety for the limit states of SD and NC. The 

period Tinel was considered to be representative of the first-mode inelastic period of the 

structure and was obtained from the effective period computed from the pushover analysis 

results. For frame TF1, the 1inelT T  ratio is 0.72 0.46 1.6  while for frame TF2 it is 

1.2 0.65 1.8 . The proposed definition for Tinel shows that it ranges between 11.5T  and 

12T , which is in close agreement with the “extended period” definition proposed by 

Haselton and Baker (2006). Although Tinel can be expected to change according to the 

selected bi-linearization procedure, if Tinel is evaluated by the following proposal (Chopra 

and Goel, 2001): 

  1 1inelT T r        (3.1) 

where r is the ratio of post-yield to elastic stiffness and  is the displacement ductility, it 

can be seen that Tinel is relatively insensitive to the value of r and that  is the governing 

parameter. For example, for  values ranging from 2.0 to 5.0, one obtains 1inelT T  ratios 

ranging from 1.4 to 2.0. Hence, the Tinel values considered herein are seen to be acceptable 

and, given the expected low variability of the ground motion spectra for that period range, 

no significant variations in the analysis results are expected from considering different Tinel 

values across the previously referred 1inelT T  ratios.  

In order to illustrate the differences between the several ground motion sets, their 

response spectra along with the code elastic response spectrum are presented in the 

following. To illustrate the characteristics of the artificial accelerograms that were 

generated, Fig. 3.5 shows the response spectra of the seven accelerograms generated for 

the limit state of SD, along with their average response spectrum, against the EC8-1 elastic 

response spectrum with 10%  bounding limits. For the ReLUIS set of records, Fig. 3.6 

presents the corresponding response spectra for the limit state of NC. Since the original 
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ground motion set is defined for the PGA corresponding to the SD limit state, the records 

were scaled for the NC limit state using a scaling factor defined by 0.525 0.35g g . Similar 

information is presented in Fig. 3.7 for the real ground motions when these are scaled 

using the PGA and for the limit state of DL. Similar information is also presented in 

Fig. 3.8 for real ground motions scaled using the  1aS T  of frame TF1 (T1 = 0.46 sec) and 

for the limit state of NC. In Fig. 3.9, the same situation is represented using the  1aS T  of 

frame TF2 (T1 = 0.65 sec). Analogous representations are also presented for the fifth set of 

accelerograms to allow for direct comparisons between the two scaling strategies. Hence, 

Fig. 3.10 presents the response spectra for the real ground motions scaled using the 

 a inelS T  of frame TF1 (Tinel = 0.72 sec) for the limit state of NC, while Fig. 3.11 presents 

the corresponding response spectra for frame TF2 (Tinel = 1.2 sec). 

 

0 0.5 1 1.5 2 2.5 3 3.5 4
0

2

4

6

8

10

12

14

T [sec]

S
a

 [m
/s

2
]

 

Record Spectrum
Average Spectrum
EC8 Elastic Spectrum
EC8 Elastic Spectrum +/- 10%

 

Figure 3.5. Response spectra of the artificial records for the limit state of SD, their average spectrum and the 
EC8-1 elastic response spectrum +/- 10%. 
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Figure 3.6. Response spectra of the unscaled ReLUIS ground motion set meeting the spectral matching 
criteria, for the limit state of NC, their average spectrum and the EC8-1 elastic response spectrum +/- 10%. 
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Figure 3.7. Response spectra of the PGA scaled records for the limit state of DL, their average spectrum and 
the EC8-1 elastic response spectrum +/- 10%. 
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Figure 3.8. Response spectra of the  1aS T  scaled records for the limit state of NC and frame TF1, their 

average spectrum and the EC8-1 elastic response spectrum +/- 10% (a); larger view (b). 
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Figure 3.9. (a) Response spectra of the  1aS T  scaled records for the limit state of NC and frame TF2, their 

average spectrum and the EC8-1 elastic response spectrum +/- 10% (a); larger view (b). 
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Figure 3.10. Response spectra of the  a inelS T  scaled records for the limit state of NC and frame TF1, their 

average spectrum and the EC8-1 elastic response spectrum +/- 10% (a); larger view (b). 
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Figure 3.11. Response spectra of the  a inelS T  scaled records for the limit state of NC and frame TF2, their 

average spectrum and the EC8-1 elastic response spectrum +/- 10% (a); larger view (b). 

 

Observation of these figures shows that the artificial accelerograms and the ReLUIS 

records meet the EC8-3 specifications in terms of spectrum matching, while the real 

ground motions scaled using the PGA do not. Nonetheless, when scaling is performed 

with the  1aS T , the response spectra of the real ground motions is less distant from the 

code spectrum, especially for the case of frame TF2. For the cases where scaling is 

performed using the  a inelS T , the response spectra of the real ground motions can be seen 

to be less distant from the code spectrum in the region of the longer periods while 

increasing the referred distance in the region of T1. By comparing the response spectra of 

the several record sets, it can be seen that records of the third to the fifth sets are not 

expected to lead to demand distributions that closely match those of the artificial and the 

ReLUIS accelerograms. Although the spectral differences are evident, it is considered that 

all the ground motion sets have a common seismic intensity. This consideration comes 

from the fact that all sets were defined, by using different scaling and spectral matching 
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approaches, to be compatible with the return period of a given limit state. Hence, a 

comparison between the demand of sets 1 and 2 with that of sets 3 to 5 is instructive in 

order to observe the significance of the demand differences and to determine if simpler 

ground motion selection criteria could be considered for seismic safety assessment in the 

context of EC8-3. From a global observation of Figs. 3.5 to 3.11, the following can be 

concluded: 

 The ReLUIS set of ground motions is expected to produce demand distributions 

with a good agreement with those obtained when using the artificial accelerograms 

for the several limit states;  

  The PGA based scaled records are expected to underestimate considerably the 

demand obtained by the artificial accelerograms; 

 The  1aS T  based scaled ground motions are expected to lead to a demand 

distribution that is closer to that of the artificial and of the ReLUIS accelerograms 

for the limit state of DL, while presenting larger differences for the limit states of 

SD and NC; 

 The  a inelS T  based scaled ground motions are expected to lead to a demand 

distribution that is closer to that of the artificial and of the ReLUIS accelerograms 

for the limit states of SD and NC. 

 

 

3.2.3 Capacity models for the selected limit states 

Although the capacity models proposed by EC8-3 for the selected limit states have 

been previously addressed in Chapter 2, they are nonetheless referred in the following for 

completeness. As stated in Chapter 2, EC8-3 defines member-level capacities for ductile 

and brittle mechanisms to be used in the safety assessment verifications for the several limit 

states. Ductile capacities are defined in terms of the admissible DL, SD and NC member 

chord-rotations while brittle capacities are characterized by the admissible NC shear force.  

The NC chord-rotation capacity NC  was defined by the expression (EC8-3, 2005):  
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 (3.2) 

where el  is 1.5 for primary members,   is the normalized axial force,   and '  are the 

mechanical reinforcement ratios of the tension and compression, respectively, longitudinal 

reinforcement, cf  is the estimated value of the concrete compressive strength, ywf  is the 

estimated stirrup yield strength, sL  is the shear span taken constant and equal to half of 
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the member length, h is the section depth, sx  is the ratio of transverse steel area sxA  

parallel to the direction of loading, d  is the steel ratio of diagonal reinforcement (if any) in 

each diagonal direction and   is the confinement effectiveness factor (EC8-3, 2005). 

As stated in EC8-3, the SD chord-rotation capacity SD  is defined as 75% of NC . In 

the case of the DL chord-rotation capacity DL , and assuming that no shear cracking is 

expected to precede flexural yielding, the chosen expression is (EC8-3, 2005): 

 0.0013 1 1.5 0.13
3

b ys
DL y y

s c

d fL h

L f
  

 
        

 
 (3.3) 

in which y  is the yield curvature of the section, db is the mean diameter of the tension 

reinforcement and yf  is the estimated longitudinal reinforcement yield strength. Due to 

the asymmetry of longitudinal reinforcement of the beams, their chord rotation capacities 

are computed for both bending signs. 

According to EC8-3, the NC shear force capacity VNC is defined by (EC8-3, 2005): 
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 (3.4) 

where Ac is the cross section area taken as wb d  (d is the structural depth), N is the axial load 

(equal to zero for tension), pl  is the ratio between the plastic part of the chord rotation 

demand and the yield chord rotation given by Eq. (3.3), tot  is the total reinforcement ratio 

and Vw is the contribution of transverse reinforcement to shear resistance obtained by 

(EC8-3, 2005): 

 w w w ywV b z f     (3.5) 

in which w  is the transverse reinforcement ratio and z is the length of the internal lever 

arm. With respect to Eq. (3.4), it should be noted that N is taken as the member axial force 

under gravity loads, as suggested by Mpampatsikos et al. (2008a), and the term h x  

represents the distance between the member compression centres and is assumed to be 

equal to 2h/3. 

 

 

3.3 Additional data for the probabilistic assessment 

The probabilistic safety assessment of the selected structures was carried out to 

obtain the fragility values corresponding to the deterministically assessed safety levels, as 

previously referred. These fragility values were computed using nonlinear dynamic analysis 
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results only and seismic demand was considered to be defined by the same groups of 

accelerograms used in the deterministic assessment. Five groups of results were therefore 

obtained for each limit state and for each KL: results obtained using artificial spectrum-

compatible accelerograms, using real ground motion records scaled for the PGA, using real 

ground motion records scaled for the 5% damping  1aS T , using real ground motion 

records scaled for the 5% damping  a inelS T  and for the ReLUIS set. Based on these 

results, the probabilistic demand estimation due to record-to-record variability was 

assumed to be well represented by lognormal distribution functions fitted to the demand 

values of each limit state and KL using the maximum likelihood estimation method.  

To illustrate the adequacy of the fitting process, Figs. 3.12a) and c) present, for the 

C1bot and V1left control sections of frame TF2, the empirical cumulative distribution 

functions (CDFs) of the chord rotation demand for the DL, SD and NC ground motion 

intensity levels when using real ground motion records scaled for the 5% damping  1aS T  

and the corresponding lognormal fitted CDFs. For the latter section, chord rotation 

demand for both bending signs is presented (the “+” and “-“ represent chord rotation with 

tension in the bottom and top reinforcement, respectively), while for the former, chord 

rotation demand is the maximum of both bending signs. Additionally, Figs. 3.12b) and d) 

present the same data for the same control sections now for the case where demand is 

obtained from artificial spectrum-compatible accelerograms. For the same control sections 

and also for the case where demand is obtained from the real ground motion records 

scaled for the 5% damping  1aS T , Fig. 3.13 presents the empirical CDFs of the maximum 

shear force demand for the NC ground motion intensity level and the corresponding 

lognormal fitted CDFs. From the results, and given the small size of the demand datasets, 

the lognormal CDFs can be seen to provide a reasonable fit to the demand data. As 

expected, the 5% damping  1aS T  scaled real records were also seen to yield chord 

rotation demand distributions with larger variability than the artificial records. Moreover, 

this effect was also seen to be more important as the ground motion intensity increases, i.e. 

as the nonlinear behaviour of the structures becomes more pronounced. In terms of shear 

force demand, the influence of the type of record is seen to be less evident. 

Randomness of the material properties was not considered in the probabilistic 

characterization of the demand. However, randomness of the concrete compressive 

strength and of the yield steel strength was considered for the definition of the probabilistic 

distributions of the limit state capacities. Assuming that these properties follow normal 

distributions with a given mean   and coefficient of variation (CoV), the following values 

were set for both structures based on the proposals by Dymiotis et al. (1999):  

 Concrete compressive strength fc : mean 28
cf

MPa   and 0.18
cf

CoV   

 Yield steel strength fy (assuming fyw equal to fy ): 440
yf MPa   and 0.06

yfCoV   
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Figure 3.12. Empirical and fitted distribution functions of the chord rotation demand for the DL, SD and NC 
ground motion intensity levels of frame TF2 at section C1bot when using real ground motion records scaled 
for the 5% damping  1aS T  (a) and when using artificial records (b), and at V1left when using real ground 

motion records scaled for the 5% damping  1aS T  (c) and when using artificial records (d). 
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Figure 3.13. Empirical and fitted distribution functions of the shear force demand for the NC ground motion 
intensity level when using real ground motion records scaled for the 5% damping  1aS T  at the C1bot (a) and 

V1left (b) control sections of frame TF2. 

 

Considering the capacity models previously presented, limit state capacities were simulated 

for each KL using 200 values of the material properties cf  and yf  sampled from their 

probabilistic distributions and combined using the Latin Hypercube sampling scheme 

proposed by Iman and Conover (1982). Normal and lognormal distribution functions were 

Chord rotation (rad) Chord rotation (rad) 

Chord rotation (rad) Chord rotation (rad) 

Shear force (kN) Shear force (kN) 



3.17 

then fitted using the maximum likelihood estimation method. In order to illustrate the 

adequacy of the fitting process, Fig. 3.14 presents the empirical CDFs of capacities NC , 

DL  and NCV  for the C1bot control section of frame TF1 (assuming KL3), along with the 

corresponding normal and lognormal fitted CDFs. As can be observed, both distributions 

adequately fit the computed capacities of the several limit states. Globally, the DL, NC and 

shear force capacities were seen to exhibit maximum CoV values lower than 9%, 7% and 

7%, respectively. 
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Figure 3.14. Empirical and fitted distribution functions for capacity NC  assuming a normal (a) and a 

lognormal distribution (b), for capacity DL  assuming a normal (c) and a lognormal distribution (d), for 
capacity VNC assuming a normal (e) and a lognormal distribution (f) for the C1bot section of frame TF1. 
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3.4 Seismic safety assessment results from the deterministic 

approaches 

The seismic safety assessment results obtained from the different deterministic 

approaches, which involve different methods of analysis (linear, pushover and nonlinear 

dynamic using different types of ground motions), different limit states and different KLs 

are presented in the following. For a given control section i, results are expressed in terms 

of iiD C  ratios where a value below or equal to 1.0 represents a safe situation, and an 

unsafe situation otherwise. The presentation of the results is initially divided according to 

the method of analysis and ends with a comparative assessment of the different 

approaches. For conciseness sake, only a few sample figures of the results are presented 

herein. In these figures, the chord rotation limit states of DL, SD and NC are simply 

termed DL, SD and NC while the shear force limit state of NC is simply termed V. 

With respect to the beam results, it is noted that, for a given section, the presented 

value corresponds to the maximum D C  ratio obtained from the two bending signs. It is 

also referred that, given some of the choices made for the parameters entering the 

deformation capacity expressions previously presented (when needed, N is the member 

axial force under gravity loads and the shear span is taken equal to half of the member 

length) the member deformation capacities are independent of the demand. In the case of 

the shear force capacity, pl  is the only demand dependent parameter. However, its 

evaluation for each control section is only performed for the cases where demand comes 

from pushover analysis and nonlinear dynamic analysis using artificial accelerograms. For 

the remaining cases where demand is obtained from nonlinear dynamic analysis, pl  is the 

same as for the latter case to allow for a simpler comparison of the various D C  results. 

 

 

3.4.1 Results from the linear analyses 

As formerly referred, for linear analysis to be applicable, bending moment demand to 

capacity ratios   must be sufficiently uniform across the primary elements of the structure 

where plastic hinges are expected to form. According to EC8-3, this condition is met if the 

ratio max min   does not exceed a value in the range of 2 to 3 (considering only values 

1  ), for which EC8-3 suggests the value of 2.5 that is also considered herein. As defined 

by EC8-3, the identification of the relevant   values, i.e. those referring to sections where 

plastic hinges are expected to develop, must be carried out by comparing the sum of the 

columns flexural capacities framing into a given joint with the corresponding beam flexural 

capacities. Depending on the structure, this task can be a complex one since it requires the 

analyst to evaluate the flexural equilibrium of each joint, in order to identify the critical 
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sections. Although leading to conservative results, a simplified approach can be defined to 

avoid the lengthy joint analysis that requires the evaluation of the max min   ratio across all 

primary elements of the structure where 1  . In this situation, the max  is still adequately 

evaluated while the min  is assumed to be the lowest value of 1  . In this approach, min  

can be considerably lower, hence yielding an overall larger value of max min  . Table 3.1 

presents the   ratios of the control sections of the TF1 and TF2 frames for the three 

considered limit states and for a right-to-left lateral force pattern (the left-to-right pattern 

leads to similar ratios) and the max min   obtained for each limit state and for both 

approaches. The max min   ratio of the simplified approach is termed max min *  . The 

relevant   values according to the EC8-3 criterion are identified in bold.  

Table 3.1.  ratios of the control sections of the TF1 and TF2 frames for the three considered limit states 

and corresponding max min   of each limit state, for both the EC8-3 and the simplified approaches. 

 TF1 TF2 
 DL SD NC DL SD NC 

C1 bot 2.0 4.3 6.4 2.2 6.2 9.4 

C1 top 0.7 1.8 2.7 2.1 4.9 7.5 

C2 bot 1.4 3.1 4.4 2.1 5.3 8.0 

C2 top 1.4 3.0 4.4 2.2 5.5 8.2 

C3 bot 0.9 2.0 2.9 1.7 4.1 5.9 

C3 top 1.4 2.9 4.1 1.8 4.5 6.6 

C4 bot 0.5 0.9 1.2 1.0 2.2 3.1 

C4 top 1.1 2.0 2.8 1.1 2.8 4.0 

V1 left 2.0 4.7 6.8 1.9 4.2 6.1 

V1 right 3.1 8.8 13.1 3.6 8.1 12.0 

V2 left 2.1 4.6 6.7 1.6 3.7 5.3 

V2 right 3.2 8.6 12.8 2.9 6.8 10.2 

V3 left 1.6 3.3 4.6 1.1 2.4 3.5 

V3 right 2.0 5.6 8.5 1.7 4.1 6.2 

V4 left 0.9 1.7 2.3 0.4 1.0 1.3 

V4 right 0.8 2.5 3.9 0.5 1.4 2.2 

C5 bot 1.8 4.2 6.2 2.1 5.9 9.2 

C5 top 0.4 1.6 2.4 1.8 4.5 7.0 

C6 bot 1.0 2.7 4.1 1.7 4.7 7.3 

C6 top 1.0 2.7 4.1 1.8 4.8 7.5 

C7 bot 0.6 1.7 2.6 1.3 3.4 5.3 

C7 top 1.0 2.5 3.8 1.4 3.9 6.0 

C8 bot 0.0 0.5 0.8 0.6 1.4 2.3 

C8 top 0.5 1.4 2.3 0.7 1.9 3.1 

max min   2.9 4.4 4.7 3.6 4.3 3.9 

max min *   3.2 6.3 10.9 3.6 8.1 9.2 
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As can be seen, results indicate that, for all the limit states, both frames fail to meet 

the max min   criterion, considering both approaches. Therefore, linear analysis is not 

considered to assess the safety of these structures. Even though the EC8-3 and the 

simplified approaches yield the same end result, i.e. linear analysis is not applicable, the 

comparison of the max min   ratios obtained by both methods leads to conclude that the 

simplified approach can yield results of increasing conservativeness as the limit state 

intensity increases. Nonetheless, for the limit state of DL, the simplified approach might be 

acceptable. 

Considering that these two approaches represent two extreme situations in terms of 

application complexity, a more practical verification methodology that leads to the results 

of the EC8-3 approach and that allows for a reduction on the number of joints that need to 

be analysed can be defined according to the following steps:  

 After establishing the admissible ratio max min  , termed , determine the value of 

max  among the sections of the primary elements;  

 Compute the minimum admissible value of min  that verifies , min,adm , given by 

max  ; 

 Among the primary elements, search for the section with the highest   value that 

is greater or equal to 1.0 and does not exceed min,adm , termed *
min , and determine 

if it is a section where a plastic hinge is expected to develop. If such section is 

expected to develop a plastic hinge, it can be concluded that linear analysis is not 

applicable;  

 If a plastic hinge is not expected to develop at that section, the value of min,adm  is 

updated to *
min  and the previous step is repeated. If there are no more sections to 

repeat the previous step, it can be concluded that linear analysis is applicable. 

 

 

3.4.2 Results from the pushover analyses 

As previously stated, pushover analysis of the frames was performed for two lateral 

force patterns, each one applied in two directions: left-to-right and right-to-left. For each 

pattern target displacements were determined for the several limit states according to the 

previously mentioned iterative procedure defined in EC8-1. The results presented in the 

following for a given limit state and KL, expressed in terms of D C  ratios, correspond to 

the most unfavourable results between the several patterns and loading directions.  
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Figure 3.15a) presents the D C  results for the control sections of frame TF1 for the 

three chord rotation limit states and considering KL3 while Fig. 3.15b) presents the D C  

results only for the NC chord rotation limit state but considering the three KLs. In 

addition, Fig. 3.16a) presents the D C  results for the control sections of frame TF2 for the 

three chord rotation limit states and considering KL3 while Fig 3.16b) presents the D C  

results only for the NC shear force limit states but considering the three KLs. Observation 

of the D C  results confirms that frame TF2 is more vulnerable than frame TF1 due to its 

higher flexibility, which was induced by changing the orientation of the columns. This 

increase in vulnerability has more practical implications for the limit state of DL since 

almost every element of TF2 is now unsafe. Moreover, for the limit states of SD and NC, 

the increase of the D C  values from TF1 to TF2 can be seen to be in the range of 50% to 

100%. It can also be seen that the influence of the KL is considerably different for chord 

rotation and shear force capacities, the latter being more sensitive to the different KLs. 

Finally, the results also indicate that DL seems to be the dominant deformation limit state 

for the two frames. A similar conclusion was also noted by Mpampatsikos et al. (2008b) 

which also refer that considering the previously defined equivalent secant-to-yield stiffness 

for the limit state of DL may lead to a significant underestimation of the global stiffness 

and, therefore, to a considerable overestimation of the D C  ratios. 
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Figure 3.15. Safety assessment results of frame TF1 considering pushover analysis, for the three chord 
rotation limit states and KL3 (a) and for the NC chord rotation limit state considering three KLs (b). 
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Figure 3.16. Safety assessment results of frame TF2 considering pushover analysis, for the three chord 
rotation limit states and KL3 (a) and for the NC shear force limit state considering three KLs (b). 
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3.4.3 Results from the nonlinear dynamic analyses 

Results presented in the following intend to provide a general overview of the effect 

of the type of accelerogram used for nonlinear dynamic analysis on the safety assessment 

results. Since seven ground motions were considered in all five sets of accelerograms, the 

demand values considered for the D C  ratios presented herein are mean values over the 

seven results obtained for each set of ground motions. When presenting results obtained 

from records scaled for  1aS T , these are termed Sa scaled, while results obtained from 

records scaled for  a inelS T  are termed Sa scaled - Tinel. Moreover, it is recalled that results 

for the Sa scaled - Tinel set of records are only presented for the SD and NC limit states. 

To illustrate the overall findings, Fig. 3.17 presents the D C  results for the control 

sections of frame TF1 considering the different sets of accelerograms for the DL and SD 

chord rotation limit states and considering KL3. Figure 3.18 presents the same type of 

results for the control sections of frame TF2, now for the DL and NC chord rotation limit 

states. Figure 3.19 presents the results for the shear force NC limit state for frames TF1 

and TF2 considering the different sets of accelerograms. Observation of these results 

confirms that the type of accelerogram has a significant influence on the safety assessment 

results. Still, such influence depends on the type of limit state, i.e. deformation- or 

strength-based, and on the structure. Namely, the influence of the different sets of 

accelerograms is larger for deformation-related D C  results, especially for frame TF1. As 

referred in Section  3.2.2.2, such differences are a direct result of the differences observed 

between the response spectra of the records and the code spectrum.  

In general, it can be seen that the deformation demand based on the ReLUIS set has 

a very good agreement with the demand obtained from artificial accelerograms (which is 

considered as the reference seismic demand since the records match the code spectrum 

very closely). On the contrary, when using PGA scaled records, the corresponding demand 

is, in general, the one with less agreement with the reference demand. For the demand 

obtained from Sa scaled and Sa scaled - Tinel records, the agreement with the reference 

demand is seen to be variable. On average, the demand resulting from the Sa scaled set 

exhibits a better agreement with the reference demand for the lower intensity limit states. 

On the other hand, the demand resulting from the Sa scaled - Tinel set is likely to be closer 

to the reference demand of larger intensity limit states, with a tendency to overestimate it. 

For the shear force limit state, the assessment results are seen to be less sensitive to the 

record type as the D C  values are much closer. Still, the demand resulting from records 

scaled for PGA is also the one exhibiting less agreement with the reference demand. 
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Figure 3.17. Safety assessment results of frame TF1 considering different accelerogram sets, for the DL chord 
rotation limit state and KL3 (a) and for the SD chord rotation limit state and KL3 (b). 
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Figure 3.18. Safety assessment results of frame TF2 considering different accelerogram sets, for the DL chord 
rotation limit state and KL3 (a) and for the NC chord rotation limit state and KL3 (b). 
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Figure 3.19. Safety assessment results of frame TF1 (a) and frame TF2 (b) considering different accelerogram 
sets, for the shear force NC limit state and KL3. 

 

3.4.4 Comparative assessment of the different approaches 

Since linear analysis assessment results are not available, comparison of results can 

only be performed for those obtained from nonlinear analysis. Given the added complexity 

of nonlinear dynamic analysis when compared to its static counterpart, this comparative 

evaluation aims fundamentally to verify if similar assessment results are obtained by both 

approaches, thus validating the use of pushover analysis.  
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Comparison between pushover analysis and nonlinear dynamic analysis results can be 

carried out by comparing results presented in Figs. 3.15 and 3.16 with those presented in 

Figs. 3.17 to 3.19 for the artificial and ReLUIS records. As expected, observation of these 

results leads to conclude that for deformation based limit states, correlation between 

pushover and nonlinear dynamic analysis results is best when considering artificial 

accelerograms. Nonetheless, there are some noticeable differences for the lower seismic 

intensity such as that of the DL limit state, namely for the beams of frame TF2. In terms of 

the shear force limit state, the agreement between dynamic and pushover results is much 

better. In the overall, it can be seen that, for the presented structures, pushover analysis 

leads to adequate safety assessment results. 

With respect to the nonlinear dynamic analysis demand results, a further insight on 

the importance of its variability should be noted. When using real ground motion records, 

an inherent larger record-to-record variability of the results is usually expected, irrespective 

of the agreement between their average response spectrum and the code spectrum. The 

demand variability is known to be considerably affected by the seismic intensity level under 

consideration and it is generally agreed that such variability increases as the seismic 

intensity level also increases (Pinto et al., 2004). However, for a seismic intensity that may 

result in demand values close to the yield limit of the members (e.g. the DL intensity), 

some ground motions might generate demand values much lower than the yield limit as 

others might produce values that are much larger (namely due to the changes in the 

element stiffness). When using the minimum number of records allowed by EC8-1, some 

care is required for the analysis of the demand as the variability of the demand might lead 

to an overestimation or an underestimation of the true average demand. Hence, the 

consideration of the mean value of the response in such cases may lead to unsafe demand 

estimations since the mean is a poor estimator of the central tendency of the demand, 

mainly due to its high sensitivity to demand distributions exhibiting larger variability 

(Hoaglin et al., 1983).  

To assess this effect for the present structures, a comparison is made between the 

D C  ratios obtained using the median as an estimator of the central tendency of the 

demand, which is known to be much less sensitive to the variability of the data (Hoaglin et 

al., 1983) and those obtained by using mean demand. This comparison leads to conclude 

that when using artificial accelerograms, the demand distribution can be expected to have a 

lower variability than in any other situation for larger seismic intensity levels. On the other 

hand, when using real ground motion records or when analyzing the DL intensity level, 

there is no definite trend in the expected variability. It can be rather low, such as for the 

cases presented in Fig. 3.20, or much larger, as for those presented in Fig. 3.21. Moreover, 

from these results, it can also be seen that this variability can either lead to mean estimates 

that are larger or lower than the median estimates.  
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Figure 3.20. Examples of good agreement between safety assessment results considering mean and median 
demand obtained from different accelerogram sets, different limit states and KL3, for frame TF1 (a) and for 

frame TF2 (b). 
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Figure 3.21. Examples of poor agreement between safety assessment results considering mean and median 
demand obtained from different accelerogram sets, different limit states and KL3, for frame TF1 (a) and for 

frame TF2 (b). 

 

Finally, a brief comment is made with respect to the influence of the KL in the 

assessment results. Given the assumptions presented in Section  3.2 regarding the KL 

conditions (i.e. the sample mean value of the material properties is considered to be the 

same for the three KLs) and that demand is based on the analysis results for both nonlinear 

analysis methods, the effect of the KL is only felt on the capacity side. After evaluating the 

several limit state capacities for the different KLs and for all the members of both frames, 

and averaging the increase in capacity that is gained by moving from one KL to another, 

the values presented in Table 3.2 were obtained. These allow for a global view of the 

influence of the KL and reveal that, from a practical point of view, going from KL1 to 

KL2 or from KL2 to KL3 produces changes that vary according to the considered limit 

state. While for the case of the deformation-based SD and NC capacity values these 

changes are small, for the case of the DL and the shear force capacities the variations can 

be significant in some situations. Similar conclusions were drawn by Chrysostomou (2005) 

for the SD, NC and shear force limit state capacities. By analysing the ratios between the 

Confidence Factors of KL1 and KL2, of KL2 and KL3, and of KL1 and KL3, which are, 

respectively, 1.125, 1.20 and 1.35 and represent the direct increase of the material 

properties for the assumptions of this analysis, the increase of the DL and shear force 
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capacities presented in Table 3.2 can be seen to reflect a significant part of the referred 

ratios. More specifically, the DL capacity is seen to be considerably dependent on the value 

of yf  while the shear force capacity depends on both cf  and yf . On the other hand, the 

SD and NC capacities are only marginally affected by the values of cf  and yf . From this 

analysis it can be inferred that, depending on the selected limit state and from the material 

characterization point of view, the need for an increase in knowledge about their properties 

must be carefully thought out due to the increase in work, costs and on-site difficulties that 

may be implied.  

Table 3.2. Average increase in the capacity of the several limit states by increasing the KL. 

 DL SD NC V 

KL1 to KL2 8% 3% 3% 10% 

KL2 to KL3 14% 5% 5% 17% 

KL1 to KL3 24% 9% 9% 29% 

 

 

3.5 Seismic safety assessment results from the probabilistic 

approach  

Since a direct comparison between the previously presented deterministic results and 

the probabilistic ones is not possible, the purpose of this analysis is to assess if similar 

D C  ratios lead to similar fragility values. Based on these results, an attempt was also 

made to define a correlation between D C  ratios and the expected fragility values.  

A numerical simulation method such as the multi-stripe analysis approach proposed 

by Jalayer and Cornell (2009) can be considered to obtain a fragility curve. Since the current 

analysis only requires the computation of a single fragility value for each limit state, the 

corresponding demand distribution is that of the stripe having a seismic intensity measure 

in agreement with the return period associated to the limit state. As referred in Section  3.3, 

the considered probabilistic demand distributions are those obtained from nonlinear 

dynamic analysis for the artificial and the ReLUIS records. The probabilistic distributions 

for the limit state capacities are those also referred in Section  3.3. The presented fragility 

values were computed using the fitted lognormal limit state capacity distributions referred 

in Section  3.3. Negligible differences were obtained when considering the normal capacity 

distributions. Fragility values for each control section, limit state and KL combination were 

obtained by standard demand-capacity convolution. With respect to the demand-capacity 

dependence, assumptions similar to those referred in Section  3.4 were considered for the 

probabilistic analysis. Hence, demand and capacity are assumed to be independent and 

results are not expected to be significantly affected by such considerations (Mpampatsikos 

et al, 2008a). It is noted that parameter pl  entering the shear force capacity is considered 
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with the same value obtained for the deterministic assessment based on nonlinear dynamic 

analysis using the artificial accelerograms.  

For conciseness sake, Figs. 3.22 and 3.23 only present a sample of the results that 

were considered for comparison. Figure 3.22 shows the comparison between fragility 

values and deterministic D C  ratios for the DL chord rotation and the NC shear force 

limit states of frame TF1, considering the three KLs and the artificial accelerograms. On 

the other hand, Fig. 3.23 shows the comparison between fragility values and deterministic 

D C  ratios for the SD and NC chord rotation limit states of frame TF2, considering the 

three KLs and the artificial accelerograms. For an easier comparison, values of the D C  

ratios above 1.0 were set to 1.0 in both figures. The examination of the results obtained 

shows that similar D C  ratios may lead to different fragility values. This variability of the 

fragility values was found to depend on the limit state and on the type of demand (chord 

rotation or shear force). Nonetheless, the overall results allowed for the definition of 

estimated average ranges for the expected fragility values, given a set of ranges of the D C  

ratios. These expected fragility ranges are presented in Table 3.3. Observation of these 

ranges shows that upper bounds of the fragility values can be defined for D C  ratios lower 

than 1.0. Nonetheless, for a given D C  range, there is the possibility of obtaining a 

fragility value much lower than its corresponding upper bound given the referred variability 

of the fragility values for similar D C  ratios. Hence, these ranges also indicate that, as the 

D C  ratio increases, there is also an increase in the expected variability of the fragility 

values. Moreover, it is noted that the referred upper bounds were seen to be approximately 

constant across the different limit states. This observation is consistent with the possible 

underlying assumption that, conditional to a certain earthquake intensity, the seismic safety 

assessment according to the EC8-3 procedure should lead to a limit state exceedance 

probability that is similar for all limit states.  
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Figure 3.22. Fragility values vs deterministic D C  ratios for frame TF1 considering the three KLs, artificial 
accelerograms, the DL chord rotation limit state (a) and the NC shear force limit state (b). 
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Figure 3.23. Fragility values vs deterministic D C  ratios for frame TF2 considering the three KLs, artificial 
accelerograms, the SD chord rotation limit state (a) and the NC chord rotation limit state (b). 

Table 3.3. Fragility estimated ranges based on deterministic D C  ranges. 

D C  range Fragility f range 

D C  < 0.2 f ≈ 0 

0.2 < D C  < 0.4 f  < 5% 

0.4 < D C  < 0.6 f  < 15% 

0.6 < D C  < 0.8 f  < 30% 

0.8 < D C  < 1.0 f  < 50% 

D C  larger than 1.0 f  > 50% 

 

Finally, it is emphasized that further application examples should be carried out in 

order to validate the presented probabilistic results, namely the expected fragility ranges of 

Table 3.3. Furthermore, a comprehensive discussion about the implications of such results 

will then be required to determine the potential implications in future revisions of the code 

procedures. As an example of matters to be examined, attention is brought to the upper 

bound of the fragility value corresponding to the D C  ratio of 1.0 which, for a certain 

limit state, indicates there is still a 50% safety margin against failure. The adequacy of this 

value should be examined within the scope of the general safety format of the EC8-3 

procedure, namely in terms of its implications on the system-level safety.  

 

 

3.6 Conclusions and final observations  

An application of the EC8-3 seismic safety assessment procedure was presented and 

complemented by a probabilistic approach. The proposed application addressed the safety 

assessment of two RC one-bay-four-storeys planar frame structures of similar geometry. 

The seismic safety of the structures was assessed for both deformation and strength based 

limit states. For each limit state, the three EC8-3 KL conditions were also considered. The 

application of the EC8-3 procedures for each limit state and KL combination was 

performed using linear and nonlinear methods of analysis. In the latter case, both pushover 

a) b)
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and dynamic analysis (using artificial and real records) were used, while in the former only 

the lateral force analysis was considered. 

In terms of the admissibility of linear analysis, results of the selected structures 

showed that, for all the limit states, they failed to meet the max min   criterion. Therefore, 

linear analysis was not able to be considered for safety assessment of these structures. 

Similar difficulties were also referred by Pinto and Franchin (2008). The results of this 

analysis also indicated that, for structures where seismic design measures were not 

considered, the applicability of linear analysis might be restricted to the limit state of DL 

only. Nonetheless, by analysing the process that verifies if linear analysis is admissible, and 

accounting for the potential complexity of its application for larger structures, a more 

practical verification methodology was proposed.  

From the results of the deterministic assessment based on nonlinear analyses it was 

possible to conclude that DL seems to be the dominant deformation limit state. A similar 

conclusion was also noted by Mpampatsikos et al. (2008b) which also refer that considering 

the equivalent secant-to-yield stiffness proposed by EC8-3 for the limit state of DL may 

lead to a significant overestimation of the D C  ratios. With respect to the results based on 

nonlinear dynamic analysis, these lead to conclude that the characteristics of the considered 

accelerograms have a considerable influence on the deformation assessment results. Such 

differences are a direct consequence of the differences observed between the response 

spectra of the records and the code spectrum. On the other hand, shear force assessment 

results can be seen to be much less sensitive to the record characteristics. By considering a 

set of real records having an average response spectrum that matches closely the code 

spectrum, the ReLUIS set, a good agreement is found between the mean demand obtained 

by such set and that obtained by using artificial accelerograms. To simulate a situation 

where a set of such real records is not available, different scaling procedures were tested for 

a set of real records chosen based on magnitude and distance criteria. Results indicated that 

demand obtained from PGA scaled records is, in general, the one with less agreement with 

that obtained by using artificial accelerograms, while demand obtained from Sa scaled 

records exhibits a better agreement with the reference demand for the lower intensity limit 

states. To improve the results for the SD and NC deformation limit states, an alternative 

scaling procedure based on a representative inelastic period was defined. This approach 

provided a better agreement with the results obtained when using the artificial and the 

ReLUIS accelerograms.  

Demand variability and its importance on the estimation of the average demand were 

also addressed. It was observed that when using seven earthquake records as allowed by 

EC8-1, some care is required since the demand variability might lead to an underestimation 

(as well as to an overestimation) of the true average demand. Hence, the consideration of 

the mean value of the response in such cases may lead to unsafe demand estimations since 

the mean is a poor estimator of the central tendency of the data. 
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The comparative assessment between pushover and nonlinear dynamic analysis 

safety assessment results for the structures analysed leads to conclude that, with the 

exception of some control sections, pushover results can generally be seen to be on the 

safe side, when compared to the results of nonlinear dynamic analysis. 

With respect to the influence of the KL in the assessment results, it was found that, 

from a practical point of view, going from KL1 to KL2 or from KL2 to KL3 produces 

changes that vary according to the considered limit state. While for the case of the 

deformation-based SD and NC capacity values these changes are small, for the case of the 

DL and the shear force capacities the variations can be significant in some situations. 

Hence, it can be inferred that, depending on the selected limit state and from the material 

characterization point of view, the need for an increase in knowledge about their properties 

must be carefully thought out due to the increase in work, costs and on-site difficulties that 

may be implied.  

In terms of the probabilistic approach, the observation of the obtained fragility 

values for the several limit states and KLs leads to conclude that there is a considerable 

variability of the fragility values for similar deterministic D C  ratios. This variability was 

found to be dependent on the limit state and on the type of demand (chord rotation or 

shear force). Nonetheless, the overall results allowed for the definition of estimated ranges 

for the expected fragility values, given a set of ranges of the deterministic D C  ratios. The 

upper bounds of the fragility ranges were seen to be approximately constant across the 

several limit states. This observation is consistent with the possible underlying assumption 

that, conditional to a certain earthquake intensity, the seismic safety assessment according 

to the EC8-3 procedure should lead to a limit state exceedance probability that is similar 

for all limit states. Nonetheless, the adequacy of these values should be examined within 

the scope of the general safety format of the EC8-3 procedure, namely in terms of their 

implications on the system-level safety.  

Although the results and conclusions presented herein are only based on the analysis 

of the selected structures, some aspects associated to the applicability of the EC8-3 

procedures should be emphasized. For example, the application of linear analysis is 

expected to be difficult in many situations due to the EC8-3 severe conditions. With 

respect to the use of pushover analysis, results were seen to be generally on the safe side 

with respect to those of nonlinear dynamic analysis. Still, more applications should be 

carried out to determine if this conclusion can be extended to other structures. 

Furthermore, some aspects related to the limit state of DL should be the focus of 

additional research, namely aspects related to the influence of the modelling assumptions 

regarding the EC8-3 member stiffness and their implications on the safety of the members. 

Finally, although the importance of the material characterization in the seismic safety 

assessment context is clear, the adoption of higher KLs must be carefully thought out 

since, depending on the selected limit state, the practical consequences are limited. 
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Chapter 4 
A probabilistic interpretation of  the EC8-3 

Confidence Factors for the characterization 
of  material strength  

 

 

4.1 Introduction 

There are numerous differences between the design of a new structure according to 

structural design codes and the assessment of the same structure after many years in service 

(Melchers, 2001). Although the properties of an existing structure can be known to a 

certain extent, it should be noted that a number of uncertainties may arise from on-site 

inspection/testing and other procedures carried out to check the actual condition of the 

structure. For example, techniques for in-situ testing may be considered to be reasonably 

well developed but they involve measurement errors and the interpretation of the results 

may imply a considerable degree of uncertainty (Dimitri and Stewart, 2002). The 

consideration of several expert opinions on a specific matter is another possible source of 

uncertainty since opinions can vary considerably depending on the complexity of the 

problem at hand (Krinitzsky, 1993). In cases where important data have been lost, the need 

to estimate data values based on past experience or on the existence of similar structures 

also increases the uncertainty about the knowledge of the existing construction.  

Whit respect to the assessment of the material properties of existing structures, these 

can be obtained with varying degrees of accuracy based on in-situ measurements. In order 

to deal with the uncertainty of those measurements, different degrees of knowledge are 

established by the codes, which reflect the type and quality of the gathered data, (EC8-3, 

2005; OPCM 3431, 2005; ASCE, 2007; NTC, 2008). To reflect the referred levels of 

knowledge in a quantitative manner and to account for them in the assessment, penalty 

factors can be associated to those levels that will either reduce the “capacity” or increase 

the “demand”. In this context, the present chapter addresses the evaluation of the referred 

penalty factors, which are termed Confidence Factors (CF), following the definition 
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proposed in EC8-3 (EC8-3, 2005). Although the values of the CFs to be used in a given 

country can be found in its National Annex, recommended values of the CFs are also 

proposed within the EC8-3 main document. Therefore, the present study assesses the 

reliability of those recommended values by establishing a probabilistic framework for their 

evaluation. Even though the general concept behind the consideration of CFs is 

independent of the type of structural material, their evaluation is presented herein for the 

case of reinforced concrete (RC) structures. Nonetheless, given the format of the proposed 

probabilistic approach, the validity of the CFs for other materials is also discussed based on 

the results obtained. 

The proposed study contains two parts. The first one, presented in Section 4.3, 

addresses the major part of the probabilistic framework that is developed to analyse the 

reliability of the CFs proposed by EC8-3. This first part is developed in light of several 

conditions established in Section 4.2 that are based on the interpretation of the EC8-3 

procedures for seismic safety assessment and on existing research on this topic. The second 

part of the study, which is presented in Section 4.4, addresses the situation of combining 

different sources of information for the purpose of assessing the material properties. The 

general outline of the necessary Bayesian framework is analysed and the combination of 

different sources of information are addressed within the scope of the EC8-3 procedures. 

 

 

4.2 General framework for the definition of the CF 

4.2.1 The CF in the EC8-3 procedures for seismic safety assessment 

In EC8-3, the previously referred Knowledge Level (KL) is defined by combining 

the knowledge available in the following items: geometry, details and materials. In the 

context of RC structures, geometry refers to the geometrical identification of the structural 

elements, details refers to the amount and detailing of the reinforcement, and materials 

refers to the mechanical properties of the steel and concrete. Knowledge on the geometry 

is provided either by the original construction drawings or by survey. Details and materials 

are obtained through inspection and testing, respectively. As referred in Chapter 2, EC8-3 

defines three levels of knowledge, denoted by KL1, KL2 and KL3 in increasing order of 

comprehensiveness, and also defines a CF associated with each level. The recommended 

values of these factors are 1.35, 1.2 and 1.0, for KL1, KL2 and KL3, respectively, and 

Table 4.1 summarises the combinations of information defining the KLs. The terms visual, 

full, limited, extended and comprehensive are defined in the code together with the 

recommended minimum amount of operations related to survey, inspection and testing. 

For the case of assessing material strengths, which is the context of the present study, the 

terms limited, extended and comprehensive are quantified in Table 4.2 and correspond to 
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the minimum number of material samples per floor and type of primary element (beam, 

column or wall) that are needed to assess the material strength according to a chosen KL.  

Table 4.1. Knowledge levels and corresponding methods of analysis (LF: Lateral Force procedure; MRS: 
Modal Response Spectrum analysis) 

Knowledge 
Level 

Geometry Details Materials Analysis CF 

KL1 

From original 
architectural 

drawings with 
sample visual 

survey or from 
full survey 

Simulated design in 
accordance with relevant 
practice and from limited 

in-situ inspection 

Default values 
according to 

standards of the 
time of construction 

and from limited 
in-situ testing 

LS-
MRS 1.35 

KL2 

From incomplete original 
detailed construction 

drawings with limited in-
situ inspection or from 

extended in-situ inspection 

From original design 
specifications with 

limited in-situ 
testing or from 
extended in-situ 

testing 

All 1.20 

KL3 

From original detailed 
construction drawings with 
limited in-situ inspection or 
from comprehensive in-situ 

inspection 

From original test 
reports with limited 

in-situ testing or 
from comprehensive 

in-situ testing 

All 1.00 

 

Table 4.2. Recommended minimum percentage of elements to check for details and minimum number of 
tests of material samples, per floor and type of primary element for different KLs. 

Knowledge Level Level of testing Percentage of elements 
to check for details 

Number of material 
samples 

KL1 Limited 20 1 

KL2 Extended 50 2 

KL3 Comprehensive 80 3 

 

From the safety assessment stage point of view, depending on the type of analysis 

method that is selected (linear or nonlinear) and on the type of mechanism to be checked 

(ductile or brittle), the capacity is usually reduced by the CF. On the other hand, situations 

will occur where the demand needs to be increased by the CF, namely if certain conditions 

are met when examining brittle mechanisms based on linear analysis (EC8-3, 2005). The 

capacity reduction case is the focus of the present study for which two different situations 

are defined in EC8-3. With respect to the safety assessment of a certain ductile mechanism, 

its capacity is obtained from a given expression (e.g. see the previous chapters) where the 

material strength values are considered with mean values divided by the CF. In the case of 

a brittle mechanism of a primary element, EC8-3 sets a larger safety margin as the capacity 

is obtained from a given expression (e.g. see the previous chapters) where the material 
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strength values are considered with mean values divided by the CF and by the partial safety 

factor of the corresponding material. Of the two situations, the former is considered to be 

more critical.  

Although the EC8-3 procedures acknowledge the importance of the existing KL 

about the geometry, the details and the materials, their interpretation leads to conclude that 

the definition of the CFs does not depend on all of these items. Namely, it can be seen, by 

analysing Table 4.1, that knowledge requirements related to the geometry are the same for 

all KLs. This implies that the existing information about the geometry is expected to be 

reliable enough to allow the definition of an adequate numerical model of the structure, 

irrespective of the selected KL. Therefore, it is concluded that, according to the EC8-3 

procedures, the CF values do not depend on the uncertainty that may exist about the 

geometry. With respect to the details, Tables 4.1 and 4.2 indicate that selecting a KL 

requires that a certain amount of knowledge must be obtained about parameters such as 

longitudinal and transversal reinforcement ratios, and stirrup spacing (for the particular 

case of reinforced concrete structures). Bearing in mind that, in many cases, an adequate 

knowledge is only obtained if extensive and intrusive methods are considered, the use of 

such methods must be weighted against the implications on the continuous use of the 

building during these surveys. Considering that situations for which knowledge about the 

details of certain members is not available will occur, the analyst will have to decide 

whether to characterize them by using information on similar members or by using 

conservative estimates. In any case, the EC8-3 procedures are unclear regarding the 

practical effects of the existing uncertainty about the details since the CF only affects the 

material properties. To illustrate this situation, Eq. (4.1) presents the EC8-3 proposed 

expression for the Near Collapse chord rotation capacity NC , where el is 1.5 for primary 

members and 1.0 for secondary ones,   is the normalized axial force, ω and ω′ are the 

mechanical reinforcement ratios of the tension and compression, respectively, longitudinal 

reinforcement, fyw is the stirrup yield strength, sx is the ratio of transverse steel area Asx 

parallel to the direction of loading, d is the steel ratio of diagonal reinforcement (if any) in 

each diagonal direction and  is the confinement effectiveness factor (EC8-3, 2005): 
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 (4.1) 

As can be seen, only the terms fyw and fc are divided by the CF while the terms ω, ω′, sx and 

d related to the details remain unaffected, meaning that uncertainty is only explicitly 

reflected on the values of the material properties. Since knowledge about the details does 

not imply an increase of the knowledge about the material properties (and vice-versa), the 

two aspects are seen to be independent and it can be argued that the format of Eq. (4.1) 

reflects an indirect influence of the uncertainty related to the details that is inadequate in 



4.5 

some cases. For example, in a situation where the knowledge about the material properties 

is obtained according to KL3 but the knowledge about the details can only be obtained 

according to KL1, the considered CF should be that of KL1. Since this CF value is 

over-conservative for the material properties, as demonstrated in the following sections, 

and since, as stated before, it does not affect the detail-related properties, its consideration 

in the present EC8-3 format does not reflect adequately the true uncertainty.  

Given the previous interpretation of the EC8-3 procedures, as well as arguments 

resulting from previous research addressing the adequacy of the CF concept to account for 

several types of uncertainties entering the seismic safety assessment process (Franchin et al., 

2008; Elefante, 2009; Franchin et al., 2009; Monti and Alessandri, 2009; Franchin et al., 

2010; Jalayer et al., 2011), the proposed study only focuses the evaluation of the CF values 

in the context of the characterization of the material properties. This is equivalent to say 

that CF values are evaluated assuming that KL3 conditions are available for the 

characterization of the details. In the opinion of the author, the adequate consideration of 

the uncertainty about the details requires a modification of the current EC8-3 format for 

the capacity expressions by introducing, for example, corrective factors affecting the 

detail-related parameters. Furthermore, as noted by Franchin et al. (2010), the influence of 

the detail-related uncertainty should also be reflected on the demand side of the assessment 

due to its potential influence on the global behaviour of the structure. However, such 

in-depth assessment of these aspects falls outside the scope of the present study. 

Finally, it should be emphasized that the degree of impact of the EC8-3 proposed CF 

values on the member capacity properties clearly depends on the sensitivity of the type of 

property under consideration, i.e. deformation- or strength-based. For example, the study 

by Chrysostomou (2005) and the results presented in the previous chapter indicate that, 

from a practical point of view, going from KL1 to KL2 or from KL2 to KL3 produces 

changes in the capacity values of RC members that vary according to the considered limit 

state (between 8% to 14% for Damage Limitation rotational capacities, up to 5% for 

Significant Damage and Near Collapse rotational capacities and between 10% to 17% for 

Near Collapse shear force capacities). Based on these results, the degree of influence of the 

CF value can be seen to be relevant in some cases. 

 

 

4.2.2 Quantification of the CFs 

According to EC8-3, when there is no prior knowledge about the materials under 

assessment, the CF values depend mainly on the number of tests that are performed to 

assess the material properties of interest, hereafter simply referred as strength values. When 

there is prior knowledge (e.g. based on available design data or previous testing data), 

EC8-3 reflects the consideration of this information by reducing the required number of 

tests of a given KL. For the purpose of the following analysis regarding the minimum 
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number of required material tests and of the subsequent probabilistic quantification of the 

CFs presented in Section 4.3, it is assumed there is no prior knowledge about the materials 

under assessment. The situation of existing prior knowledge is addressed in Section 4.4.  

Considering the situation with no prior knowledge, the following two scenarios are 

analysed to establish the worst case scenario, i.e. that corresponding to larger uncertainty, 

which will serve as the basis of the probabilistic framework:  

 Scenario 1 – Only destructive tests are used to characterize the material properties; 

 Scenario 2 – Different types of tests are combined to characterize the material 

properties, i.e. destructive tests and non-destructive tests (NDTs) (Neville, 1996; 

Bungey and Millard, 1996; Bartlett and MacGregor, 1994). 

Scenario 2 is more likely to occur in real situations since the cost of NDTs is usually much 

lower than that of destructive tests. Nonetheless, NDTs have several disadvantages. For 

example, a reliable functional relation must be established between the property measured 

by the NDT and the material characteristic under assessment in order to be able to rely on 

their results. Such relation is usually obtained by performing a regression analysis using 

NDT results and results of destructive tests from the structure under assessment, e.g. see 

ACI 228.1R-03 (2003). Hence, NDTs must always be associated to more reliable 

destructive tests – a fact also acknowledged by EC8-3. Moreover, results obtained from 

NDTs have a larger variability than results of destructive tests. Besides the inherent 

variability of the material property under assessment, additional sources of variability, such 

as that resulting from the repeatability error associated to a certain NDT and that coming 

from the error associated to the regression relation, must be considered also, e.g. see Monti 

and Alessandri (2009), ACI 228.1R-03 (2003). Nonetheless, the negative effect of this 

larger variability can be overcome since a larger number of tests can be performed, a fact 

which can increase considerably the confidence in the results. Therefore, it is concluded 

that Scenario 2 leads to a characterization of the material properties with less uncertainty. 

Furthermore, since destructive tests must be carried out in both scenarios, Scenario 2 is 

seen as an extension of Scenario 1. Therefore, from the point of view of the uncertainty of 

the results, though using a testing procedure generally agreed to be more reliable, e.g. see 

EN 13791 (2007), Scenario 1 is considered to be more critical, since it will usually involve a 

lower number of tests. Hence, Scenario 1 will be considered as the basis of the 

development of the probabilistic framework presented in Section 4.3. Still, the combination 

of results coming from different types of tests (Scenario 2) will be addressed in Section 4.4 

since it can be considered as a particular case of the situation where prior knowledge exists.  

In the absence of prior knowledge and after selecting a given KL, the EC8-3 defines 

the minimum number of tests by multiplying the constants given in Table 4.2 by the 

number of storeys and by the number of primary element types. For example, considering 

the simple case of assessing the concrete compressive strength of a one-storey RC frame 
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structure with only beams and columns as primary elements and considering that KL1 is 

the selected KL, the minimum number of tests is two (one in a beam and one in a column). 

Although not clearly stated in EC8-3, if two different concrete grades are used in this 

structure, for example one for beams and one for columns, the minimum number of tests 

can be interpreted as being one for each concrete grade. Following the same reasoning, if 

the selected KL is KL3, the previously obtained minimum number of tests is now six, for 

the case of one concrete grade, and three for each concrete grade, for the case of two 

concrete grades. Although for taller structures the minimum number of tests will be 

proportionally larger, the fact remains that for shorter structures EC8-3 allows the 

determination of mean strength estimates based on a single test result, irrespective of the 

type of material. 

For comparison purposes it is referred that, similar to the EC8-3, the Italian code 

(NTC, 2008) sets equivalent restrictions to define the CFs and recommends the same 

minimum number of tests. However, NTC (2008) sets an additional restriction related to 

the storey area. If this area exceeds 300 m2, the minimum number of tests must be 

increased. In the context of assessing characteristic values of concrete compressive 

strength, it is further noted that EN 13791 (2007) refers that a minimum number of three 

core tests must be considered for the assessment of a certain concrete class, irrespective of 

the size of the structure. As another example, for existing steel structures, Kuhn et al. 

(2008) establishes values for the minimum number of tests to assess the steel yield strength 

that are dependent on the existence of prior knowledge. For the case where prior 

knowledge does not exist, at least three samples of each type of member must be obtained 

and at least two tests must be carried out to assess the steel yield strength. Furthermore, 

even though only two KLs are defined in ASCE (2007), the procedures proposed to obtain 

mean strength values are set depending on the material type and on various constraints 

established for the definition of the minimum number of material tests. The procedure 

defined in ASCE (2007) allows the consideration of existing prior knowledge about the 

material strength under assessment and of the variability of the test results as factors that 

will influence both the definition of the CF and of the required number of tests. For the 

case of concrete compressive strength, when neglecting other constraints based on the 

number of floors and on the number of element types, and assuming the existence of only 

one concrete grade for which there is no prior knowledge, the minimum number of tests 

set by ASCE (2007) for both KLs is six. Similar to NTC (2008), ASCE (2007) also sets a 

restriction related to the maximum storey area. If this area exceeds 930 m2, the minimum 

number of tests must be increased. On the other hand, to assess the steel yield strength of 

existing mild steel structures, one test for each component type is required for the lower 

KL, while for the higher KL three tests for each component type are required (ASCE, 

2007).  
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4.3 Probabilistic definition of the CFs 

4.3.1 Basic hypotheses and definitions of the probabilistic analysis 

In the context of EC8-3, an estimate X  of the mean value  of a given material 

property must be divided by a CF in order to provide a value of the property with an 

adequate safety level. Moreover, the CF value is seen to be larger if there is less knowledge 

about the material. From a safety perspective, the need for the CF reflects the underlying 

critical situation in terms of safety that occurs when X  overestimates . Hence, the 

present study addresses the probabilistic quantification of the CFs that adjust the mean 

estimate of a material strength in order to provide a reliable value reflecting the KL that is 

attained in the assessment. 

The number of material tests and the existence of prior knowledge about the 

strength under assessment are seen to be essential aspects for the quantification of the CFs. 

The number of material tests is the key factor used to set the probabilistic framework of 

the present Section, while the influence of the existence of prior knowledge is addressed in 

Section 4.4. Within the scope of the study, it is also assumed that the CFs proposed by 

EC8-3 guarantee a certain level of reliability of the material strength value (after its 

adjustment by the CF) that is associated to the minimum number of tests. Although the 

referred level of reliability is not easy to quantify, it is also addressed by the study by 

associating certain confidence levels to the quantification of the CFs. Furthermore, since 

the framework for the CF definition proposed by EC8-3 is material independent, the 

evaluation of the EC8-3 proposed CF values is illustrated herein for the case of RC 

structures. Nonetheless, part of the study is presented in a form independent of the 

material. Hence, it can be readily applied to any material and property.  

For the safety assessment of RC structures, both the steel yield strength and the 

concrete compressive strength values are of interest. According to the probabilistic 

framework presented here for the CF definition, it is considered that performing the study 

for the material strength that exhibits larger variability represents the critical situation. Since 

it is generally accepted that the inherent variability of the steel yield strength is lower than 

that of the concrete compressive strength (e.g. see Kappos et al., 1999; JCSS, 2001a), some 

of the basic hypotheses of the study are set for this material property. As stated in the 

previous Section, when concrete compressive strength test results are referred hereon, they 

are assumed to be obtained from destructive tests (i.e. core compression tests). It is also 

assumed that such test results have been converted to the corresponding in-place concrete 

strength. As an extensive discussion on such procedures is beyond the scope of this work, 

the reader is referred, for example, to Bartlett and MacGregor (1994), Bartlett and 

MacGregor (1995), Bartlett (1997), Kappos et al. (1999), JCSS (2001a), ACI 228.1R-03 

(2003), Kuhn et al. (2008) for further details. In terms of the number of tests, and based on 

Section 4.2.2, the critical situation occurs for a one-storey structure with beams and 
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columns of different concrete grades as primary elements. To assess the strength of each 

concrete grade, the minimum number of tests can be interpreted as being one, two and 

three for each concrete grade for levels KL1, KL2 and KL3, respectively. 

Two important assumptions are additionally considered for the case of concrete 

compressive strength. The statistical distribution of this material property is assumed to 

follow either a normal, lognormal or Weibull distribution (Stewart, 1995; Neville, 1996; 

Day, 1999; Tumidajski et al., 2006). Secondly, it is also assumed that strength variability, 

characterized herein by its coefficient of variation (CoV), is within the range of 6% to 20% 

(Drysdale, 1973; Stewart, 1995; Bartlett, 1997; Bartlett and MacGregor, 1999; Tumidajski et 

al., 2006; Wísniewski, 2007). Although larger CoV values can be found in the literature 

(Drysdale, 1973; Stewart, 1995; Aguiar et al., 2003), a maximum of 20% is already 

considered to be very high for normal strength concrete, either site-mixed or ready-mixed. 

Further discussion on this topic can be found elsewhere (Bungey and Millard, 1996; 

Bartlett and MacGregor, 1999). 

The proposed framework for the probabilistic definition of the CFs is based on the 

concept of confidence interval (an interval of real numbers expected to contain the true 

value of a population parameter, with a specified confidence). Considering that   is a 

population parameter to be estimated, T as the statistic used as a point estimate for   and 

denoting ̂  as the observed value of the statistic, an interval estimate for   has the form 

 ˆ ˆ
L U     (4.2) 

where ˆ
L  and ˆ

U  are lower and upper bounds, respectively, of the confidence interval, 

computed from the sample data. Since different samples will produce different values of 

ˆ
L  and ˆ

U , these end-points are values of the random variables L  and U , respectively. 

By knowing the sampling distribution of T, it is possible to determine values of L  and 

U , ˆ
L  and ˆ

U  respectively, such that 

  ˆ ˆ 1L UP         (4.3) 

where 0 1  . This expression indicates there is a  1   probability of selecting a 

random sample producing an interval that contains   and provides both lower and upper 

confidence bounds for  . One-sided confidence bounds are obtained by setting either 

ˆ
L    or ˆ

U   . 

 
 

4.3.2 Definition of the CFs for the case of a normal distributed strength 

The proposed approach defines the CFs based on the confidence interval for the 

mean of the normal distribution with known variance (Montgomery and Runger, 2003). As 
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the present study focuses on assessing the adequacy of the EC8-3 proposed CF values, it is 

assumed that such values only account for the uncertainty in the estimation of the mean 

value and not for that of the variance. Hence the known variance hypothesis is favoured 

instead of the unknown variance one. Still, as shown in the following, the proposed 

approach does not require knowledge about the specific value of the variance, but instead 

demands for a measure of the relative variability which is defined by the CoV. As stated in 

the previous Section, the characterization of the variability of the material property in terms 

of the CoV is defined using a range of realistic values given in the literature.  

The consideration of the unknown variance hypothesis presents some difficulties for 

the present study. For example, it does not allow the definition of the CF value for samples 

of size equal to one. Additionally, for samples of smaller size, the sample variance (or 

sample CoV) is known to be a poor estimator of the true variance and has a high sensitivity 

to potentially anomalous observations (Maronna et al., 2006). Therefore, the definition of 

an adequate range for the expected values of the sample CoV is not as straightforward as 

for the known variance case. To clarify these issues and to observe the practical 

implications of considering this hypothesis in the context of the definition of CF values, 

the unknown variance case is also addressed herein. 

 

 

4.3.2.1 The case of a normal distributed strength with known variance 

Considering that 1 2, , ... nX X X  is a random sample drawn from a normal distribution 

with unknown mean  and known standard deviation  , the sample mean X  is known to 

be normally distributed with mean   and standard deviation n  (Montgomery and 

Runger, 2003). By standardizing X  one obtains variable Z: 
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  (4.4) 

which follows a standard normal distribution (Montgomery and Runger, 2003) and leads 

to: 

 1 2 1 2 1
X

P z z
n

 
 

 

 
     
 

 (4.5) 

where 1 2z   is the  1 2  percentage point of the standard normal distribution. The 

one-sided lower bound expression equivalent to Eq. (4.5) is given by 

 1 1
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P z
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where 1z   is the  1   percentage point of the standard normal distribution. 

Based on the previously established critical safety situation, the definition of an 

adequate CF value must verify the following condition: 

 CF
CF

X X


    (4.7) 

The minimum CF value that verifies Eq. (4.7) is:  

 CF
X


  (4.8) 

Combining Eq. (4.6) with Eq. (4.8) yields 

  1CF 1 1P z CoV n       (4.9) 

where the CoV is    and states that, for a known (expected) value of the CoV, there is a 

 1   probability that 1CF 1 z CoV n    if CFX  . Therefore, the 

 1 100%   upper confidence bound on the value of CF is: 

 1CF 1 z CoV n    (4.10) 

In order to set the CF values, one is interested in the limiting values given by 

Eq. (4.10), hereafter termed CFLIM, for increasing values of the number of tests n, for a 

prescribed  1   confidence level and a given CoV. In the situation of assessing the 

adequacy of the CFs recommended by EC8-3, the definition of a single CF value for each 

KL must account for the most unfavourable conditions, namely in terms of number of 

tests and CoV. Although critical situations can be identified for these two parameters based 

on the previously exposed arguments, there is little guidance for which  1   confidence 

level should be chosen. Even though there is no apparent justification, a minimum 

confidence level of 75% is commonly considered in the assessment of existing structures 

context, e.g. ISO 12491 (1997), ACI 228.1R-03 (2003), H2 (2005). Other authors propose 

to select the confidence level according to the importance of the structure defining levels 

of 75%, 85%-90% and 95% for ordinary, important and very important structures, 

respectively, (Hindo and Bergstrom, 1985; Wong et al., 1993). For the study presented 

herein, the confidence levels must be defined as a function of the KLs set by EC8-3, thus 

reflecting the minimum number of material tests required. Assuming a minimum 

confidence level of 75% and considering that a confidence level of 95% is sufficiently large 

for practical purposes, confidence levels of 95%, 85% and 75% are proposed for KL1, 

KL2 and KL3, respectively. These values are set considering that when KL increases, the 

uncertainty about the materials decreases, thus the amplitude of the confidence interval, 

which is defined by the confidence level and reflects the uncertainty, can be smaller. 
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In order to observe the evolution of the CFLIM values for levels KL1, KL2 and KL3, 

Figs. 4.1a), b) and c) present the upper limits of the confidence interval of the CF defined 

by Eq. (4.10), given the condition CFX  . These are defined for increasing values of n 

(from 1 to 30), for the previously defined range of the CoV (6% to 20% in 2% steps) and 

for the corresponding confidence levels (75%, 85% and 95%). Each graph presents also 

the computed CFLIM corresponding to the larger CoV and to the minimum number of tests 

of the corresponding KL (underlined value). As expected, the analysis of the computed 

CFs indicates that, irrespective of the selected confidence level, CFLIM tends asymptotically 

to 1.0 as n tends to infinity. Moreover, the analysis of the underlined values shows that, for 

the previously set of hypotheses, the CF values proposed by EC8-3 for KL1 and KL2 seem 

adequate, while for KL3 there is a significant difference between the proposed value and 

CFLIM. Although approaching 1.0 for a very large n, such value of CFLIM can only be 

attained for all values of n by setting the confidence level to 50%, for which the term 1z   

of Eq. (4.10) is zero. With respect to KL2, given the difference between CFLIM (i.e. 1.15) 

and the EC8-3 proposed value (i.e. 1.2), CFLIM value was also computed for a confidence 

level of 90%. Figure 4.1d) shows that, for the aforementioned conditions and for a 

confidence level of 90%, the CFLIM value obtained is closer to the EC8-3 proposal. On the 

basis of this result, subsequent analyses will consider a confidence level of 90% for KL2.  
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Figure 4.1. Values of CFLIM considering a normal distributed strength, for increasing values of n, for the 
selected range of CoVs and for (1-) confidence levels of 95% (a), 85% (b), 75% (c) and 90% (d). 
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4.3.2.2 The case of a normal distributed strength with unknown variance 

For comparison purposes, the case of the normal distributed strength with unknown 

variance is considered herein and the corresponding expression for the upper confidence 

bound on the value of CF is also established. For a normal distribution with unknown 

mean and unknown standard deviation, the random variable T defined by 

 
X

T
s n


  (4.11) 

where s is the sample standard deviation, is known to follow a t distribution with 1n   

degrees of freedom, (Montgomery and Runger, 2003). The one-sided lower bound 

expression equivalent to Eq. (4.5) is now given by 

 1 , 1 1n

X
P t

s n
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where 1 , 1nt    is the  1   percentage point of the t distribution with 1n   degrees of 

freedom. Following the same reasoning as for the previous case and considering that CoV  

is the sample CoV defined by s X , the  1 100%   upper confidence bound for the 

value of CF is now obtained by: 

   1

1 , 11 nCF t CoV n



     (4.13) 

In order to observe the evolution of the CFLIM values using Eq. (4.13), adequate 

values of the CoV  must first be defined. Since for samples of small size, as those 

considered herein, the values of the CoV and of the CoV  can be significantly different, the 

range of the CoV  is considered to be wider than that of the CoV. To determine a possible 

upper limit for the referred CoV  range, a simulation study was performed. The simulation 

started with the selection of a concrete class characterized by having a compressive 

strength following a normal distribution with a CoV of 20% and a   selected from the 

range of 12 MPa to 50 MPa, in 1 MPa steps. Afterwards, 50000 samples of size two were 

randomly drawn from the normal distribution and the CoV  was determined for each one. 

After computing the CoV  for all samples, considering all possible values of   from the 

previously set range, the 95th quantile of the corresponding empirical cumulative 

distribution function (CDF), which is around 40%, was selected as the upper limit for the 

CoV . Therefore, the selected range of the CoV  was 6% to 40%, in 2% steps. Considering 

this range, Figs. 4.2a), b) and c) present the CFLIM values obtained from Eq. (4.13), given 

the condition X CF   and for levels KL1, KL2 and KL3. As previously referred, 

results for 1n   are not available and, for the case of KL1, Fig. 4.2a), results for 2n   are 
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also not presented because the term 1 , 1nt CoV n    is larger than 1.0 for CoV  values 

above 22%. This situation reflects the possibility of a negative value of  , which is not 

admissible. Observation of Fig. 4.2 confirms the expected increase of the CFLIM values for 

small values of n. According to Figs. 4.2a) and b), for KL1 and KL2, and for the upper 

value of the CoV  range, the minimum number of tests that validate the CF values 

proposed by EC8-3 now need to be nine and eleven, respectively. For KL3, Fig. 4.2c), it 

can be seen that the CFLIM corresponding to the larger CoV and to the minimum number 

of tests ( 3n  ) is now 1.23, when for the known variance case such value is 1.08. As can 

be seen from the results, the unknown variance case does not lead to values of the 

minimum number of tests (or of the CFs) that are in agreement with the EC8-3 proposals. 

Hence, it is believed that the known variance hypothesis may be underlining the CF 

definition in the context of the EC8-3 safety assessment procedures. 
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Figure 4.2. Values of CFLIM considering a normal distributed strength with unknown variance, for increasing 

values of n, for the selected range of CoVs  and for (1-) confidence levels of 95% (a), 90% (b) and 75% (c). 
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4.3.3 Definition of the CFs for the case of a log normal distributed 

strength 

As for the normal distribution case, the definition of the CFs is performed for the 

known and the unknown variance assumptions. Although the former hypothesis is 

considered to be more relevant for the EC8-3 context, the latter is considered for 

comparison purposes, in order to observe the variation of the CF values due to the 

uncertainty of the variance. 

 

 

4.3.3.1 The case of a lognormal distributed strength with known variance 

For this case, the CFs can be characterized following the approach of the normal 

distribution with known variance. Considering that 1 2, , ... nY Y Y  is a random sample from a 

lognormal distribution with unknown mean   and known standard deviation  , the 

variable  lnX Y follows a normal distribution with mean   and standard deviation  . 

As for the case of the normal distribution, the proposed approach does not require 

knowledge about the specific value of  , but instead demands for a measure of the relative 

variability which is defined by the CoV. Upon this, it follows that Eq. (4.6) is applicable 

and can be rearranged to give the  1   probability that 

 1X z
n


     (4.14) 

which, by adding 2 2  on both sides and taking exponentials of both sides, leads to 
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Knowing that   is given by 

 

2

2e
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and considering Y  to be its sample estimate, yields 
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Considering a reasoning similar to that of Eq. (4.7): 

 CF
CF

Y Y
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Similar to Eq. (4.8), the minimum CF value that verifies Eq. (4.18) is:  
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Combining Eq. (4.17) with Eq. (4.19) and rearranging leads to  
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where  2ln 1CoV   is  . As in Eq. (4.10), Eq. (4.20) gives the upper confidence 

bound CFLIM for which there is a  1   probability that 
 2

1

ln 1

CF
CoV

z
ne






  if 

Y CF  . 

As for the case of the normal distribution, evolutions of CFLIM can be obtained 

simulating Eq. (4.20) for increasing values of n, for the previously defined range of the CoV 

and for the confidence levels of each KL. For the sake of brevity, graphical representations 

of the referred evolutions are not presented herein. Nonetheless, it should be noted that 

Eq. (4.20) gives larger CFLIM values than Eq. (4.10). For the larger CoV (20%) and for the 

minimum number of tests of each KL, the CFLIM values are 1.39, 1.20 and 1.08 for KL1, 

KL2 and KL3, respectively. When comparing these results with the CF values proposed by 

EC8-3, it is seen that only the value of KL2 agrees with the EC8-3 proposal. In order for 

the CFLIM of KL1 to meet the EC8-3 proposed value (i.e. 1.35), there is the need to either 

reduce the prescribed confidence level or to reduce the maximum admissible CoV. 

Therefore, one of the following two situations can be observed: 

 When fixing the CoV to 20% and when n is one, the  1   confidence level that 

yields a CFLIM of 1.35 is 93.5%; 

 When fixing the  1   confidence level to 95% and when n is one, the CoV that 

yields a CFLIM of 1.35 is 18.5%. 

Considering that the observed reduction can be seen to be relatively small, one is 

inclined to validate the adequacy of the EC8-3 proposal for KL1. Moreover, considering 

that the number of tests is fixed to one in both cases, a number that will most surely be 

exceeded in real situations, it is worth doing the analysis of the CFLIM value when the 

number of tests is set to two. In this case, the CFLIM value for a CoV of 20% and a 

confidence level of 95% is now 1.26, well below the EC8-3 proposal for this KL. 

 

 

4.3.3.2 The case of a lognormal distributed strength with unknown variance 

Statistical methods for inference involving the lognormal mean, namely addressing 

the estimation of confidence intervals when both mean and variance are unknown, have 
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received widespread attention in the literature over the years. Available methods for the 

development of such confidence intervals range from analytical, or semi-analytical, 

procedures to computationally intensive simulation approaches (Singh et al., 1997; Zhou 

and Gao, 1997; Aoshima and Govindarajulu, 2002; Krishnamoorthy and Mathew, 2003; 

Shen, 2003; El-Shaarawi and Lin, 2007; Zou et al., 2009). From observation of the available 

procedures, their complexity can be seen to be larger than that of the previously presented 

approaches. Although research on this topic appears to be far from over, the analytical 

method proposed by Zou et al. (2009) is seen to yield adequate results for small samples 

and presents a suitable form for the purpose of the present study.  

According to Zou et al. (2009), the one-sided lower bound LB of the  1   

confidence interval for the lognormal mean   is defined by 
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where s2 is the sample variance of the log-transformed data, 2
1 , 1n    is the  1   

percentage point of the 2  distribution with 1n   degrees of freedom and M  is the 

sample mean given by 
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Following the same reasoning as for the previous cases and considering that CoV  is the 

sample CoV now defined by 
2

1se  , the  1 100%   upper confidence bound on the 

value of CF is now obtained by: 
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As for the normal distribution with unknown variance case, to observe the evolution 

of the CFLIM values using Eq. (4.23), adequate values of the CoV  must also be defined. A 

simulation study similar to that of the normal distribution case was performed and the 

resulting 95th quantile of the CoV  CDF was also seen to be near 40%. Hence, the selected 

range for the CoV  was also considered to be 6% to 40%, in 2% steps, for this case. 

Considering this range, Figs. 4.3a), b) and c) present the CFLIM values obtained from 

Eq. (4.23), given the condition M CF   and for levels KL1, KL2 and KL3. As for the 

normal distribution case, results for 1n   are not available. Observation of Fig. 4.3 also 

confirms the expected increase of the CFLIM values for small values of n when compared to 

those of the known variance case. According to Figs. 4.3a) and b), for KL1 and KL2, and 
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for the upper value of the CoV  range, the minimum number of tests that validate the CF 

values proposed by EC8-3 now need to be five and eight, respectively. For KL3, Fig. 4.3c), 

it can be seen that the CFLIM corresponding to the larger CoV and to the minimum number 

of tests ( 3n  ) is now 1.16, when for the known variance case such value is 1.08. By 

comparing these results with those of Section 4.3.2.2, it can be seen that considering the 

normal distribution with unknown variance yields more conservative results. On the other 

hand, when the variance uncertainty is not taken into account, it is the lognormal 

distribution that yields more conservative CF values. This change of status between the 

normal and the lognormal distributions results from the fact that Eq. (4.21) includes the 

contribution of the sampling distribution of 2s  which is a right-skewed chi-square 

distribution. Hence, the lognormal distribution hypothesis leads to unsymmetrical right-

skewed two-sided confidence intervals while symmetric ones are obtained with the normal 

distribution assumption (Zou et al., 2009). 
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Figure 4.3. Values of CFLIM considering a lognormal distributed strength with unknown variance, for 

increasing values of n, for the selected range of CoVs  and for (1-) confidence levels of 95% (a), 90% (b) 
and 75% (c). 
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4.3.4 Definition of the CFs for the case of a Weibull distributed strength 

The two-parameter Weibull distribution (Castillo, 1988) defined by the CDF of the 

form 

    1 xF x e
   (4.24) 

where  and   are, respectively, the shape and the scale parameters, was chosen to 

characterize the CFs in the case of a Weibull distributed strength (Tumidajski et al., 2006). 

Unlike for the case of the normal and the lognormal distributions, mathematically tractable 

confidence intervals are not available for the mean   of the Weibull distribution. For the 

case of large samples, it is possible to assume that the distribution of the mean estimate X  

is asymptotically normal (Montgomery and Runger, 2003). However, this assumption is not 

applicable for the present case. Several alternatives providing confidence intervals for   

have been proposed considering the Weibull-to-exponential transform or considering Type 

II censored data (Lawless, 1982; Xie et al., 2000; Yang et al., 2007). Still, none of these 

approaches were found to be attractive due to the difficulty of their application to the 

present case. Given the simplicity of using a simulation approach, this method was selected 

to assess the CFLIM values for the Weibull distribution case.  

The simulation method started with the selection of a concrete class characterized by 

a compressive strength with chosen   and CoV, the former being selected from the range 

of 12 MPa to 50 MPa, in 1 MPa steps, and the latter being selected from the previously set 

range, considering 2% steps. Knowing   and CoV, the Weibull parameters  and   are 

determined based on the following relations: 
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where  .  is the Gamma function. Based on Eq. (4.26), parameter  can be determined 

for the known CoV using a standard Newton-Raphson method after which parameter   

can be obtained using Eq. (4.25). Afterwards, 50000 samples of a chosen size n were 

randomly drawn from the Weibull distribution. Next, the mean value of each sample i was 

computed and divided by   to yield the CFi, i.e. the CF value of sample i. After computing 

CFi values for all samples, considering all possible values of   from the previously set 

range and for a given CoV, an empirical CDF was defined, for which CFLIM corresponds to 
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the  1   percentile. The simulation process was then repeated for different values of 

size n, from 1 to 30, and for the several CoV values from their previously set range. Since 

the CoV range was considered, instead of the CoV  one, the simulation is assumed to 

represent a known variance situation. The unknown variance hypothesis was not 

considered for the Weibull distribution case.  

In order to observe the evolution of the CFLIM values for levels KL1, KL2 and KL3, 

Figs. 4.4a), b) and c) present the results obtained from the referred simulation study for 

increasing values of n (from 1 to 30), for the previously defined range of the CoV (6% to 

20% in 2% steps) and for the corresponding confidence levels (75%, 90% and 95%). As 

for the case of the normal distributed strength with known variance, the computed CFLIM 

corresponding to the larger CoV and to the minimum number of tests of the 

corresponding KL is also represented in each graph (underlined value). The analysis of the 

underlined values shows that, for the previous set of hypotheses, the CF values proposed 

by EC8-3 for KL1 and KL2 appear to be adequate while the proposed value for KL3 is 

significantly different from the obtained CFLIM, as reported for the case of normal and 

lognormal distributed strengths. 
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Figure 4.4. Values of CFLIM considering a Weibull distributed strength, for increasing values of n, for the 
selected range of CoVs and for (1-) confidence levels of (a) 95%, (b) 90% and (c) 75%. 
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4.3.5 Discussion of the results 

Based on the results obtained for the different distributions and assumptions 

considered in the presented study, the EC8-3 proposed CFs for KL1 and KL2 are believed 

to be adequate for the purpose of establishing a conservative value of the material strength, 

assuming that the selected confidence levels are satisfactory. Moreover, the comparison of 

the results obtained with the CF values proposed by EC8-3 are seen to be more consistent 

with the known variance assumption. With respect to KL3, the EC8-3 proposed CF is not 

met by any of the cases studied. Nonetheless, the known variance assumption is also 

selected since it leads to lower values of the CF. For this case, a CF value of 1.08 is seen to 

be more adequate to the assumptions made in the study. Still, it is recalled that, for KL3, a 

CF value of 1.0 can only be obtained if the confidence level is assumed to be 50%.  

The aforementioned conclusions are based on a limit CoV of 20% and for a number 

of tests corresponding to the minimum values established according to the conditions 

referred in Section 4.2.2. Nonetheless, it is useful to analyse such results in terms of the 

necessary CF associated to building structures of more common sizes. For example, let us 

consider three- and five-storey framed structures having a single concrete grade and only 

with beams and columns as primary elements. According to Table 4.1, the minimum 

number of tests for KL1, KL2 and KL3 are now 6, 12 and 18, respectively, for the 

three-storey building, and 10, 20 and 30, respectively, for the five-storey building. By 

determining the CF values for such number of tests, for the normal and the lognormal 

distributions (the Weibull distribution results are similar to those of the normal 

distribution), considering the known variance hypothesis and the limit CoV of 20%, the 

results presented in Table 4.3 are obtained (results for a one-storey structure are also 

presented for comparison). As can be seen, in comparison with the CF values of the one-

storey building, CFs could be significantly reduced for the three-storey structure. On the 

other hand, going from the three- to the five-storey buildings implies a negligible reduction 

of the CF values. Hence, for buildings higher than three-storeys, significantly reduced CF 

values could be considered instead. A similar analysis considering the unknown variance 

hypothesis and for the CoV  of 40% leads to the second set of CF values of Table 4.3. In 

this case, the EC8-3 proposed CF for KL2 can be seen to also include the unknown 

variance hypothesis for buildings higher than three-storeys. Moreover, it can also be seen 

that, for KL3, the proposed value of 1.08 is also able to include such hypothesis under the 

same conditions. On the other hand, for the case of KL1, this situation can only be 

attained if the maximum CoV  is reduced to 32%. 
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Table 4.3. Analysis of the CF values for different building sizes, considering different distributions, KLs and 
variance knowledge hypotheses (KV: known variance; UV: unknown variance) 

 1 storey 3 storeys 5 storeys 

Knowledge 
Level Distribution KV UV KV UV KV UV 

KL1 
Normal 1.35 - 1.13 1.49 1.10 1.30 

Lognormal 1.35 - 1.14 1.30 1.11 1.23 

KL2 
Normal 1.20 - 1.07 1.19 1.06 1.13 

Lognormal 1.20 - 1.08 1.16 1.06 1.12 

KL3 
Normal 1.08 - 1.03 1.07 1.02 1.05 

Lognormal 1.08 - 1.03 1.06 1.02 1.05 

 

 

4.3.6 Additional comments regarding the application of the results 

obtained to other materials 

As can be seen from the cases where the normal and the lognormal distribution 

assumptions are considered, the probabilistic framework of the considered approach for 

the validation of the EC8-3 CF values depends on the CoV (or CoV ) of the material 

property under study. Hence, the proposed expressions can be applied to the properties of 

other materials of interest for which similar assumptions are valid. For these cases, the 

validity of the EC8-3 proposed CFs for these properties can be inferred from the results 

obtained for the concrete compressive strength. 

The current seismic safety assessment procedures of EC8-3 for existing structures 

only address RC, steel and composite, and masonry structures. According to the capacity 

models proposed by EC8-3 for the case of RC structures, the concrete compressive 

strength and the steel yield strength are the material properties for which estimates of their 

mean value are meant to be adjusted by the CF. With respect to the steel yield strength, 

both the normal and the lognormal distribution assumptions can be seen to be acceptable 

and the CoV values available from the literature are found to be within the previously 

considered range of values, e.g. see JCSS (2001a), Stewart (1995) and references cited 

therein. Hence, the general conclusions obtained for the concrete compressive strength for 

each KL can be extended to the steel yield strength.  

For the case of steel and composite structures, the main properties of interest, 

according to the EC8-3 capacity models, are also the steel yield strength and the concrete 

compressive strength. For the case of the steel yield strength, the lognormal distribution 

assumption can be seen to be acceptable (Melchers, 1999; JCSS, 2001a) and adequate CoV 

values are always within the previously referred range. Consequently, the general 

conclusions obtained for the concrete compressive strength can also be extended to this 

case. 

For the case of masonry structures, the main properties of interest, according to the 

EC8-3 capacity models, are the masonry compressive strength and the masonry shear 
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strength in the absence of vertical load. The statistical characterization of these properties 

in existing structures is more complex than for the previous materials. The existence of 

different types of masonry units in terms of materials (e.g. clay or concrete) and of shape 

(e.g. hollow or solid), may imply the need to define statistical models for each type of 

masonry. Furthermore, masonry properties are known to exhibit larger variability than that 

of other materials. When dealing with existing structures, the variability of the 

workmanship and the uncertainty of the testing methods are important factors that 

contribute to such variability (Schueremans, 2001; Dymiotis and Gutlederer, 2002). 

Nevertheless, some of the existing proposals for the probabilistic modelling of the masonry 

properties refer the lognormal distribution as an acceptable model to characterize the 

masonry compressive strength (Schueremans, 2001; Dymiotis and Gutlederer, 2002; 

Mojsilovic and Faber, 2008). Furthermore, the generalized Pareto distribution has also been 

found to be applicable (Dymiotis and Gutlederer, 2002). In terms of variability, as 

expected, the proposed CoV values may vary considerably and values larger than the 

maximum value of the previously referred range have been observed (Schueremans, 2001; 

Dymiotis and Gutlederer, 2002). With respect to the masonry shear strength, no specific 

proposal has been found in terms of probabilistic model. Nonetheless, CoV values have 

been obtained (Dymiotis and Gutlederer, 2002) and are found to be within the previously 

considered range.  

Hence it is concluded that, for the case of RC, steel and composite structures, the 

considered probabilistic approach and the results obtained can be used for the validation of 

the EC8-3 proposed CF values. On the other hand, for the case of masonry structures, the 

results obtained can only be partially taken into account. Namely, when the conditions 

considered in the probabilistic approach in terms of the selected statistical distributions and 

the variability range are valid assumptions. Nonetheless, further experimental research 

appears to be necessary for a better characterization of probabilistic models for masonry. 

 

 

4.4 Quantification of the CFs when prior knowledge exists 

The situation of existing prior knowledge about the materials covers cases where 

design data or previous testing data is available. It is also referred that, for practical 

purposes, this latter case is the same as that of combining testing data coming from 

different types of tests (i.e. the case previously defined as Scenario 2). When there is prior 

knowledge about the materials based on available design data or previous testing data, 

EC8-3 accounts for this information to produce a more accurate estimate of the material 

strength and allows the required number of tests of a given KL to be reduced. By 

considering only the situation of material characterization and by observing the 

information provided in Table 4.1 with respect to the materials, the existence of original 

design specifications can be seen to imply that KL2 can be selected and there is only the 
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need to carry out a minimum number of tests which corresponds to that of KL1. This 

value of the minimum number of tests implies a 50% reduction of the required number of 

tests, when compared to the situation of no prior knowledge (see Table 4.2). Furthermore, 

the existence of original test reports can be seen to imply that KL3 can be selected and 

there is only the need to carry out a minimum number of tests which corresponds also to 

that of KL1. In this case, a 67% reduction in the number of tests can be achieved when 

compared to the situation where there is no prior knowledge (see Table 4.2). 

For a more clarified interpretation of the effects of existing prior knowledge in the 

context of the EC8-3 and its influence on the value of the CFs, an example analysis is 

presented in the following, considering the case of a normal distributed strength, the levels 

KL2 and KL3, and using a Bayesian formulation (Ang and Tang, 1984; JCSS, 2001b). 

Moreover, an additional example is presented for the case where testing data coming from 

different types of tests is combined, considering also a normal distributed strength and the 

previously referred Bayesian formulation. The reader is also referred to Ang and 

Tang (1984) and JCSS (2001b) for information regarding the consideration of alternative 

distributions. The examples presented in the following represent a possible interpretation 

of the code procedures but are not an extensive study of the case of existing prior 

knowledge. Nonetheless, a qualitative evolution trend of the CF values can be observed 

from the following results. 

 

 

4.4.1 Considering prior knowledge and KL2 

When KL2 is chosen in the context of a situation where prior knowledge exists, it is 

assumed that original design specifications can lead to the definition of a prior estimate of 

the mean of the material strength, 0X . In this case, the updated estimate of the mean value 

of the material strength UX  can be obtained using a Bayesian approach given by (Ang and 

Tang, 1984; JCSS, 2001b): 

 0 0 1 1

0 1
U

n X n X
X

n n

  



 (4.27) 

where n0 is the number of tests considered for the estimate 0X , 1X  is the material strength 

estimate obtained from new data and n1 is the number of tests that led to 1X . Since 0X  is 

based on design specifications and not on actual tests, n0 must represent an equivalent 

number of tests. Although the adoption of other values could be foreseen, n0 can be set to 

be the same as n1 in order to guarantee the same level of reliability as when KL2 is 

considered with no prior knowledge (i.e 0 1n n  reflects the number of tests that would be 

considered for that situation with no prior knowledge). Upon this consideration, the value 

of UX  can therefore be seen to correspond to the average of 0X  and 1X . Given the 
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weight of the prior estimate 0X  on the value UX  (i.e. 50%, given that n0 is equal to n1), it 

should be emphasized that, in case the information between prior and new data ( 1X ) is 

contradictory, the analyst has to decide whether the prior data should or should not be 

taken into account.  

In order to observe the effects of existing prior knowledge on the quantification of 

the CF for KL2, CFLIM values were assessed using a simulation similar to the one 

considered in Section 4.3.4, considering the same ranges for the concrete compressive 

strength and for the CoV, but for the case of a normal distribution. To account for the 

existence of prior knowledge, an extra step was included in the method after the 

computation of the mean value of each sample i. This step consists of the calculation of the 

updated mean UX  according to Eq. (4.27), which is then divided by   to yield the CFi as 

referred in Section 4.3.4. The outcome of the process is the empirical CDF of the CFis, for 

which CFLIM is the  1   percentile. Figure 4.5a) presents the evolution of the CFLIM 

values obtained from the referred simulation study for increasing values of n1 (from 1 to 

30), for the previously defined range of the CoV (6% to 20% in 2% steps), for the 

previously defined range of the concrete compressive strength (12 MPa to 50 MPa in 

1 MPa steps) and for the 90% confidence level associated to KL2. Observation of these 

results allows concluding that, for the case of a normal distributed strength, when the prior 

knowledge and the new tests data are in agreement, the required CFLIM decreases. 

Considering the case where the CoV is 20% and the new minimum number of tests set for 

KL2 (i.e. 1 1n  ), the results obtained yielded a CFLIM value of 1.13, which is lower than the 

one previously obtained in the absence of prior knowledge. 

Given that the obtained CFLIM value is lower than the EC8-3 proposed value (i.e. 

1.2), a second simulation study was performed to produce a situation where the prior 

knowledge and the new test data are contradictory. The simulation study was carried out as 

for the previous case, but considering the prior knowledge data representing a higher 

concrete strength to represent a critical situation of non-conformity. It was found that, for 

a CoV of 20% and for 1 1n  , the value of 0X  could not exceed the mean of the 

distribution of the test data by more than 15% in order to yield a CFLIM value up to 1.20. 

Figure 4.5b) presents the evolution of the CFLIM values for the conditions set for the 

previous simulation study, but considering that 0X  exceeds the mean of the distribution of 

the test data by 15%. 
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Figure 4.5. Values of CFLIM obtained by simulation considering a normal distributed strength, the existence of 
prior knowledge, for increasing values of n, for the selected range of CoVs, for KL2 (confidence level of 
90%) when the prior information and the new test data are in agreement (a), when the prior information 

exceeds the mean of the new test data by 15% (b); for KL3 (confidence level of 75%) when the prior 
information and the new test data are in agreement (c) and when the prior information and the new test data 

are in agreement and s0 is known (d). 

 

4.4.2 Considering prior knowledge and KL3 

When KL3 is chosen in the context of a situation where prior knowledge exists, it is 

assumed that original test reports can lead to the definition of either a value of 0X , or a 

value of 0X  and a prior estimate of the standard deviation s0 of the data. For the former 

situation (only 0X  is known), the updated estimate of the mean value UX  can also be 

obtained by Eq. (4.27). In this case, the value of n0 reflecting the actual number of tests that 

were performed might be available from test reports and can be either smaller or larger 

than n1. In the absence of such knowledge, an interpretation similar to the one considered 

for KL2 can also be applied, leading to the definition of n0 with twice the value of n1, in 

order to guarantee the level of reliability of KL3 in the absence of prior knowledge. This 

latter situation is considered herein to illustrate the effect of existing prior knowledge. 

Conclusions based on the presented results will be restricted to cases with similar 

conditions in terms of the 0 1n n  ratio. As previously noted for the case of KL2, given the 
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weight of the prior estimate 0X  on the value UX  (i.e. 67%, given that n0 has twice the 

value of n1), if the information between prior and new data is contradictory, the analyst has 

to decide whether the prior data should or should not be taken into account.  

In order to observe the effects of existing prior knowledge on the quantification of 

the CF for KL3, CFLIM values were assessed using the simulation approach considered in 

Section 4.4.1. In order to observe the evolution of the CFLIM values, Fig. 4.5c) presents the 

results obtained from this simulation study for increasing values of n (from 1 to 30), for the 

previously defined range of the CoV (6% to 20% in 2% steps), for the previously defined 

range of the concrete compressive strength (12 MPa to 50 MPa in 1 MPa steps) and for the 

75% confidence level associated to KL3. Observation of the results confirms that when the 

prior knowledge and the new tests data are in agreement, the necessary CFLIM decreases. As 

can be seen in the figure, the CFLIM value corresponding to a CoV of 20%, and to the new 

minimum number of tests set for KL3 (i.e. 1 1n  ) is 1.05, which is lower than the value 

previously obtained in the absence of prior knowledge. It should also be noted that, since 

the obtained CFLIM value is larger than the EC8-3 proposed value (i.e. 1.0), there seems to 

be no room for a situation where the prior information and the new test data are 

contradictory.  

For the case where both 0X  and s0 are known, the updated estimate of the mean 

value UX  can now be obtained by (Ang and Tang, 1984; JCSS, 2001b): 
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where s1 is the standard deviation obtained from the new data. By considering the 

previously referred relation between n0 and n1, and by defining the variance ratio 

 2

1 0s s  , Eq. (4.28) can be rearranged to yield: 
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 (4.29) 

By analysing Eq. (4.29), the following can be observed: 

 When   takes the value of 0.5, 0X  and 1X  have the same weight over the value 

of UX , and when   takes the value of 1.0, Eq. (4.29) yields the results of 

Eq. (4.27); 

 When   is lower than 0.5, 1X  dominates the value of UX  and when ζ is larger 

than 0.5, it is 0X  that dominates UX ; 

 As   increases, the value of UX  asymptotically tends to 0X . 
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In order to exemplify these findings and for a better interpretation of the behaviour 

of Eq. (4.29), a simulation study is presented next. It is assumed that 0X  is 35 MPa, 

s0 = 4.2 MPa (CoV = 12%) and that the new test data yields values of 1X  ranging from 

25 MPa to 45 MPa (in steps of 1 MPa) and values of s1 corresponding to CoVs ranging 

from 6% to 20% (in 1% steps). For each value of 1X , a range of values of s1 is defined, in 

correspondence to the assumed CoVs, which then yields the corresponding values of  . 

For the conditions set, the evolution of Eq. (4.29) is represented in Fig. 4.6.  

In order to observe the effects of the consideration of Eq. (4.29) on the 

quantification of the CF for KL3, CFLIM values were assessed using the previously referred 

simulation approach. In this case, the updated mean UX  was computed according to 

Eq. (4.29). Since Eq. (4.29) is based on s1, the new minimum number of tests set for KL3 

(i.e. 1 1n  ) was not able to be considered; a value of 1 2n   was used instead. In order to 

observe the evolution of the CFLIM values obtained in this case, Fig. 4.5d) presents the 

global results determined from the referred simulation study for increasing values of n1 

(from 2 to 30), for the previously defined range of the CoV (6% to 20% in 2% steps), for 

the previously defined range of the concrete compressive strength (12 MPa to 50 MPa in 

1 MPa steps) and for the 75% confidence level associated to KL3. Considering the case 

where the CoV is 20% and 1 2n  , the results obtained yielded a CFLIM value of 1.04. To 

compare the performance of Eq. (4.27) with that of Eq. (4.29), the CFLIM value obtained 

with Eq. (4.29) for 1 2n   must be determined. Observation of Fig. 4.5c) leads to a CFLIM 

value of 1.03 for this case. Hence, it appears that Eq. (4.29) leads to slightly more 

conservative results than Eq. (4.27). 
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Figure 4.6. Values of XU considering the existence of prior knowledge, for the case when both X0 and s0 are 
known. 
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4.4.3 Combining data from different types of tests 

The combination of data coming from different types of tests is similar in 

formulation to the case of Section 4.4.2 where both 0X  and s0 are known, Eq. (4.28), but 

without enforcing a specific relation between n0 and n1. Considering that 0X  and s0 are 

known from core compression tests, that 1X  and s1 are obtained from a chosen NDT and 

that the relation between n0 (number of core tests) and n1 (number of NDTs) is defined by 

1 0n k n  , Eq. (4.28) can be rearranged to yield UX  given by: 

 0 1
U

X k X
X

k
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where   is as previously defined. In order to observe the effects of the consideration of 

Eq. (4.30) on the quantification of the CF for the several KLs, CFLIM values were assessed 

using a simulation approach similar to that of the previous Section and with the updated 

mean XU computed according to Eq. (4.30). This simulation study considered increasing 

values of n0 (from 2 to 30), three values for k (2, 5 and 10), 0X  values ranging from 

12 MPa to 50 MPa, in 1 MPa steps, s0 values corresponding to CoV values ranging from 

6% to 20%, in 2% steps, 1X  values defined by the mean of random samples of size n1 

drawn from a normal distribution defined by 0X  and s0, and s1 values defined by: 

 2 2
1 1, 1,s vs s s   (4.31) 

where 1,ss  is the standard deviation of the sample used to obtain 1X  and 1,vs  is an 

additional standard deviation aiming to represent the increased variability of the NDT 

results. In the proposed simulation study, 1,vs  was set as 15% of 0X . According to this 

simulation study, parameter   ranges between 1.0 and 10.0. Although conclusions based 

on the presented results will be restricted to cases with similar conditions in terms of the 

0 1n n  ratio and of the considered range of  , they allow for a qualitative interpretation of 

the influence of combining testing data from different test types. In order to observe the 

evolution of the CFLIM values obtained in this case, Figs. 4.7a), c) and e) present the results 

obtained from the referred simulation study for k = 2 and for the 95%, 90% and 75% 

confidence levels associated to KL1, KL2 and KL3, respectively, while Figs. 4.7b), d) and f) 

present similar results for k = 5. As can be observed, results indicate that parameter k has a 

relatively reduced influence on the CFLIM values. For the case of k = 10, CFLIM values are 

slightly lower than those of k = 5. Furthermore, it can also be seen that combining 

different types of tests following the considered approach leads to CFLIM values that are 

lower than those obtained in the first part of the proposed study for all KLs, thus 

validating the previously considered hypothesis that Scenario 1 is more critical. 
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Figure 4.7. Values of CFLIM obtained by simulation considering a normal distributed strength, two sources of 
testing data, for increasing values of n0, for the selected range of CoVs, for KL1 (confidence level of 95%) 

and k = 2 (a) and k = 5 (b); for KL2 (confidence level of 90%) and k = 2 (c) and k = 5 (d); for KL3 
(confidence level of 75%) and k =2 (e) and k = 5 (f). 

 

4.5 Conclusions 

The present study addresses the evaluation of the recommended values of the CFs 

proposed in the main document of the EC8-3 for the characterization of material 

properties of existing structures. In this context, the CF adjusts the mean estimate of a 

material property in order to reflect the KL that is attained in the assessment, in order to 

provide a design value of the property that is on the safe side. Prior to the evaluation of the 
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CFs, the influence of the level of knowledge and of the uncertainty about the parameters 

entering the EC8-3 safety assessment procedure is examined. From this analysis, it is 

concluded that only the uncertainty related to the materials is reflected in the quantification 

of the EC8-3 safety measures, thus justifying the focus of the proposed study. 

The reliability of the EC8-3 proposed CF values is assessed using a probabilistic 

framework, in which the number of material tests and the existence of prior knowledge are 

seen to be essential aspects for the quantification of the CFs. Although the general concept 

behind the CFs is independent of the type of material, the evaluation is presented for the 

case of RC structures, more specifically for the concrete compressive strength. 

Nonetheless, conclusions regarding the validity of the CFs for other materials considered 

by EC8-3 are also inferred from the results. 

In the first part of the study, where the existence of prior knowledge is not 

considered, different underlying statistical distributions are assumed for the concrete 

compressive strength (normal, lognormal and Weibull distributions) and different 

confidence levels are associated to the quantification of the CF of each KL (95%, 90% and 

75% for KL1, KL2 and KL3, respectively). Moreover, the definition of the CFs reflects the 

critical situation that occurs when the estimate of the mean strength overestimates the real 

mean value. Based on the results obtained for the different distributions and assumptions 

of the presented study, the EC8-3 proposed CFs are seen to be more consistent with the 

known variance assumption. Moreover, the KL1 and KL2 CFs are believed to be adequate, 

assuming that the selected confidence levels are satisfactory. With respect to KL3, the 

EC8-3 proposed CF is not met by any of the cases studied. Nonetheless, the known 

variance assumption is also selected since it leads to lower values of the CF. For this case, a 

CF value of 1.08 is seen to be more adequate to the assumptions made in the study. 

Furthermore, considering the known variance hypothesis and for a CoV of 20%, it was 

observed that if the EC8-3 minimum number of tests are met, the CF values could be 

significantly reduced for buildings higher than three-storeys (e.g. from 1.35 to 1.14, for 

KL1, and from 1.20 to 1.08, for KL2). On the other hand, considering the unknown 

variance hypothesis and for a CoV of 40%, the EC8-3 proposed CF for KL2 and the 

proposed value of 1.08 for KL3 can be seen to also include such hypothesis for buildings 

higher than three-storeys. For the case of KL1, this situation can only be attained if the 

maximum CoV  is reduced to 32%. 

It was also found that, for the cases where the normal and the lognormal distribution 

assumptions are considered, the probabilistic framework that was defined to obtain the CF 

values depends only on the CoV of the material property under study. Hence, the proposed 

expressions can be applied to the properties of other materials of interest for which the 

referred statistical distribution assumptions are acceptable. Moreover, if the selected range 

of the CoV is acceptable for such material properties, the adequacy of the EC8-3 proposed 

CFs for these properties can be inferred from the results obtained for the concrete 
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compressive strength. The proposed study found that the obtained results can be used for 

the validation of the EC8-3 proposed CF values for the relevant material properties of RC, 

steel and composite structures. For the case of masonry structures, although some of the 

considered assumptions were found to be valid, further experimental research appears to 

be necessary. 

In the second part of the study, the effects of prior knowledge on the quantification 

of the CFs are assessed. EC8-3 accounts for prior knowledge to produce a more accurate 

estimate of the material strength and allows the required number of tests of a given KL to 

be reduced. It should be noted that, in case the information between prior and new data is 

contradictory, the analyst has to decide whether the prior data should or should not be 

taken into account. By using a Bayesian framework and considering the case of a normal 

distributed strength, the results obtained lead to the conclusion that when the prior 

knowledge and the new test data are in agreement, the necessary CF decreases, when 

compared to the value obtained in the absence of prior knowledge. Nonetheless, the CF 

value obtained for KL3 is still larger than the value proposed by EC8-3. In addition, the 

case of combining different sources of testing data was also addressed considering the 

same Bayesian framework and the case of a normal distributed strength, as it is a special 

case of the situation where prior knowledge exists. Results of this analysis indicate that 

combining different types of tests leads to CF values that are lower than those obtained in 

the first part of the proposed study for all KLs. The presented analysis represents a 

possible interpretation of the code procedures but was not an extensive study of the case of 

existing prior knowledge. Although a qualitative evolution trend of the CF values was able 

to be observed, further research on this topic is required to be able to develop specific CF 

values accounting for prior knowledge.  
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Chapter 5 
Assessment of  the statistical distributions of  
structural demand under earthquake loading  

 

 

5.1 Introduction 

In the framework of Performance Based Earthquake Engineering and of the 

development of methodologies for seismic risk reduction, probabilistic methods are seen as 

superior means of assessing the performance of structures under earthquake loading. 

Among the possible features, probabilistic analyses are able to account for the propagation 

of various sources of uncertainty which affect the outcome of a given performance metric 

under assessment (Cornell and Krawinkler, 2000; Porter, 2003; Deierlein, 2004; Baker and 

Cornell, 2008). Nonetheless, the evaluation of performance parameters, such as the annual 

rate of exceeding a given structural demand level or the annual rate of exceeding some level 

of loss, is commonly seen to involve statistical assumptions regarding certain aspects of the 

probabilistic analysis (Aslani and Miranda, 2005; Goulet et al., 2007; Baker and Cornell, 

2008; Bradley and Lee, 2010).  

In this context, one of the most common assumptions is that, for a given level of the 

considered earthquake intensity measure (IM), the probability distribution of a certain 

structural engineering demand parameter (EDP) can be modelled using a lognormal 

distribution. This hypothesis is considered in numerous research studies, namely for EDPs 

such as the maximum inter-storey drift over the height of a structure (Shome and Cornell, 

1999; Song and Ellingwood, 1999; Shinozuka et al., 2000; Sasani and Der Kiureghian, 2001; 

Cornell and Jalayer, 2002; Ibarra and Krawinkler, 2005; Kwon and Elnashai, 2006), the 

peak floor acceleration (Miranda and Aslani, 2003; Taghavi-Ardakan, 2006; Mitrani-Reiser, 

2007), the maximum displacement (Decanini et al., 2003; Ruiz-Garcia and Miranda, 2010) 

and the maximum displacement ductility (Goda et al., 2009). However, a consistent 

assessment of this hypothesis using adequate statistical methods has yet to be carried out.  
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Until now, the consideration of this hypothesis has been essentially based on results 

derived from graphical methods (e.g. quantile-quantile (Q-Q) plots or cumulative 

distribution function plots) or based on the results obtained from the 

Kolmogorov-Smirnov/Lilliefors (K-S/L) statistical test (Lilliefors, 1967), usually applied to 

the logarithm of the data (Shome and Cornell, 1999; Decanini et al., 2003; Ibarra and 

Krawinkler, 2005; Miranda and Aslani, 2003; Taghavi-Ardakan, 2006; Ruiz-Garcia and 

Miranda, 2010). However, it is widely accepted (e.g. see D’Agostino and Stephens (1986), 

Gan and Koehler (1990), Thode (2002) and references therein) that such approaches lack 

efficiency, robustness and objectivity in the assessment of the lognormality hypothesis, i.e. 

in assessing the normality hypothesis of the logarithm of the data. Therefore, a study 

addressing the probabilistic distribution of several EDPs using appropriate statistical 

methods is proposed herein to evaluate the hypothesis that the referred probabilistic 

demand could be adequately modelled by a lognormal distribution. In addition, the 

suitability of the normal distribution for that same purpose is also assessed. 

 

 

5.2 Description of the proposed study 

The presented study focuses both deformation- and strength-related EDPs and is 

based on local (section level) and global (system level) demand distributions obtained from 

the analysis of five reinforced concrete (RC) structures subjected to earthquake records of 

increasing intensities. At the section level, the selected EDPs are the maxima of the 

curvature, of the chord rotation and of the shear force, while at the system level, the 

chosen parameter is the maximum inter-storey drift over the height of the structure.  

The selected structures were analysed for suites of fifty ground motions to obtain 

data samples with a size significant enough. The chosen records were scaled for several 

intensities in order to evaluate the referred hypotheses for different hazard levels. 

Furthermore, two different IMs were also considered to evaluate the influence of this 

parameter on the conclusions of the study.  

A series of statistical tests was then applied to the demand samples to evaluate the 

adequacy of the demand distribution hypothesis. It is emphasized that the tests only aim to 

determine the validity of the hypothesis regarding the type of probabilistic distribution and 

do not make any kind of inference about the parameters of such distribution. 

 

 

5.3 Statistical tests for demand distribution evaluation 

The proposed study assesses both the normality and the lognormality hypotheses of 

structural demand distributions using statistical tests with adequate characteristics. As 

stated before, the lognormality assumption is tested by assessing the normality hypothesis 
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of the logarithm of the data. The considered tests were selected according to the results of 

a benchmark efficiency test previously carried out that is presented in Appendix A. This 

benchmark study considered a total of thirty-three goodness-of-fit tests, including the 

previously referred K-S/L test, and measured their efficiency in identifying non-normality 

situations in the presence of data coming from several alternative distributions. The tests 

considered herein are briefly presented in the following and represent the more efficient 

ones for the present study, based on the results of Appendix A. Since the random nature of 

the datasets under analysis does not allow the prediction of the characteristics of the data, it 

is not possible to propose the use of a single test that would lead to the best result in every 

situation. Therefore, the tests were selected in order to have different characteristics and 

test different aspects of the data. 

The chosen tests were divided into two groups. The first group comprises tests 

which are best suited to identify non-normal distributions when the data is symmetric. The 

second group contains tests which are best suited to deal with potentially contaminated 

normally distributed data. In this latter case, it is assumed that the demand distribution may 

contain outliers. In several situations of statistical analysis of real data, outliers are 

considered to be errors (Hoaglin et al. 1983). Since such reasoning is not directly applicable 

to the present study, outliers are assumed to be observations which are numerically distant 

from the rest of the sample, thus masking the probability distribution of the majority of the 

data. For each test, the rejection of the normality hypothesis is based on the comparison of 

the test statistic with a pre-determined critical value of the statistic. The critical values of 

the several tests were derived empirically for the selected confidence level, i.e. 95%, and for 

a given sample size, following the methodology referred in Appendix A. In the following 

description of the tests, it is considered that 1 2, , ... nx x x  represent a collection of data, 

hereon termed as a dataset, of size n and that (1) ( 2 ) ( ), , ... nx x x  represent the order statistics 

of that dataset.  

 

 

5.3.1 Tests for symmetric data 

5.3.1.1 The 2
3  test 

A normality test based on a polynomial regression focused on detecting symmetric 

non-normal distributions has been proposed in (Coin, 2008). Based on the analysis of 

standard normal Q-Q plots for different symmetric non-normal distributions, it is suggested 

that fitting a model of the type:  

  
3

1 3i iiz         (5.1) 
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where 1  and 3  are fitting parameters and i  represent the expected values of standard 

normal order statistics (Royston, 1982), leads to 3  values different from zero when in 

presence of symmetric non-normal distributions. Therefore, 2
3  is suggested as a statistic 

for testing normality, thus rejecting the normality hypothesis of the data for values of 2
3  

larger than the critical value. 

 

 

5.3.1.2 The RsJ test 

A normality test focussing on detecting heavier tails has been proposed in (Gel et al., 

2007). The test is based on the ratio of the standard deviation s and the robust measure of 

dispersion defined by:  

 
1

2 n

n i
i

J x M
n





   (5.2) 

in which M is the sample median. The normality test statistic sJR  is given by sJ nR s J  and 

should tend to one under a normal distribution. Since departure from normality can lead to 

either high or low values of sJR , the normality hypothesis of the data is rejected for values 

of sJR  either smaller or larger than the critical values using a two-sided test.  

 

 

5.3.1.3 The Tw test 

A modified measure of kurtosis has been suggested in (Bonett and Seier, 2002) for 

testing normality. The test statistic of this new measure Tw is given by:  

 1
2

1

2
13.29 ln ln 3

3.54

n

w i
i

n
T m n x x



    
          

  (5.3) 

in which x  is the sample mean and m2 is defined by  21
2

1

n

i
i

m n x x



  . The normality 

hypothesis of the data is rejected for values of Tw either smaller or larger than the critical 

values using a two-sided test. 

 

 

5.3.1.4 The CS test 

A test statistic CS based on normalized spacings has been defined in (Chen and 

Shapiro, 1995) by 
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in which Mi is the ith quantile of a standard normal distribution obtained by 

   1 0.375 0.25i n     . The normality hypothesis of the data is rejected for values of 

CS smaller than the critical value.  

 

 

5.3.2 Tests for data with potential outliers 

5.3.2.1 The  t
TLmomT  test  

This test has been proposed in Appendix A based on the robust generalization of the 

sample L-moments defined as the trimmed L-moments (Elamir and Seheult, 2003). The 

formulation of the trimmed L-moments allows for symmetric and asymmetric trimming of 

the smallest and largest sample observations, thus increasing their robustness towards 

outliers in the data when compared to that of the sample L-moments. However, only 

symmetric trimming is considered herein since there is no initial information regarding the 

nature of the potential outliers.  

Considering an integer symmetric trimming level t, the rth order sample trimmed L-

moment  t
rl can be estimated by: 
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Based on the second, third and fourth sample trimmed L-moments, new measures of 

skewness and kurtosis, termed TL-skewness  
3
t  and TL-kurtosis  

4
t , are given by  

      
3 3 2
t t tl l  ,      

4 4 2
t t tl l   (5.6) 

Based on these measures, the following test can be defined:  

  

   
3 4

( ) ( ) ( ) ( )
3 4

( ) ( )
3 4var var

t t t t
t

TLmom t t
T     

 
 

   (5.7) 

where, for a selected trimming level t, 
3

( )t
  and 

4

( )t
  are the mean of ( )

3
t  and ( )

4
t , and 

 ( )
3var t  and  ( )

4var t  are their corresponding variances. The values of 
3

( )t
 , 

4

( )t
 , 

 ( )
3var t  and  ( )

4var t  are obtained by simulation (see Appendix A). Three versions of 

this test are considered herein which correspond to symmetric trimming levels t of 1, 2 and 
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3. For each test, the normality hypothesis of the data is rejected for values of the statistic 
 t

TLmomT  larger than the critical value. 

 

 

5.3.2.2 The TMC-LR test 

A goodness-of-fit test based on robust measures of skewness and tailweight has been 

proposed in (Brys et al., 2008). The considered robust measure of skewness is the 

medcouple MC (Brys et al., 2004) defined as 

 
   

    ,
Fi j

i jx m x
MC med h x x

 
  (5.8) 

where med stands for the median operator, mF is the sample median and the kernel function 

h is given by  

           
   

,
F F ij

i j
i j

x m m x
h x x

x x

  



 (5.9) 

In a case where     Fi jx x m  , h is then set by  

     
1

, 0

1
i j

i j

h x x i j

i j


 
 

 (5.10) 

From Eq. (5.8), MC is seen to be the median of the results of function h applied to all 

couples of data points. Based on this, the left medcouple (LMC) and the right medcouple 

(RMC) were defined as robust measures of left and right tail weight (Brys et al., 2006), 

respectively, by applying the MC function to the left and the right half of the dataset: 

  FLMC MC x m   ;  FRMC MC x m   (5.11) 

The test statistic TMC-LR is then defined by 

    1t

MC LRT n w V w        (5.12) 

in which w is set as  , ,
t

MC LMC RMC , and   and V are obtained based on the influence 

function of the estimators in w which, for the case of a normal distribution, are defined in 

(Brys et al., 2008). The normality hypothesis of the data is rejected for values of TMC-LR 

larger than the critical value. 
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5.4 Selected case study structures  

5.4.1 General description  

The five RC structures chosen for the proposed study are briefly described in the 

following. The selection was such as to include both regular and irregular structures, as well 

as to consider non-seismically designed structures and structures designed according to 

modern seismic design procedures.  

The first structure is the ICONS frame previously considered in Chapter 2. As 

previously referred, the ICONS frame is a four-storey, three-bay RC frame designed and 

built at the Joint Research Center in Ispra, Italy, for pseudo-dynamic testing (Carvalho et 

al., 1999). The structure is representative of the design and construction common practice 

until the late 1970's in southern European countries and was designed for vertical loads 

only. The reinforcement details were specified in accordance to the normative available and 

to the construction practice at that time. The elevation view of the structure is presented in 

Fig. 5.1 along with the column cross section dimensions. All the beams are 0.25 0.50  m2. 

In terms of the material properties, a concrete of class C16/20 and a hot-rolled steel of 

class S235 were selected, considering the mean values of the relevant properties. For 

additional information concerning the frame characteristics, the reader is referred to 

Carvalho et al. (1999).  

 

0.30x0.200.40x0.20

0.40x0.20

0.40x0.20

0.40x0.20

0.30x0.20

0.30x0.20

0.30x0.20
0.40x0.20

0.40x0.20

0.40x0.20

0.40x0.20

0.25x0.60

0.25x0.60

0.25x0.50

0.25x0.50

2.
70

2.
70

2.
70

2.
70

5.005.00 2.50 [m]

 

Figure 5.1. Elevation view of the ICONS frame and column cross section dimensions. 

 

The second and third structures are the six-storey RC frames presented in (Ferracuti 

et al., 2009). One of the frames, referred herein as REG6, is regular in elevation while the 

other, referred herein as IRREG6, has a setback. The elevation views of the frames are 

presented in Figs. 5.2a) and b) along with the column cross section dimensions. All the 

beams are 0.30 0.50  m2. A steel with a yield strength of 414MPa and a concrete with a 

compressive strength of 33MPa were considered, following the values proposed in 

(Ferracuti et al., 2009) for the material properties. Additional information concerning the 

frame characteristics can be found in (Ferracuti et al., 2009). With respect to earthquake 

resistance, no available information indicates that seismic design provisions were 

considered for these structures.  
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Figure 5.2. Elevation views of the REG6 and of the IRREG6 frames and of their column cross section 
dimensions. 

The next structures are two ten-storey RC frames designed according to the 

requirements of Eurocode 8 (EC8-1, 2004) and presented in (Athanassiadou, 2008). The 

selected structures are the regular frame, referred herein as REG10, and one of the frames 

presenting irregularities over the height, referred herein as IRREG10, both designed for the 

high ductility class. These structures were designed considering a C20/25 concrete, a S400 

steel and a peak ground acceleration (PGA) of 0.25g. The elevation views of the frames are 

presented in Figs. 5.3a) and b) along with the column cross section dimensions. The beams 

of structure REG10 are 0.25 0.75  m2, in the first to the sixth storeys, 0.25 0.70  m2, in 

the seventh and eighth storeys, and 0.20 0.60  m2, in the ninth and tenth storeys. The 

beams of structure IRREG10 are 0.25 0.75  m2, in the first to the fourth storeys, 

0.25 0.70  m2, in the fifth and sixth storeys, and 0.20 0.60  m2, in the seventh to the 

tenth storeys. For additional information concerning the frame characteristics, the reader is 

referred to (Athanassiadou, 2008). 
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Figure 5.3. Elevation views of the REG10 and of the IRREG10 frames and of their column cross section 
dimensions. 

 

5.4.2 Numerical modelling  

The nonlinear response analysis of the frames under earthquake loading was carried 

out using a computer programme developed during previous research studies (Varum, 

1997; Romão, 2002; Rodrigues, 2005). This computer programme is a two-dimensional 

analysis platform for the study of the nonlinear response of multi-storey RC buildings. The 

analysis of the structures is able to model the behaviour nonlinearities of beams and 

columns, as well as the large lateral deformations which are simulated by a leaning column 

that reproduces the destabilizing P-Δ effects of the gravity loading. Column and beam 

elements are modelled as member-type nonlinear macro-models with three zones: one 

internal zone with linear elastic behaviour and two plastic hinges, located at the member 

ends, where inelastic flexural behaviour is considered. Nonlinear analyses are carried out 

considering an event-to-event strategy with modification of the structure’s stiffness matrix 

at each event and using the standard Newmark integration method for the dynamic 

analyses. Prior to a dynamic or pushover analysis, a nonlinear static analysis is carried out 

for the gravity loads acting on the structure, the results of which become the initial 

conditions for the subsequent analysis.  

The inelastic behaviour of the plastic hinges is represented by moment-curvature 

relations. Trilinear skeleton curves associated with monotonic loading and with an initial 

slope reflecting the secant-to-yield stiffness were obtained following the work presented in 
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(Arêde and Pinto, 1996). Both asymmetric bending for beams and axial load effects for 

columns were considered. In beams, the elastic behaviour of the internal macro-model 

region was defined in order to reflect the cracked stiffness of the central part of the 

members when their bottom reinforcement is under tension. Slab participation to the beam 

tension flange was not considered.  

Hysteretic flexural behaviour of the members was modelled by the piecewise linear 

hysteretic Costa-Costa model (Costa and Costa, 1987; CEB, 1996) which is a generalized 

Takeda-type model. Stiffness degradation and pinching effects were considered in the 

hysteretic behaviour of the structural members. With respect to the plastic hinge lengths, 

their values were considered equal to the depth of the member cross section for beams and 

equal to half of the depth of the member cross section for columns. Viscous damping was 

assumed to be proportional to the initial stiffness since, according to Faria et al. (2002) and 

references cited therein, the mass proportional term may induce a physically inadmissible 

dissipation under a rigid body motion, an aspect of particular importance when a soft-

storey mechanism develops in the structure. The damping parameter was calculated for the 

first period of the structure considering a fraction of the critical damping equal to 2%. 

Periods were obtained assuming the mass of the structure to be distributed on the beams 

and the stiffness of the members to be defined by their secant-to-yield stiffness. Gravity 

loading was defined for each structure according to the values set in Carvalho et al. (1999), 

Ferracuti et al. (2009) and Athanassiadou (2008). Table 5.1 presents the periods of the first 

and second modes of the five structures along with their participating mass ratios. As can 

be seen, most structures are governed by the first mode since only structure IRREG6 has a 

stronger influence of the second mode. 

Table 5.1. Periods and participating mass ratios (PMRs) of the selected structures. 

Structure Mode number T (s) PMR (%)

ICONS 1 1.10 79.4 

 2 0.34 12.1 

    

IRREG6 1 1.24 67.5 

 2 0.46 21.9 

    

REG6 1 1.40 79.9 

 2 0.46 11.2 

    

REG10 1 2.03 77.6 

 2 0.72 10.8 

    

IRREG10 1 1.82 75.2 

 2 0.79 10.5 
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5.4.3 Seismic demand 

The seismic demand considered for each structure consisted of a suite of fifty real 

ground motions extracted from the Pacific Earthquake Engineering Research Center NGA 

database (PEER-NGA, 2009). Each structure was analysed using a multi-stripe analysis 

(Jalayer and Cornell, 2009) where the selected ground motions are scaled for nine 

intensities in order to reflect different return periods. The selected return periods were 37, 

73, 95, 225, 475, 976, 1980, 2480 and 4950 years which correspond to PGA values of 0.06g, 

0.08g, 0.09g, 0.13g, 0.17g, 0.22g, 0.29g, 0.31g and 0.39g, respectively. The reference seismic 

scenario selected to define the scaling factors for each return period corresponds to that of 

Zone 3 of the Portuguese territory considering the intraplate seismic action and a soil of 

type B according to the Portuguese National Annex of Eurocode 8 (EC8-1, 2010). The 

PGA considered for this scenario was 0.17g, corresponding to a return period of 475 years. 

The values of the remaining parameters defining the response spectrum of the selected 

scenario are S = 1.35, TB = 0.1s, TC = 0.25s, TD = 2.0s (EC8-1 2009). The PGA values 

associated to the other return periods were obtained based on the results of the hazard 

studies presented in Campos Costa et al. (2008). 

For each structure, a specific suite of fifty ground motions was selected from the 

global NGA database according to the following criteria: 

 Criterion 1: ground motions with moment magnitudes between 6.0 and 7.5, and 

epicentral distances between 25 km and 75 km. 

 Criterion 2: ground motions, from those filtered by Criterion 1, that lead to a 

spectral matching scaling factor (SF) between 0.75 and 1.33, where SF is defined by 

    1 , 1a a refSF S T S T  (5.13) 

in which  1aS T  is the 5% damping spectral acceleration ordinate of the ground 

motion for the fundamental period of the structure T1 and  , 1a refS T  is the 5% 

damping spectral acceleration ordinate of the reference response spectrum for that 

same period and a return period of 475 years. 

 Criterion 3: ground motions, from those filtered by Criterion 2, leading to a Drms 

factor not higher than 0.20. The Drms factor is the root-mean-square difference 

between the log of the response spectrum of the real record scaled by SF and the 

log of the reference response spectrum, over a given period range, defined by 

Eq. (5.14) (Buratti et al., 2011). The selected period range was defined as being 

between T2 and 1.5T1, where T2 is the period of the second mode of the structure 

under consideration. 
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 Criterion 4: the fifty ground motions, from those filtered by Criterion 3, that 

present the lowest positive and negative (absolute values) mismatches between the 

response spectrum of the real record scaled by SF and the reference response 

spectrum, over the selected period range. 

After selecting the fifty ground motions for a given structure, these were then scaled 

for the values of a selected intensity measure (IM) matching the return periods previously 

referred. Two IMs were considered therefore leading to two different sets of records that 

were used in the analysis of each structure. One of the considered IMs is the PGA and the 

other is the  1aS T , simply referred to as aS  hereon. It is noted that a comprehensive 

discussion on the effects of ground motion scaling is beyond the scope of the proposed 

work. The reader is referred, for example, to Shome et al. (1998), Stewart et al. (2001), 

Kurama and Farrow (2003) and Luco and Bazzurro (2004) for discussions on this matter. 

 

 

5.5 Results of the goodness-of-fit assessment  

5.5.1 Initial considerations  

General conclusions regarding the assessment of the selected statistical distribution 

hypotheses are presented in the following. For the sake of brevity, only a sample of the 

results is shown, along with representative figures illustrating the more important findings. 

The goodness-of-fit tests were applied to the structural demand data recorded at the 

control sections of the previously referred structures which were analysed under increasing 

levels of earthquake loading. As previously referred, each structure was analysed under a 

suite of fifty ground motions scaled up to nine intensities. However, in some of the 

structures, and for a given intensity level, convergence of the structural analyses was not 

achieved for all the ground motions due to global dynamic instability of some of the 

numerical analyses. To maintain the size representativeness of the considered demand 

datasets, a specific intensity level of a given structure was disregarded in the goodness-of-fit 

analysis when convergence was not achieved for more than five ground motions. 

Therefore, the size of the analysed datasets is always between forty-five and fifty. For these 

sample sizes n, Table 5.2 shows the critical values of the considered goodness-of-fit tests. 

Some of the critical values can be seen to be nearly constant across the different sizes while 

others exhibit more variability. Furthermore, it can also be observed that some of the 

critical values have a decreasing or increasing trend as the sample size decreases, while 
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others show a more erratic evolution. This latter aspect is a consequence of the empirical 

method used to obtain such critical values.  

Table 5.2. Critical values of the selected tests for different sample sizes (LCV and UCV are the lower and 
upper critical values, respectively). 

2
3  sJR  Tw CS  1

TLmomT  2
TLmomT   3

TLmomT  TMC-LRn 
 LCV UCV LCV UCV      

50 5.98E-03 0.936 1.147 -1.912 2.005 1.015 5.962 5.952 5.950 7.321 

49 6.15E-03 0.946 1.096 -1.912 2.003 1.015 5.952 5.957 5.959 7.384 

48 6.33E-03 0.945 1.097 -1.913 2.007 1.015 5.965 5.954 5.950 6.614 

47 6.50E-03 0.945 1.099 -1.911 2.007 1.016 5.952 5.951 5.951 6.735 

46 6.74E-03 0.944 1.100 -1.910 2.006 1.016 5.958 5.955 5.954 7.253 

45 6.95E-03 0.944 1.101 -1.914 2.005 1.016 5.954 5.950 5.943 7.357 

 

The goodness-of-fit results are presented separately for the distributions of beam and 

column demand data, obtained from control sections located at the member ends, and for 

the maximum inter-storey drift demand over the height of the structure, Δ. For beams and 

columns, test results are presented for the maxima of the curvature  , of the chord 

rotation   and of the shear force demand V. The chord rotation was computed according 

to the Exact Geometrical Method referred in Chapter 2. For curvature and chord rotation 

demand, tests were applied separately for positive and negative data. However, the 

combination of the random nature of the ground motions with the characteristics of a 

given structure imply that positive and negative demand values may not be obtained at 

some control sections for some of the records considered (e.g. in some sections, only 

negative curvatures reached the minimum size of forty-five while positive curvatures did 

not). Therefore, to maintain the size representativeness of the demand datasets, any 

curvature or chord rotation dataset for which such situation was observed for more than 

five ground motions is disregarded in the goodness-of-fit analysis. For these EDPs, the 

presented results are the average of the results obtained for both signs. To illustrate the size 

of the presented statistical study, Table 5.3 presents the number of considered datasets for 

 ,   and V, for each structure, by type of structural element, and for both IMs, after 

removing the datasets that do not meet the minimum size of forty-five. Globally, the 

number of datasets is over 33000 (more than 16000 for each IM). With respect to Δ, a total 

of 85 datasets were analysed.  
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Table 5.3. Number of analysed datasets by structure, by type of structural element, for EDPs of each section 
and for both IMs 

  Beams Columns 

Structure IM  → PGA aS  PGA aS  

EDP     V   V     V     V 
ICONS 

nº of datasets 223 219 120 362 357 192 319 319 160 511 512 256 

EDP     V   V     V     V 
REG6 

nº of datasets 381 372 216 372 364 216 591 598 324 579 584 324 

EDP     V   V     V     V 
IRREG6 

nº of datasets 270 261 144 259 251 144 446 449 252 431 435 252 

EDP     V   V     V     V 
REG10 

nº of datasets 957 924 540 940 906 540 1298 1299 720 1266 1266 720 

EDP     V   V     V     V 
IRREG10 

nº of datasets 781 768 432 769 753 432 1107 1115 612 1088 1092 612 

 

Results are presented in terms of average percentage of acceptance (APA) data for 

the considered levels of seismic intensity, for the two selected IMs, and for both the 

normal and the lognormal statistical distribution hypotheses. The APA represents the 

number of times a certain group of tests does not reject a given distribution hypothesis, 

considering a confidence level of 95%. In quantitative terms, it is necessary to define a 

threshold APA value above which a given distribution hypothesis is accepted to be 

appropriate to model the probabilistic distribution of an EDP. Since demand distributions 

are not expected to follow a theoretical and idealized statistical model perfectly, a limit 

APA value of 75% was considered to be adequate to represent the average contribution of 

the control sections of all the structures, as well as the result of the different tests being 

considered. APA results below this 75% threshold are further analysed to examine the 

reasons for such score. With respect to the selected groups of tests, the following three 

groups are defined:  

 Group 1 - Tests for symmetric data 

 Group 2 - Tests for data with potential outliers 

 Group 3 - All the tests from Group 1 and from Group 2 

The subsequent discussion begins by presenting global results, i.e. average 

goodness-of-fit results considering the demand datasets of all the structures simultaneously, 

followed then by a more detailed structure-by-structure analysis. Based on this more 

detailed assessment, some aspects related to the individual demand datasets are also 
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discussed, namely in terms of the existence of potential outliers and of their influence on 

the goodness-of-fit results.  

 

 

5.5.2 Presentation and discussion of the results  

5.5.2.1 Global goodness-of-fit results 

The goodness-of-fit results obtained from the application of the tests from Group 3 

to the column and beam demand datasets of all the structures are presented in Figs. 5.4a) 

and b), respectively, for the case where PGA is the selected IM. Observation of these 

results shows that the lognormal distribution hypothesis yields better results for the 

probabilistic modelling of the   and   demand distributions. For the probabilistic 

representation of the shear force demand, both distribution hypotheses yield similar results. 

However, the APA results of the several EDPs do not meet the 75% threshold for several 

seismic intensities, particularly for the V demand in beams. 
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 b) 

Figure 5.4. APA results from the tests of Group 3 for the column (a) and beam (b) datasets of all the 
structures, when PGA is the IM. 

 

Figures 5.5a) and b) present results similar to those of Figs. 5.4a) and b) now for the 

case where aS  is the selected IM. As for the previous case, the lognormal distribution is 

seen to be more adequate to model the probabilistic distribution of the   and   demand. 

With respect to the shear force demand, again both distribution hypotheses yield similar 

results. More importantly, the observation of these results allows concluding that selecting 

aS  as the IM generally leads to higher APA results. Moreover, for the   and   demands, 

such APA results meet the 75% threshold for most seismic intensities. However, for the 

case of shear force demand, there are APA values below the referred threshold for several 

seismic intensities, particularly in beams.  
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 b) 

Figure 5.5. APA results from the tests of Group 3 for the column (a) and beam (b) datasets of all the 
structures, when aS  is the IM. 

 

With respect to the Δ demand, Figs. 5.6a) and b) present the goodness-of-fit results 

obtained from the application of the tests from Group 3 to the datasets of all the structures 

for the cases where PGA and aS  are the IM, respectively. The presented results indicate 

that the lognormal distribution is generally more adequate than the normal distribution to 

represent the probabilistic distribution of Δ. Furthermore, the advantage of one IM over 

the other is not as clear as for the previous EDPs. Still, aS  is favoured since it leads to 

higher APA results for the higher IM levels. Nonetheless, there are some APA values 

below the 75% threshold.  
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 b) 

Figure 5.6. APA results from the tests of Group 3 for the inter-storey drift datasets of all the structures when 
PGA is the IM (a) and when aS  is the IM (b). 

 

Globally, the presented results indicate that the lognormal distribution could be 

suitable for the probabilistic modelling of the   and   demand of beams and columns, as 

well as for the probabilistic modelling of the Δ demand. With respect to the shear force 

demand, the results indicate that both the normal and the lognormal distributions may have 

the same potential to model the probabilistic distribution of this parameter. Furthermore, it 

is seen that aS  is a more adequate IM than PGA for the purpose of obtaining demand 



5.17 

distributions that are more compatible with the referred distribution hypotheses. However, 

the goodness-of-fit results are not totally satisfactory since there are APA values lower than 

the defined acceptance threshold for some of the IM levels. The reasons for such results 

are addressed in the more detailed structure-by-structure analysis presented in the following 

section where a more refined analysis of the demand datasets is proposed, along with some 

data processing measures that will improve the APA results. 

 

 

5.5.2.2 Structure-by-structure goodness-of-fit results 

In order to examine the reasons behind some of the lower APA results previously 

referred, some example situations exhibiting less satisfactory goodness-of-fit results are 

discussed next. It is noted that an extensive structure-by-structure presentation of the 

analysis of all the EDPs represents a prohibitive amount of information to be shown 

herein. Hence, for the sake of brevity, only a few selected cases are referred. 

To illustrate a situation where goodness-of-fit results for   are less satisfactory, 

Fig. 5.7a) presents the APA results obtained from the application of the tests from Groups 

1, 2 and 3 for the columns of the REG10 structure when PGA is the selected IM. As can 

be observed, the goodness-of-fit results of the Group 3 tests for the lognormal distribution 

hypothesis do not meet the 75% APA threshold for some of the intensities and, for the 

lower intensities, the normal distribution hypothesis yields better APA results. Moreover, it 

can also be observed that, particularly for intensities 4 and 5, the results from the tests of 

Group 1 (tests for symmetric data) and 2 (tests for data with potential outliers) are 

considerably different. Since the APA results from the Group 2 tests are higher, such 

differences indicate that the demand datasets are asymmetric due to the existence of 

outliers in a number close to three (at each end of the datasets or at one end only). To 

illustrate this finding, Figs. 5.8a) and b) present, for intensity 4, the positive and negative, 

respectively,   datasets (in log units) of all the columns of the REG10 structure. The 

vertical lines separate the   datasets for the columns of the outer left, the inner left, the 

inner right and the outer right alignments, and each tick mark of the horizontal axis 

represents one control section. The presented demand distributions exhibit some 

asymmetry associated, in many sections, to a negative skew (the distribution tail is longer 

for the lower demand values) which indicates the presence of low demand values that are 

more distant from the core of the remaining values and that can be considered to be 

outliers.  
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Figure 5.7. APA results for the REG10 column curvatures for the different test types when PGA is the IM 
(LN hyp. is the lognormal hypothesis and N hyp. is the normal hypothesis) (a) and enhanced APA results 

after the application of the DPMs for the lognormal hypothesis only (b). 
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  b) 

Figure 5.8. Individual positive (a) and negative (b) curvature datasets of the column sections of the REG10 
when PGA is the IM. 

To reduce the influence of the referred outlying observations and improve the APA 

results, several data processing measures were defined. Based on the observation of 

individual demand datasets of several intensity levels, the following three global data 

processing measures were considered:  

 Data Processing Measure 1 (DPM 1) - Exclusion of the three lowest values from a 

given dataset (in absolute values, if the EDP is negative) 

 Data Processing Measure 2 (DPM 2) - Exclusion of the three largest values from a 

given dataset (in absolute values, if the EDP is negative) 
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 Data Processing Measure 3 (DPM 3) - Exclusion of the three largest and of the 

three lowest values from a given dataset  

In order to apply DPM 3, additional critical values of the tests were obtained for 

datasets of size forty-four. Due to the dataset size related aspects referred in Section  5.5.1, 

DPM 3 was applied to a smaller number of datasets than DPM 1 and DPM 2. On average, 

DMP 3 was applied to 90% of the datasets used for DPM 1 and DPM 2.   

Since the thorough analysis of each individual dataset is beyond the scope of the 

present study, the selected measures are seen as global data processing approaches to be 

applied to all the datasets of a given EDP and for a certain intensity level.  

For the referred case of structure REG10, the several DPMs were applied to the 

column   datasets of all the intensity levels to obtain the highest possible APA results 

associated to the lognormal distribution hypothesis since, according to the preliminary 

conclusions previously referred, this distribution is favoured for the probabilistic modelling 

of  . For intensity 1, the original APA values from Fig. 5.7a) are the highest, for intensities 

2 to 5, which includes the case of the   datasets of Figs. 5.8a) and b), the highest APA 

results were obtained by applying the DPM 1, for intensity 6, the highest values were 

obtained by applying the DPM 3, for intensities 7 and 8, the highest values were obtained 

by applying the DPM 2, and for intensity 9, the highest values were obtained by applying 

the DPM 2 to the positive   datasets and the DPM 3 to the negative   datasets. To 

illustrate these findings, Fig. 5.7b) presents the enhanced APA results of Fig. 5.7a) only for 

the lognormal distribution hypothesis. As can be observed, the APA results are now 

generally higher. Nonetheless, the results of intensities 2 and 3 are still below the 75% 

threshold. For these intensities, a number of datasets has been found to be mostly 

symmetric, since the results of the Group 1 tests are higher than those of Group 2, while 

other datasets are negatively skewed and exhibit more than 3 outliers (at each end of the 

datasets or at one end only), meaning that the application of the DPM 1 may be insufficient 

to lead to APA results that meet the target threshold. For the remaining intensities, it is 

noted that the results from the tests of Group 1 and 2 are closer to each other, meaning 

that the censored datasets are more symmetric and less influenced by outliers.  

To further illustrate this type of analysis, Fig. 5.9a) presents another example now for 

the   of the beams of the IRREG6 structure when aS  is the selected IM. In this example, 

it can be observed, for the particular case of intensity 4, that all groups of tests yield similar 

low results. Furthermore, it can be also seen that the normal distribution hypothesis leads 

to considerably higher APA results. Based on these results, it can be concluded that, for 

intensity 4, the original data is more symmetric than its logarithmic transformation and 

that, if there are datasets for which outliers occur under this transformation, their number 

will exceed three (at each end of the datasets or at one end only). To illustrate this latter 

aspect, Figs. 5.10a) and b) present, for intensity 4, the positive and negative, respectively,   
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datasets (in log units) of all the beams of the IRREG6 structure. The vertical lines of 

Figs. 5.10a) and b) separate the   datasets for the beams of the left and the right bays. As 

can be observed, the datasets are, in general, negatively skewed, exhibiting a considerable 

number of outlying observations, particularly for the case of Fig. 5.10a). The reason behind 

such type of demand distribution is due to the fact that, for such intensity, some of the 

ground motions still lead to elastic demand, while others lead to demand values already in 

the plastic range. This mixture of demand values resulting from different behaviours 

observed in some sections then leads to the lower APA values that are observed. Still, this 

aspect does not invalidate the possible adequacy of the lognormal distribution to model the 

core of the datasets. As for the previous example, the several DPMs were applied to the 

beam   datasets of all the intensity levels to obtain the highest possible APA results 

associated to the lognormal distribution hypothesis. The enhanced APA results presented 

in Fig. 5.9b) for this distribution can be seen to be globally higher, particularly those of 

intensity 4 which were obtained by applying the DPM 3 to the positive   datasets and the 

DPM 1 to the negative   datasets. 
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Figure 5.9. APA results for the IRREG6 beam curvatures for the different test types when aS  is the IM (LN 
hyp. is the lognormal hypothesis and N hyp. is the normal hypothesis) (a) and enhanced APA results after the 

application of the DPMs for the lognormal hypothesis only (b). 
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  b) 

Figure 5.10. Individual positive (a) and negative (b) curvature datasets of the beam sections of the IRREG6 
when aS  is the IM. 
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Similar analyses and conclusions were obtained for the other EDPs. For the case of 

 , Figs. 5.11a) and b) present two examples for the case of the IRREG10 columns, when 

PGA is the IM, and of the REG6 beams, when aS  is the IM, respectively. As can be seen, 

the REG6 structure presents, for intensity 5, a case similar to that of the IRREG6 

structure, while the IRREG10 presents, for intensities 7 to 9, a situation similar to the one 

analysed for the REG10 structure. After applying the DPMs to obtain the highest APA 

values, the results presented in Figs. 5.12a) and b) were obtained.  

For the case of Δ, Figs. 5.13a) and b) present two examples for the case of the 

REG10 structure, when PGA is the IM, and of the REG6 structure, when aS  is the IM, 

respectively. The observation of these results shows that the presented APA values are 

considerably low. However, it should be noted that, for each structure and for each 

intensity level, there is only one Δ dataset under analysis. Therefore, the presented results 

of the tests of Groups 1, 2 and 3 are, respectively, the average of 4, 4 and 8 test results 

only. These results also indicate that considering PGA as the IM leads to higher APA 

results for the lognormal distribution hypothesis. Furthermore, the results also show that, 

for intensities 5 to 9, the APA results of the REG6 structure are considerably influenced by 

the existence of outlying observations in a number up to three (at each end of the datasets 

or at one end only), since the results of the tests of Group 2 are all 100%. To illustrate this 

situation, Fig. 5.14 shows the inter-storey drift datasets (in log units) of the REG6 structure 

for all intensities. After applying the DPMs to obtain the highest APA values, the results 

for these structures and the lognormal distribution hypothesis are 100% for all intensities.  

Based on the more detailed analysis of the results presented so far, it is possible to 

observe that the probability of acceptance of the lognormality or normality hypotheses may 

reach high values, e.g. close to 100%, but also very low values, e.g. close to zero, due to the 

individual characteristics of each dataset. Still, there is no single test that gives 

systematically lower acceptance results than the others, but it is possible to observe that 

when outliers are present, the results of tests from Group 1 are lower. 
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 b) 

Figure 5.11. APA results for the IRREG10 column chord rotations for the different test types when PGA is 
the IM (a) and for the REG6 beam chord rotations for the different test types when aS  is the IM (b) (LN 

hyp. is the lognormal hypothesis and N hyp. is the normal hypothesis) 
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Figure 5.12. Enhanced APA results for the IRREG10 column chord rotations for the different test types 
when PGA is the IM (a) and for the REG6 beam chord rotations for the different test types when aS  is the 

IM (b), after the application of the DPMs for the lognormal hypothesis only 
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Figure 5.13. APA results for the inter-storey drift of REG10 for the different test types when PGA is the IM 
(a) and of REG6 for the different test types when aS  is the IM (b) (LN hyp. is the lognormal hypothesis and 

N hyp. is the normal hypothesis) 
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Figure 5.14. Inter-storey drift datasets of REG6 for all intensity levels when aS  is the IM. 

 

With respect to V, Figs. 5.15a) and b) present examples, respectively, for the ICONS 

columns, when aS  is the IM, and for the IRREG10 columns, when PGA is the IM (the 

legend of Fig. 5.15b) is the same as that of Fig. 5.15a)). Generally, the APA values are lower 

for V than for the other EDPs and, as previously observed, both distribution hypotheses 

yield similar results. For intensities 2, 3 and 8, the ICONS structure presents a situation 

similar to that of the   values referred in Fig. 5.9a). On the other hand, the IRREG10 case 
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is, for several intensities, similar to the situation analysed for the   values of Fig. 5.7a). 

After applying the DPMs to obtain the highest APA values, the results presented in 

Fig. 5.16b) show there is a considerable increase in the APA results of the IRREG10 

structure for intensities 4 to 9 and for both distribution hypotheses. On the other hand, for 

most intensity levels, the new APA results of the ICONS structure, Fig. 5.16a), have not 

increased sufficiently to meet the APA threshold. The reason behind the lower APA values 

obtained in this case is directly connected to the expected evolution of the V values. Since 

the post-yield stiffness of a structural member is usually low, the spread of the shear force 

demand distribution tends to be very small when a given structural member has yielded at 

both ends. In such cases, two caveat conditions were found to occur. In the first condition, 

some sections exhibited a shear force distribution which was found to be very irregular 

and, in some cases, almost uniform. In the second condition, some sections exhibited a 

shear force demand distribution with a set of values following the proposed distribution 

hypotheses mixed with a considerable number of outliers. This second condition was 

observed, for example, in sections where, for a particular IM level, some of the considered 

ground motions led to yielding while others did not. 
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Figure 5.15. APA results for the ICONS column shear forces for the different test types when aS  is the IM 
(a) and for the IRREG10 column shear forces for the different test types when PGA is the IM (b) (LN hyp. is 

the lognormal hypothesis and N hyp. is the normal hypothesis) 
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 b) 

Figure 5.16. Enhanced APA results for the ICONS column shear forces for the different test types when aS  
is the IM (a) and for the IRREG10 column shear forces for the different test types when PGA is the IM (b) 

(LN hyp. is the lognormal hypothesis and N hyp. is the normal hypothesis) 
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To illustrate the first condition, Fig. 5.17a) presents the shear force demand datasets 

of intensity 8 (in log units) for the column sections of the ICONS structure. As referred, 

the dispersion of the demand values is very low and such uniformity leads to more 

difficulties in fitting a normal or a lognormal distribution to the demand. To illustrate the 

second condition, Fig 5.17b) presents the Q-Q plot of the shear force demand for one of 

the central beam sections of the REG10 structure for intensity 9, when aS  is the IM, where 

it is clear that ten demand values fall outside the range of the remaining ones. The totality 

of the datasets for that case is presented in Fig. 5.17c) where both conditions can be 

observed. For this intensity, most of the left and right beams of the lower storeys have 

yielded, thus leading to the low dispersion of the demand, while the second caveat 

condition occurs in several central beams, namely in the top storeys. To further observe the 

influence of these two conditions, the APA results for that case are presented in Fig. 5.18a) 

where a clear decrease of the APA values can be observed as the IM level increases, i.e. as 

the nonlinearity extends to more beams. Moreover, the application of the DPMs does not 

lead to enhanced APA results that are much higher, as can be seen from the results 

presented in Fig. 5.18b).  
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  c) 

Figure 5.17. Individual shear force datasets for the columns of the ICONS structure and intensity 8 (in log 
units) (a), Q-Q plot of the shear force demand for one of the central beam sections of the REG10 structure 

for intensity 9, when aS  is the IM (b), and corresponding individual shear force datasets (c). 
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 b) 

Figure 5.18. Shear force APA results (a) and enhanced APA results (b) for the beams of REG10 when aS  is 
the IM (LN hyp. is the lognormal hypothesis and N hyp. is the normal hypothesis) 

 

Based on these results, it appears that the normal and the lognormal distribution may 

not be adequate to model the shear force demand distribution in some cases. Nonetheless, 

since such distributions are still appropriate in a number of situations, the effect of 

considering them in cases for which they are less adequate is addressed in the following to 

determine if their use can be foreseen. This analysis is based on the comparison of the 

shear force fragility values of selected sections calculated using the empirical and a fitted 

cumulative distribution function (CDF) of the demand,  .DPF . These fragility values fp  

were calculated according to Eq. (5.15), where  .Cf  is the probability density function 

(PDF) of the capacity, for the higher IM levels where the APA results are lower.  

     
0

1f DP Cp F f d  


   (5.15) 

To illustrate this analysis and the results found, only a few selected examples are 

presented herein for the case of the normal distribution. It is nonetheless noted that similar 

results were obtained for the lognormal distribution. Figures 5.19a) to d) present the 

comparison of the empirical and fitted CDFs of the shear force demand of four sections: 

one column section of the ICONS structure for intensity 8, one beam section of the 

IRREG10 structure for intensity 9, one column section of the IRREG6 structure for 

intensity 9, when aS  is the IM, and the section of Fig. 5.17b). It can be observed that the 

normal distributions, which are based on the sample mean and standard deviation, produce 

a rather poor fit, particularly in the last two cases.  
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Figure 5.19. Comparison of the empirical and fitted demand CDFs for one column section of the ICONS 
structure for intensity 8 (a), one beam section of the IRREG10 structure for intensity 9 (b), one column 

section of the IRREG6 structure for intensity 9 (c), when aS  is the IM, and for the case of Fig. 5.17b) (d).  

 

To be able to compare fp  values of different ranges, four capacity PDFs were 

considered for each section. The PDFs were defined by a normal distribution with a mean 

value Cµ and a standard deviation compatible with a selected coefficient of variation (CoV). 

Two values of the CoV were considered for each section in order to define situations of 

lower variability (CoV = 5%) and of larger variability (CoV = 30%). Although more 

sophisticated probabilistic models of the shear capacity could imply the consideration of a 

value larger than 30% (Song et al., 2010), such limit serves the purpose of this analysis. On 

the other hand, the consideration of a CoV value of 5%, which can be seen to be rather 

low, enables highlighting a particular type of results of this analysis. For the selected 

sections, Table 5.4 presents the fp  values obtained for the empirical ( ,f empp ) and the fitted 

normal ( ,f fitp ) demand CDFs, considering the referred capacity PDFs. As can be 

observed, the ,f fitp  values are always larger, i.e. on the safe side. The relative errors   

between the ,f empp  and the ,f fitp  values are also presented in Table 5.4. As can be seen, 

the   values obtained for all the sections are very low when the capacity distribution 

exhibits larger variability (CoV = 30%). Contrariwise,   values are larger when the CoV is 

5%. Furthermore, in this case, the   values of the ICONS and IRREG10 sections are 

similar for both capacity PDFs while those of the IRREG6 and REG10 sections are 

considerably larger for the lower ,f fitp  values. This aspect is related to the inadequate 

normal distribution fits obtained for these two sections and to the lower degree of 
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overlapping between the demand and the capacity distributions in this case. When the CoV 

is larger, the numerically significant contribution of the PDF to the value of Eq. (5.15) is 

defined over a larger domain. This aspect appears to mask the differences between the 

empirical and the inadequate normal distribution fits that would lead to larger   values, as 

for the case of a lower CoV. 

To overcome the larger   values, alternative normal distributions fits were 

considered for these two sections and for the CoV of 5%. These alternative fits were 

defined by computing the distribution parameters using robust estimators, namely the 

median, instead of the mean, and the dispersion measure iqrs , instead of the standard 

deviation. Parameter iqrs  is based on the inter-quartile range of the data (Hoaglin et al., 

1983) and is defined by  

 75% 25%

1.349iqr

P P
s


  (5.16) 

where P75% and P25% are the 75th and 25th percentiles of the data, respectively. To observe 

how close these robust fitted CDFs are to the empirical CDFs, Figs. 5.19c) and d) present 

also the plots of the robust CDFs. As can be seen, the empirical and the fitted CDFs are 

much closer now for nearly 80% of the relevant domain. Furthermore, the new ,f fitp  

values obtained for the robust fits, which are also presented in Table 5.4, are seen to be 

closer to the ,f empp  values and to have   values similar for both capacity PDFs.  

From this analysis, the normal (and the lognormal) distribution may be seen to lead 

to inadequate fits of the demand or to inadequate APA results. However, the presented fp  

results and those obtained for other sections indicate that the errors of considering this 

distribution tend to be low when the variability of the capacity is larger, and can be 

accepted when the variability of the capacity is lower. Furthermore, larger errors can be 

considerably reduced if adequate robust methods are used to determine the distribution 

parameters. 
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Table 5.4. Shear force fragility values fp  of the selected sections with the mean values Cµ and the CoVs of 

the considered shear force capacities, and the relative errors  . 

 
CoV 

ICONS 

column section 

IRREG10 

beam section 

IRREG6 

column section 

REG10 

beam section 

0.05 

Empirical 

CDF 

0.30 

3.34E-3 

(Cµ = 29kN) 

 

1.78E-2 

(Cµ = 28kN) 

 

8.89E-3 

(Cµ = 85kN) 

 

4.74E-2 

(Cµ = 50kN) 

2.37E-3 

(Cµ = 160kN) 

 

1.13E-2 

(Cµ = 155kN) 

 

7.30E-3 

(Cµ = 500kN) 

 

2.07E-2 

(Cµ = 350kN) 

1.26E-3 

(Cµ = 39kN) 

 

1.73E-2 

(Cµ = 37kN) 

 

7.38E-3 

(Cµ = 120kN) 

 

2.46E-2 

(Cµ = 80kN) 

4.77E-3 

(Cµ = 140kN) 

 

2.52E-2 

(Cµ = 135kN) 

 

6.97E-3 

(Cµ = 450kN) 

 

2.29E-2 

(Cµ = 300kN) 

0.05 

Normal 

fitted CDF 

0.30 

3.56E-3; ε = 6.73% 

(Cµ = 29kN) 

 

1.86E-2; ε = 4.31% 

(Cµ = 28kN) 

 

8.90E-3; ε = 0.18% 

(Cµ = 85kN) 

 

4.75E-2; ε = 0.22% 

(Cµ = 50kN) 

2.50E-3; ε = 5.58% 

(Cµ = 160kN) 

 

1.17E-2; ε = 3.87% 

(Cµ = 155kN) 

 

7.31E-3; ε = 0.15% 

(Cµ = 500kN) 

 

2.08E-2; ε = 0.18% 

(Cµ = 350kN) 

1.62E-3; ε = 28.5% 

(Cµ = 39kN) 

 

1.97E-2; ε = 13.6% 

(Cµ = 37kN) 

 

7.40E-3; ε = 0.28% 

(Cµ = 120kN) 

 

2.47E-2; ε = 0.35% 

(Cµ = 80kN) 

8.49E-3; ε = 77.9% 

(Cµ = 140kN) 

 

3.53E-2; ε = 40.2% 

(Cµ = 135kN) 

 

7.00E-3; ε = 0.43% 

(Cµ = 450kN) 

 

2.30E-2; ε = 0.52% 

(Cµ = 300kN) 

Robust 

normal 

fitted CDF 

0.05 - - 

1.40E-3; ε = 11.5% 

(Cµ = 39kN) 

 

1.93E-2; ε = 11.2% 

(Cµ = 37kN) 

5.44E-3; ε = 14.1% 

(Cµ = 140kN) 

 

2.87E-2; ε = 14.0% 

(Cµ = 135kN) 

 

 

5.5.2.3 Enhanced global goodness-of-fit results 

To emphasize the influence of the DPMs on the final APA values, goodness-of-fit 

results representing the enhanced APA results of Figs. 5.4a) and b), Figs. 5.5a) and b) and 

Figs. 5.6a) and b) are shown in Figs. 5.20a) and b), Figs. 5.21a) and b) and Fig. 5.22, 

respectively. Based on the previous analysis of the results, only the lognormal hypothesis is 

considered for  ,   and Δ. The analysis of the enhanced APA results indicates that for 

the  ,  , and V demands, the best APA results are obtained when aS  is the IM. For Δ 

such trend is not as clear, though aS  is better for more intensities. It is also observed that 

only the APA results for the shear force do not meet the 75% threshold value, namely for 
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most intensities of the beam datasets and for intensity 4 of the column datasets. Still, the 

lognormal and normal distribution hypotheses are accepted in light of the fragility analysis 

previously presented. From the analysis of the enhanced APA results, the influence of 

outlying observations becomes clear and implies that adequate robust methods should be 

used to determine the distribution parameters. 
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 b) 

Figure 5.20. Enhanced APA results from the tests of Group 3 for the column (a) and beam (b) datasets of all 
the structures, when PGA is the IM. 
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 b) 

Figure 5.21. Enhanced APA results from the tests of Group 3 for the column (a) and beam (b) datasets of all 
the structures, when aS  is the IM. 
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Figure 5.22. Enhanced APA results from the tests of Group 3 for the inter-storey drift datasets of all the 
structures for both IMs 
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5.5.3 Complimentary discussion of the results obtained by the 

Kolmogorov-Smirnov/Lilliefors test 

Although the inadequacy of the K-S/L test to assess the normality (or lognormality) 

hypothesis of the data has been widely addressed in the previously referred statistics 

literature, its widespread use and large availability in commercial software make it 

interesting to briefly present and discuss some of the results that it can lead to. 

The K-S/L test is a modification of the Kolmogorov-Smirnov test for normality 

proposed by Lilliefors (Lilliefors, 1967) for the case where the mean and the variance of the 

distribution are unknown and must be estimated from the data. The test statistic K-S/L is 

defined as  

 K-S/L      2 2

1
max ; ; 1 ; ; ;i i

i n
x x s i n i n x x s

 
        (5.17) 

where  2; ;ix x s  is the cumulative distribution function of the normal distribution with 

parameters estimated from the data. The normality hypothesis of the data is then rejected 

for values of the statistic K-S/L larger than the critical value.  

In order to illustrate the type of results that can be obtained when applying the 

K-S/L test to the EDP data of the structures considered herein, Fig. 5.23 presents APA 

results of this test along with those of the Group 3 tests before applying the DPMs. The 

results presented in Fig. 5.23a) are for the IRREG10 column shear forces, while those of 

Fig. 5.23b) are for the   of the REG10 beams, both when aS  is the selected IM. As can be 

observed, the results of Fig. 5.23a) indicate that the K-S/L test is much more permissive 

than the Group 3 tests, leading, for the case of the lognormal distribution hypothesis, to 

APA values of 100% for all the intensities. On the contrary, Fig. 5.23b) shows an opposite 

trend of the K-S/L test APA results. In this case, the K-S/L test yields considerably lower 

results than those obtained by the Group 3 tests for all the intensities. Results obtained by 

the K-S/L test such as those of Fig. 5.23a) are common and are the reason for the 

widespread conclusion found in the statistics literature which refers that the K-S/L test is 

not adequate to test the normality (or the lognormality) hypothesis of the data. On the 

other hand, results such as those of Fig. 5.23b) are seldom mentioned. Still, this type of 

result has been recently addressed in (Drezner et al., 2010) where it is referred that 

situations such as these may occur when the sample mean and standard deviation may not 

be the best choice of parameters to characterize the distribution required for the K-S/L 

test. According to the referred study, in some cases, the rejection/acceptance of the 

normality hypothesis by the K-S/L test depends on the distribution parameters considered. 

Hence, it is sometimes possible to define an optimized set of parameters leading to a fitted 

distribution that is closer to the empirical one (Drezner et al., 2010). However, this 

optimization procedure does not correspond to the standard application of the K-S/L test. 

As an example of this situation, Fig. 5.24 presents the empirical CDF of the log of the 
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curvatures of one column of the REG6 structure, for intensity 5 and when aS  is the IM, 

with the CDF of two different fitted normal distributions. The difference between the two 

fitted distributions is in the way the central value is determined: in the first case the sample 

mean is used, while in the second case the median is considered instead. Goodness-of-fit 

results for this dataset indicate that all the Group 3 tests accept the normality hypothesis of 

the log of the data. However, the K-S/L test results vary: the hypothesis is rejected when 

the sample mean is used but it is accepted when using the median instead. It can be seen 

from Fig. 5.24 that the fitted distribution that uses the median is closer to the empirical 

CDF, a fact that leads to a value of the K-S/L statistic given by Eq. (5.17) of 0.12, instead 

of the value of 0.15 obtained when using the mean.  

Based on the two examples of Fig. 5.23, the lack of objectivity of the K-S/L 

goodness-of-fit results becomes clear since this test can be either very permissive, or very 

severe. Hence, the acceptance of the normality or of the lognormality hypothesis of the 

data based on this test is not recommended. 
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Figure 5.23. APA results from the tests of Group 3 (before applying the DPMs) and from K-S/L for the (a) 
IRREG10 column shear forces and for the (b) REG10 beam chord rotations, when aS  is the IM.  
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Figure 5.24. Empirical CDF of the log of the curvatures of one column of the REG6 structure, for intensity 5 
and when aS  is the IM, with the CDF of two different fitted normal distributions.  
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5.6 Conclusions  

A study was proposed to evaluate the hypothesis that a lognormal or a normal 

distribution could adequately model the probabilistic distribution of several EDPs. The 

selected EDPs were the curvature, the chord rotation, the shear force and the inter-storey 

drift over the height of the structure. Five structures were analysed for suites of fifty 

ground motions to obtain data samples with a size significant enough. The chosen records 

were scaled for several intensities to evaluate the referred hypotheses for different hazard 

levels, and two different IMs were also considered to evaluate the influence of this 

parameter.  

The goodness-of-fit results were obtained using appropriate statistical methods and 

were presented in terms of APA (average percentage of acceptance) values data for the 

considered levels of seismic intensity, for the selected IMs, and for both distribution 

hypotheses. The APA results indicated that the lognormal distribution is suitable for the 

probabilistic modelling of the curvature, of the chord rotation and of the inter-storey drift 

demands. With respect to the shear force demand, the results indicated these distributions 

have the same potential to model its probabilistic distribution. In this case, the shear force 

APA results found were not totally satisfactory, either due to a distribution of the demand 

with very low levels of dispersion in yielding elements or due to the occurrence of a larger 

number of outlying observations. A fragility analysis was, nonetheless, performed to 

determine if the consideration of these distributions would lead to unacceptable errors. The 

results obtained from this analysis indicate that, for the structures considered herein, the 

selected distributions hypotheses lead to fragility values that are on the safe side with 

acceptable errors. Still, further structures should be analysed to confirm this conclusion. 

Although both distributions are acceptable to model the shear force demand, robust 

methods should be used to determine the distribution parameters in order to obtain more 

adequate fittings. With respect to the type of IM, aS  was seen to be typically more adequate 

than PGA for the purpose of obtaining demand distributions compatible with the selected 

distribution hypotheses.  

Finally, the analysis of the individual datasets indicated that outlying observations 

were seen to occur in many situations. Enhanced APA results were obtained after defining 

and applying several DPMs (data processing measures) to the datasets. The differences 

between the original and the enhanced APA results emphasized the influence of the 

outliers, thus implying that adequate robust methods should be used to determine the 

distribution parameters in order to minimize their effects.  
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Chapter 6 
Statistical characterization of  structural 

demand under earthquake loading - Robust 
estimation of  the central value of  the data  

 

 

6.1 Introduction 

Performance-based earthquake engineering (PBEE) methodologies often require the 

adequate characterization of a "best estimate" of the structural demand, either in the 

context of deterministic or probabilistic analyses. In the former, a small number of 

nonlinear dynamic analyses is usually involved and the demand characterization can only be 

focussed on the "average" (central value) response of the system (Watson-Lamprey and 

Abrahamson, 2006; EC8-1, 2004). In the latter case, the evaluation of probabilistic 

performance parameters, such as the annual rate of exceeding a given structural demand 

level or the annual rate of exceeding some level of loss, requires the adequate 

characterization of the probabilistic demand. Considering that the referred probabilistic 

modelling of the demand can be achieved by fitting a lognormal or a normal distribution 

(see Chapter 5), its characterization requires estimates of the central value and of the 

dispersion of the data.  

When analysing the statistics of real data, anomalous observations or outliers are 

often found. Although such outlying observations are considered to be errors in several 

situations (Hoaglin et al., 1983), such reasoning is not directly applicable when seismic 

structural demand data is analysed. In this case, outliers can be, for example, inadequate 

demand parameters resulting from a structural analysis for which convergence was not 

achieved. Alternatively, outliers can also be demand values which are numerically distant 

from the rest of the sample due to an unforeseen reason. In this context, an outlier can be 

the result of a ground motion that led to an excessively low or high demand value when 

compared to that of other ground motions associated to the same intensity measure (IM). 
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In any case, outliers are observations masking the probability distribution of the majority of 

the data, thus requiring an adequate consideration of their significance.  

Given that outliers can occur in the deterministic and the probabilistic analysis 

contexts, efficient statistical methods, such as robust estimation methods (Hoaglin et al., 

1983), should be used to obtain adequate estimates of the required demand statistics. In the 

presence of small departures from an assumed model, e.g. due to the existence of outliers, 

robust estimation methods are more suitable to characterize such statistical parameters 

since they are not overly affected by these departures. In this context, the current chapter 

and Chapter 7 present a wide scope study that focuses the statistical characterization of 

seismic demand using robust statistical methods. The current chapter presents a study 

addressing the characterization of the central value of structural demand distributions 

obtained under earthquake loading using different robust estimators. The study aims to test 

the performance of several estimators in order to identify those best suited for different 

types of data and sample sizes using adequate measures of statistical efficiency. In 

association to this study, Chapter 7 addresses the characterization of the dispersion of the 

structural demand distributions considered herein also using robust statistical methods. 

 

 

6.2 Description of the proposed study 

The presented study focuses both deformation- and strength-related engineering 

demand parameters (EDPs) and is based on local (section level) and global (system level) 

demand distributions obtained from the analysis of five reinforced concrete (RC) structures 

subjected to earthquake records of increasing intensities. At the section level, the selected 

EDPs are the maxima of the curvature, of the chord rotation and of the shear force, while 

at the system level, the chosen parameter is the maximum inter-storey drift over the height 

of the structure. It should be noted that the focus of the study does not address the 

magnitude of the central value in itself, but only deals with methods to assess this 

parameter with appropriate reliability. 

The selected structures were analysed for suites of fifty ground motions to obtain 

data samples with a size significant enough. The chosen records were scaled for several 

intensities in order to evaluate the referred hypotheses for different hazard levels. In 

addition it is referred that two different IMs were also considered to evaluate the influence 

of this parameter on the conclusions of the study.  

A series of estimators was then applied to the demand samples to identify those 

more adequate to characterize their central value. In order to assess the performance of the 

estimators for a wide range of conditions, they were applied to the samples of size fifty as 

well as to subsamples of size forty, thirty, fifteen and seven drawn from the samples of size 

fifty. 
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Since the proposed study is based on the structural demand results obtained for the 

five structures presented in Chapter 5, details about the modelling and analyses procedures, 

the quantification of the demand parameters, and the suites of fifty ground motions that 

were considered to represent the seismic demand are omitted herein.  

 

 

6.3 Main concepts in robust estimation 

The fundamentals of robust statistics, as well as of the robustness properties of 

estimators, are comprehensively addressed in a number of reference books, e.g. see 

Hoaglin et al. (1983), Hampel et al. (1986), Staudte and Sheather (1990), Wilcox (2005) 

Maronna et al. (2006). Still, some of the more important concepts are briefly reviewed in 

the following to provide some background context for the study presented herein. 

In the presence of a "well behaved" data sample 1 2, , ... nx x x  of size n, i.e. a sample 

without outliers, the best estimate of the central value is expected to be the mean x  
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1 n

i
i

x x
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   (6.1) 

which can be written also as 
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1 n

i i
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x w x
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   (6.2) 

where w is a weight function with a value of one for each data value of the sample in this 

case,  ix  represents the ith order statistic of the sample and 
1

n

ii
W w n


  . The 

alternative form of representing x  defined by Eq. (6.2) enables other estimators to be 

represented using this unified format. In a probabilistic context, under the hypothesis that 

the available data has been drawn from a normal distribution, x  is also the most efficient 

estimate of the central value. In a similar situation, if the data follows a lognormal 

distribution instead, x  is now the most efficient estimate of the central value of the log of 

the data. In this situation, the efficiency of an estimator is judged by its variance which can be 

obtained after applying the estimator to several samples of a given size drawn from the 

reference population. The most efficient estimator is that which exhibits the smallest 

variance. However, outlying observations are likely to occur in most practical situations, 

since a real data sample seldom follows an exact theoretical distribution model. In this case, 

it is well established that x  is no longer a reliable estimate of the central value due to the 

potential bias introduced by the outliers. Therefore, the adequate characterization of the 

central value of the underlying normal or lognormal distribution must be carried out with 

methods having adequate resistance properties. The resistance of an estimator refers to its 

sensitivity to misbehaviour of the data (Hoaglin et al., 1983). The breakdown point (Hampel, 

1971) and the influence function (Hampel et al., 1986; Staudte and Sheather, 1990) are two 
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widely used measures of the resistance of an estimator. The breakdown point is the smallest 

percentage of the sample observations that can be substituted by arbitrarily small or large 

values before the estimator no longer provides reliable information. For the case of x , the 

breakdown point is known to be 0, while for the median it is 50%, which is actually the 

largest possible value for central value estimators (CVEs) that treat observations on both 

sides of the estimate symmetrically (Hoaglin et al., 1983). The influence function measures the 

sensitivity of an estimator to different values of the observations and it may be used to 

describe the effect of outliers on the estimator. To illustrate this concept, Fig. 6.1 presents 

the influence functions of several estimators. From Fig. 6.1, it can be observed that, for the 

mean, the absolute value of the influence function increases as the distance between a 

certain observation and the central value of the data (zero in this case) increases, meaning 

that very large (or very small) observations will have a significant contribution to the 

estimate. On the other hand, for other estimators that will be reviewed with more detail in 

Section  6.4, the influence function can be seen to have a bounding value, beyond which the 

influence of the observations remains constant or decreases. For such estimators, the 

influence of very large (or very small) values is clearly reduced.  

The resistance properties of robust estimators can also be seen as indirect indicators of 

their sufficiency. A sufficient estimator for a certain parameter   of the data is one that 

captures all the information about   contained in the sample. Assuming that all the data in 

the sample is important to estimate  , a given estimator can be seen to be sufficient if it 

makes use of the whole sample to estimate  . Since robust estimators reduce the 

importance of certain parts of the sample (either by trimming or by giving less weight to 

extreme values of the data), a loss in sufficiency is a characteristic of their definition. 

However, as referred by Hampel (1973), robust estimators are "nearly as" sufficient for the 

parametric model as the classical ones. Still, when using robust estimators to deal with 

samples with potential outlying values, i.e. when not all the data in the sample can be 

considered to be important to estimate  , the gains in the accuracy of the inference and in 

the efficiency outweighs the loss in sufficiency. 

Although the efficiency and resistance properties of an estimator are equally important, 

they are competing parameters; resistant procedures are less efficient when the underlying 

distribution is a true theoretical model, e.g. the normal distribution, but provide better 

results when the sample contains outliers. Therefore, the identification of the more suitable 

estimator for a given data sample is not evident, especially in situations where the level of 

departure from a considered underlying distribution is not known and may vary from 

sample to sample, as for the case of structural demand samples obtained under earthquake 

loading (e.g. see Chapter 5). Hence, to select estimators best suited to characterize the 

central value of this type of data, the performance evaluation of the estimators presented in 

the following is proposed. 
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Figure 6.1. Influence functions of different estimators. 

 

6.4 Selected central value estimators 

The CVEs considered in the proposed study, other than x , are addressed in the 

following. Fifty robust estimators are selected and grouped into three general categories. A 

brief review of each robust estimator is presented and additional information can be found 

in the references cited herein. 

 

 

6.4.1 Estimators based on trimming 

Estimators in this group reduce the influence of outlying observations by using 

subsamples of the original data. 

 

 

6.4.1.1 The -trimmed mean  

The  -trimmed mean ( trx  ) is the mean value of the data sample when the 2p  

highest and lowest values are removed, where p n  . The value of trx   can be 

obtained using the unified format of Eq. (6.2) with 1W   and w replaced by:  
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Several trimmed means are considered in the proposed study with different   

values, namely with   set as 0.08, 0.12, 0.16, 0.20 and 0.24 which define the estimators 

0.08 trx  , 0.12 trx  , 0.16 trx  , 0.20 trx   and 0.24 trx  , respectively. 
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6.4.1.2 The adaptive trimming estimators  

While trx   only allows symmetric trimming of the samples, estimators based on 

adaptive trimming methods enable the possibility of asymmetric trimming based on 

measures of tail length and skewness of the data. Several CVEs using adaptive trimming 

methods have been tested by Keselman et al. (2007), following the proposals found in 

(Hogg, 1974; Hogg, 1982; Reed and Stark, 1996), and their results suggest the use of the 

estimators termed HQ1, HSK2 and HSK5.  

After setting the desired level of trimming  , the proportion to be trimmed from 

the lower end of the sample , 2L HSK , , 5L HSK  and , 1L HQ  for estimators HSK2, HSK5 and 

HQ1, respectively, is: 
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where  iU  and  iL  are the mean of the smallest and of the largest, respectively,  n  

observations of the sample, in which  k  means that k is rounded to the nearest integer, 

and M is the median defined by: 
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The proportions to be trimmed from the upper end of the sample , 2U HSK , , 5U HSK  and 

, 1U HQ  are then: 

 , 2 , 2 , 5 , 5 , 1 , 1; ;U HSK L HSK U HSK L HSK U HQ L HQ               (6.8) 

The corresponding adaptive trimmed means 2HSKx  , 5HSKx   and 1HQx   can then 

be obtained by the following unified operator _ad trx  : 
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where U Lh n t t   ,  U Ut n  and  L Lt n , and where U  and L  are replaced by 

the values obtained from Eqs. (6.4) to (6.8) for the different estimators. As for trx  , the 

considered   levels of trimming were set as 0.08, 0.12, 0.16, 0.20 and 0.24.  

 

 

6.4.1.3 The trimmed L-mean 

A robust generalization of the sample L-moments (Hosking, 1990) has been 

formulated by Elamir and Seheult (2003) leading to the development of trimmed 

L-moments. The trimmed L-mean TLx   can be obtained using the unified format of 

Eq. (6.2) with 1W   and iw  replaced by:  
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where 
i

p
 
 
 

 is 
 

!

! !

i

p i p
. As for trx  , p n   means that, for a trimming level  , the 

2p  highest and lowest values are removed. Several TLx   are considered in the proposed 

study with different   values, namely with   set as 0.08, 0.12, 0.16, 0.20 and 0.24 which 

define the estimators 0.08 TLx  , 0.12 TLx  , 0.16 TLx  , 0.20 TLx   and 0.24 TLx  , respectively. 

 

 

6.4.1.4 The Minimum Covariance Determinant estimator 

The Minimum Covariance Determinant (MCDα) estimator belongs to the class of 

high breakdown point estimators based on subranges (Rousseeuw, 1984). This estimator 

was originally targeted for multivariate data but it can also be applied to univariate samples. 

In this case, all the subsamples of size h of the original data must be defined, where 

 1h n   , and the MCDα is set to be the mean of the subsample having the smallest 

standard deviation. To obtain MCDα, the algorithmic procedure proposed by Rousseeuw et 

al. (1999) was considered. Several MCDα are considered in the proposed study with 

different   values, namely with   set as 0.08, 0.12, 0.16, 0.20 and 0.24 which define the 

estimators MCD0.08, MCD0.12, MCD0.16, MCD0.20 and MCD0.24, respectively. 
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6.4.2 M-estimators  

M-estimators reduce the influence of outlying observations without removing them 

from the data. An M-estimator nT  is an estimator that is the solution of the equation: 
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where nS  is an auxiliary estimator of the spread of the data and   is a special weight 

function that reflects the influence function of the estimator. Since an iterative root-finding 

algorithm is required to compute nT , the following procedure, based on the Newton-

Raphson method and proposed by Rousseeuw and Verboven (2002), was used herein: 
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where  k
nT  is the kth iteration estimate of nT  and  .  is the standard normal distribution 

function. 

 

 

6.4.2.1 The Huber M-estimator  

For the case of the Huber M-estimator, the  -function is (Huber, 1981): 

    
x if x c

x
c sign x if x c




   
 (6.13) 

where  sign x  is the sign function and c is a tuning constant. An example of the Huber 

 -function is presented in Fig. 6.1. The proposed study considers three versions of this 

estimator with c values of 1.0, 1.5 and 2.0 (Hoaglin et al., 1983) termed ,1HubT , ,2HubT  and 

,3HubT , respectively. For all three cases, as well as for all the M-estimators defined hereon, 

the initial estimate  0
nT  was considered to be the M, and nS  was considered to be the 

median absolute deviation (MAD) given by: 

  1.4826 iMAD med x M    (6.14) 
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6.4.2.2 The modified Huber M-estimator 

Due to the possibility of numerical instability issues associated to the original 

estimator, a modified version of the Huber M-estimator is presented by Pennacchi (2008) 

where the  -function is replaced by: 

      
 

sin 2

2

c sign x x c if x c
x

c sign x if x c





    
 

 (6.15) 

In this case, a value of 1.2107 is suggested for c (Pennacchi, 2008) which defines the 

estimator _Hub mT . 

 

 

6.4.2.3 The Hampel M-estimator 

In the case of the Hampel M-estimator, the  -function belongs to the class of 

redescending  -functions, i.e. functions which decrease towards zero for large values of 

the abscissa. For this estimator the  -function is defined as (Hoaglin et al., 1983): 
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where a, b and c are tuning constants. An example of the Hampel  -function is presented 

in Fig. 6.1. The proposed study considers three versions of this estimator with (a, b, c) 

values of (1.7, 3.4, 8.5), (2.1, 4.0, 8.2) and (2.5, 4.5, 9.5) (Hoaglin et al., 1983) termed ,1HamT , 

,2HamT  and ,3HamT , respectively. 

 

 

6.4.2.4 The Andrew´s sine wave M-estimator 

Andrew´s sine wave M-estimator AndT  also uses a redescending  -function that is 

defined by (Hoaglin et al., 1983): 

    sin
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x
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 (6.17) 

where c is a tuning constant considered with a value of 2.1 (Hoaglin et al., 1983). 
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6.4.2.5 The Tukey biweight M-estimator 

The Tukey biweight M-estimator uses the redescending  -function presented in 

Fig. 6.1 and that is defined by (Hoaglin et al., 1983): 
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where c is a tuning constant. The proposed study considers three versions of this estimator 

with c values of 4.0, 6.0 and 8.0 (Hoaglin et al., 1983) termed ,1TukT , ,2TukT  and ,3TukT , 

respectively. 

 

 

6.4.2.6 The logistic M-estimator 

In this case, the  -function is characterized by the smoothed function proposed by 

Rousseeuw and Verboven (2002):  

   1

1

x

x

e
x

e
 




 (6.19) 

which defines the estimator termed logT . 

 

 

6.4.2.7 The Welsch M-estimator 

The Welsch M-estimator WelT  was proposed by Dennis and Welsch (1978) and uses a 

soft redescending  -function defined by: 

    2x cx x e    (6.20) 

where c is a tuning constant considered with a value of 2.9846. 

 

 

6.4.3 Other estimators  

Estimators in this group fall outside the previous categories and reduce the influence 

of outlying observations without removing them from the data. 
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6.4.3.1 The median 

The median M is a commonly used CVE in the context of PBEE methodologies (e.g. 

see Aslani and Miranda (2005), Tothong and Luco (2007) among others) which is defined 

by Eq. (6.7). 

 

 

6.4.3.2 The Hodges-Lehman estimator  

The Hodges-Lehman estimator (HL) is well known in the robustness literature 

(Hampel et al., 1986) and it is based on the  1 2n n   pairs of elements of the sample that 

can be defined (allowing each element to pair with itself). After computing the average 

value of each pair, HL is the median of the  1 2n n   averages, i.e.:  

 ; 1
2

i jx x
HL med i j n

  
     

  
 (6.21) 

 

 

6.4.3.3 The least power estimator 

According to Sposito (1990), the least power ( pL ) estimator of a central value can be 

generally defined as: 
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where arg mina  stands for the value of argument a which minimizes the expression and p 

is a tuning constant. It can be seen (Pennecchi and Callegaro, 2006) that such value of a is 

the solution of: 
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Following the recommendation of Sposito (1990), the value of p was considered to be 1.5 

in order to balance the robustness and the efficiency properties of this estimator. 

 

 

6.4.3.4 The modified maximum likelihood estimator 

The modified maximum likelihood estimator (MMLE) proposed by Tiku and Sürücü 

(2009), which has shown adequate robustness properties, can be obtained using the unified 

format of Eq. (6.2) with the weighting function defined by:  
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where k is a tuning constant considered to be 30 (Tiku and Sürücü, 2009) in order to 

balance the robustness and the efficiency properties of this estimator, and 0T  and 0S  are 

auxiliary initial estimates defined by the M and the MAD, respectively.  

 

 

6.4.3.5 The Ttanh estimator 

The robust and flexible tanhT  estimator is based on the hyperbolic tangent function 

and was proposed by Leonowicz et al. (2005). The tanhT  can be obtained using the unified 

format of Eq. (6.2) with the weighting function defined by:  

 
 
 

tanh 2
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where k and s are factors controlling the slope and the vertical shift of iw . These factors 

were defined based on a preliminary sensitivity analysis of tanhT  for the standard normal 

distribution which led to the definition of two sets of parameters with different balances 

between robustness and efficiency. Therefore, 1tanh,T  considers k and s with values of 0.05 

and 0 while 2tanh,T  considers both factors equal to 0.1. 

 

 

6.4.3.6 The half-sample mode 

The half-sample mode (HSM), which is a simple and fast estimator of the mode of a 

continuous distribution, was proposed by Bickel and Frühwirth (2006) as a CVE that is less 

sensitive to outliers. The process of determining HSM starts by finding the densest half-

subset, i.e. the subset of the sample that is half the size and covers the shortest possible 

range. This process is then applied to this densest half-subset, and so on. Eventually, the 

set being considered has only two or three elements. In the former case, HSM is the mean 

of this set, while in the latter HSM is the mean of the two elements that are closer. To 

obtain HSM, the algorithmic procedure proposed by Bickel and Frühwirth (2006) was 

considered. 
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6.5 Selected methodology for the performance evaluation of 

the estimators 

The question of determining which estimator is more adequate to characterize the 

central value of a given sample raises some issues on how to assess the efficiency of the 

estimator (the term efficiency is considered here with a wider scope than that of Section 

 6.3). Still, several approaches have been proposed to address this question. One possibility 

involves the quantification of an efficiency measure defined by a parameter associated to a 

given estimator which is then compared with that of a reference estimator. A common 

example of this approach is defined by the ratio between the variance of a given estimator 

and that of a reference estimator (Hoaglin et al., 1983; Staudte and Sheather, 1990). This 

approach, however, has the drawback of requiring a sufficiently large number of estimates 

obtained from the reference data population to enable the reliable assessment of the 

variance of the estimator. When working with real data samples, this approach may not be 

possible to pursue since, as in the present study, only one sample is often available to 

estimate a given parameter. Therefore, this approach is best suited for performance 

assessment situations where theoretical probability distributions, either pure or 

contaminated by outliers, are simulated. A second possibility is the one proposed in Stigler 

(1977) which involves the quantification of several error metrics between a statistical 

estimate based on measured data and the true population value. This approach, however, is 

only applicable when the central value of the data under analysis is exactly known, a 

situation which is not that of the present study. 

In the proposed study, the evaluation of the performance of the selected estimators 

is carried out over two different assessment stages. In Stage 1, all the selected estimators 

are compared against each other based on their performance for samples of size refn  (the 

reference size). In this case, only one sample of the reference size is available for each parameter 

that needs to be estimated. The reference size considered in the present study is fifty. 

However, due to aspects which are related to the structural analyses and will be detailed in 

Section  6.6.1, some variability of this size is allowed. Therefore, without loss of generality 

of the results obtained in Stage 1, the reference size will be a value between forty-five and 

fifty, depending on the dataset under analysis.  

Two measures of efficiency are considered in Stage 1 to assess the performance of 

the estimators: the Location Relative Efficiency (LRE) and the Relative Standard Error 

(RSE). The definition of the LRE follows the suggestion found in Hill and Padmanabhan 

(1991) of comparing the estimators on the basis of the estimated lengths of the confidence 

intervals (CIs), and involves a relative efficiency measure similar to those proposed by 

Sawilowsky (2002). The LRE of a certain estimator T, LRET , is defined by: 

 95% 95%

, 95% , 95%

LRE U CI L CI
T

ref U CI ref L CI

T T

T T





 (6.26) 



6.14 

where 95%U CIT  and 95%L CIT  are the upper and lower bounds of the 95% CI of estimator T, 

respectively, while , 95%ref U CIT  and , 95%ref L CIT  are the same parameters obtained for the 

reference estimator refT . The 95% CI of a given estimator is obtained by a bootstrap procedure 

with a bias corrected and accelerated percentile method (Wilcox, 2005), considering 1000 

bootstrap samples, and refT  is considered to be x . Since an estimator T having a shorter CI 

means that the estimates it produces are less variable, values of LRET  which are lower than 

one (the value of LRE
refT ) indicate that T is more efficient than refT .  

With respect to the RSE, this efficiency measure is a modification of the previously 

referred ratio of variances from two estimators. The RSE of a certain estimator T, RSET , is 

defined by: 

 RSE
ref

T
T

T

s

s
  (6.27) 

where Ts  and 
refTs  are the estimates of the standard deviation of T and refT  obtained from 

the 1000 bootstrap samples, following the proposal from Wilcox (2005). As for LRET, 

values of RSET  which are lower than one (the value of RSE
refT ) indicate that T is more 

efficient than refT . 

As a result of Stage 1, the estimator exhibiting the best average performance over all 

the considered data samples is selected as the reference estimator for the Stage 2 evaluation. 

Furthermore, a subgroup of the initial estimators, corresponding to those with best 

performance, is also selected for Stage 2. It should be emphasized that, for the present 

study, a robust estimator will always be preferred with respect to a non-robust one such as 

x . Therefore, the main goal of Stage 1 is to determine a subgroup of robust estimators 

that are more efficient than x .  

In Stage 2, for a given parameter that needs to be estimated, the performance of the 

subgroup of estimators is evaluated considering several samples of smaller size n* which 

are drawn from the sample of the reference size. The considered sizes n* are forty, thirty, 

fifteen and seven. The performance of a given estimator is then carried out with respect to 

the value of the new reference estimator 2refT  which is selected based on the LRE and RSE 

values obtained for all the estimators in Stage 1. Since m samples of size n* are available to 

estimate each parameter in Stage 2, performance assessment measures different than those 

of Stage 1 are now considered. Such measures are the Relative Squared Error ( *RSE ) and 

the Relative Absolute Error ( *RAE ). The *RSE  of a given estimator T, *RSET , is defined 

by: 
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where , *i nT  is the value of estimator T for the ith sample of size n*, , 2 _ *i ref nT  is the value of 

2refT  for the ith sample of size n*, 2, refref nT  is the value of 2refT  for the original sample of size 

refn  and m is selected to be 10000 for each sample size n*. In a similar form, the *RAE  of a 

given estimator T, *RAET , is defined by: 
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6.6 Results of the performance evaluation of the estimators 

6.6.1 Initial considerations  

General conclusions regarding the performance of the selected estimators are 

presented in the following. For the sake of brevity, only a sample of the results is shown, 

along with representative figures illustrating the more important findings. The estimators 

were applied to the structural demand data recorded at the control sections of the 

previously referred structures which were analysed under increasing levels of earthquake 

loading. As previously referred, each structure was analysed under a suite of fifty ground 

motions scaled up to nine intensities. However, in some of the structures, and for a given 

intensity level, convergence of the structural analyses was not achieved for all the ground 

motions due to global dynamic instability of some of the numerical analyses. To maintain 

the size representativeness of the considered demand datasets, a specific intensity level of a 

given structure was disregarded when convergence was not achieved for more than five 

ground motions. Therefore, in Stage 1 of the performance evaluation of the estimators, the 

reference size refn  of the analysed datasets is always between forty-five and fifty, as referred in 

Section  6.5.  

The performance assessment results are presented for the distributions of beam and 

column demand data, obtained from control sections located at the member ends, and for 

the maximum inter-storey drift demand over the height of the structure, Δ. For beams and 

columns, results are presented for the maxima of the curvature  , of the chord rotation   

and of the shear force demand V. The chord rotation was computed according to the 

Exact Geometrical Method referred in Chapter 2. For curvature and chord rotation 
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demand, the estimators were applied separately for positive and negative data. However, 

the combination of the random nature of the ground motions with the characteristics of a 

given structure imply that positive and negative demand values may not be obtained at 

some control sections for some of the records considered (e.g. in some sections, only 

negative curvatures reached the minimum sample size of forty-five while positive 

curvatures did not). Therefore, to maintain the size representativeness of the demand 

datasets and to keep refn  between forty-five and fifty, any curvature or chord rotation 

dataset for which such situation was observed for more than five ground motions is also 

disregarded. Furthermore, it is noted that for estimators involving trimming of a dataset, 

when the trimming level is not an integer, the number of trimmed data values was rounded 

to the closest upper integer. 

Results of Stage 1 are essentially presented in terms of the average percentage of 

larger efficiency (APLE) of an estimator T with respect to refT  which was selected to be x . 

APLE values represent the number of times that T is more efficient than refT  and are 

obtained for the different EDPs considering the LRE and the RSE measures. Depending 

on the situation, APLE values are obtained by averaging across all the control sections of 

the structure or by averaging simultaneously across all the control sections of the structure 

and all the earthquake intensities. The approach of averaging across the earthquake 

intensities was selected since no specific range of ground motion intensities was seen to 

show that a given set of estimators was standing out from the others. Hence, the efficiency 

of the estimators was equally weighted across the whole range of intensities. Moreover, it 

was also observed that, for a given EDP obtained for a certain structure, the sequence of 

ground motion intensities for which a certain estimator is more efficient is roughly the 

same from estimator to estimator. In light of this, the performance results of all the 

intensities were able to be presented in a more concise form using the mean and the 

coefficient of variation (CoV) of the results for all the intensities. 

Although Chapter 5 refers that the 5% damping spectral acceleration ordinate of the 

ground motion for the fundamental period of the structure T1,  1aS T , is a more adequate 

IM than the peak ground acceleration (PGA) for the purpose of obtaining EDP 

distributions more compatible with the lognormal or the normal distribution hypotheses, 

PGA is also considered herein in order to simulate a situation of larger variability of the 

demand and to assess the performance of the selected estimators under such conditions. In 

addition, it is noted that results are presented considering the curvature, the chord rotation 

and the inter-storey drift demands in log units, i.e. in order to be compatible with the 

assumption that demand follows a lognormal distribution (see Chapter 5). For the case of 

shear force demand, results are presented for the cases where V is in original and in log 

units, i.e. in order to be compatible with the assumption that demand can follow either a 

normal or a lognormal distribution (see Chapter 5). For a clear comprehension of the 

presented graphical results, the CVEs are numbered according to Table 6.1.  
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Based on the results of Stage 1, a subgroup of thirteen (i.e. ≈ 25% of the fifty-one) 

estimators and a new reference estimator 2refT  are selected for the performance assessment 

carried out in Stage 2. The results of Stage 2 are similar to those of Stage 1, with the APLE 

value of an estimator T of the referred subgroup now being determined with respect to 

2refT , considering the *RSE  and the *RAE  measures, and considering samples sizes n* of 

forty, thirty, fifteen and seven which are drawn from the sample of the reference size.  

Table 6.1. Numbering of the selected CVEs 

Number CVE Number CVE Number CVE 
1 x  18 0.12 1HQx   35 _Hub mT  

2 0.08 trx   19 0.16 1HQx   36 ,1HamT  

3 0.12 trx   20 0.20 1HQx   37 ,2HamT  

4 0.16 trx   21 0.24 1HQx   38 ,3HamT  

5 0.20 trx   22 0.08 TLx   39 AndT  

6 0.24 trx   23 0.12 TLx   40 ,1TukT  

7 0.08 2HSKx   24 0.16 TLx   41 ,2TukT  

8 0.12 2HSKx   25 0.20 TLx   42 ,3TukT  

9 0.16 2HSKx   26 0.24 TLx   43 logT  

10 0.20 2HSKx   27 MCD0.08 44 WelT  

11 0.24 2HSKx   28 MCD0.12 45 M 

12 0.08 5HSKx   29 MCD0.16 46 HL 

13 0.12 5HSKx   30 MCD0.20 47 pL  

14 0.16 5HSKx   31 MCD0.24 48 MMLE 

15 0.20 5HSKx   32 ,1HubT  49 1tanh,T  

16 0.24 5HSKx   33 ,2HubT  50 2tanh,T  

17 0.08 1HQx   34 ,3HubT  51 HSM 

 

 

6.6.2 Presentation and discussion of the results  

6.6.2.1 Results of Stage 1 

The APLE results for the LRE and the RSE of all the estimators obtained for the 

positive curvature   demand of the REG6 sections, for all the intensities and when 

 1aS T  is the IM, are presented in Figs. 6.2 and 6.3, respectively. Each point represents an 

APLE value that considers all the sections of the structure. From these results, the APLE 

values of the LRE and the RSE can be seen to exhibit a similar trend, thus indicating the 

same estimators as being the more efficient. Furthermore, the variability of the APLE 

values between estimators is seen to be large and to depend also on the selected earthquake 

intensity. For the presented case, it appears that mid-range intensities are those where the 

estimators have a better performance, with some estimators reaching APLE values close to 

80%. This fact is related to the type of demand distribution that is obtained for these 
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intensities. As referred in Chapter 5, some of the ground motions lead to elastic demand, 

while others lead to demand values already in the plastic range. This mixture of demand 

values resulting from different behaviours, which is observed in some sections, enhances 

the higher efficiency of robust estimators in dealing with more irregular demand data when 

compared to that of x .  

Although there are considerable differences between the performance of the 

estimators, the central values they yield do not exhibit large variability. To illustrate this, 

Fig. 6.4 presents the CoV of the fifty-one central values obtained by the estimators, for 

each REG6 positive   dataset, for all the intensities, and after transforming the data back 

to original units. As can be seen, most CoVs are below 10% (similar values are obtained for 

the negative   demand) which indicates that, although the several estimators may yield 

central value estimates that are not far from each other, the efficiency measured by the 

LRE and the RSE enables the identification of the more adequate estimators. To obtain a 

more global view of the performance of the estimators, APLE values of the LRE and the 

RSE now also averaged across the earthquake intensities are presented in Figs. 6.5 and 6.6 

for the positive and negative, respectively,   demand of the REG6 sections. Due to the 

referred variability of the APLE values between earthquake intensities, it can be seen that, 

for the more efficient estimators, both LRE and RSE APLE values are not higher than 

50% (left-hand side scale of the graphs). From these results, estimators 17, 18, 19, 20, 34, 

37, 38, 42, 43, 47, 48 and 49 ( 0.08 1HQx , 0.12 1HQx , 0.16 1HQx , 0.20 1HQx , ,3HubT , ,2HamT , ,3HamT , 

,3TukT , logT , pL , MMLE and 1tanh,T ) are seen to be some of the more efficient in this case. 

To give a measure of the relative variability of the APLE values across the earthquake 

intensities, Figs. 6.5 and 6.6 also present the CoV of both the LRE and the RSE APLE 

values. As can be seen, most CoVs are below 50%.  
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Figure 6.2. APLE values of the estimators, for the LRE, for the REG6 positive curvatures when  1aS T   is 

the IM, for all the intensities. 
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Figure 6.3. APLE values of the estimators, for the RSE, for the REG6 positive curvatures when  1aS T  is 

the IM, for all the intensities. 
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Figure 6.4. CoV of the central values obtained by all the estimators for the REG6 positive curvatures when 

 1aS T  is the IM, for all the intensities and control sections. 

 

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
0

20

40

60

80

100

A
PL

E
 v

al
ue

s 
av

er
ag

ed
 a

cr
os

s 
al

l i
nt

en
si

ti
es

 (
%

)

Estimator  T

 

 

0

0.5

1

1.5

2

C
oV

 o
f 

th
e 

pe
rf

or
m

an
ce

 m
ea

su
re

 a
cr

os
s 

al
l i

nt
en

si
ti

esAverage - LRE Average - RSE CoV - LRE CoV - RSE

 

Figure 6.5. APLE values of the estimators, for the LRE and the RSE, for the REG6 positive curvatures when 

 1aS T  is the IM, averaged across all the intensities, and CoVs representing the variability between 

intensities. 
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Figure 6.6. APLE values of the estimators, for the LRE and the RSE, for the REG6 negative curvatures when 

 1aS T  is the IM, averaged across all the intensities, and CoVs representing the variability between 

intensities. 

 

In terms of chord rotation demand, Fig. 6.7 presents, for the case of the IRREG10 

negative   demand, the APLE results for the LRE of all the estimators, for all the 

intensities and when PGA is the IM. APLE results obtained for the RSE and for the 

positive   demand are similar. As for the results of REG6, the variability of the APLE 

values between estimators and between the selected earthquake intensities is seen to be 

large. For this structure, the higher ground motion intensities are those where the 

estimators have a better performance, with some estimators reaching APLE values close to 

90%. Furthermore, as for the previous case, the CoV of the fifty-one central values 

obtained by the estimators for each IRREG10 negative   dataset, for all the intensities, 

and after transforming the data back to original units, is also mostly below 10% (Fig. 6.8). 

Similar to Fig. 6.5, Fig. 6.9 presents, for the negative   demand of the IRREG10 sections, 

APLE values of the LRE and the RSE now also averaged across the earthquake intensities. 

These results also include the CoVs of these APLE values reflecting their variability across 

the earthquake intensities. Again, the LRE and RSE APLE values are very similar and, due 

to the referred variability between earthquake intensities, not higher than 60%, while CoVs 

are generally below 50%. With respect to the more efficient estimators for  , these are 

seen to be similar to those identified for  . 
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Figure 6.7. APLE values of the estimators, for the LRE, for the IRREG10 negative chord rotation when 
PGA is the IM, for all the intensities. 
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Figure 6.8. CoV of the central values obtained by all the estimators for the IRREG10 negative chord rotation 
when PGA is the IM, for all the intensities and control sections. 
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Figure 6.9. APLE values of the estimators, for the LRE and the RSE, for the IRREG10 negative chord 
rotation when PGA is the IM, averaged across all the intensities, and CoVs representing the variability 

between intensities. 

 

With respect to the shear force demand V, Figs. 6.10 and 6.11 present the LRE and 

RSE APLE values averaged across the sections and the earthquake intensities for the 

REG10 shear force demand in original and log units, respectively, when PGA is the IM, 

along with the CoVs reflecting their variability across the earthquake intensities. As for the 

previous cases, the LRE and RSE APLE values are also close, with maximum values near 

50%, and exhibit CoVs around 50%. Furthermore, it can also be seen that APLE results in 

original and log units are similar. Additionally, Fig. 6.12 presents the CoV of the fifty-one 

central values obtained by the estimators, for each REG10 shear force dataset in original 

units and for all the intensities, which can be seen to be generally lower than 5% (similar 

values are obtained for the shear force demand in log units). In terms of the more efficient 

estimators for V, these are similar to those of the previous EDPs. 
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Figure 6.10. APLE values of the estimators, for the LRE and the RSE, for the REG10 shear force in original 
units when PGA is the IM, averaged across all the intensities, and CoVs representing the variability between 

intensities. 
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Figure 6.11. APLE values of the estimators, for the LRE and the RSE, for the REG10 shear force in log units 
when PGA is the IM, averaged across all the intensities, and CoVs representing the variability between 

intensities. 
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Figure 6.12. CoV of the central values obtained by all the estimators for the REG10 shear force in original 
units when PGA is the IM, for all the intensities and control sections. 

 

For the case of the inter-storey drift Δ, and since for a given structure there is only 

one dataset for each earthquake intensity, Fig. 6.13 presents APLE values of the LRE and 

the RSE averaged across all the structures and earthquake intensities when  1aS T  is the 
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IM, and the CoVs representing their variability across these intensities. Keeping in mind 

that only forty-four datasets are considered (the intensity nine dataset of the ICONS 

structure was disregarded by the reasons highlighted in Section  6.6.1), it can be observed 

that the APLE values are lower than for the previous EDPs (only a few APLE values are 

above 40%) while CoV values are similar to those of the earlier cases. Although it appears 

that, on average, the estimators are less efficient for Δ, the effect of the lower number of 

datasets should not be ignored. With respect to the more efficient estimators, these are also 

seen to be those of the previous EDPs. Additionally, Fig. 6.14 presents the CoV of the 

fifty-one central values obtained by the estimators for each structure and Δ dataset (after 

transforming the data back to original units) which can be seen to be globally lower than 

5%. Again, although the estimators yield central values close to each other, the LRE and 

the RSE values indicate which are more efficient. 

Based on the analysis of the results of Stage 1, the most efficient estimators to be 

considered in Stage 2 were identified. For the case of  ,   and V, Table 6.2 presents the 

thirteen best estimators for each structure and for both IMs. For each structure and IM, 

the LRE and RSE APLE values of the six EDPs (i.e. the positive and negative   and  , 

and V in original and in log units) were sorted in ascending order, and the corresponding 

thirteen estimators appearing more times over all twelve situations were selected. A similar 

analysis was also carried out for Δ considering all the structures simultaneously and the 

resulting estimators were also those presented in Table 6.2. As can be observed, Table 6.2 

refers to twenty-four different estimators. Moreover, for a given structure, estimators that 

are more efficient when PGA is the IM are not always those that are more efficient when 

 1aS T  is the IM. Since the purpose of the study is to identify CVEs providing efficient 

performances for both cases, a second filtering of this preliminary selection was carried 

out. Therefore, among the estimators of Table 6.2, the following fifteen CVEs were found 

to be those with better efficiency (i.e. those with higher scores when summing up the 

number of times NT they appear in Table 6.2) considering the results obtained for all the 

structures and for both IMs simultaneously: estimators 43, 47, 17, 49, 20, 34, 19, 38, 18, 50, 

37, 21, 22, 42 and 33 ( logT , pL , 0.08 1HQx  , 1tanh,T , 0.20 1HQx  , ,3HubT , 0.16 1HQx  , ,3HamT , 

0.12 1HQx  , 2tanh,T , ,2HamT , 0.24 1HQx  , 0.08 TLx  , ,3TukT  and ,2HubT ). Given the smaller size of the 

datasets chosen for Stage 2, 0.16 1HQx  , 0.20 1HQx   and 0.24 1HQx   were not considered since 

they involve data trimming levels that would not be able to be contemplated. Furthermore, 

for 0.08 1HQx  , 0.12 1HQx   and 0.08 TLx  , when the trimming level is not an integer, the number 

of trimmed data values was rounded to the closest upper integer. Although M is not one of 

the most efficient estimators, due to its wide use in PBEE methodologies, it was also 

selected for Stage 2 to compare its performance to that of more efficient estimators when 

samples of smaller size are considered. Finally, logT  was seen to be the estimator with best 

performance and was selected as the new reference estimator. 
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Figure 6.13. APLE values of the estimators, for the LRE and the RSE, for the inter-storey drift of all the 
structures when  1aS T  is the IM, averaged across all the intensities, and CoVs representing the variability 

between intensities. 
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Figure 6.14. CoV of the central values obtained by all the estimators, for the inter-storey drift of all structures 
and for all the intensities, when  1aS T  is the IM. 

Table 6.2. The thirteen most efficient CVEs, for each structure and IM, and the number of times NT they 
appear  

ICONS IRREG10 IRREG6 REG10 REG6 

PGA  1aS T  PGA  1aS T  PGA  1aS T PGA  1aS T PGA  1aS T  

CVE NT CVE NT CVE NT CVE NT CVE NT CVE NT CVE NT CVE NT CVE NT CVE NT

17 12 17 12 19 12 17 12 34 12 43 12 19 12 33 12 47 12 17 12

18 12 18 12 47 12 18 12 38 12 47 12 34 12 34 12 22 12 19 12

19 12 19 12 22 12 19 12 47 12 48 12 43 12 37 12 23 12 47 12

20 12 20 12 49 12 20 12 37 11 24 12 47 12 38 12 49 12 18 11

47 12 34 12 50 12 34 12 43 11 49 12 17 11 43 12 50 12 20 11

49 12 37 12 18 11 37 12 49 11 22 11 18 11 47 12 43 9 49 11

21 10 38 12 20 11 38 12 50 10 23 11 49 11 39 11 21 8 34 10

22 10 42 12 17 9 43 12 42 8 50 10 20 10 42 11 35 8 43 10

38 7 43 12 43 9 42 11 22 8 25 9 46 8 17 10 24 8 38 8 

43 7 21 8 34 8 33 10 20 7 35 8 50 8 36 10 19 7 21 7 

50 7 33 8 35 7 39 8 17 6 26 7 21 7 49 10 25 7 37 6 

23 5 39 8 23 7 47 7 21 6 42 6 37 7 48 7 20 6 48 6 

24 5 50 7 21 6 21 6 33 6 20 5 38 7 46 5 17 5 22 6 
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6.6.2.2 Results of Stage 2 

In general terms, the results of Stage 2 exhibit a trend found to be generally the same 

across all structures, for all EDPs, for both IMs and for both the *RSE  and the *RAE  

measures. Therefore, only a few illustrative results are presented herein. When comparing 

the efficiency of the several estimators based on the presented results, it should be kept in 

mind that the APLE value is a relative measure of the performance. Hence, when the 

APLE value of a certain estimator is close to 50%, its efficiency is similar to that of the new 

reference estimator ( logT , estimator 43 in Table 6.1). On the other hand, when the APLE value 

of the estimator falls below 50%, the efficiency of logT  is then larger than 50%. 

The APLE results for the *RSE  of the estimators selected for Stage 2, obtained for 

the positive   demand of the IRREG6 sections, for all the intensities, for a sample size n* 

of forty and when PGA is the IM, are presented in Fig. 6.15 a). It can be observed that 

estimators 34, 37, 38 and 42 ( ,3HubT , ,2HamT , ,3HamT  and ,3TukT ) are generally more efficient 

than the other estimators. Still, when comparing the performance of these four estimators 

with that of logT , they are found to be similar. Figures 6.15b), c) and d) present, for the 

same structure and EDP, the *RSE  and *RAE  APLE values averaged across the ground 

motion intensities for n* values of thirty, fifteen and seven, respectively, and the CoVs 

reflecting the variability between earthquake intensities. As can be seen, the results obtained 

when n* is thirty are similar to those obtained when n* is forty. On the other hand, when n* 

is fifteen, the efficiency of some of these estimators is seen to decrease while that of others 

increases (e.g. estimator 17). The situation changes when n* is seven, where the more 

efficient estimators can now be seen to be estimators 17 and 18 ( 0.08 1HQx   and 0.12 1HQx  ) 

which exhibit *RSE  and *RAE  APLE values much larger than those of the remaining 

estimators. In terms of the variability between earthquake intensities, it can be observed 

that the CoVs of the more efficient estimators are generally in the range of 20%-40%, 

irrespective of n*. 

In order to highlight the influence of the sample size on the results obtained by the 

CVEs, Fig. 6.16 presents maximum Range and CoV values obtained from the simulations 

with different n* values, considering only estimators 34, 37, 38, 42 and 43. For a given 

sample size n*, a given earthquake intensity and for each section, the average and the CoV 

of the 10000 estimates obtained using each CVE were computed. The Range was then 

determined by the difference between the maximum and the minimum of those averages, 

previously normalized by 2, refref nT  to obtain a measure relative to a reference value of the 

demand. The results presented in Fig. 6.16 are then, for each section and for each n* value, 

the maximum of the Ranges obtained for all the earthquake intensities and the maximum 

CoV value considering all the earthquake intensities and the referred estimators (with the 

data transformed back to original units). Based on the presented results, it can be observed 
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that CoV values increase as n* decreases, which, as expected, indicates that the variability of 

the 10000 estimates increases when the sample size is smaller. On the other hand, it can be 

seen that, in many sections, the Range values are higher for larger sample sizes, indicating 

that the differences between the average of the 10000 estimates obtained by each method is 

larger in such cases. This situation can be explained by observing Figs. 6.17a) and b) that 

show the influence function (as defined in Section  6.3) of the estimators for the positive   

demand of a beam section for one sample of size forty and for one sample of size seven. 

As can be seen, the differences between the influence function of each estimator are more 

significant when the sample is larger. When n* is equal to forty, ten data values (the first 

two at the beginning of the curve, which are almost coincident, and the last eight values on 

the right side of the curve) can be considered to be affected by the differences in the 

influence functions, while for n* equal to seven, only one data value is significantly affected. 

Although this situation does not occur for every control section and for every simulated 

sample, the estimators have the potential to yield CVEs with more significant differences in 

larger samples, thus making the Range wider than for samples of smaller size.  
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Figure 6.15. APLE values of the estimators for the IRREG6 positive chord rotation when PGA is the IM, for 

the *RSE and all the intensities (a); for the *RSE  and *RAE  averaged across all the intensities along with the 
CoVs representing the variability between intensities when n* is thirty (b); fifteen (c); and seven (d). 
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Figure 6.16. Range and CoV values of estimators 34, 37, 38, 42 and 43 for the IRREG6 positive chord 
rotation when PGA is the IM and for the different n* sample sizes. 
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  b) 

Figure 6.17. Influence function of the estimators for the positive chord rotation demand of a beam section 
from IRREG6 when PGA is the IM for one sample of size forty (a) and for one sample of size seven (b). 

 

To further illustrate the results of Stage 2, Fig. 6.18 presents APLE values of the 

estimators averaged across all the intensities along with the CoVs reflecting the variability 

between these intensities, for the *RSE  and the *RAE  of the ICONS shear force in 

original units, when  1aS T  is the IM, and for the cases where n* is equal to forty and to 

seven. As for the previously shown results, estimators 34, 37, 38, 42 and 43 are seen to be 

the more efficient ones for the larger sample size, although the efficiency of estimator 43 is 

slightly larger than that of the other four estimators. With respect to the samples of smaller 

size, estimators 17 and 18 are seen to be more efficient. Furthermore, it is referred that the 

APLE values for the remaining sample sizes follow the trend of the results presented in 

Figs. 6.15b) and c). To complement these results, Fig. 6.19 presents, for estimators 34, 37, 

38, 42 and 43, the maximum Range and CoV values obtained from the simulations with 

different n* values. From these results, a trend similar to that of the results presented in 

Fig. 6.16 can also be identified. Finally, Fig. 6.20 presents APLE values of the estimators 

averaged across all the earthquake intensities along with the CoVs reflecting the variability 

between the intensities, for the *RSE  and the *RAE  of the inter-storey drift of all the 

structures, when  1aS T  is the IM, and for the cases where n* is equal to fifteen and to 
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seven. As can be observed, the trend of the obtained APLE values is similar to those of the 

other EDPs, but the CoV values of the more efficient estimators increase slightly for this 

EDP due to the lower number of samples. 
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Figure 6.18. APLE values of the estimators averaged across all the intensities along with the CoVs 

representing the variability between intensities, for the *RSE  and *RAE , for the ICONS shear force in 
original units, when  1aS T  is the IM when n* is forty (a) and seven (b). 
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Figure 6.19. Range and CoV values of estimators 34, 37, 38, 42 and 43 for the ICONS shear force in original 
units when  1aS T  is the IM and for the different n* sample sizes. 
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Figure 6.20. APLE values of the estimators averaged across all the intensities along with the CoVs 

representing the variability between intensities, for the *RSE  and *RAE , for the inter-storey drift of all the 
structures, when  1aS T  is the IM when n* is fifteen (a) and seven (b). 
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After a general analysis of the results of Stage 2, the effect of the sample size on the 

efficiency of the estimators was seen to be mostly felt when n* is equal to seven, for which 

the more efficient estimators are different from those identified for the larger sample sizes. 

With respect to the effect of the IM on the efficiency of the estimators, no definite trend 

was observed as their efficiencies are similar irrespective of the IM. This observation 

indicates that these estimators are fit to be considered under various conditions of the 

dispersion obtained for the demand. When considering all the structures, EDPs and IMs, 

the efficiency of estimators 34, 37, 38 and 42, for sizes n* of forty and thirty, is found to be 

in the range of 23% to 70%, with an average value around 45%, and with small differences 

between the performances of each estimator. For a size n* of fifteen, estimator 17 can be 

seen to have an efficiency similar to that of estimators 34, 37, 38 and 42. For this sample 

size, the efficiency of these five estimators ranges from 18% to 70% with an average value 

around 43%. From this results it can be seen that, for these three sample sizes, there is a 

significant number of cases where the APLE values of these estimators are below 50%, 

which correspond to situations where estimator 43 (the new reference estimator selected for 

Stage 2) is more efficient. When n* is seven, the efficiency of estimators 17 and 18 ranges 

from 44% to 85% with an average value above 61%. In addition to this analysis, it is also 

referred that M (estimator 45) was seen to exhibit inadequate performance in all cases 

considered, when compared to that of the recommended estimators.  

Finally, an additional aspect must be noted about the results of Stage 2. The *RSE  

and the *RAE  efficiency measures were obtained using the result of estimator 43 ( logT ) for 

size refn  ( 2, refref nT ) as a reference for the "true value" of the central value of the datasets. In 

order to strengthen the validity of the results obtained for Stage 2, it becomes important to 

determine how different would these results be if 2, refref nT  was defined by another estimator. 

Therefore, the Stage 2 analyses were repeated using estimator 38 ( ,3HamT ) to define 2, refref nT . 

To illustrate the findings of this new analysis, Fig. 6.21 presents APLE results obtained by 

using ,3HamT  to quantify 2, refref nT . These results correspond to those of Figs. 6.15b), 6.15c), 

6.18a) and 6.18b) that were obtained using estimator 43 to quantify 2, refref nT . An overall 

analysis of these new results indicates that the more efficient estimators are still those 

identified from the first set of Stage 2 results (i.e. when 2, refref nT  is defined by logT ). Still, 

these new results show that, for sample sizes n* of forty and thirty, the APLE values 

obtained for estimators 34, 37, 38 and 42 are, on average, between 50% and 60%. Since 

these are larger than those of the first set of Stage 2 results, it indicates that the efficiency 

of these estimators is better than that of logT  when the reference used for the "true value" 

of the central value of the data is changed. With respect to the sample size n* of fifteen, an 

increase of the APLE values for these estimators is also observed in some cases, but its 

global effect is less significant. For the sample size n* of seven, the results are similar to 
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those of the first Stage 2 analysis. Finally, it is noted that the relatively small variability of 

the results observed when 2, refref nT  is changed reflects the previously referred closeness of 

the central value estimates obtained by each method (e.g. see Section  6.6.2.1, based on the 

low CoV values of Fig. 6.4) which then leads to the stability of the Stage 2 results. 
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Figure 6.21. APLE values of the estimators, for the *RSE  and *RAE  averaged across all the intensities, along 
with the CoVs representing the variability between intensities, and obtained using ,3HamT  as the reference 

estimator, for the IRREG6 positive chord rotation when PGA is the IM, when n* is thirty (a) and fifteen (b); 
for the ICONS shear force in original units, when  1aS T  is the IM when n* is forty (c) and seven (d). 

 

 

6.7 Conclusions 

A study addressing the characterization of the central value of structural demand 

distributions of several EDPs obtained under earthquake loading using different robust 

estimators was presented. The selected EDPs were the curvature, the chord rotation, the 

shear force and the inter-storey drift over the height of the structure. Five structures were 

analysed for suites of fifty ground motions to obtain data samples with a size significant 

enough. The chosen records were scaled for several intensities and two different IMs were 

also considered to evaluate the influence of this parameter. The fundamental objective of 

the study was to test the use of fifty robust estimators using adequate measures of statistical 

efficiency, in order to identify those best suited for different types of data and sample sizes. 
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The performance of the estimators was tested using a two-stage approach. In Stage 1, 

the performance of the fifty robust estimators is compared with that of the reference 

estimator x  considering datasets of larger size (between forty-five and fifty). In Stage 2, a 

subgroup of thirteen estimators with better efficiency was considered to assess their 

performance for datasets of smaller size (forty, thirty, fifteen and seven).  

The results of Stage 2 indicate that estimators 34, 37, 38, 42 and 43 ( ,3HubT , ,2HamT , 

,3HamT , ,3TukT  and logT ) are recommended to compute central value estimates of the demand 

for samples of size larger than fifteen. On the other hand, for samples of smaller size, 

estimators 17 and 18 ( 0.08 1HQx   and 0.12 1HQx  ) are recommended instead. The results of 

Stage 2 also show that the performance of these estimators is similar across the structures, 

the EDPs and the earthquake intensities considered in the study. The effect of sample size 

on the efficiency of the estimators was seen to be mostly felt for samples of size seven, for 

which the more efficient estimators are different from those identified for the larger sample 

sizes. With respect to the selected IMs and their effect on the efficiency of these estimators, 

no definite trend was observed as their efficiencies are similar irrespective of the IM. 

Although such results indicate that these estimators are fit to be considered under various 

conditions of the variability of the demand, further IMs should be analysed to confirm this 

conclusion. 

Finally, it is noted that the median M, which is widely used in the context of PBEE 

methodologies, was seen to exhibit inadequate performance in all cases analysed, when 

compared to that of the recommended estimators. Therefore, it is suggested that in future 

PBEE applications, central values estimates of seismic demand should be obtained by one 

of these estimators instead.  
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Chapter 7 
Statistical characterization of  structural 

demand under earthquake loading - Robust 
estimation of  the dispersion of  the data  

 

 

7.1 Introduction 

The present chapter corresponds to the second part of the study that addresses the 

statistical characterization of seismic demand data using robust estimation methods. The 

first part of the study presented in Chapter 6 analysed the applicability of several robust 

estimators to define the central value of demand distributions obtained for different 

engineering demand parameters (EDPs), considering data samples of various sizes. Based 

on statistical measures of their performance, seven robust estimators were considered to be 

adequate for different sample sizes. 

When analyzing probabilistic performance parameters which are often considered in 

performance-based earthquake engineering (PBEE) methodologies, a probabilistic model 

of the demand is usually required. Considering that such model can be defined by a 

lognormal or a normal distribution, as observed in Chapter 5, the complete characterization 

of the distribution requires estimates of the central value and of the dispersion of the data. 

Since Chapter 6 addressed the characterization of the central value of the data, the current 

chapter deals with the estimation of the dispersion of the data using adequate statistical 

methods. Given the aspects referred in Chapters 5 and 6 regarding the occurrence of 

outliers, and the advantages of using robust statistical estimation methods, the study 

proposed herein tests the use of robust estimators to characterize the dispersion of 

structural demand distributions obtained under earthquake loading. As for the study 

presented in the previous chapter, the performance of several robust estimators are tested 

using appropriate measures of statistical efficiency, in order to identify those best suited for 

different types of data and sample sizes. 
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7.2 Description of the proposed study 

The presented study focuses both deformation- and strength-related EDPs and is 

based on local (section level) and global (system level) demand distributions obtained from 

the analysis of five reinforced concrete (RC) structures subjected to earthquake records of 

increasing intensities. At the section level, the selected EDPs are the maxima of the 

curvature, of the chord rotation and of the shear force, while at the system level, the 

chosen parameter is the maximum inter-storey drift over the height of the structure. It 

should be noted that the focus of the study does not address the magnitude of the 

dispersion in itself, but only deals with methods to assess this parameter with appropriate 

reliability. 

The selected structures were analysed for suites of fifty ground motions to obtain 

data samples with a size significant enough. The chosen records were scaled for several 

intensities in order to evaluate the referred hypotheses for different hazard levels. 

Furthermore, two different IMs were also considered to evaluate the influence of this 

parameter on the conclusions of the study.  

A series of estimators was then applied to the demand samples to identify those 

more adequate to characterize their dispersion. In order to assess the performance of the 

estimators for a wide range of conditions, they were applied to the samples of size fifty as 

well as to subsamples of size forty, thirty, fifteen and seven drawn from the samples of size 

fifty. 

Since the proposed study is based on the structural demand results obtained for the 

five structures presented in Chapter 5, details about the modelling and analyses procedures, 

the quantification of the demand parameters, and the suites of fifty ground motions that 

were considered to represent the seismic demand are omitted herein.  

 

 

7.3  Selected dispersion estimators 

The dispersion estimators (DEs) considered in the proposed study are presented in 

the following. Thirty-three robust estimators are selected and grouped into three general 

categories. A brief review of each estimator is presented and additional information can be 

found in the references cited herein. Besides these estimators, the classical (non-robust) 

sample standard deviation s is also considered. For a data sample 1 2, , ... nx x x  of size n, s is 

defined by: 
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which can be written also as 
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where  ix  represents the ith order statistic of the sample, w is a weight function with a 

value of one for each data value of the sample in this case, 
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    and x  is 

the sample mean defined as 
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which can also be written as 
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where 
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n
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W w n


  . The alternative forms of representing s and x  which are defined 

by Eqs. (7.2) and (7.4) enable other estimators to be represented using this unified format. 

 

 

7.3.1 Location-free and scale-free estimators  

Estimators in this group do not require auxiliary measures of the central value (i.e. 

the location parameter) and of the dispersion (i.e. the scale parameter) to obtain a robust 

estimate of the dispersion of the data. 

 

 

7.3.1.1 The interquartile range  

The interquartile range IQR is a robust DE well known for its simplicity (Hoaglin et 

al., 1983) that is defined by: 

     1n m mIQR c x x     (7.5) 

where c is a tuning constant which takes the value of 0.7413 so that IQR is consistent with 

the normal distribution and  4m n  in which  .  stands for the integer part. In the 

context of PBEE methodologies, it is noted that the IQR has been previously used by 

Miranda and Aslani (2003). 

 

 

7.3.1.2 The median absolute deviation  

The median absolute deviation (MAD) is another well known estimator in the robust 

statistics context (Hoaglin et al., 1983). Considering that the sample median M is defined by: 
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the MAD is then given by: 

  n iMAD b c med x M     (7.7) 

where c is a tuning constant with a value of 1.4826 so that MAD is consistent with the 

normal distribution and bn is the small-sample correction factor referred by Rousseeuw and 

Verboven (2002).  

 

 

7.3.1.3 The Qn estimator  

The estimator Qn proposed by Rousseeuw and Croux (1993) is based on an order 

statistic of all pairwise differences between the data values and is defined by: 

  
 

;n n i j
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Q b c x x i j      (7.8) 

where  l  is the lth ordered statistic among the set of 
2
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 distances between the data 

values, in which 0.25
2 2

h n
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 with  2 1h n   and where 
2

n 
 
 

 is  20.5 n n . The 

value of the tuning constant c is 2.2219 (to be consistent with the normal distribution) and 

bn is the small-sample correction factor referred by Rousseeuw and Verboven (2002).  

 

 

7.3.1.4 The Sn estimator  

The estimator nS , also proposed by Rousseeuw and Croux (1993), is based on the 

median of all pairwise differences between the data values and is defined by: 

  n n i j i jS b c med med x x     (7.9) 

where c is a tuning constant with a value of 1.1926 so that nS  is consistent with the normal 

distribution and bn is a small-sample correction factor.  

 

 

7.3.1.5 The length of the shorth Ssh 

The length of the shorth shS  (Rousseeuw and Leroy, 1988) is a DE based on the 

shortest half of the sample defined by: 
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minsh i v ii n v

S c x x   
    (7.10) 

where  2 1v n   and c is a tuning constant which takes the value of 0.7413 so that shS  is 

consistent with the normal distribution.  

 

 

7.3.1.6 The trimmed L- standard deviation 

A robust generalization of the sample L-moments (Hosking, 1990) has been 

formulated by Elamir and Seheult (2003) leading to the development of trimmed 

L-moments. The trimmed L-standard deviation TLs   reduces the influence of outlying 

observations by using a subsample of the original data and can be obtained using the 

unified format of Eq. (7.4) with 1 2W   and iw  replaced by:  
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where 
i

p
 
 
 

 is 
 

!
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p i p
 and p n   means that, for a trimming level  , the 2p  

highest and lowest values are removed. Several TLs   are considered in the proposed study 

with different   values, namely with   set as 0.08, 0.12, 0.16, 0.20 and 0.24 which define 

the estimators 0.08 TLs  , 0.12 TLs  , 0.16 TLs  , 0.20 TLs   and 0.24 TLs  , respectively. 

 

 

7.3.1.7 The dispersion estimator based on the empirical characteristic function 

The dispersion estimator ecfS , that is based on the empirical characteristic function 

and was proposed by Markatou et al. (1995), is defined by: 
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  (7.12) 

where c is a tuning constant and ecft  is the solution of  

    2 2
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             (7.13) 

According to the results presented by Markatou et al. (1995), c was considered to be 0.7 in 

order to balance robustness and efficiency. 
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7.3.2 Location-based and scale-free estimators  

Estimators in this group require the definition of an auxiliary measure of the central 

value to obtain a robust estimate of the dispersion of the data. 

 

 

7.3.2.1 The -trimmed standard deviation  

As for TLs  , the  -trimmed standard deviation ( trs  ) also reduces the influence of 

outlying observations by using a subsample of the original data. This estimator is the 

standard deviation of the data sample when the 2p  highest and lowest values are 

removed, where p n  . The value of trs   can be obtained using the unified format of 

Eq. (7.2) with 1sW  , iw  replaced by  
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and x  replaced by the  -trimmed mean obtained using the unified format of Eq. (7.4) 

with 1W   and iw  defined by Eq. (7.14). Several trs   are considered in the proposed 

study with different   values, namely with   set as 0.08, 0.12, 0.16, 0.20 and 0.24 which 

define the estimators 0.08 trs  , 0.12 trs  , 0.16 trs  , 0.20 trs   and 0.24 trs  , respectively. 

 

 

7.3.3 Location-based and scale-based estimators  

Estimators in this group require the definition of auxiliary measures of the central 

value and of the dispersion to obtain a robust estimate of the dispersion of the data. 

 

 

7.3.3.1 The -scale estimator 

The τ-scale DE s , proposed by Yohai and Zamar (1988), is a truncated standard 

deviation defined by  

 
20

1 0

1 n
i

s c
i

x m
s

n s
 



 
  

 
  (7.15) 

where 0s  is a preliminary dispersion estimate defined by the MAD, the function  
2

.c  is 

defined by 
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2 2
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and m is an auxiliary weighted mean obtained using the unified format of Eq. (7.4) with 

  
1 0i c iw w x M s  , in which the function  

1
.cw  is defined by 

     1

22 2
1max 0, 1cw u u c   (7.17) 

The constants 1c  and 2c  are taken with values of 4.5 and 3.0, respectively, in order to 

balance robustness and efficiency (Maronna and Zamar, 2002). 

 

 

7.3.3.2 The M-estimator of scale with logistic function 

M-estimators reduce the influence of outlying observations without removing them 

from the data. An M-estimator of scale ns  is an estimator that is the solution of: 
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where nT  is an auxiliary estimator of the central value of the data and    u d u   , 

in which  .  is the standard normal distribution function. The function  x  is an even 

bounded weight function that is monotone for 0x   and for which  0 0  . Since an 

iterative root-finding algorithm is required to compute ns , the following procedure was 

used herein (Rousseeuw and Verboven, 2002): 
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where  k
ns  is the kth iteration estimate of ns . For all considered M-estimators of scale, the 

initial estimate  0
ns  was set as the MAD and nm  was set as the M. 

For the case of the M-estimator of scale with logistic function, logs , the  -function is 

defined by Rousseeuw and Verboven (2002) as: 

    2 0.3739x x   (7.20) 

where the  -function is characterized by the following smoothed function proposed by 

Rousseeuw and Verboven (2002):  
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7.3.3.3 The Huber M-estimator of scale 

For the case of the Huber M-estimator, the  -function is defined by Huber (1981): 
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 (7.22) 

where c is a tuning constant. The proposed study considers three versions of this estimator 

with c values of 1.4, 1.7 and 2.0 (Hoaglin et al., 1983) termed ,1Hubs , ,2Hubs  and ,3Hubs , 

respectively.  

 

 

7.3.3.4 The biweight A-estimator of scale  

The biweight A-estimator Abws  was proposed as an efficient dispersion estimator in 

several studies, e.g. see (Lax, 1985; Randal, 2008), and is defined by the following iterative 

procedure: 
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where nm  is considered to be the M and k
iu  is defined by: 
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where c is a tuning constant. The proposed study considers six versions of this estimator 

with different values for c and different methods to obtain the initial estimate  0
Abws . 

According to results obtained by Randal (2008), the following estimators were considered: 

 Estimators termed ,1Abws  and ,2Abws  that involve c values of 10.0 and 11.0, 

respectively, and  0
Abws  given by the MAD;  

 Estimators termed ,3Abws  and ,4Abws  that involve c values of 11.0 and 11.5, 

respectively, and  0
Abws  given by the Qn estimator; 

 Estimators termed ,5Abws  and ,6Abws  involving c values of 7.0 and 7.5, respectively, 

and  0
Abws  given by the nS  estimator. 
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7.3.3.5 The Andrew´s sine wave A-estimator of scale 

The Andrew´s sine wave A-estimator Ands  has also been proposed in several studies, 

e.g. see (Lax, 1985; Randal, 2008), and is defined by the following iterative procedure: 
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in which c is a tuning constant considered with a value of 2.1 (Lax, 1985) and k
iu  is 

obtained by Eq. (7.24) where  0
Abws  is replaced by  0

Ands . The initial estimate  0
Ands  was set as 

the MAD and nm  was set as the M. 

 

 

7.3.3.6 The Andrew´s modified sine wave A-estimator of scale 

The modified version of Ands , termed ,And ms , proposed by Lax (1985) has shown, in 

some cases, to be more efficient than Ands  (Randal, 2008). This modified estimator is 

defined by the following iterative procedure: 
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in which c is a tuning constant considered with a value of 2.1 (Lax, 1985) and k
iu  is 

obtained by Eq. (7.24) where  0
Abws  is replaced by  0

,And ms . As for Ands , the initial estimate 

 0
,And ms  was set as the MAD and nm  was set as the M. 

 

 

7.3.3.7 The t-estimator of scale 

The t-estimator of scale, ts , is based on the t-distribution and was proposed in the 

study presented by Randal (2008) which demonstrated that ts  is also a very efficient 

dispersion estimator. This estimator is defined by the following iterative procedure: 
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in which k
iu  is obtained by Eq. (7.24) where  0

Abws  is replaced by  0
ts  and c is a tuning 

constant. Based on the results obtained by Randal (2008), the proposed study considers 

three versions of this estimator with c values of 4.0, 4.25 and 4.5, termed ,1ts , ,2ts  and ,3ts , 

respectively, with the initial estimate  0
ts  defined by Qn and nm  defined by the M. 

 

 

7.3.3.8 The modified maximum likelihood dispersion estimator 

The modified maximum likelihood dispersion estimator (MMLEs) proposed by Tiku 

and Sürücü (2009), which has shown adequate robustness properties, can be obtained using 

the unified format of Eq. (7.2) with the weighting function defined by:  
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with 
1

1.13
n

s ii
W w


   and x  replaced by the MMLE central value estimator (CVE) 

obtained using the unified format of Eq. (7.4) in which iw  is defined by Eq. (7.28). 

Parameter k is a tuning constant considered to be 30 (Tiku and Sürücü, 2009) in order to 

balance the robustness and the efficiency properties of this estimator, and 0m  and 0S  are 

defined by the M and the MAD, respectively.  

 

 

7.4 Selected methodology for the performance evaluation of 

the estimators 

In order to determine which estimator is more adequate to characterize the 

dispersion of a given sample, a methodology based on the one defined in Chapter 6 for the 

case of the CVEs was used. The methodology considered herein comprises two stages 

similar to those presented in Chapter 6 and a third stage which involves the simultaneous 

performance evaluation of a series of central value and dispersion estimators.  

In Stage 1, all the selected estimators are compared against each other based on their 

performance for samples of size refn  (the reference size). In this case, only one sample of the 

reference size is available for each parameter that needs to be estimated. The reference size 

considered in the present study is fifty. However, due to aspects related to the structural 

analyses that were detailed in Chapter 6, demand values may not be obtained at some 

control sections for some of the records considered, and some variability of this size is 

allowed. Therefore, without loss of generality of the results obtained in Stage 1, the reference 

size will be a value between forty-five and fifty, depending on the dataset under analysis.  
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Two measures of efficiency are considered in Stage 1: the Scale Relative Efficiency 

(SRE), based on the proposal of Sawilowsky (2002), and the Relative Standard Error 

(RSE). The SRE of a certain estimator T, SRET , is defined by: 

 95% 95%

, 95% , 95%

SRE U CI L CI
T

ref U CI ref L CI

T T

T T





 (7.29) 

where 95%U CIT  and 95%L CIT  are the upper and lower bounds of the 95% confidence interval 

(CI) of estimator T, respectively, while , 95%ref U CIT  and , 95%ref L CIT  are the same parameters 

obtained for the reference estimator refT . The 95% CI of a certain estimator is obtained by a 

bootstrap procedure with a bias corrected and accelerated percentile method (Wilcox, 

2005), considering 1000 bootstrap samples, and considering refT  to be defined by the 

sample standard deviation s. Since an estimator T having a shorter CI means that the 

estimates it produces are less variable, values of SRET  which are lower than one (the value 

of SRE
refT ) indicate that T is more efficient than refT .  

With respect to the other measure, the RSE of a certain estimator T, RSET , is 

defined by: 

 RSE
ref

T
T

T

s

s
  (7.30) 

where Ts  and 
refTs  are the estimates of the standard deviation of T and refT  obtained from 

the 1000 bootstrap samples, following the proposal from (Wilcox, 2005). As for SRET , 

values of RSET  which are lower than one (the value of RSE
refT ) indicate that T is more 

efficient than refT .  

As a result of Stage 1, the estimator exhibiting the best average performance over all 

the considered data samples is selected as the reference estimator, 2refT , for the Stage 2 

evaluation. A subgroup of the initial estimators, corresponding to those with a good 

efficiency, is also selected for the performance analysis of Stage 2. It should be emphasized 

that, for the present study, a robust estimator will always be preferred with respect to a 

non-robust one such as s. Therefore, the main goal of Stage 1 is to determine a subgroup of 

robust estimators that are more efficient than s. 

In Stage 2, for a given parameter that needs to be estimated, the performance of the 

subgroup of estimators is evaluated considering several samples of smaller size n* which 

are drawn from the sample of the reference size. The considered sizes n* are forty, thirty, 

fifteen and seven. The performance of a given estimator is evaluated with respect to the 

value of 2refT . Since m samples of size n* are available to estimate each parameter in Stage 

2, performance assessment measures different than those of Stage 1 are now considered. 
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Such measures are the Relative Squared Error ( *RSE ) and the Relative Absolute Error 

( *RAE ). The *RSE  of a given estimator T, *RSET , is defined by: 

 
 

 

2

, * 2,
* 1

2

, 2 _ * 2,
1

RSE
ref

ref

m

i n ref n
i

T m

i ref n ref n
i

T T

T T













 (7.31) 

where , *i nT  is the value of estimator T for the ith sample of size n*, , 2 _ *i ref nT  is the value of 

2refT  for the ith sample of size n*, 2, refref nT  is the value of 2refT  for the original sample of size 

refn , and m is selected to be 10000 for each sample size n*. In a similar form, the *RAE  of 

a given estimator T, *RAET , is defined by: 
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As stated initially, one fundamental objective is to establish a suitable probabilistic 

model of the data. Therefore, an additional evaluation stage is then performed to assess the 

combined performance of efficient central value and dispersion estimators in defining 

adequate probabilistic distributions of the data. In Stage 3, some of the more efficient 

CVEs identified in Chapter 6 are associated with the more efficient DEs resulting from 

Stage 2 in order to define fitted statistical distributions that are compared to the empirical 

distributions of the data. In this stage, a given pair of central value and dispersion estimates 

is computed from a sample of size n* drawn from the empirical distribution data of the 

reference size. This pair defines a theoretical distribution (a lognormal or a normal 

distribution, depending on the EDP under analysis (see Chapter 5), whose distance to the 

empirical distribution is assessed using measures of distribution closeness: the Average 

Kolmogorov Distance ( *AKD ), based on the Kolmogorov distance (van der Vaart, 1998), 

and the Average Wasserstein Distance ( *AWD ), based on the Wasserstein distance 

(Vallander, 1974). The *AKD  of a given combination C of central value and dispersion 

estimators, *AKDC , is defined by: 

 *
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   (7.33) 

where ,C iKD  is the Kolmogorov distance (KD) that considers a fitted distribution with 

parameters obtained from the ith sample of size n* using the estimators of combination C. 

Sample sizes n* of forty, thirty, fifteen and seven are considered and m samples are drawn 

for each sample size. The computation of the KD is based on the general form defined by: 
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where empF  is the cumulative distribution function (CDF) of the empirical data and fitF  is 

the fitted CDF. In a similar form, the *AWD  of a given combination C of central value 

and dispersion estimators, *AWDC , is defined by: 
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where ,C iWD  is the Wasserstein distance (WD) that considers a fitted distribution with 

parameters obtained from the ith sample of size n* using the estimators of combination C. 

The computation of the WD is based on the general form defined by: 

    emp fitWD F x F x dx




   (7.36) 

 

 

7.5 Results of the performance evaluation of the estimators 

7.5.1 Initial considerations  

General conclusions regarding the performance of the selected estimators are 

presented in the following. For the sake of brevity, only a sample of the results is shown, 

along with representative figures illustrating the more important findings. The estimators 

were applied to the structural demand data recorded at the control sections of the 

previously referred structures which were analysed under increasing levels of earthquake 

loading. As previously referred, each structure was analysed under a suite of fifty ground 

motions scaled up to nine intensities. As referred in the previous chapters, in some of the 

structures, and for a given intensity level, convergence of the structural analyses was not 

achieved for all the ground motions due to global dynamic instability of some of the 

numerical analyses. To maintain the size representativeness of the considered demand 

datasets, a specific intensity level of a given structure was disregarded when convergence 

was not achieved for more than five ground motions. Therefore, in Stage 1 of the 

performance evaluation of the estimators, the reference size refn  of the analysed datasets is 

always between forty-five and fifty.  

The performance assessment results are presented for the distributions of beam and 

column demand data, obtained from control sections located at the member ends, and for 

the maximum inter-storey drift demand over the height of the structure, Δ. For beams and 

columns, results are presented for the maxima of the curvature  , of the chord rotation   

and of the shear force demand V. The chord rotation was computed according to the 
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Exact Geometrical Method referred in Chapter 2. For curvature and chord rotation 

demand, the estimators were applied separately for positive and negative data. However, 

the combination of the random nature of the ground motions with the characteristics of a 

given structure imply that positive and negative demand values may not be obtained at 

some control sections for some of the records considered (e.g. in some sections, only 

negative curvatures reached the minimum sample size of forty-five while positive 

curvatures did not). Therefore, to maintain the size representativeness of the demand 

datasets and to keep refn  between forty-five and fifty, any curvature or chord rotation 

dataset for which such situation was observed for more than five ground motions is also 

disregarded. Furthermore, it is noted that for estimators involving trimming of a dataset, 

when the trimming level is not an integer, the number of trimmed data values was rounded 

to the closest upper integer. 

Results of Stage 1 are essentially presented in terms of the average percentage of 

larger efficiency (APLE) of an estimator T with respect to refT , i.e. s. APLE values 

represent the number of times that T is more efficient than refT  and are obtained for the 

different EDPs considering the SRE and the RSE measures. Depending on the situation, 

APLE values are obtained by averaging across all the control sections of the structure or by 

averaging simultaneously across all the control sections of the structure and all the 

earthquake intensities. The approach of averaging across the earthquake intensities was 

selected since no specific range of ground motion intensities was seen to show that a given 

set of estimators was standing out from the others. Hence, the efficiency of the estimators 

was equally weighted across the whole range of intensities. In light of this, the performance 

results of all the intensities were able to be presented in a more concise form using the 

mean and the coefficient of variation (CoV) of the results for all the intensities.  

Although Chapter 5 refers that the 5% damping spectral acceleration ordinate of the 

ground motion for the fundamental period of the structure T1,  1aS T , is a more adequate 

IM than the peak ground acceleration (PGA) for the purpose of obtaining EDP 

distributions more compatible with the lognormal or the normal distribution hypotheses, 

PGA is also considered herein in order to simulate a situation of larger variability of the 

demand and to assess the performance of the selected estimators under such conditions. In 

addition, it is noted that results are presented considering the curvature, the chord rotation 

and the inter-storey drift demands in log units, i.e. in order to be compatible with the 

assumption that demand follows a lognormal distribution (see Chapter 5). For the case of 

shear force demand, results are presented for the cases where V is in original and in log 

units, i.e. in order to be compatible with the assumption that demand can follow either a 

normal or a lognormal distribution (see Chapter 5). For a clear comprehension of the 

presented graphical results, the DEs are numbered according to Table 7.1.  
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From the results of Stage 1, a subgroup of ten estimators and a new reference estimator 

2refT  are selected for the performance assessment carried out in Stage 2. The results of 

Stage 2 are similar to those of Stage 1, with the APLE value of an estimator T of the 

referred subgroup now being determined with respect to 2refT , considering the *RSE  and 

the *RAE  measures, and considering samples of sizes n* of forty, thirty, fifteen and seven 

which are drawn from the sample of the reference size.  

Table 7.1. Numbering of the selected DEs 

Number DE Number DE 
1 s 18 s  

2 IQR 19 logs  

3 MAD 20 ,1Hubs  

4 Qn 21 ,2Hubs  

5 nS  22 ,3Hubs  

6 shS  23 ,1Abws  

7 0.08 TLs   24 ,2Abws  

8 0.12 TLs   25 ,3Abws  

9 0.16 TLs   26 ,4Abws  

10 0.20 TLs   27 ,5Abws  

11 0.24 TLs   28 ,6Abws  

12 ecfS  29 Ands  

13 0.08 trs   30 ,And ms  

14 0.12 TLs   31 ,1ts  

15 0.16 TLs   32 ,2ts  

16 0.20 TLs   33 ,3ts  

17 0.24 TLs   34 MMLEs 

 

Based on the results of Stage 2, a group of DEs with best performance is selected 

and combined with CVEs identified in Chapter 6 as having an efficient performance. The 

results of Stage 3 are presented in terms of the *AKD  and *AWD values obtained for the 

selected combinations of estimators, the different EDPs, both IMs, and samples of sizes n* 

of forty, thirty, fifteen and seven which are drawn from the sample of the reference size. In 

order to reduce the amount of data to be displayed, the totality of the *AKD  and *AWD  

values are simultaneously averaged across all the control sections of a given structure and 

all the earthquake intensities. In addition to these average results, their corresponding CoVs 

are also presented. According to the results of Chapter 5, the selected combination of 

estimators will define a lognormal distribution for the curvature, the chord rotation and the 

inter-storey drift demands. For the case of shear force demand, both lognormal and normal 

distributions will be defined (see Chapter 5).  
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7.5.2 Presentation and discussion of the results  

7.5.2.1 Results of Stage 1 

The APLE results for the SRE and the RSE of all the estimators obtained for the 

negative curvature   demand of the REG10 sections, for all the intensities and when 

 1aS T  is the IM, are presented in Figs. 7.1 and 7.2, respectively. Each point represents an 

APLE value that considers all the sections of the structure. From these results, the APLE 

values of the SRE and the RSE can be seen to exhibit a similar trend, thus indicating the 

same estimators as being the more efficient. The results also indicate that the variability of 

the APLE values between estimators is large and depends also on the selected earthquake 

intensity. Furthermore, it can also be seen that the earthquake intensity for which each 

estimator performs best is variable.  

Although there are considerable differences between the performances of the 

estimators, the dispersion values they yield do not exhibit large variability. To illustrate this, 

Fig. 7.3 presents the CoV of the thirty-four dispersion values obtained by the estimators, 

for each REG10 negative   dataset and for all the intensities, where it can be seen that, 

although there are a few sections and intensities exhibiting large CoVs, most of them are 

below 20% (similar values are obtained for the positive   demand). This fact indicates 

that, although the several estimators may yield dispersion estimates that are not far from 

each other, the efficiency measured by the SRE and the RSE enables the identification of 

the more adequate estimators. Even though these CoV values are low, it should be noted 

that the CoVs obtained for the CVEs in similar analyses presented in Chapter 6 are lower. 

To obtain a more global view of the performance of the estimators, APLE values of the 

SRE and the RSE now also averaged across the earthquake intensities are presented in 

Figs. 7.4 and 7.5 for the positive and negative, respectively,   demand of the REG10 

sections. The results of Figs. 7.4 and 7.5 also include the CoVs of these APLE values 

reflecting their variability across the earthquake intensities. It can be observed that some of 

the estimators exhibit SRE and RSE APLE values higher than 60% (left-hand side scale of 

the graphs) along with low values of the CoV (right-hand side scale of the graphs), which 

indicates that, in these cases, the variability of the APLE values between earthquake 

intensities is low. According to the results, estimators 15, 16, 17, 18, 31, 32 and 33 ( 0.16 trs  , 

0.20 trs  , 0.24 trs  , s , ,1ts , ,2ts  and ,3ts ) are seen to be some of the more efficient in this case. 
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Figure 7.1. APLE values of the estimators, for the SRE, for the REG10 negative curvatures when  1aS T  is 

the IM and for all the intensities. 
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Figure 7.2. APLE values of the estimators, for the RSE, for the REG10 negative curvatures when  1aS T  is 

the IM and for all the intensities. 
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Figure 7.3. CoV of the dispersion values obtained by all the estimators for the REG10 negative curvatures, 
for all the intensities and control sections, when  1aS T  is the IM. 
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Figure 7.4. APLE values of the estimators, for the SRE and the RSE, for the REG10 positive curvatures 
when  1aS T  is the IM, averaged across all the intensities, and CoVs representing the variability between 

intensities. 
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Figure 7.5. APLE values of the estimators, for the SRE and the RSE, for the REG10 negative curvatures 
when  1aS T  is the IM, averaged across all the intensities, and CoVs representing the variability between 

intensities. 

 

In terms of chord rotation demand, Fig. 7.6 presents, for the case of the IRREG6 

negative   demand, the APLE results for the SRE of all the estimators, for all the 

intensities and when PGA is the IM. APLE results obtained for the RSE and for the 

positive   demand are similar. As for the results of REG10, the variability of the APLE 

values between estimators and between the selected earthquake intensities is seen to be 

large, and the earthquake intensity for which each estimator performs best is also variable. 

Furthermore, as for the previous case also, the CoV of the thirty-four dispersion values 

obtained by the estimators for each IRREG6 negative   dataset and for all the intensities 

exhibit some large values for a few sections and intensities. Still, the majority of the CoV 

values is mostly below 20% (Fig. 7.7). Similar to Fig. 7.4, Fig. 7.8 presents, for the negative 

  demand of the IRREG6 sections, APLE values of the SRE and the RSE now also 

averaged across the earthquake intensities, along with the CoVs reflecting their variability 

across the earthquake intensities. In this case, the average SRE and RSE APLE values of 

some of the more efficient estimators exhibit some noticeable differences. Although the 

SRE and RSE measures identify the same estimators as the more efficient, the performance 
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of some of the estimators correlates differently with each measure. Even though there are 

APLE values in the range of 80%-90% for some of the earthquake intensities, the referred 

variability between these intensities leads to average APLE values that are between 50% 

and 70% for the more efficient estimators, with the corresponding CoVs being generally 

below 50%. With respect to the more efficient estimators for  , these are seen to be 

similar to those identified for  . 
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Figure 7.6. APLE values of the estimators, for the SRE, for the IRREG6 negative chord rotation when PGA 
is the IM and for all the intensities. 
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Figure 7.7. CoV of the dispersion values obtained by all the estimators for the IRREG6 negative chord 
rotation, for all the intensities and control sections, when PGA is the IM. 
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Figure 7.8. APLE values of the estimators, for the SRE and the RSE, for the IRREG6 negative chord 
rotation when PGA is the IM, averaged across all the intensities, and CoVs representing the variability 

between intensities. 
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In terms of shear force demand, Figs. 7.9 and 7.10 present the SRE and RSE APLE 

values averaged across the sections and the earthquake intensities for the REG6 shear force 

demand in original and log units, respectively, when  1aS T  is the IM, along with the CoVs 

reflecting their variability across the earthquake intensities. As for the previous cases, the 

SRE and RSE APLE values are also close, with maximum values above 60% for the more 

efficient estimators, and their corresponding CoVs being below 50%. Furthermore, it can 

also be observed that APLE results in original and log units are similar. Additionally, 

Fig. 7.11 presents the CoV of the thirty-four dispersion values obtained by the estimators, 

for each REG6 shear force dataset in original units and for all the intensities. As for the 

previous cases, some large CoV values are observed for a few sections and intensities. Still, 

the majority of the values can be seen to be generally lower than 20% (almost identical 

values are obtained for the V demand in log units). With respect to the more efficient 

estimators for V, these are similar to those of the previous EDPs. 
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Figure 7.9. APLE values of the estimators, for the SRE and the RSE, for the REG6 shear force in original 
units when  1aS T  is the IM, averaged across all the intensities, and CoVs representing the variability 

between intensities. 
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Figure 7.10. APLE values of the estimators, for the SRE and the RSE, for the REG6 shear force in log units 
when  1aS T  is the IM, averaged across all the intensities, and CoVs representing the variability between 

intensities. 
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Figure 7.11. CoV of the dispersion values obtained by all the estimators for the REG6 shear force in original 
units, for all the intensities and control sections, when  1aS T  is the IM. 

 

For the case of the inter-storey drift Δ, and since for a given structure there is only 

one dataset for each earthquake intensity, Fig. 7.12 presents APLE values of the SRE and 

the RSE averaged across all the structures and all the earthquake intensities, and the CoVs 

representing their variability across these intensities, when  1aS T  is the IM. Although only 

forty-four datasets are considered (the intensity nine dataset of the ICONS structure was 

disregarded by the reasons highlighted in Section  7.5.1), it can be observed that both the 

APLE values and the CoVs are similar to those of the previous EDPs. With respect to the 

more efficient estimators, these are also seen to be those of the previous cases. In addition, 

Fig. 7.13 presents the CoV of the thirty-four dispersion values obtained by the estimators 

for each structure and Δ dataset which can be seen to be between 12% and 20%. 
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Figure 7.12. APLE values of the estimators, for the SRE and the RSE, for the inter-storey drift of all the 
structures when  1aS T  is the IM, averaged across all the intensities, and CoVs representing the variability 

between intensities. 
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Figure 7.13. CoV of the dispersion values obtained by all the estimators, for the inter-storey drift of all 
structures and for all the intensities, when  1aS T  is the IM. 

 

Based on the analysis of the results of Stage 1, the most efficient estimators to be 

considered in Stage 2 were identified. For the case of  ,   and V, Table 7.2 presents the 

ten best DEs for each structure and for both IMs. For each structure and IM, the SRE and 

RSE APLE values of the six EDPs (i.e. the positive and negative   and  , and V both in 

original and in log units) were sorted in ascending order, and the corresponding ten 

estimators appearing more times over all twelve situations were selected. A similar analysis 

was also carried out for Δ and the resulting estimators were also those found in Table 7.2. 

As can be observed, Table 7.2 refers to twelve different estimators. However, the following 

ten estimators can be seen to appear for almost every structure and IM: estimators 4, 12, 

15, 16, 17, 18, 31, 32, 33 and 34 (Qn, ecfS , 0.16 trs  , 0.20 trs  , 0.24 trs  , s , ,1ts , ,2ts , ,3ts , and 

MMLEs). Given the smaller size of the datasets chosen for Stage 2, the consideration of the 

data trimming levels involved in estimators 0.16 trs  , 0.20 trs   and 0.24 trs   presents some 

problems. Therefore, in order to still be able to include this type of estimators in the 

analyses of Stage 2, the following modifications were considered for each sample size n*: 

 For the sample size n* of forty, estimator 0.20 trs   was considered and estimators 

0.16 trs   and 0.24 trs   were replaced by estimators 0.15 trs   and 0.25 trs   instead, since each 

one of these allows to trim an integer number of data values from each side of the 

samples (three and five values, respectively); 

 For the sample size n* of thirty, estimator 0.20 trs   was considered and estimators 

0.16 trs   and 0.24 trs   were replaced by estimators 0.133 trs   and 0.267 trs   instead, since 

each one of these allows to trim an integer number of data values from each side of 

the samples (two and four values, respectively); 

 For the sample size n* of fifteen, estimator 0.20 trs   was not considered and 

estimators 0.16 trs   and 0.24 trs   were replaced by estimators 0.133 trs   and 0.267 trs   
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instead, since each one of these allows to trim an integer number of data values 

from each side of the samples (one and two values, respectively); 

 For the sample size n* of seven, estimators 0.16 trs   and 0.20 trs   were not considered 

and estimator 0.24 trs   was replaced by estimator 0.285 trs   instead, since it allows to 

trim an integer number of data values from each side of the samples, i.e. one value. 

Therefore, the estimators selected for the Stage 2 analyses are s , ,1ts , ,2ts , ,3ts , MMLEs, 

Qn, ecfS , along with these different cases of the trs   estimator. The numbering of each 

new case of trs   corresponds to that of the original estimator being replaced. Finally, 

estimator 31, ,1ts , was seen to be the estimator with best performance, i.e. it yields 

higher APLE values than the remaining estimators in a larger number of cases, and was 

selected as the new reference estimator 2refT . 

Table 7.2. The ten most efficient DEs, for each structure and IM, and the number of times NT they appear  

ICONS IRREG10 IRREG6 REG10 REG6 

PGA  1aS T PGA  1aS T PGA  1aS T PGA  1aS T  PGA  1aS T

DE NT DE NT DE NT DE NT DE NT DE NT DE NT DE NT DE NT DE NT
15 12 15 12 3 12 15 12 3 12 3 12 3 12 12 12 3 12 15 12
16 12 16 12 15 12 16 12 12 12 12 12 12 12 15 12 15 12 16 12
17 12 17 12 16 12 17 12 15 12 15 12 15 12 16 12 16 12 17 12
18 12 18 12 17 12 18 12 16 12 16 12 16 12 17 12 17 12 18 12
31 12 31 12 18 12 31 12 17 12 17 12 17 12 18 12 18 12 31 12
32 12 32 12 31 12 32 12 18 12 18 12 18 12 31 12 31 12 32 12
33 12 33 12 32 12 33 12 31 12 31 12 31 12 32 12 32 12 33 12
34 12 34 12 33 12 34 12 32 12 32 12 32 12 33 12 33 12 34 12
3 11 3 11 34 12 3 12 33 12 33 12 33 12 34 12 34 12 12 10
12 11 12 10 19 11 12 9 34 12 34 12 34 12 8 9 19 11 3 9 

 

 

7.5.2.2 Results of Stage 2 

Only a sample of the results of Stage 2, in terms of the *RSE  and of the *RAE  

measures, are presented herein since they were found to be generally the same across all 

structures, for all EDPs and for both IMs. The large majority of the Stage 2 results are 

similar to those presented in Figs. 7.14a) to d). Figure 7.14a) shows the APLE results for 

the *RSE  of the estimators selected for Stage 2, obtained for the positive   demand of 

the ICONS sections, for all the intensities, for a sample size n* of forty and when  1aS T  is 

the IM. With the exception of estimator 32 ( ,2ts ), these results show that the considered 

estimators do not exhibit APLE values above 50%, which means that their performance is 

not superior to that of 2refT  ( ,1ts ). To confirm that similar results were obtained for other 
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sample sizes, Figs. 7.14b), c) and d) present, for the same structure and EDP, the *RSE  

and *RAE  APLE values averaged across the earthquake intensities for n* values of thirty, 

fifteen and seven, respectively, and the CoVs reflecting the variability between earthquake 

intensities. These results indicate that estimator 32 has a performance close to that of ,1ts  

(APLE values are close to 50%), and that, in some cases, estimator 33 ( ,3ts ) also exhibits 

APLE values which correspond to an average performance close to 40%. With respect to 

the remaining estimators, their performance is much lower. In terms of the variability 

between earthquake intensities, it can be observed that the CoVs of the more efficient 

estimators are generally in the range of 25%-40%, irrespective of n*.  
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   d) 

Figure 7.14. APLE values of the estimators for the ICONS positive curvature when  1aS T  is the IM, for the 
*RSE  and all the intensities (a) for the *RSE  and *RAE  averaged across all the intensities along with the 

CoVs representing the variability between intensities when n* is thirty (b), when n* is fifteen (c), when n* is 
seven (d). 

 

As referred, these findings illustrate the large majority of the results obtained and 

indicate that estimators 31, 32 and 33 ( ,1ts , ,2ts  and ,3ts ) are those with best performance - 

estimator 33 to a lesser extent though. Although in a much less frequent number of cases, 

other situations also identified, especially for the shear force EDP, are briefly illustrated in 

the following. As an example, Fig. 7.15 presents APLE values of the estimators averaged 

across all the intensities and the CoVs reflecting their variability across these intensities, for 

the *RSE  and the *RAE  of the IRREG10 shear force, both in log and in original units, 
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when PGA is the IM, and for several cases of n*. These results exhibit situations where 

estimators 4, 12, 18 and 34 (Qn, ecfS , s  and MMLEs) exhibit a better performance than 

that of estimators 32 and 33. Nonetheless, even in these cases, the performance of ,1ts  is 

still higher.  

Based on a global analysis of the Stage 2 results, no definite trend was observed with 

respect to the effect of the IM on the efficiency of the estimators. In general terms, the 

efficiency of the estimators was found to be similar irrespective of the IM. This situation 

indicates that these estimators are fit to be considered under various conditions of the 

dispersion obtained for the demand. 
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Figure 7.15. APLE values of the estimators averaged across all the intensities along with the CoVs 
representing the variability between intensities, for the IRREG10 *RSE  and *RAE  values, when PGA is the 

IM, for the shear force in log units when n* equal to forty (a) and to fifteen (b), and for the shear force in 
original units when n* equal to thirty (c) and to seven (d). 

 

To further illustrate the results of Stage 2, and to highlight the differences between 

the different estimators, namely in terms of the influence of the sample size in the value of 

the dispersion estimates, a more detailed view of the results obtained by some of the 

estimators considered in Stage 2 is presented in the following. This analysis is focussed on 

estimators 31 and 18 ( ,1ts  and s ) since the results of estimator ,1ts  are representative of 

those obtained with ,2ts  and ,3ts , while the results of s  are considered to be representative 

of those obtained with Qn, ecfS  and MMLEs. For the case of the positive   demand of the 
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ICONS structure when  1aS T  is the IM, Figs 7.16a) and b) present, for all the sections 

and all the intensities, the average value of the 10000 estimates, normalized by 2, refref nT , 

obtained with ,1ts  for sample sizes n* of forty and seven, respectively. Figures 7.16c) and d) 

present similar results obtained with s . These results indicate that, for most sections and 

intensities, the average of the 10000 estimates is very close to the value of 2, refref nT , 

irrespective of the considered estimator. Moreover, the average estimates produced by ,1ts  

are seen to exhibit a small bias, while those obtained with s  exhibit a larger bias. This bias 

is seen to increase as n* decreases and reveals that these estimators tend to (on average) 

underestimate the value of 2, refref nT . To complement these results, Figs. 7.17a) to d) present 

the CoV of the 10000 estimates obtained with ,1ts  and s  for sample sizes n* of forty and 

seven. As expected, the CoV increases as n* decreases (the average CoV is seen to double 

its value from a size n* of forty to a size n* of seven). However, the CoV values are seen to 

be very similar from one estimator to another. Furthermore, it is noted that comparable 

results were also obtained for the remaining deformation-based EDPs and structures.  

A similar analysis carried out for the results of the IRREG10 shear force in log units, 

when PGA is the IM, yields a different type of outcome. Figures 7.18a) to d) present, for all 

the sections and all the intensities, the average value of the 10000 estimates obtained with 

,1ts  and s , normalized by 2, refref nT , and for sample sizes n* of forty and seven. The results 

obtained for ,1ts , Figs. 7.18a) and b), indicate that the average dispersion estimate of several 

sections exhibits a considerable bias, which increases as n* decreases, that tends to 

overestimate the dispersion of the data. This bias is seen to occur in the results of the beam 

sections, with larger values being observed for the higher earthquake intensities. The reason 

behind these results is connected to the expected evolution of the shear force values. Since 

the post-yield stiffness of a structural member is usually low, the dispersion of the shear 

force demand distribution tends to be very small when a given member as yielded at both 

ends. All structures with members having this type of behaviour exhibited a similar 

anomalous performance of ,1ts . However, considerably large bias values were only seen for 

the IRREG10 and REG10 structures. With respect to the results obtained with s , these 

exhibit similar irregularities although the observed bias shows that this estimator has the 

tendency to underestimate the dispersion of the data. Globally, this analysis indicates that 

these estimators yield less accurate results when the ratio between the dispersion and the 

central value is small. To complement these results, Figs. 7.19a) to d) present the CoV of 

the 10000 estimates obtained with ,1ts  and s  for sample sizes n* of forty and seven. As 

expected, the CoV increases as the sample size decreases and the larger values reflect the 

irregular behaviour of the estimators applied to the data of the beam sections. As for the 

previous EDPs, the CoV values are seen to be similar from one estimator to another. 
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  d) 

Figure 7.16. Average estimates of the dispersion of the positive curvature of all the sections of the ICONS 
structure, when  1aS T  is the IM, with ,1ts  when n* equal to forty (a) and to seven (b), and with s  when n* 

equal to forty (c) and to seven (d). 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Control sections

M
ax

im
um

 C
oV

 o
f 

th
e 

es
ti

m
at

or

 

 

Intens 1
Intens 2
Intens 3
Intens 4
Intens 5
Intens 6
Intens 7
Intens 8

  a)  
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Control sections

M
ax

im
um

 C
oV

 o
f 

th
e 

es
ti

m
at

or

 

 

Intens 1
Intens 2
Intens 3
Intens 4
Intens 5
Intens 6
Intens 7
Intens 8

  b) 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Control sections

M
ax

im
um

 C
oV

 o
f 

th
e 

es
ti

m
at

or

 

 

Intens 1
Intens 2
Intens 3
Intens 4
Intens 5
Intens 6
Intens 7
Intens 8

  c)  
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Control sections

M
ax

im
um

 C
oV

 o
f 

th
e 

es
ti

m
at

or

 

 

Intens 1
Intens 2
Intens 3
Intens 4
Intens 5
Intens 6
Intens 7
Intens 8

  d) 

Figure 7.17. CoV of the estimates of the dispersion of the positive curvature of all the sections of the ICONS 
structure, when  1aS T  is the IM, with ,1ts  when n* equal to forty (a) and to seven (b), and with s  when n* 

equal to forty (c) and to seven (d). 
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  d) 

Figure 7.18. Average estimates of the dispersion of V, in log units, for all the sections of the IRREG10 
structure, when PGA is the IM, with ,1ts  when n* equal to forty (a) and to seven (b), and with s  when n* 

equal to forty (c) and to seven (d). 
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  d) 

Figure 7.19. CoV of the estimates of the dispersion of V, in log units, for all the sections of the IRREG10 
structure, when PGA is the IM, with ,1ts  when n* equal to forty (a) and to seven (b), and with s  when n* 

equal to forty (c) and to seven (d). 
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Based on this analysis, it is recalled that the *RSE  and the *RAE  efficiency measures 

are obtained using the result of estimator 31, ,1ts , for size refn  ( 2, refref nT ) as a reference for 

the "true value" of the dispersion of the datasets. Similar to what was performed for the 

central value estimators analyzed in Chapter 6, the Stage 2 analyses were repeated using a 

different estimator to quantify 2, refref nT , in this case estimator 18 ( s ), and to observe how 

different are the results. To illustrate the findings of this new analysis, Fig. 7.20 presents 

APLE results obtained using s  to quantify 2, refref nT . These results correspond to those of 

Figs. 7.14a), 7.14d), 7.15a) and 7.15d) that were obtained by defining 2, refref nT  using 

estimator 31. Although, in some cases, these new results show an increase in the 

performance of estimators 32 and 33 ( ,2ts  and ,3ts ) with respect to that of ,1ts , other 

results indicate the occurrence of a larger number of situations where estimators 12, 18 and 

34 ( ecfS , s , and MMLEs) perform better than ,1ts . With respect to the case of estimators 

15, 16 and 17, their performance still remains well below that of the other methods. 
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Figure 7.20. APLE values of the estimators averaged across all the intensities along with the CoVs 
representing the variability between intensities, for the *RSE  and *RAE  values, when  1aS T  is the IM, for 

the ICONS positive curvature when n* is forty (a) and when n* is seven (b), and when PGA is the IM, for the 
IRREG10 shear force in log units when n* equal to forty (c), and for the shear force in original units when n* 

equal to seven (d). 
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In light of this latter analysis, it is observed that, in the overall, the results of Stage 2 

are not totally conclusive. With the exception of estimators 15, 16 and 17 that were seen to 

perform poorly across all cases, the performance of the remaining estimators selected for 

Stage 2 is seen to oscillate, namely as a function of the selected sample size n* and the value 

of 2, refref nT . This fact indicates that, although the several estimators may lead to similar 

dispersion values for samples of the reference size (see Section  7.5.2.1, based on the low CoV 

values of Fig. 7.3), the differences are still significant enough to influence the results of 

Stage 2. Given this outcome, an additional analysis stage was carried out to be able to 

identify the most suitable dispersion estimators. In this stage, estimators of the central 

value and of the dispersion of the data are combined to establish a probabilistic model 

whose adequacy is assessed. 

 

 

7.5.2.3 Results of Stage 3 

In this stage, efficient CVEs identified in Chapter 6 are associated with DEs to 

define fitted statistical distributions that are compared to the empirical distributions of the 

data using the *AKD  and the *AWD  performance measures defined in Section  7.4. Based 

on the results of Chapter 6, the selected CVEs are ,3HubT , ,3HamT , ,3TukT , logT  and 0.08 1HQx  . 

Details about their definition can be found in Chapter 6 and are, therefore, omitted herein. 

With respect to the DEs, given the results of Stage 2, estimators 4, 12, 18, 31, 32, 33 and 34 

(Qn, ecfS , s , ,1ts , ,2ts , ,3ts  and MMLEs) were considered. These estimators were paired 

according to the combinations defined in Table 7.3. After analysing the results of Stage 3 in 

terms of the *AKD  and the *AWD  performance measures, the best combinations of 

estimators will be selected according to the following criteria: 

 Combinations leading to the lowest average values of the measures *AKD  and 
*AWD ; 

 Combinations leading to the lowest average variability of *AKD  and *AWD  

across the selected earthquake intensities; 

 Combinations leading to regular results of *AKD  and *AWD  from structure to 

structure and for both IMs. 
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Table 7.3. Numbering of the Stage 3 combinations of central value and dispersion estimators.  

Number CVE DE Number CVE DE 

1 
,1ts  22 

,1ts  

2 
,2ts  23 

,2ts  

3 
,3ts  24 

,3ts  
4 Qn 25 Qn 

5 s  26 s  

6 ecfS  27 ecfS  

7 

,3HamT  

MMLEs 28 

logT  

MMLEs 

8 
,1ts  29 

,1ts  

9 
,2ts  30 

,2ts  

10 
,3ts  31 

,3ts  
11 Qn 32 Qn 

12 s  33 s  

13 ecfS  34 ecfS  

14 

,3HubT  

MMLEs 35 

0.08 1HQx   

MMLEs 

15 
,1ts     

16 
,2ts     

17 
,3ts     

18 Qn    

19 s     

20 ecfS     

21 

,3TukT  

MMLEs    

 

The general overview of the Stage 3 results presented in the following addresses their 

more relevant aspects and focuses on the main conclusions that can be extracted. In the 

overall, the results obtained for both the *AKD  and *AWD  measures exhibit a relatively 

regular pattern that is found for all the considered structures and EDPs. To illustrate such 

findings, Fig. 7.21 presents, for several EDPs and values of n*, the *AKD  and *AWD  

results of the selected combinations of estimators averaged across all the ground motion 

intensities, for the REG6 structure when PGA is the IM. Figures 7.21a) to d) present 

results for the negative chord rotation when n* is forty, the negative curvature when n* is 

thirty, the positive chord rotation when n* is fifteen, and the shear force in original units 

when n* is seven, respectively. In all the cases, the corresponding CoVs representing the 

variability of the *AKD  and *AWD  measures across the earthquake intensities is included 

also. These results indicate the existence of a pattern composed by a group of seven 

combinations that repeats itself five times across the selected combinations (although it 

exhibits some variability in the last repetition). This pattern indicates that, for a given DE, 

the several CVEs yield similar *AKD  and *AWD  results (except combinations involving 

estimator 0.08 1HQx   which was seen, in Chapter 6, to be best suited for smaller sample sizes 

and thus yields larger differences for n* values of forty, thirty and fifteen). On the other 
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hand, when analysing the results of each individual group of seven combinations, a larger 

variability of the *AKD  and *AWD  measures is observed. Therefore, the influence of the 

considered CVEs on the *AKD  and *AWD  values is seen to be lower than that of the 

DEs.  

When analysing with more detail the effects of the individual DEs, preliminary 

observations indicate that combinations involving estimators 12 and 34 ( ecfS  and MMLEs) 

exhibit, for most cases, lower values of the *AKD  measure. On the other hand, the results 

of such combinations in terms of *AWD  are, in many cases, some of the worst, e.g. see 

Figs. 7.21a) and b). With respect to the values of the CoVs, those of the *AKD  measure 

corresponding to combinations involving ecfS  and MMLEs are seen to be significantly 

larger than the remaining ones. To complement this analysis, Fig. 7.22 presents, for several 

EDPs and values of n*, the *AKD  and *AWD  results of the selected combinations of 

estimators averaged across all the earthquake intensities, along with the corresponding 

CoVs reflecting the variability of the results between these intensities, for the REG10 

structure when  1aS T  is the IM. Figures 7.22a) to d) present results for the shear force in 

log units when n* is forty, the negative chord rotation curvature when n* is thirty, the 

positive chord rotation when n* is fifteen, and the negative curvature when n* is seven, 

respectively. These results indicate that combinations involving ecfS  and MMLEs have a 

distinctive worse performance in terms of the *AWD  measure. Since similar results were 

found for the remaining structures, combinations involving these DEs were disregarded 

hereon. 

With respect to the remaining combinations, as can be observed from Figs. 7.21 and 

7.22, their performance is more regular, both in terms of the average and of the CoV 

values, and for both the *AKD  and the *AWD  measures. Furthermore, the differences 

between values of the *AKD  and the *AWD  measures from one combination to another 

are, in many cases, very small. Given that such type of results was found across all the 

structures and for both IMs, the analysis of the best combinations of estimators to 

characterize the probabilistic distribution of the demand of the several EDPs was carried 

out globally. Such overall analysis indicated that, for all the structures and both IMs, some 

combinations were systematically found to be among the best four. Such analysis was then 

extended to obtain the best four combinations for each EDP and sample size, according to 

the *AKD  and the *AWD measures separately. The analysis of these results was carried 

out separately for the deformation-based EDPs and for the shear force. Simultaneously, 

separate analyses were also performed for the group of results obtained for sample sizes n* 

of forty, thirty and fifteen, and for the results obtained for the sample size n* of seven. 

Table 7.4 summarizes the results of these analyses by presenting the number of times (in 
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percentage) that each combination is found on the list of the top four combinations. 

According to these results, the following aspects were found:    

 The selection of the best combinations based on the results of *AKD  is simpler 

since, for each group of EDPs and sample sizes, there are combinations with 

significantly better performances than others. With respect to the *AWD measure, 

the group of best performing combinations is larger thus making the selection of 

the best combinations less objective. Still, it should be noted that, for all the EDPs 

and sample sizes, the largest variation between the *AKD  and the *AWD  values 

obtained for the best combination and for the combination in the fourth place is 

always below 6%;   

 The results of the *AKD  and the *AWD measures obtained for the deformation-

based EDPs ( ,   and Δ) and for the sample sizes n* of forty, thirty and fifteen 

indicate that combinations 5, 12, 19 and 26 have a similar performance that is 

superior to that of the remaining combinations; 

 The results obtained for the deformation-based EDPs ( ,   and Δ) and for the 

sample size n* of seven indicate that combinations 10, 24 and 31 have a superior 

performance in terms of the *AKD  measure. On the other hand, no combination 

has a distinctive superior performance in terms of the *AWD measure. In this case, 

several combinations are found among the top four with percentages between 33% 

and 48%; 

 The results obtained for the shear force and for the sample sizes n* of forty, thirty 

and fifteen indicate that combinations 5, 12, 19 and 26 have a superior performance 

in terms of the *AKD  measure. On the other hand, the results obtained for the 
*AWD  measure indicate combinations 10 and 24 as performing better. The third 

and fourth best performances are those of combinations 12 and 26 with values 

close to 45%; 

 The results of the *AKD  and the *AWD measures obtained for the shear force 

and for the sample size n* of seven indicate that combinations 24 and 31 have a 

similar performance which is superior to that of the remaining combinations. Even 

though the performance of combinations 29 and 30 in terms of *AKD  also 

exhibits high values, the results obtained for the *AWD measure indicate that 

combinations 24 and 31 are best. 
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Figure 7.21. *AKD and *AWD  results of the estimator combinations averaged across all the intensities along 
with the CoVs representing the variability between intensities, when PGA is the IM, for the REG6 negative 
chord rotation when n* is forty (a), the negative curvature when n* is thirty (b), the positive chord rotation 

when n* is fifteen (c), and the shear force in original units when n* is seven (d). 
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Figure 7.22. *AKD and *AWD  results of the estimator combinations averaged across all the intensities along 
with the CoVs representing the variability between intensities, when  1aS T  is the IM, for the REG10 shear 

force in log units when n* is forty (a), the negative chord rotation when n* is thirty (b), the positive chord 
rotation when n* is fifteen (c), and the negative curvature when n* is seven (d). 
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Table 7.4. Best four combinations of central value and dispersion estimators for each EDP and sample size.  

  ,  , Δ V 
 n* = 40, 30, 15 n* = 7 n* = 40, 30, 15 n* = 7 

Combination *AKD  *AWD *AKD  *AWD *AKD  *AWD  *AKD  *AWD

1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
3 0.0 2.4 0.0 0.0 0.0 35.0 0.0 5.0 
4 0.8 5.6 0.0 0.0 0.0 0.0 0.0 0.0 
5 88.9 88.9 0.0 47.6 96.7 25.0 0.0 0.0 
8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
9 0.0 0.0 9.5 2.4 0.0 10.0 0.0 10.0 
10 0.0 5.6 85.7 35.7 0.0 73.3 0.0 55.0 
11 1.6 1.6 0.0 0.0 0.0 0.0 0.0 0.0 
12 98.4 91.3 0.0 47.6 100.0 46.7 5.0 5.0 
15 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
16 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
17 0.0 0.0 0.0 0.0 0.0 18.3 0.0 0.0 
18 1.6 9.5 0.0 2.4 0.0 0.0 0.0 0.0 
19 97.6 88.1 0.0 47.6 96.7 26.7 0.0 0.0 
22 0.0 0.8 4.8 16.7 0.0 1.7 0.0 5.0 
23 0.8 6.3 64.3 35.7 0.0 30.0 10.0 40.0 
24 9.5 10.3 100.0 47.6 0.0 68.3 95.0 85.0 
25 1.6 1.6 0.0 0.0 0.0 0.0 0.0 0.0 
26 98.4 88.1 0.0 45.2 96.7 45.0 0.0 5.0 
29 0.0 0.0 7.1 11.9 3.3 1.7 90.0 50.0 
30 0.0 0.0 42.9 26.2 3.3 5.0 100.0 60.0 
31 0.8 0.0 85.7 33.3 3.3 13.3 100.0 80.0 
32 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
33 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

 

Based on the overall analysis of these findings, the use of combinations 12 and 26 is 

suggested when considering sample sizes n* of forty, thirty and fifteen. When dealing with 

smaller sample sizes, the use of combinations 24 and 31 is proposed instead. Furthermore, 

in terms of the dispersion estimators involved in these combinations, it can be seen that, 

for sample sizes n* of forty, thirty and fifteen, both suggested combinations involve the s  

dispersion estimator, while those suggested for smaller sample sizes involve ,3ts .  

 

 

7.6 Conclusions 

A study addressing the characterization of the dispersion of structural demand 

distributions of several EDPs obtained under earthquake loading using different robust 

estimators was presented. The selected EDPs were the curvature, the chord rotation, the 

shear force and the inter-storey drift over the height of the structure. Five structures were 

analysed for suites of fifty ground motions to obtain data samples with a size significant 
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enough. The chosen records were scaled for several intensities and two different IMs were 

also considered to evaluate the influence of this parameter. The fundamental objective of 

the study was to test the use of thirty-three robust estimators using adequate measures of 

statistical efficiency, in order to identify those best suited for different types of data and 

sample sizes. Furthermore, this study complements the one presented in Chapter 6 which 

addresses the characterization of the central value of the same EDPs.  

The performance of the estimators was assessed in three stages. In Stage 1, the 

performance of the thirty-three robust estimators is compared with that of the reference 

estimator s considering datasets of larger size (between forty-five and fifty). In Stage 2, a 

subgroup of ten estimators with higher efficiency is considered to assess their performance 

for datasets of smaller size (forty, thirty, fifteen and seven). Since the results of Stage 2 

were not conclusive, a third stage was considered where some of the more efficient CVEs 

identified in Chapter 6 ( ,3HubT , ,3HamT , ,3TukT , logT  and 0.08 1HQx  ) are associated with the 

seven more efficient DEs resulting from Stage 2. The combination of these estimators 

allows the definition of fitted statistical distributions of the demand that are compared to 

the empirical distributions using measures of distribution closeness.  

The overall analysis of the results of Stage 3 suggests that, for larger sample sizes (e.g. 

larger than fifteen), combinations involving ,3HubT  or logT  as the CVE and with s  as the 

DE should be used. For smaller sample sizes (e.g. lower than fifteen), combinations 

involving 0.08 1HQx   or logT  as the CVE and with ,3ts  as the DE are suggested instead.  

Finally, the results obtained over the three stages indicate there is no significant 

difference between the efficiency of the estimators due to the influence of the selected IMs. 

Although this indicates these estimators are fit to be considered under various conditions 

of the variability of the demand, further IMs should be analysed to confirm this conclusion. 

Furthermore, it was also observed that, in some cases, when the ratio between the 

dispersion and the central value is small (a situation which was found to occur when the 

EDP is the shear force), the estimators may yield less accurate results.  
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Chapter 8 
Analytical evaluation of  structural 

component limit state probabilities  
 

 

8.1 Introduction 

In the field of seismic risk assessment of structures, existing work on evaluation of 

component (member/section) seismic limit state probabilities focuses essentially on the 

fragility curve approach. A fragility value yields the probability of occurrence the limit state 

conditional on a value of the intensity measure (IM) of the input ground motion. A fragility 

curve is therefore defined as a relationship between the ground motion intensity and the 

probability of reaching or exceeding a certain response level, irrespective of the probability 

of occurrence of the corresponding ground motion intensities. A number of methods have 

been proposed to obtain fragility curves, ranging from expert judgment (ATC, 1985), to the 

analysis of data on observed damages (Singhal and Kiremidjian, 1998; Shinozuka et al., 

2000), to fully numerical approaches, as, for example, those proposed in (Cornell et al., 

2002; Au and Beck, 2003; Lupoi et al., 2003; Schotanus et al., 2004). General reviews on this 

matter can be found, for example, in (Der Kiureghian, 1996; Pinto, 2001; Pinto et al., 2004).  

A feature common to most of the numerical approaches is the use of a number of 

simulations consisting of analyses of a given structural model under increasing earthquake 

loads. Within this context, a common methodology involves the use of the previously 

referred multi-stripe analysis approach (Jalayer and Cornell, 2009). In this approach, a 

number of earthquake records are scaled to several target earthquake intensities and 

response simulations are carried out for each level. For each level, structural 

damage/response maxima obtained from the simulations are then used to fit a statistical 

distribution, often lognormal (see Chapter 5). Convolution of the demand distribution with 

that of the limit state capacity, for each level, then yields the fragility curve values. The 

difference among the various numerical methods lies essentially in their balance between 

cost and accuracy, i.e. in their ability to account economically for all the aspects entering 
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the reliability problem. Therefore, the choice of a method should be made considering the 

trade-off between computational effort and precision.  

Although the fragility curve approach yields important structure-specific results, it is 

known that the fragility curve alone is not sufficient for practical use on cost/effectiveness 

decision-making processes if information about the earthquake hazard, the complementary 

cumulative distribution function (CCDF) of the ground motion intensity, is not included. 

One may see that if a fragility value indicates a limit state exceedance probability of 50%, 

this result carries no information regarding both the probability of occurrence of the 

considered ground motions and the period of time under consideration. The inverse is also 

truth, as noted by Hadjian (2002): designing to a specific annual exceedance probability of 

the ground motion does not provide direct information about the fragility value. In the 

fragility analysis approach, computation of the unconditional probability that, at a given site 

and in a given period of time, the structure fails to perform satisfactorily or reaches a given 

limit state, needs the uncertainty in the seismic intensity to be reintroduced by means of the 

hazard function. By convolving the hazard derivative with the fragility curve, one obtains 

what is usually called seismic risk, (e.g. see Pinto, 2001; Hadjian, 2002; Pinto et al, 2004). 

In order to obtain the component seismic limit state unconditional probability of 

occurrence or risk by alternative approaches, the current chapter presents several methods 

that do not require the fragility curve to be determined. The proposed procedures use a 

strategy similar to the one presented by Cornell et al. (2002) known as the SAC/FEMA 

method. However, the present work extends that approach by introducing different 

functional forms to represent the earthquake hazard and by addressing the issue of 

force-based engineering demand parameter (EDP) limit state probabilities. These 

procedures are established using two different strategies that involve different levels of 

analytical tractability and comprehensiveness, which are termed Methodology 1 and 

Methodology 2. Methodology 1 proposes six approaches considering different earthquake 

hazard functions and EDPs. On the other hand, Methodology 2 proposes two approaches 

and discusses several issues related to the development of a third one.  

Over the past years, there have been several studies addressing the applicability of 

the SAC/FEMA method and/or reporting its weaknesses (e.g. see Lupoi et al., 2002; Lupoi 

et al., 2003; Pinto et al., 2004, Aslani and Miranda, 2005; Mackie and Stojadinovic, 2007; 

Kwon and Elnashai, 2007; Zareian and Krawinkler, 2007; Bradley and Dhakal, 2008; 

Skokan and Hart, 2008). The linear form in the log-log space of the earthquake hazard that 

is assumed by the SAC/FEMA method is known to be one of its main sources of error 

(e.g. see Aslani and Miranda, 2005; Bradley and Dhakal, 2008). Another reported source of 

error of the method is the fact that it assumes the variability of the demand to be constant 

for increasing levels of the selected IM (Pinto et al., 2004; Aslani and Miranda, 2005). 

Furthermore, the application of the SAC/FEMA method to force-based EDPs has also 

been reported to yield inadequate results (Pinto et al., 2004). Hence, alternative procedures 

are proposed herein that address some of these issues. 
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8.2 Brief review of the SAC/FEMA method 

Since the proposed methodologies are based on the SAC/FEMA method, a brief 

review of its analytical definition is presented in the following for completeness. The 

SAC/FEMA method provides the basis for the FEMA-350 (2000) guidelines for seismic 

design and assessment of steel moment-resisting frames. In this method, the IM considered 

to define the earthquake hazard is the spectral acceleration  aS T  for a period T close to 

the fundamental period of the structure T1. The method also considers that a limit state is 

attained when the maximum demand D over the duration of the ground motion exceeds 

the corresponding capacity C, assuming also that D and C are lognormally distributed 

random variables. Originally, the EDP considered by the method to represent D and C was 

the maximum inter-storey drift over the height of the structure. However, D and C may 

refer to any other scalar deformation-based or force-based EDP. The main limitation of 

the method remains to be that it only addresses limit states defined by a single EDP. 

In general terms, the SAC/FEMA method provides a closed form expression for the 

risk   written according to the following classical reliability formulation (e.g. see Ditlevsen 

and Madsen, 1996): 

    1 D CF f d  




      (8.1) 

where  DF  represents the cumulative distribution function (CDF) of the maxima of D, 

and  Cf   is the probability density function (PDF) of C. The method begins by defining 

the best estimate of the earthquake hazard  .H  for a selected reference period tref as 

     1
0Pr k

a refH s S s t k s     (8.2) 

in which k0 and k1 are constants fitted to the ground motion hazard data, and  aS T  is 

simply termed aS . In order to obtain adequate values of k0 and k1, it is recommended to 

perform the hazard fitting in the region of the aS  values whose probability of exceedance 

is close to the value of   that will be estimated by the SAC/FEMA method (which might 

require a first “blind” application of the method only to obtain its order of magnitude). To 

obtain the demand hazard from the earthquake hazard defined by Eq. (8.2), it is assumed 

that the evolution of the median value D̂  of D can be expressed as a function of aS  by: 

 ˆ bD a s   (8.3) 

where a and b are to be determined from demand distributions obtained from a number of 

nonlinear dynamic analyses of the structure. These distributions also provide an estimate of 

the dispersion D , i.e. the standard deviation of the natural logarithm of D, for the range 

of s values considered in the analyses. Therefore, D can be defined as: 
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  bD a s    (8.4) 

where   is a lognormal random variable with unit median and dispersion equal to D . By 

inverting Eq. (8.4) to give 

 

1

bD
s

a
   
 

 (8.5) 

and combining it with Eq. (8.2), one obtains the demand hazard      Pr 1 DD d F d  

by first conditioning it to the random variable   as follows: 
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   (8.6) 

The solution of Eq. (8.6), which can be found analytically (e.g. see Jalayer and Cornell 

(2000) for details), is then  
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The final step of the method involves the probabilistic definition of the capacity C 

and then solving Eq. (8.1). The capacity C is assumed to be independent from D and to 

follow a lognormal distribution with median Ĉ  and dispersion C . By considering 

Eq. (8.7), Eq. (8.1) becomes  
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where  Cf  is the lognormal PDF of C . Integration of the previous expression gives 
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 (8.9) 

The solution found for   can be read as saying that the limit state unconditional 

probability of occurrence, or risk, is given by the product of the probability that the 

spectral acceleration exceeds the value necessary to produce a demand D equal to the 

median capacity Ĉ , as if the s-d relationship was deterministic, times a factor containing the 

dispersions D  and C . 

It is noted that the SAC/FEMA method includes some additional steps. Since the 

variability assigned to D and C by dispersions D  and C  reflect only a portion of their 

total uncertainty, their epistemic uncertainty remains to be accounted for. The incomplete 
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knowledge of D and C may arise from the simplifications of the selected mechanical 

models, and/or from the limited statistical basis used to evaluate D and C. Furthermore, it 

is also customary to account for the uncertainty in the earthquake hazard definition, which 

can then be translated into an additional random variable representing the variability of the 

best estimate defined by Eq. (8.2). Since the development of Eq. (8.9) establishes sufficient 

context for presenting the proposed risk assessment methodologies, the steps considering 

these additional sources of uncertainty are omitted herein for the sake of brevity. 

Nonetheless, details can be found in Jalayer and Cornell (2000) and Pinto et al. (2004). 

Finally, as a side note, it is also referred that the earthquake hazard function defined 

by Eq. (8.2) has the form of the Pareto distribution (Johnson et al., 1994) given by  

    min min

min

Pr
1

x x x x
X x

x x

   


 (8.10) 

As can be seen, Eq. (8.2) does not account for the lower limit minx  of the support since 

usual fitting results of k0 and k1 lead to values of  11
min 0

kx k  that are very close to zero. 

However, when establishing the demand hazard defined by Eq. (8.7), which also takes the 

form of a Pareto distribution, the value of minx  is now given by 
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Depending on the selected EDP, the parameters entering this new minx  expression can 

lead to a value of the lower limit of the support that is much higher than zero (e.g. see 

some of the examples presented in Pinto et al. (2004)). Therefore, if minx  is not accounted 

for, unrealistic values (i.e. much higher than one) of the demand hazard will be considered 

when solving Eq. (8.8). In this situation, Eq. (8.8) leads to unrealistic values of  , which 

can also be higher than one in some cases. 

 

 

8.3 Proposed procedures 

The next Sections present two approaches to obtain the component seismic limit 

state unconditional probability of occurrence or risk. As previously referred, the procedures 

follow a strategy similar to that of the SAC/FEMA method, but extend that approach to 

overcome some of its limitations. The procedures are proposed for the risk analysis at the 

structural section level but they can also be applied to other cases where the occurrence of 

the limit state can be defined by a single EDP. Furthermore, the presentation of the 

procedures is made assuming that sufficient earthquake hazard data is available to establish 

the hazard function for the chosen IM and for the selected reference period. 
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8.3.1 Methodology 1 

Methodology 1 begins by fitting a probabilistic CCDF to the available earthquake 

hazard data to obtain the earthquake hazard function  .H . This adjustment is performed 

assuming the functional dependency between the ground motion IM and the hazard data 

follows an Extreme-type distribution, namely a Fréchet or a Weibull distribution 

(whichever fits best). These distributions have their cumulative distribution function and 

corresponding CCDF defined by Eqs. (8.12) and (8.13), respectively, (Castillo, 1988): 

     1
x x

Fréchet FréchetF x e H x e

 

 

 
       
        (8.12) 

    1
x x

Weibull WeibullF x e H x e

 

 
       
        (8.13) 

where  ,  ,   and   are the parameters of the distribution functions. Equations (8.12) 

and (8.13) are better suited for seismic hazard representation than the approximated power 

law, Eq. (8.2),  proposed by Kennedy and Short (1994) and used by Cornell et al. (2002), 

since they actually represent probabilistic CCDFs, thus valid throughout the entire IM 

domain. 

The following step corresponds to the numerical simulation part of the procedure. 

After selecting an appropriate accelerogram from an existing ground motion database or 

artificially generating one, nonlinear dynamic analyses are performed to determine the 

structure’s peak response to increasing scaled intensities of that accelerogram. The EDPs 

for which the limit state probabilities are required must be recorded for each intensity.  

The third step of the procedure is the fitting of a mathematical expression to the 

evolution of the chosen EDP for increasing values of the ground motion IM, the so-called 

Incremental Dynamic Analysis (IDA) curve (Vamvatsikos and Cornell, 2002). The form of 

the functional dependency between the ground motion IM and the chosen EDP fitting the 

IDA data must be carefully chosen and will depend on the EDP type (deformation-based 

or force-based). In addition, in order to maintain mathematical tractability, this expression 

must be an increasing, continuous and invertible function. In light of some of the results 

presented by Vamvatsikos and Cornell (2002), e.g. regarding the more extreme weaving and 

resurrection behaviour of the IDA curves, the monotonicity condition may seem difficult to 

comply with. However, such extreme phenomena were not found for the reinforced 

concrete (RC) structures and the class of EDPs studied herein. For deformation-based 

EDPs, the chosen functional form is the power function defined by Eq. (8.14), also 

considered in the SAC/FEMA method, Eq. (8.3), which was seen to perform adequately. 

In Eq. (8.14) D represents the EDP while a and b are the functions’ parameters to be fitted 

from numerical data. 

   bD x a x    power function (8.14) 
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In terms of force-based EDPs, namely for the shear force demand which is of main 

interest herein, its variation for increasing values of the chosen ground motion IM appears 

to be functionally different than that of deformation-based EDPs. After exhibiting larger 

variations for low values of the ground motion IM, the member shear force tends to a 

limiting top value due to the reduced post-yield stiffness of the member, as mentioned in 

previous chapters. Depending on the member flexural strength and stiffness, the limiting 

value may be attained for lower or higher ground motion IM values. These different types 

of shear force demand evolutions cannot be neglected when defining a suitable form of the 

functional dependency between the ground motion IM and shear force. 

An extensive study was carried out to find the most adequate functional form for the 

shear force demand evolution with increasing values of the ground motion IM. Several 

fitting examples were performed considering the functional form defined by Eq. (8.14) and 

those defined by Eqs. (8.15), (8.16), (8.17) and (8.18). Equation (8.15) involves a 

logarithmic function, Eq. (8.16) involves an inverted exponential function, Eq. (8.17) 

involves a double exponential function and Eq. (8.18) is the functional form proposed by 

Aslani (2005) denoted herein as the “Aslani proposal”. In Eqs. (8.15), (8.16), (8.17) and 

(8.18) D represents the EDP and a, b, c and d are parameters to be fitted from numerical 

data. With respect to the value of parameter k in Eq. (8.16), its value was found to be 1.0, 

1.5 or 2.0, depending on the performance of the fit. The influence of this parameter on the 

form of Eq. (8.16) while the other parameters remain constant can be seen in Fig. 8.1. 

    lnD x a x b     logarithmic function (8.15) 

    k xD x a e b      inverted exponential function (8.16) 

      b x d xD x a e c e       double exponential function (8.17) 

   x cD x a b x     Aslani proposal (8.18) 
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Figure 8.1. Influence of parameter k in Eq. (8.16). 
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To see how these functions perform, Fig. 8.2 presents two fitting examples of real 

data samples. Figures 8.2a), b) and c) present the results of the shear force demand of a 

column for a given ground motion of increasing intensity and corresponding fitting using 

Eqs. (8.14) to (8.18). The selected ground motion IM was the 5% damped spectral 

acceleration at the fundamental period of the structure,  1aS T . Figure 8.2a) presents the 

fit over the full range of the available data while Fig. 8.2b) presents a partial view focussing 

on the fitting results over the lower range of the ground motion IM and Fig. 8.2c) presents 

the behaviour of the functions when extrapolating outside the fitting domain. Figures 

8.2d), e) and f) present the results of shear force demand of a beam for the same 

conditions and corresponding fitting using Eqs. (8.14) to (8.18). Figure 8.2d) presents the 

fit over the full range of the available data while Fig. 8.2e) presents a partial view focussing 

on the fitting results over the lower range of the ground motion IM and Fig. 8.2f) presents 

the behaviour of the functions when extrapolating outside the fitting domain. In the case 

of Eq. (8.16), parameter k was considered with a value of 1.5. The fitting of these 

expressions was carried using either the Trust-Region or the Levenberg-Marquardt 

nonlinear curve fitting algorithms available in Matlab (Matlab, 2008) and considering a 

number of data points larger than strictly required to obtain the values of the parameters. 

Global analysis of Fig. 8.2a) indicates the considered expressions yield an overall 

good fit. However, the closer view provided by Fig. 8.2b) indicates the Aslani proposal and 

the logarithmic function are closer to the data in the range of the lower ground motion 

IMs. When analysing the performance of the different functions outside the fitting range, 

Fig. 8.2c), three distinct behaviours can be observed: functions may continue to increase at 

different rates, Eqs. (8.14), (8.15) and (8.17); functions may start to decrease after a certain 

IM level, Eq. (8.18); functions may start to stabilize after a certain IM level, Eq. (8.17). 

With respect to the second fitting example, global analysis of Fig. 8.2d) shows it is more 

difficult to fit the proposed functional forms to the available data of this second example. 

In the overall, only the inverted exponential function appears to yield an adequate fit, 

namely by analysing the performance of the fits over the lower range of IMs, Fig. 8.2e), as 

well as outside the fitting range, Fig. 8.2f). Based on these examples, it can be seen that 

finding adequate expressions to suitably fit shear force demand data is not an easy task, 

especially in situations similar to those of the beam example. In addition, as previously 

stated, the chosen expression must be an increasing and invertible function, in order to 

maintain the mathematical tractability of the proposed procedure. To comply with these 

requirements, both the Aslani proposal and the double exponential function, Eqs. (8.17) 

and (8.18), respectively, must be rejected. As can be seen in Figs. 8.2e) and f), the Aslani 

proposal is not an increasing function throughout the IM domain. In the case of the double 

exponential function, although it may yield good fits in some situations, it cannot be 

considered within the proposed procedure since it is not an invertible function. Of the 

remaining functional forms, and considering the type of shear force demand evolutions 
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that were presented in Fig. 8.2, Eqs. (8.15) and (8.16) were selected as those being more 

adequate. Nonetheless, the choice between one or the other should be decided on a 

case-by-case situation upon observation of the shape of the IDA curve. Moreover, the 

presented demand evolution examples are considerably influenced by the nonlinear flexural 

behaviour of the sections under study. In a case where a more linear behaviour is observed, 

another functional form, e.g. Eq. (8.14), could provide a better fit.  
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Figure 8.2. Fitting example for shear force demand of a column section (a), (b) and (c), and of a beam section 
(d), (e) and (f). 
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The next step of the proposed procedure addresses the definition of the 

unconditional probabilistic distribution of the demand D, namely in terms of its CCDF 

 H D . For this purpose, it is necessary to introduce the analytical relations between D and 

 H D . To derive such relations, it is necessary to invert Eqs. (8.14), (8.15) and (8.16) and 

substitute these new relations back into Eqs. (8.12) and (8.13). This way, the probabilistic 

distribution of the ground motion hazard is analytically transformed into the curve giving 

the probability of exceedance of the chosen EDP. Therefore, if the earthquake hazard 

function is fitted using Eq. (8.12), one obtains Eqs. (8.19), (8.20) and (8.21) if the demand 

D is defined by Eqs. (8.14), (8.15) and (8.16), respectively. It can be seen that for Eq. (8.19) 

D has the CCDF of a Fréchet distribution, for Eq. (8.20) D has the CCDF of a Gumbel 

distribution for maxima (Castillo, 1988) and for Eq. (8.21) the auxiliary variable χ has the 

CCDF of a Fréchet distribution. 
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In case the earthquake hazard function is fitted using Eq. (8.13), one obtains Eqs. (8.22), 

(8.23) and (8.24) if the demand D is defined by Eqs. (8.14), (8.15) and (8.16), respectively. 

It can be seen that for Eq. (8.22) D has the CCDF of a Weibull distribution, for Eq. (8.23) 

D has the CCDF of a Gumbel distribution for minima (Castillo, 1988) and for Eq. (8.24) 

the auxiliary variable χ has the CCDF of a Weibull distribution. 
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Following this, it is necessary to define the capacity value C corresponding to the 

selected EDP for the chosen limit state in order to obtain the limit state exceedance 

probability by substituting D by C in the corresponding demand CCDF, Eqs. (8.19) to 

(8.24). Due to the particular form of Eq. (8.16), it should be noted that Eqs. (8.21) and 

(8.24) may yield limit state exceedance probabilities with a value of zero. Since the 
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evolution of Eq. (8.16) has an upper bound (e.g. see Fig. 8.1), if the selected value of C is 

higher than that upper limit, the corresponding limit state probability is zero.  

In the overall, the proposed procedure can be briefly outlined as follows: 

 Fitting of the hazard data for the site under consideration to one of the functions 

defined by Eqs. (8.12) and (8.13) to obtain  H x ; 

 Running of nonlinear dynamic analyses using an appropriate ground motion to 

determine the maxima of the selected EDP for increasing intensities of that ground 

motion;  

 Fitting of the recorded EDP evolution data using Eqs. (8.14), (8.15) or (8.16) for 

the EDP type under analysis to obtain  D x ;  

 Depending on the considered function for the seismic hazard and on the type of 

functional curve considered for the EDP, substitute the fitted parameters into the 

corresponding limit state CCDF  H D , Eqs. (8.19) to (8.24); 

 Determine the EDP capacity C for the chosen limit state and substitute D by C in 

 H D  to obtain the limit state exceedance probability. 

By analysing the proposed procedure, using Eqs. (8.19) to (8.24) can be seen to only 

require knowledge regarding two parameters resulting from the ground motion hazard fit 

and two parameters resulting from the EDP evolution fit (or three considering that 

parameter k in Eq. (8.16) is not exactly known). Consequently, Eqs. (8.19) to (8.24) may be 

used to assess the probability of exceedance of any desired limit state, considering any EDP 

and ground motion IM, without the need to determine the fragility curve. 

Since there are several important sources of uncertainty in the seismic risk 

assessment problem (Jalayer and Cornell, 2000; Pinto et al., 2004), some strategies are 

presented in the following to address such issues within the proposed methodology. In 

order to account for the effect of record-to-record variability in the selected EDP and thus 

in the limit state probability, one must repeat the previously outlined steps for a set of 

several ground motions. In addition, non-deterministic values of material properties and/or 

of geometrical data of the structural elements may also be considered in these analyses 

using pre-defined statistical distributions of these variables. This means that, for each 

ground motion, one should repeat the proposed procedure for different material and/or 

geometrical properties sampled from their respective distributions. Representing the 

randomness of these mechanical parameters is, therefore, feasible at the cost of additional 

sets of analyses, each one performed for a given set of values of mechanical properties. 

However, alternative approaches can be pursued to account for randomness in the 

mechanical parameters by using the proposal suggested by Lupoi et al. (2003) or by using 

response-sensitivities, i.e. the first-order partial derivatives of the response with respect to 
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the random mechanical parameters. To obtain response-sensitivities, several methods can 

be followed, such as the direct differentiation method or the finite difference scheme, i.e. 

repeating the analysis for perturbed values of the parameters. Extensive presentation of 

these methods is beyond the scope of the present work. The reader is referred, for 

example, to Haukaas (2003) and Franchin (2004) for further details on the application of 

these procedures. Randomness of the limit state capacity C is another source of uncertainty 

that may also be considered. Assuming that capacity C and demand D are independent 

variables, a commonly considered assumption though sometimes approximate (Pinto et al., 

2004), non-deterministic values of the mechanical parameters can be sampled from their 

respective distributions to obtain random samples of the capacity C. Then, one can assess 

the limit state exceedance probability for each value of C without having to run additional 

structural analyses. 

Whether all or only part of the sources of variability and uncertainty are considered, 

one issue still remains to be addressed since one ends up with several values of the selected 

limit state probability. Since the individual values of the limit state probability represent 

probabilities conditioned to a particular sample, the conditioning can be eliminated by 

integrating the product of the conditional probability by the probability of the conditioning 

sample. For discrete terms, as in the present case, if it can be assumed that all samples have 

the same probability of occurrence, the integral can be approximated by the average of the 

individual probabilities. On the other hand, if different samples have different probabilities 

of occurrence, a weighted average of the individual probabilities can represent the integral 

instead.  

When comparing the proposed approach to the SAC/FEMA method, the following 

aspects should be highlighted: 

 The proposed method uses seismic hazard expressions which are actual CCDFs, 

instead of approximated functions that are not valid throughout the full IM domain 

and require careful fitting within the IM range of interest (Pinto et al., 2004); 

 The proposed method addresses both deformation-based and force-based EDPs 

by using different demand evolution functions depending on the EDP type; 

 Since the limit state exceedance probability equations are defined for each ground 

motion, the proposed method includes the full dispersion of the demand, namely 

the variation of the dispersion as a function of the IM level, instead of considering 

it constant as in the SAC/FEMA method. Still, it should be noted that the constant 

dispersion factor considered by this latter method also accounts for the fitting error 

of the chosen functional form between the ground motion IM and the EDP, e.g. 

see Giovenale et al., (2004). This aspect is not considered in the proposed approach 

since the referred relation is treated as deterministic for each ground motion;  
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8.3.1.1 Discussion of the probabilistic consistency and computational efficiency of 

the procedure 

The probabilistic consistency of the proposed approach for the calculation of the 

limit state exceedance probability for a structural component, for a given ground motion 

record and considering that the limit state capacity C is a constant, will be demonstrated by 

performing the integration of the fragility curve with the seismic hazard function to show 

that both approaches lead to the same result.  

Consider that    Prfp x D C IM x    is the fragility curve of the component. 

Since only one ground motion is considered and the limit state capacity is a constant, the 

fragility curve is 

  
0 ; *

1 ; *f

x IM
p x

x IM


  

 (8.25) 

where IM* represents the IM level for which the demand D equals the capacity C. The 

component limit state exceedance probability   is obtained by (e.g. see Pinto et al. (2004)) 

    
0

fp x h x dx


   (8.26) 

where  h x  is 

      dH x dH x
h x

dx dx
    (8.27) 

Considering Eq. (8.25), Eq. (8.26) can then be developed into 
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      (8.28) 

which, by using Eq. (8.27), yields 

    
*

*
IM

H x H x IM


       (8.29) 

Assuming that the ground motion record IDA curve is  D f x , inverting this relation 

and considering that *x IM  implies D C  gives 

  1*IM f C  (8.30) 

that when substituted back into Eq. (8.29) yields expressions similar to Eqs. (8.19) to (8.24). 

Regarding computational efficiency, and comparing the proposed approach with the 

general method that is based on the integration of the fragility curve with the hazard 

function, Eq. (8.26), the current methodology reduces the number of ground motion IM 

levels for which samples of the structural response are needed. As previously referred, 
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Eqs. (8.19) to (8.24) only require knowledge regarding two parameters that depend on 

samples of the structural response. For practical purposes, it is recommended that these 

parameters are estimated at three levels. Two of these levels should correspond to a lower 

limit and upper limit of the range of interest and the third one to approximately the average 

of the other two levels. Quantitative confirmation of this suggestion will be shown in the 

application example presented in the following. 

 

 

8.3.1.2 Application example  

To illustrate the applicability of the proposed approach, the probability of occurrence 

of several limit states is determined for two structural sections of the six-storey RC frame 

previously referred as IRREG6. The chosen sections, termed section 1 and section 2, are 

the beam and column sections represented in Fig. 8.3. The application example is based on 

the structural analysis results presented in the previous chapters for this structure. 

Therefore, details about the modelling and analyses procedures, the quantification of the 

demand parameters, and the suite of fifty ground motions representing the seismic demand 

are omitted herein.  

 

Section 2

Section 1

 

Figure 8.3. Selected sections of the IRREG6 structure for the application example. 

 

8.3.1.2.1 Limit states, capacity models and probabilistic modelling 

The considered limit states were defined using the proposals of Part 3 of the 

Eurocode 8 (EC8-3) (EC8-3, 2005). Therefore, the selected limit states are the Near 

Collapse (NC) limit state, the Significant Damage (SD) limit state and the limit state of 

Damage Limitation (DL). In terms of ductile mechanisms, the probabilistic assessment of 

these limit states was carried out for the deformation capacity of the structural members 

defined by the chord rotation  . As referred in Chapter 2, the chord rotation capacity of 

the DL limit state is defined by the chord rotation at yielding DL  (EC8-3, 2005) given by: 
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where y is the yield curvature of the section, sL  is the shear span taken constant and equal 

to half of the member length, h is the section depth, db is the mean diameter of the tension 

reinforcement, fy is the estimated steel yield strength and fc is the estimated value of the 

concrete compressive strength. For the quantification of the NC chord rotation capacity 

NC , the following semi-empirical expression (EC8-3, 2005) is considered herein:  
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where el is 1.5 for primary members, u is the ultimate curvature of the member end 

section and Lpl is the plastic hinge length. The definition of u and of plL  depends on the 

selected confined concrete model (EC8-3, 2005). For the limit state of SD, the chord 

rotation capacity SD  is defined as 3/4 of NC  (EC8-3, 2005). According to EC8-3, factor 

el accounts for the variability of the capacity by transforming mean capacity values into 

mean-minus-one-standard-deviation ones. However, el is considered equal to one in the 

present application since the variability of the capacity values will also be simulated.  

With respect to brittle mechanisms, the probabilistic assessment was carried out in 

terms of shear force capacity. For this type of mechanism, EC8-3 (EC8-3, 2005) only 

defines the limit state of NC. The shear force capacity VNC for this limit state is defined by: 

 

    

 

1
min ;0.55 1 0.05 min 5;

2

0.16 max 0.5;100 1 0.16 min 5;

pl
NC c c

el s

s
tot c c w w yw

h x
V N A f

L

L
f A b z f

h




 



 
        

                     

 (8.33) 

where Ac is the cross section area taken as wb d  (d is the structural depth), N is the axial 

load, here taken as the member demand under gravity loads (Mpampatsikos et al., 2008a), 
pl  is the ratio between the plastic part of the chord rotation demand and the yield chord 

rotation given by Eq. (8.31), tot  is the total reinforcement ratio, w  is the transverse 

reinforcement ratio and z is the length of the internal lever arm. The term h x  represents 

the distance between the member compression centres and is assumed to be equal to 2h/3.  

In order to evaluate the influence of the variability in the limit state capacity values, 

the probability of occurrence of the limit states was analysed for the following cases: 

 Case 1 - The probability of occurrence of the limit state is analysed assuming that 

the capacity is deterministic. Therefore, the material properties entering Eqs. (8.31) 

to (8.33) are considered with their mean values. 
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 Case 2 - The probability of occurrence of the limit state is analysed considering the 

variability of the capacity due to the randomness of the material properties entering 

Eqs. (8.31) to (8.33). By assigning statistical distributions to these properties, the 

variability of the capacity can be simulated for a number of samples of the material 

properties. The probability of occurrence of the limit state is then evaluated for 

each simulated capacity value. 

 Case 3 - The probability of occurrence of the limit state is analysed considering the 

variability of the capacity due to the modelling error associated to Eqs. (8.31) to 

(8.33). In this case, the limit state capacities C are modelled by the following:  

 ˆ
UCC C    (8.34) 

where Ĉ  is the capacity estimate of Case 1, and UC  is a lognormal random 

variable with unit median and a dispersion βUC accounting for the modelling error. 

 Case 4 - The probability of occurrence of the limit state is analysed considering the 

variability of the capacity due to both the randomness of the material properties 

and the modelling error referred in Case 2 and Case 3, respectively.  

To simulate the limit state capacity values according to Case 2, the relevant material 

properties were assumed to be represented by normal random variables with a mean   

and coefficient of variation (CoV) based on Ferracuti et al. (2009) and Dymiotis et al. (1999): 

 Concrete compressive strength fc: mean   33
cf

MPa  and 0.18
cf

CoV   

 Ultimate concrete strain εcu: mean   0.006
cu

 and 0.35
cu

CoV   

 Yield steel strength fy (assuming fyw equal to fy):   414
yf MPa  and 0.06

yfCoV   

 Ultimate steel strain εsu: mean   0.09
su

 and 0.09
su

CoV   

In addition, it is referred that the ultimate steel strength fsu was assumed to be 1.15 yf  

(Dymiotis et al., 1999). Limit state capacities were then simulated for 2000 values of the 

material properties sampled from their corresponding distributions according to the Latin 

Hypercube sampling scheme proposed by Iman and Conover (1982). Yield and ultimate 

curvatures y and u were obtained following the procedure of Arêde and Pinto (1996). In 

order to simulate the limit state capacity values according to Case 3, the dispersion UC  

was considered to be 0.36 for DL  (fib, 2003b), 0.90 for NC  and SD  (fib, 2003b), and 0.14 

for VNC (fib, 2003a). As for Case 2, limit state capacities were then obtained by simulating 

Eq. (8.34) for 2000 values of UC  sampled from its corresponding distribution. To simulate 

limit state capacities for Case 4, the 2000 capacity values simulated in Case 2 for a given 
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mechanism were randomly combined with the corresponding 2000 UC  values simulated in 

Case 3. The combination of these empirical distributions was carried out according to the 

referred Latin Hypercube sampling scheme, assuming the two sets of data are uncorrelated, 

to produce a new set of 2000 limit state capacities. Finally, it is noted that the confidence 

factor, accounting for the available level of knowledge, was taken equal to one in all cases.  

 

8.3.1.2.2 Hazard curves for the considered seismic scenario 

To apply the proposed procedure, the hazard curves defined by Eqs. (8.12) and 

(8.13) were fitted to the hazard data of the considered seismic scenario. Seismic hazard data 

was obtained for the spectral acceleration at the fundamental period of the IRREG6 

structure,  1aS T , and for reference periods of one year and fifty years. The selected 

methodology and hazard data were those considered to carry out the hazard studies 

supporting the seismic zonation and the seismic action levels of the Portuguese National 

Annex of Eurocode 8 (EC8-1, 2010), e.g. see the probabilistic seismic hazard analysis 

presented by Campos Costa et al. (2008). The considered seismic hazard was defined for 

the intraplate seismic action and a soil of type B (EC8-1, 2010), referring to events with 

their epicentres mainly inland, in which the model of mainland gross-source zones and the 

parameters defining the seismic occurrence process in each source zone, such as the 

Poissonian process and the exponential distribution of magnitudes, were adapted from the 

proposals presented by Sousa and Oliveira (1996). The attenuation of intensity with 

distance was described by the relationships defined in Ambraseys et al. (1996). 

The considered hazard data for the reference periods of one year and fifty years are 

presented in Figs. 8.4a) and b), respectively, in log-log scale along with the fitted hazard 

curves. The hazard curve for the reference period of one year was fitted using Eq. (8.13) 

for hazard values below 0.1, since the expected limit state annual exceedance probabilities 

are low. The hazard curve for the reference period of fifty years was fitted using Eq. (8.12) 

for hazard values up to 0.995.  
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Figure 8.4. Probabilistic seismic hazard analysis (PSHA) results and fitted distribution for a reference period 
of one year (a) and a reference period of fifty years (b). 
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8.3.1.2.3 Analysis of the structural demand of sections 1 and 2 

The structural demand results of sections 1 and 2 (Fig. 8.3) for the two EDPs 

associated to the previously referred limit states are presented in the following. With 

respect to the chord rotation demand results of section 1 (beam), distinction is made 

between chord rotation causing maximum positive and negative bending, since the beam 

reinforcement is asymmetric (it is considered herein that negative bending causes tension 

stresses in the top reinforcement). For results concerning this section, distinction will be 

made by terming the former as chord rotation+ and the latter as chord rotation-. On the other 

hand, the results of section 2 (column) are presented for the maximum chord rotation from 

both bending signs. 

As referred in Chapter 5, the structure was analysed using a multi-stripe analysis 

(Jalayer and Cornell, 2009) where the selected ground motions were scaled for nine 

intensities in order to reflect different return periods. The selected return periods were 37, 

73, 95, 225, 475, 976, 1980, 2480 and 4950 years which correspond to  1aS T  values 

ranging from 0.03g to 0.30g. The dispersion of the response due to record-to-record 

variability is accounted for by considering the suite of fifty ground motions previously 

referred. The demand evolutions were then fitted to Eqs. (8.14), (8.15) and (8.16) 

considering all the referred IM levels. To fully assess the suitability of Eqs. (8.15) and (8.16) 

to fit the IDA curves of shear force, Figs. 8.5 and 8.6 present the fitting of the shear force 

evolution produced by each ground motion for sections 1 (beam) and 2 (column), 

respectively. Vertical axes of the graphs represent shear force in kN while horizontal axes 

represent  1aS T  in m/s2. Equation (8.16) was used for all the fittings represented in 

Fig. 8.5 while Eq. (8.15) was used for all the fittings represented in Fig. 8.6. With respect to 

the former, it is noted that parameter k was considered with a value of 2.0.  

As can be seen from Figs. 8.5 and 8.6, each set of IDA curves exhibits a low 

variability, a fact denoting the small influence of the record-to-record variability for shear 

demand, especially in section 1 (beam). To illustrate the fittings obtained with Eq. (8.14), 

Fig. 8.7 presents the fitting of the chord rotation+ of section 1 for each ground motion. 

Vertical axes of the graphs represent rads while horizontal axes represent  1aS T  in m/s2. 

To evaluate the effectiveness of the suggestion made in Section  8.3.1.1 regarding the 

use of less IM levels for the fitting of the IDA curves, an additional fitting case was also 

performed for each ground motion. For such case, Eqs. (8.14), (8.15) and (8.16) were fitted 

using demand data of only three IM levels (0.03g, 0.15g and 0.30g). 
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Figure 8.5. Shear force demand IDA curves for section 1 and corresponding fittings for the fifty ground 
motions (vertical axes are shear force in kN and horizontal axes are  1aS T  in m/s2). 
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Figure 8.6. Shear force demand IDA curves for section 2 and corresponding fittings for the fifty ground 
motions (vertical axes are shear force in kN and horizontal axes are  1aS T  in m/s2). 
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Figure 8.7. Chord rotation+ IDA curves for section 1 and corresponding fittings for the fifty ground motions 
(vertical axes are chord rotation in rads and horizontal axes are  1aS T  in m/s2). 
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8.3.1.2.4 Results of the component limit state probabilities by the proposed method 

8.3.1.2.4.1 Limit state probabilities considering deterministic capacities and demand from all IM levels 

The results presented in the following are those referring to Case 1, as defined in 

Section  8.3.1.2.1. To obtain the limit state exceedance probabilities, capacities for each limit 

state were computed according to Eqs. (8.31) to (8.33). The limit state exceedance 

probabilities were then computed for each ground motion using Eqs. (8.19) to (8.24), 

depending on the demand type, the section and the selected reference period. For each 

limit state, a total of fifty exceedance probabilities was therefore obtained. As described in 

Section  8.3.1, since all the records are assumed to have the same probability of occurrence, 

the mean of each set of limit state exceedance probabilities was determined in order to 

obtain a single descriptive value representing the expected limit state probabilities. Besides 

the mean of the probabilities for each limit state, the estimated standard error of the mean 

was also computed to obtain a measure of the precision of the mean estimate. For the 

chord rotation+, chord rotation- and shear force demand of section 1, and for the chord 

rotation and shear force demand of section 2, Table 8.1 presents the expected limit state 

exceedance probability estimates (the mean of the individual values), LS, and the 

corresponding estimates of the standard errors of LS, SE, expressed as percentages of LS, 

for the considered reference periods. One should note that some of the large values of the 

SE’s (above 30%) are associated to very low limit state exceedance probabilities. In such 

cases, this variability results mainly from dealing with very small numbers (i.e. small 

changes in very small members will most times lead to a large variability). However, for 

situations where the limit state exceedance probabilities have higher values, the SE 

estimates reflect the scatter of the fifty values due to record-to-record variability. Moreover, 

the SE
’s associated to the chord rotation limit states also indicate that the scatter due to 

record-to-record variability increases with the level of inelastic behaviour associated to the 

limit state. Furthermore, it is also noted that, due to the issues associated to Eqs. (8.21) and 

(8.24) previously referred, the limit state probabilities for the shear force limit state of 

section 1 (beam) have 48 zero values. Therefore, this situation leads to the large value of 

SE presented for the shear force limit state of this section. Finally, it is also referred that 

some of the lower values of LS that are presented in Table 8.1 (e.g. 1.54E-26) have little 

statistical meaning and could be considered to be equal to zero. Nonetheless, such value are 

still presented in order to be able to observe their evolution for Cases 2, 3 and 4 which will 

be analysed in a later Section 
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Table 8.1. Limit state exceedance probabilities parameters for chord rotation and shear force demands of 
sections 1 and 2 considering capacities determined according to Case 1. 

Ref. per. = 1 year Ref. per. = 50 years 
Demand LS 

LS SE (%) LS SE (%) 

NC 6.16E-07 48.38 2.80E-04 20.57 

SD 1.97E-06 39.32 5.22E-04 18.76 

chord 

rotation+ 

at section 1 DL 9.18E-04 14.80 3.27E-02 12.35 

      

NC 5.73E-33 100.00 2.09E-09 53.24 

SD 1.54E-26 100.00 9.79E-09 46.27 

chord 

rotation- at 

section 1 DL 9.93E-10 39.47 2.51E-05 21.00 

      

shear force 

at section 1
NC 3.39E-05 83.12 1.22E-03 79.25 

      

NC 5.89E-06 86.20 4.56E-04 56.60 

SD 8.76E-06 68.63 7.41E-04 40.84 

chord 

rotation at 

section 2 DL 2.27E-05 39.77 1.78E-03 24.85 

      

shear force 

at section 2
NC 1.42E-08 53.58 4.90E-05 25.22 

 

To assess if the obtained limit state probability estimates are reasonably stable and 

accurate, an approach similar to the one presented in Lupoi et al. (2003) was followed. To 

illustrate the results that were obtained, Figs. 8.8 and 8.9 present the computed evolutions 

of the limit state probability estimates for an increasing number of samples (three to fifty) 

randomly ordered, for both sections, reference periods and the considered limit states. The 

vertical axes of the graphs represent limit state probability estimates while horizontal axes 

represent the number of samples. To observe the effect of the random order of the 

samples, results of each section are presented for two different random orders of the 

samples. Results indicate that for some limit states, estimates involving a number of 

samples above fifteen are either stable or exhibit small variations. Nonetheless, other limit 

states exhibit a large variability of the probability estimate with a number of samples near 

fifty. Still, it is noted that these results are conditioned to a particular ordering of the 

individual values of the limit state probabilities. Therefore, the results obtained are only 

indicative. Furthermore, it is also noted that the previously referred number of zero values 

that occur for the limit state probabilities of the shear force limit state of section 1 (beam) 

leads to the occurrence of several zero values in the corresponding evolutions of Fig. 8.8.  
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Figure 8.8. Evolution of the limit state probability estimates with increasing number of samples for the chord 
rotation and shear force limit states of section 1, for the reference periods of 1 year and 50 years, and for two 

random orders of the samples (a) and (b). 
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Figure 8.9. Evolution of the limit state probability estimates with increasing number of samples for the chord 
rotation and shear force limit states of section 2, for the reference periods of 1 year and 50 years, and for two 

random orders of the samples (a) and (b). 

 

To further assess the effect of the ordering of the samples and of the sample size, 

fifty combinations of three to forty-nine limit state probabilities were also studied. For each 

sample size, the average of the estimated SE’s over all combinations was computed. 

Results for both sections, reference periods and for the considered limit states are 

presented in Figs. 8.10 and 8.11. The vertical axes of the different graphs represent SE 

expressed as a percentage of LS while horizontal axes represent the sample size. As 

expected, the average standard errors decrease with the increase of sample size. In some 

cases, such decrease amounts to 50% from samples of size three to forty-nine. However, in 

other cases, the decrease remains between 25% to 30%. The presented results also indicate 

that the slope of the decrease varies from one limit state to another. In some cases, for 

samples of size near twenty, the referred slope is greatly reduced, indicating that SE is 

stabilizing, while in other cases it remains almost constant up to the size of forty-nine, thus 

indicating that SE could possibly be further reduced if the sample size was larger.   
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Figure 8.10. Evolution of the average of the SE, expressed as percentages of LS, for the chord rotation and 
shear force limit states of section 1 and the reference periods of 1 year and 50 years. 
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Figure 8.11. Evolution of the average of the SE, expressed as percentages of LS, for the chord rotation and 
shear force limit states of section 2 and the reference periods of 1 year and 50 years. 

 

8.3.1.2.4.2 Limit state probabilities considering deterministic capacities and demand from three IM levels 

The application of the proposed procedure for Case 1 was repeated considering the 

IDA curves fitted using only the three previously referred IM levels (0.03g, 0.15g and 

0.30g). After computing the values of LS and SE as previously defined for the chord 

rotation and shear force limit state probabilities, ratios between these and the values 

presented in Table 8.1 were determined to assess their variations from one case to another. 

Table 8.2 presents the referred ratios of the limit state exceedance probability values of LS 
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and SE where it can be seen that, for most cases, the parameter ratios exhibit satisfying 

values. With the exception of a few cases, variations of both LS and SE are below 20%. 

Among these exceptions, reference must be made to some of the results obtained for the 

chord rotation- of section 1 that exhibit lower ratios. These results occur for the cases that 

exhibited very low values of the exceedance probability in Table 8.1 and should, therefore, 

be analysed in light of the comments made to the corresponding results of Table 8.1. An 

additional note is also made regarding the results obtained for the shear force of section 1 

since the lower ratios obtained for this case are a direct consequence of the previously 

referred applicability issues associated to Eqs. (8.21) and (8.24). Aside from these two 

situations, the remaining results allow concluding that using three IM levels in the way 

suggested in Section  8.3.1.1 leads to results that are very close to those obtained when 

considering all the IM levels (a more accurate approach) with less computational effort. 

Table 8.2. Ratios between the limit state exceedance probability results when only three IM levels are 
considered and those of Table 8.1. 

Ref. per. = 1 year Ref. per. = 50 years 
Demand LS 

LS SE LS SE 

NC 0.85 0.72 0.99 0.91 

SD 0.92 0.80 0.99 0.94 

chord 

rotation+ 

at section 1 DL 0.85 1.07 0.87 1.05 

      

NC 0.00 1.00 0.53 0.61 

SD 0.00 1.00 0.62 0.63 

chord 

rotation- at 

section 1 DL 0.83 1.00 1.11 0.81 

      

shear force 

at section 1
NC 0.67 0.91 0.77 0.87 

      

NC 1.29 0.99 1.21 0.98 

SD 1.34 1.05 1.22 1.02 

chord 

rotation at 

section 2 DL 1.28 1.09 1.20 1.01 

      

shear force 

at section 2
NC 0.93 1.04 0.94 1.03 

 

8.3.1.2.4.3 Limit state probabilities considering random capacities and demand from all IM levels 

The results presented in the following are those where the limit state capacities are 

considered according to Cases 2, 3 and 4, as defined in Section  8.3.1.2.1. In these cases, 

2000 limit state capacity values were considered in the calculation of the limit state 

exceedance probabilities for each ground motion using Eqs. (8.19) to (8.24). For each limit 

state considered, a total of 100.000 exceedance probabilities were therefore obtained. As 

for Case 1, parameters LS and SE were also computed based on the exceedance 

probability results of each limit state.  
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Since, for a given limit state, each one of the 2000 limit state capacity values can be 

assumed to have a different probability of occurrence, the value of LS was then defined by 

a weighted mean, as suggested in Section  8.3.1. To define the weight of each limit state 

exceedance probability obtained from a certain capacity value, a statistical distribution was 

fitted to the 2000 capacity values. Based on the fitted distribution, a random sample of size 

1.000.000 was then generated to establish a histogram with bins defined for the original 

2000 limit state capacity values. The frequency counts of the bins were then used to define 

the probability of occurrence of the 2000 capacity values. This procedure was considered to 

define the limit state exceedance probability ,w LSp  associated to a given ground motion. 

The value of LS was then defined by the mean of the ,w LSp  values obtained for all the 

earthquake records. The values of SE that are presented for Cases 2, 3 and 4 were also 

computed from the ,w LSp  data in order to obtain values comparable to those presented in 

Table 8.1. In addition to these parameters, the standard deviations of the limit state 

exceedance probabilities obtained for Cases 2, 3 and 4 for a given limit state, normalized by 

the corresponding one obtained for Case 1, are also presented and termed σC2/σC1, σC3/σC1 

and σC4/σC1. Parameters σC2, σC3 and σC4/σC1 were also obtained from the ,w LSp  values.  

The results obtained for Cases 2, 3 and 4 are presented in Tables 8.3, 8.4 and 8.5, 

respectively, for the previously analysed limit states of sections 1 and 2. Similar to the 

situation referred in Section  8.3.1.2.4.1, some of the very low and very high values of the 

parameters in Tables 8.3, 8.4 and 8.5 have little statistical meaning. Nonetheless, these 

values are still presented in order to be able to observe their evolution between Cases 2, 3 

and 4. By comparing the results of Table 8.3 with those of Table 8.1, it can be seen that 

introducing the variability of the material properties increases the exceedance probability 

LS, especially for limit states exhibiting extremely low probabilities in Table 8.1. With the 

exception of these extreme situations, the observed increase ranges from a few percents 

(e.g. for the DL limit state of both sections) to a duplication of the risk or even more (e.g. 

for the shear force limit state of section 1). With respect to the SE results, the values of 

Table 8.3 are seen to be slightly lower than those of Table 8.1. Still, an exception is 

observed for the results associated to the shear force limit state of section 1 which 

decreased significantly. Even though considering the variability of the material properties is 

expected to increase the dispersion of the results, the SE values presented in Table 8.3 

appear to contradict this idea. The reason for this situation results from the fact that the 

SE values are normalized by the corresponding value of LS. Since LS increased from 

Case 1 to Case 2, the results of SE can be misleading. Hence, for a more explicit view of 

the evolution of the dispersion from Case 1 to Case 2, one should report to the results of 

parameter σC2/σC1. The values of σC2/σC1 indicate that the variability of the calculated 

probabilities tends to increase slightly due to the random material properties. However, 

there are two noticeable exceptions: the shear force limit state of section 1, and the SD and 
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NC chord rotation limit states of section 1. The former is believed to be connected to the 

fact that Eqs. (8.21) and (8.24) do not lead to any value of ,w LSp  that is zero for Case 2. 

With respect to the latter, the σC2/σC1 results presented are due to the fact that such limit 

states were found to have very small standard deviations for Case 1, in addition to the very 

small probabilities of Table 8.1.  

When analysing the results of Tables 8.4 and 8.5 and comparing them to those of 

Table 8.3, the results of LS can be seen to be highly influenced by the introduction of the 

modelling error of the limit state capacities. The results of Case 3 show a considerable 

increase of LS with respect to those of Case 2. On the other hand, the results of Case 4 

exhibit a smaller increase of LS with respect to those of Case 3, thus reflecting the lower 

influence of the randomness of the material properties with respect to that of the 

modelling error of the capacities. In terms of the results of SE, the results of Case 3 and 

Case 4 can be seen to be considerably lower than those of Case 2. Again, the reason for 

this situation results from the fact that the SE values are normalized by the corresponding 

value of LS which increased significantly in Cases 3 and 4. Still, a direct comparison 

between the SE results of Cases 3 and 4 indicates that the influence of the variability of 

the material properties remains small. The evolution of the dispersion from Case 1 to Cases 

3 and 4 can be seen more explicitly from the results of parameters σC3/σC1 and σC4/σC1. 

These parameters indicate that the influence of the modelling error of the capacities 

introduces a considerable amount of variability  

Table 8.3. Limit state exceedance probability parameters for chord rotation and shear force demands of 
sections 1 and 2 considering capacities determined according to Case 2. 

Ref. per. = 1 year Ref. per. = 50 years 
Demand LS 

LS SE (%) σC2/σC1 LS SE (%) σC2/σC1 

NC 6.39E-07 47.74 1.02 2.83E-04 20.50 1.01 

SD 2.04E-06 38.81 1.02 5.28E-04 18.70 1.01 

chord 

rotation+ at 

section 1 DL 9.27E-04 14.76 1.01 3.30E-02 12.37 1.01 

        

NC 5.82E-21 91.84 9.32E+11 4.98E-09 46.58 2.08 

SD 6.07E-18 79.02 3.12E+08 2.42E-08 39.86 2.13 

chord 

rotation- at 

section 1 DL 1.55E-09 36.74 1.45 2.63E-05 20.72 1.04 

        

shear force 

at section 1 
NC 1.85E-04 10.00 0.66 6.75E-03 9.65 0.67 

        

NC 6.59E-06 79.46 1.03 5.23E-04 50.79 1.03 

SD 1.11E-05 57.18 1.05 9.10E-04 35.07 1.05 

chord 

rotation at 

section 2 DL 2.31E-05 39.17 1.00 1.79E-03 24.65 1.00 

        

shear force 

at section 2 
NC 2.07E-08 49.46 1.35 5.22E-05 24.76 1.04 
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Table 8.4. Limit state exceedance probability parameters for chord rotation and shear force demands of 
sections 1 and 2 considering capacities determined according to Case 3. 

Ref. per. = 1 year Ref. per. = 50 years 
Demand LS 

LS SE (%) σC3/σC1 LS SE (%) σC3/σC1 

NC 3.01E-05 13.64 13.80 1.49E-03 10.96 2.84 

SD 7.93E-05 13.51 13.85 3.15E-03 10.18 3.28 

chord 

rotation+ at 

section 1 DL 1.86E-03 15.21 2.08 5.77E-02 12.86 1.84 

        

NC 7.29E-06 23.20 2.95E+26 1.11E-04 7.38 7.38E+03 

SD 4.49E-05 26.17 7.63E+20 4.95E-04 6.08 6.64E+03 

chord 

rotation- at 

section 1 DL 8.10E-06 12.09 2.50E+3 4.40E-04 9.12 7.61 

        

shear force 

at section 1 
NC 7.01E-04 3.92 0.98 2.28E-02 3.83 0.90 

        

NC 2.71E-04 8.53 4.56 7.28E-03 6.41 1.81 

SD 7.04E-04 8.93 10.45 1.67E-02 5.71 3.14 

chord 

rotation at 

section 2 DL 7.78E-05 17.76 1.53 3.81E-03 14.76 1.27 

        

shear force 

at section 2 
NC 4.89E-07 30.96 19.93 1.35E-04 19.35 2.11 

Table 8.5. Limit state exceedance probability parameters for chord rotation and shear force demands of 
sections 1 and 2 considering capacities determined according to Case 4. 

Ref. per. = 1 year Ref. per. = 50 years 
Demand LS 

LS SE (%) σC4/σC1 LS SE (%) σC4/σC1 

NC 3.33E-05 13.54 15.13 1.59E-03 10.83 2.99 

SD 8.70E-05 13.56 15.25 3.37E-03 10.15 3.49 

chord 

rotation+ at 

section 1 DL 1.87E-03 15.23 2.10 5.79E-02 12.83 1.84 

        

NC 3.47E-05 24.43 1.48E+27 4.90E-04 7.81 3.44E+04 

SD 1.37E-04 19.33 1.72E+21 1.23E-03 4.53 1.23E+04 

chord 

rotation- at 

section 1 DL 9.36E-06 12.01 2.87E+3 4.81E-04 8.97 8.19 

        

shear force 

at section 1 
NC 7.70E-04 3.67 1.00 2.49E-02 3.59 0.92 

        

NC 4.34E-04 8.84 7.55 1.08E-02 5.83 2.43 

SD 1.08E-03 9.14 16.35 2.32E-02 5.43 4.16 

chord 

rotation at 

section 2 DL 7.77E-05 17.73 1.53 3.80E-03 14.75 1.27 

        

shear force 

at section 2 
NC 5.51E-07 30.29 21.98 1.41E-04 19.09 2.18 

 

In the overall, the global analysis of the results presented in Tables 8.1 to 8.5 

indicates that considering the uncertainty of the limit state capacities increases significantly 
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the estimate of the probability of exceedance of the limit states. Furthermore, for the 

situations that were analysed, the modelling error of the limit state capacity expressions was 

seen to be the main factor governing both the estimate of the probability of exceedance of 

the limit state and its variability. With the exception of a few situations, the effects of the 

variability of the material properties were seen to be relatively small. When comparing 

results obtained when record-to-record variability was the only source of uncertainty (Case 

1) to those where the modelling error was also considered, the effects of the latter were 

seen, in many cases, to at least duplicate the variability of the probability of exceedance. 

Therefore, for such cases, the variability introduced by the modelling error can be seen to 

be, at least, 70% larger than that of the record-to-record variability. Given the significance 

of the referred modelling error, further research efforts should address the development of 

alternative formulations for the limit state capacities to obtain expressions providing 

capacity estimates with less uncertainty. 

 

 

8.3.2 Methodology 2 

Methodology 2 extends the SAC/FEMA method by introducing some modifications 

that allow overcoming some of the limitations referred in Section  8.1, while maintaining 

the mathematical tractability of the procedure. Since the linear form in the log-log space of 

the earthquake hazard assumed by the SAC/FEMA method is one of its main sources of 

error, one of the proposed modifications involves the use of alternative earthquake hazard 

fitting functions. In this context, it must be noted that a proposal for an alternative 

earthquake hazard fitting model has also been presented by Bradley et al. (2007). However, 

this proposal, which takes a hyperbolic form in the log-log space, does not allow for a full 

analytical treatment of the procedure and involves an approximation in order to obtain a 

semi-analytical closed form solution for the risk expression (Bradley et al., 2007). In 

addition to the proposal for an alternative earthquake hazard fitting model, the issue of 

force-based EDPs is also addressed by developing a new version of the risk assessment 

method that involves a more adequate demand evolution expression for this type of EDP. 

Finally, the development of a third approach that involves a second demand evolution 

expression best suited for force-based EDPs is also addressed. However, the mathematical 

tractability of this approach is impaired by several issues which are analysed and discussed. 

 

 

8.3.2.1 A closed form risk assessment method with a new seismic hazard function  

The basic assumptions of this new closed form risk assessment method are similar to 

those of the original SAC/FEMA approach (see Section  8.2). Hence D and C are also 

assumed to be lognormally distributed random variables referring to a scalar EDP. Also, it 
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is assumed that demand D can be expressed as a function of the selected IM by an 

expression similar to Eq. (8.4): 

  bD a x    (8.35) 

where   is a lognormal random variable with unit median and dispersion (i.e. a standard 

deviation of the log of the data) equal to D . As for the case of the SAC/FEMA method, 

the term ba x  can be seen to represent the evolution of the median value D̂  of the 

demand. By rewriting Eq. (8.35) according to  

        ln ln ln lnD a b x     (8.36) 

and defining   as a normal random variable equal to  ln  , with zero mean and a 

standard deviation equal to D , the term  ln x  can be defined as 

   1 2ln x k k    (8.37) 

in which k1 and k2 are defined as  
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By assuming that, for some reference period under consideration, the seismic hazard 

function  H x  can be adequately represented by  

      2
1 2 3ln lnx xH x e     (8.39) 

where 1 , 2  and 3  are parameters to be fitted using existing probabilistic seismic 

hazard data, when replacing the  ln x  terms of Eq. (8.39) by Eq. (8.37), one obtains 

      2
1 2 1 2 2 1 3k k k kH D e         (8.40) 

which can be rearranged to yield 

  
2

3 4 5k k kH D e     (8.41) 

where k3, k4 and k5 are defined as 
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The hazard function  H D  defined by Eq. (8.41) represents the probability 

 Pr D d  conditioned to the random variable  , i.e.  Pr |D d  . The unconditioned 

probability    Pr 1 DD d F d    can then be obtained by solving: 
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The integral defined by Eq. (8.43) can be rearranged to give: 
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in which k6 is defined by 
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The integral defined by Eq. (8.44) can be seen to be equivalent to  
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which then simplifies into 
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since the integral of Eq. (8.46) is that of a normal distribution with mean 4 6k k  and 

standard deviation 61 k , which is equal to one. By replacing the values of k4, k5 and k6 in 

Eq. (8.47) by those defined in Eqs. (8.42) and (8.45),  Pr D d  is then 
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The probability of occurrence   of a given limit state under analysis, i.e. the risk 

associated to that limit state, can then be obtained according to the classical reliability 

formulation presented in Eq. (8.1). By considering Eq. (8.48) written according to the 

following condensed form 

      2
2 3 4ln n

1
lPr d dD d e         (8.49) 

where 1 , 2 , 3  and 4  are defined as 
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and assuming that C is represented by a lognormal random variable with a mean of the log 

of the data equal to C  and a standard deviation of the log of the data equal to C , the 

value of   defined by Eq. (8.1) is obtained by solving: 
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By considering that  lnz y , this integral can be rearranged to give: 
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where 5 , 6  and 7  are defined as 
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The integral defined by Eq. (8.52) can be seen to be equivalent to  
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which then simplifies into 
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since the integral of Eq. (8.54) is that of a normal distribution with mean 6 5   and 

standard deviation 51  , which is equal to one. By replacing the values of 5 , 6  and 

7  in Eq. (8.55) by those defined in Eq. (8.53),   is then 
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8.3.2.2 Alternative closed form risk assessment method with a new seismic hazard 

function and a new demand evolution expression 

The alternative closed form risk assessment method that is proposed in the following 

involves the use of a demand evolution expression that may be more adequate when 

dealing with force-based EDPs. In this approach, D and C are assumed to be normally 

distributed random variables referring to a scalar EDP. Also, it is assumed that demand D 

can be expressed as a function of the selected IM by an expression similar to Eq. (8.15): 

  lnD a x b     (8.57) 

where   is a normal random variable with zero mean and a standard deviation equal to 

D . In this case, the term  lna x b   can be seen to represent the evolution of the mean 

value D  of the demand. Based on Eq. (8.57), the term  ln x  can be generally defined as: 

   1 2ln x k k    (8.58) 

in which k1 and k2 are defined as  
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Assuming a seismic hazard function  H x  defined by Eq. (8.39), when replacing the 

 ln x  terms by Eq. (8.58), one obtains Eq. (8.40) and, consequently, Eq. (8.41), where k3, 

k4 and k5 are now defined as 
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The unconditioned probability    Pr 1 DD d F d    can then be obtained by first 

conditioning it to the random variable   and by solving the integral defined by Eq. (8.43), 

in which D  should be substituted by D . Using an approach similar to that of the 

previous case to solve Eq. (8.43),  Pr D d  is found to be 
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in which k6 is defined by 
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By replacing the values of k4, k5 and k6 in Eq. (8.61) by those defined by Eqs. (8.60) and 

(8.62),  Pr D d  is then 
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By considering Eq. (8.63) written according to the following condensed form 
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where 1 , 2 , 3  and 4  are defined as 
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and assuming that C is represented by a normal random variable with mean C  and 

standard deviation equal to C , the value of   defined by Eq. (8.1) is obtained by solving: 
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As for the previous case, solving the corresponding integral yields an expression in 

the form of Eq. (8.55) in which C  should be substituted by C , and parameters 5 , 6  

and 7  are defined as 
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By replacing the values of 5 , 6  and 7  in Eq. (8.55) by those defined by Eq. (8.67),   

is then 
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8.3.2.3 Tentative development of an additional closed form risk assessment method  

The additional closed form risk assessment method that is attempted to be 

developed in the following involves the use of a demand evolution expression similar to 

Eq. (8.16) that is believed to be more adequate for force-based EDPs. However, as will be 
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shown, the mathematical tractability of this approach is impaired by several issues which 

are analysed and discussed. Proposals trying to overcome these issues are also addressed. In 

this approach, D and C are also assumed to be normally distributed random variables 

referring to a scalar EDP.  

The proposed approach assumes that demand D can be expressed as a function of 

the selected IM by: 

  k xD a e b       (8.69) 

where   is a normal random variable with zero mean and a standard deviation equal to 

D . Variable x  can then be defined as: 
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By assuming that, for some reference period under consideration, the seismic hazard 

function  H x  is adequately represented by  

   42
1 3

xxH x e e      (8.71) 

where 1 , 2 , 3  and 4  are parameters to be fitted using existing probabilistic seismic 

hazard data, when replacing the x  terms of Eq. (8.71) by Eq. (8.70), one obtains 
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which simplifies into 
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The unconditioned probability    Pr 1 DD d F d    can then be obtained by first 

conditioning it to the random variable   and by solving the integral defined by: 
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By analysing Eq. (8.74), it can be seen that it is not able to be solved analytically. In 

an attempt to overcome this situation, alternative formulations were sought to approximate 

the normal PDF of  . One of the possibilities pursued was to approximate the PDF of   

by the PDF of a symmetric triangular distribution (Scherer et al., 2003). According to 

Scherer et al. (2003), this approximation allows for suitable mathematical tractability and 

provides adequate results within 98.5% of the range of the approximated normal PDF. The 

PDF Trf  of the triangular distribution is defined by Law and Kelton (2000): 
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where parameters 1u , 2u  and 3u  are the minimum value, the most likely value (and also the 

midpoint of the range of the distribution for the symmetric case), and the maximum value, 

respectively. In order to simulate the required normal distribution, parameters 1u , 2u  and 

are defined by Scherer et al. (2003) as 
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Therefore, using Eqs. (8.75) and (8.76) to approximate the normal PDF, Eq. (8.74) now 

becomes 
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(8.77) 

After some rearrangements Eq. (8.77) can be written as 
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where 1k , 2k , 3k  and 4k  are given by 
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Since it is known that  0a , the term a  is considered in Eq. (8.79) instead. Otherwise 1k  

and 2k  would have values which are not real numbers. The sign of a is then incorporated 

in the term 2k  . 

When analysing Eq. (8.78), it can be shown that its analytical solution exists but will 

lead to an expression with eight additive terms. Following this step, the integral defined by 

Eq. (8.1) also needs to be solved in order to obtain the value of  . It can be shown that 

such integral is not able to be solved analytically either. In this case, an approximation to 

the normal PDF of C can also be established using the PDF of a symmetric triangular 

distribution, which enables the referred integral to be solved analytically. Still, such 

calculations will lead to an expression with thirty-two additive terms, in which some of 

them have a considerable size. Given the reduced practical applicability of such type of 

solution, its presentation is omitted herein.  

As an alternative attempt to solve Eq. (8.74), the polynomial expansion for the 

standard normal PDF referred by Mernagh (2006) and defined by 
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was also analysed. This expansion was found to yield accurate results if enough terms are 

considered. For example, to obtain adequate results for the interval 2.5 2.5x   , the first 

twelve terms have at least to be considered, thus rendering this alternative of little practical 

use also within the current context.  

Alternatively, the applicability of the normal PDF approximation using a modified 

cosine distribution was also analysed. This suggestion was first proposed by Raab and 

Green (1961) for the case of the standard normal PDF and was later revisited by Warsza 

and Korczynski (2010) which rewrote this approximation for general normal PDFs. For 

the case of Eq. (8.74), the normal PDF would be approximated by 
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where parameter A can be related to D  by  
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When using the approximation defined by Eq.  (8.81) to solve Eq. (8.74), it can be 

shown that its analytical solution exists but will lead to an expression far too complex to be 

of use, since it involves the Incomplete Gamma function and complex numbers.  
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Given the lack of adequacy of the solutions that were found for Eq. (8.74), the 

development of a risk assessment expression similar to Eqs. (8.56) and (8.68) for the case 

where demand is represented by Eq. (8.69) was abandoned.  

 

 

8.3.2.4 Application example  

To illustrate the applicability of Eqs. (8.56) and (8.68), the probability of occurrence 

of several limit states is determined for section 2 of the IRREG6 structure presented in 

Fig. 8.3. The selected limit states are those of the example presented in Section  8.3.1.2. In 

this application example, limit state capacities were only considered according to the 

previously referred Case 4 (see Section  8.3.1.2.1) that includes the variability of the capacity 

due to both the randomness of the material properties and the modelling error. 

Furthermore, these limit state probabilities of occurrence were also analysed using the 

SAC/FEMA method, Eq. (8.9), in order to allow for a direct comparison of the 

performance of Eqs. (8.56) and (8.68). 

To apply these procedures, the hazard curves defined by the SAC/FEMA approach 

and by the methods proposed herein, Eqs. (8.2) and (8.39), were fitted to the hazard data 

of the considered seismic scenario. The considered hazard data for the reference periods of 

one year and fifty years are presented in Figs. 8.8a) and b), respectively, in log-log scale, 

along with the fitted hazard curves. As expected, the linear form (in log-log scale) of the 

SAC/FEMA hazard curve proposal only provides an adequate fit over a reduced part of 

the hazard data, while Eq. (8.39) can be seen to provide an overall much better fit.  
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Figure 8.8. Probabilistic seismic hazard analysis (PSHA) results and fitted distribution for a reference period 
of 1 year (a) and a reference period of 50 years (b) using Eqs. (8.2) and (8.39). 

 

In order to determine the probability of occurrence by Eqs. (8.9), (8.56) and (8.68) 

for the considered limit states, several demand and capacity parameters must be obtained 

using the demand data referred in Section  8.3.1.2.3. Namely, the fitting parameters involved 
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in the evolution of the median value D̂  of the demand, Eqs. (8.4) and (8.35), and in the 

evolution of the mean value D  of the demand, Eq. (8.57), must be defined. To determine 

these parameters, D̂  and D  values were computed for each IM level using the demand 

data obtained from the suite of fifty ground motions presented in Section  8.3.1.2.3. The 

values of D  were determined using the logistic M-estimator proposed by Rousseeuw and 

Verboven (2002) applied to the demand data while the values of D̂  were determined using 

the same estimator applied to the log of the demand data. This estimator was selected 

based on the findings and recommendations presented in Chapters 6 and 7. 

To estimate parameter D  required for Eqs. (8.9) and (8.56) that represents the 

dispersion of the demand data, the following situations were considered: 

 For the analysis of the DL chord rotation limit state, D  was considered to be the 

average of the dispersion of the demand obtained for the first three IM levels. For 

each IM level, the dispersion was determined by computing the standard deviation 

of the log of the demand data obtained from the suite of fifty ground motions 

using the τ-scale truncated standard deviation defined by Yohai and Zamar (1988). 

This estimator was selected based on the findings and recommendations presented 

in Chapter 7. 

 For the analysis of the SD and NC chord rotation limit states, D  was considered 

to be the average of the dispersion of the demand obtained for the last three IM 

levels. For each IM level, the dispersion was determined as previously referred 

using the τ-scale truncated standard deviation defined by Yohai and Zamar (1988). 

 For the analysis of the NC shear force limit state, D  was considered to be the 

average of the dispersion of the demand obtained for all the IM levels. For each IM 

level, the dispersion was determined as previously referred using the τ-scale 

truncated standard deviation defined by Yohai and Zamar (1988). 

Parameter D , that is required for the analysis of the NC shear force limit state by 

Eq. (8.68), was considered to be the average of the standard deviation of the demand 

obtained for all the IM levels. For each IM level, the standard deviation was determined by 

computing the standard deviation of the demand data obtained from the suite of fifty 

ground motions using the τ-scale truncated standard deviation proposed by Yohai and 

Zamar (1988).  

The capacity parameters C  and C  required for Eq. (8.56), which represent the 

mean and the standard deviation of the log of the previously defined Case 4 capacity data, 

were obtained using the logistic M-estimator proposed by Rousseeuw and Verboven (2002) 

and the τ-scale truncated standard deviation proposed by Yohai and Zamar (1988), 
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respectively. For the case of Eq. (8.9), the capacity parameter C  was obtained using the 

previous approach while parameter Ĉ  is defined using the relation 

 ˆ CC e  (8.83) 

in which C  is also obtained by the previous approach. The capacity parameters C  and 

C  required for Eq. (8.68), which represent the mean and the standard deviation of the 

Case 4 capacity data, were obtained using the logistic M-estimator proposed by Rousseeuw 

and Verboven (2002) and the τ-scale truncated standard deviation proposed by Yohai and 

Zamar (1988), respectively. 

After defining all the required parameters, Eqs. (8.9), (8.56) and (8.68) were applied 

to determine the probability of occurrence of the referred limit states for section 2. The 

results obtained for the reference periods of one year and fifty years are presented in 

Table 8.6 where Methodology 2 refers to the results from the methods proposed herein 

(Eqs. (8.56) or (8.68), depending on the limit state). As can be observed from these results, 

the SAC/FEMA yields larger risk values for all the cases analysed. This situation is 

somehow expected since the SAC/FEMA hazard curve overestimates significantly part of 

the seismic hazard data (Fig. 8.8). Although some of the SAC/FEMA results could be 

improved by performing a new fit of the hazard curve (as referred in Section  8.2), such 

approach was not selected to provide a clear view of the one-to-one application of both 

methods. Furthermore, by comparing the results of Table 8.6 to those of Table 8.5 for 

section 2, Methodology 2 can be seen to provide risk results that are very close to the 

corresponding LS values. Therefore, it is considered that such closeness of the risk values 

validates the applicability of both Methodology 1 and Methodology 2, while indicating that 

the SAC/FEMA results are expected to generally overestimate risk. 

Table 8.6. Risk determined by Methodology 2 and by the SAC/FEMA method, for chord rotation and shear 
force demands of section 2 considering capacities defined according to Case 4. 

Ref. per. = 1 year Ref. per. = 50 years 
Demand LS 

Methodology 2 SAC/FEMA Methodology 2 SAC/FEMA 

NC 4.61E-04 4.90E-03 1.16E-02 1.90E-01 

SD 1.17E-03 2.14E-02 2.54E-02 8.05E-01 

chord 

rotation at 

section 2 DL 8.65E-05 9.44E-05 4.10E-03 4.53E-03 

      

shear force 

at section 2 
NC 2.03E-06 1.16E-05 9.23E-05 5.98E-04 
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8.4 Additional comments about the proposed procedures and 

the reliability of systems 

The limit state probability of structural systems, such as buildings or bridges, as a 

whole is the performance measure that is most closely related to social expectations of 

safety or serviceability. It is known that the reliability of the structural system is, in most 

cases, higher than that of its individual components (Moses, 1990; Hendawi and Frangopol, 

1994) but to a degree of complex prediction which depends, among other things, on the 

structural redundancy, configuration and inelastic behaviour of the components. 

Although presented for the limit state probability assessment of components such as 

beams or columns, the proposed methodologies can easily be applied to global measures of 

structural performance such as maximum inter-storey drift over the height of the structure 

or storey shear forces (Medina and Krawinkler, 2004). In this case, the limit state 

probability becomes a measure of global performance instead of a local one, therefore 

addressing the system reliability problem. However, such approach is an indirect one, since 

it does not involve the identification of the relevant mechanisms contributing to the system 

limit state probability, but instead relies on the choice of an adequate demand/damage 

measure that is efficiently related to the global response. Nevertheless, this approach allows 

for the evolution of both performance based assessment and performance based design 

methods towards new directions of much interest (Medina and Krawinkler. 2004; 

Krawinkler et al., 2006). 

When addressing the system reliability problem by the approach which consists in 

the identification and combination of the relevant mechanisms that contribute to a certain 

limit state probability, one has to keep in mind the subjectivity of the selection of such 

mechanisms. In this case, identification of the more significant mechanisms is a task 

preliminary to risk analysis from which the value of the computed limit state probability 

value will always be dependent on (Pinto et al., 2004). 

In general, the system reliability model is made of single component mechanisms, 

e.g. the flexural or shear limit state of a beam or column, and of multiple component 

mechanisms, e.g. soft-storey or beam-sway mechanisms. The latter combine a set of 

components (beams and/or columns) that must all be in the same state, e.g. yielding, in 

order to be able to develop the mechanism. In most cases, such mechanisms can be seen as 

a parallel arrangement of individual components. Although an extensive discussion on how 

to combine the different mechanism probabilities to obtain the system reliability is beyond 

the scope of this work, one can suggest the simplification often made that implies 

independency between the mechanisms (Thoft-Christensen and Murotsu, 1986). Within 

this approach for the reliability of systems, it can be seen that the proposed procedure 

addresses the limit state probability of the single component mechanisms. Nonetheless, for 

the case of multiple component, the proposed procedure may also be used to obtain the 

limit state probability of the single components for posterior combination to obtain the 
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limit state probability of the mechanism, e.g. in the case of fully correlated single 

components (Thoft-Christensen and Murotsu, 1986).  

 

 

8.5 Conclusions and final remarks  

Two methodologies that establish analytical expressions to assess limit state 

exceedance probabilities of structural components were presented. The definition of these 

expressions is based on the probabilistic representation of the ground motion hazard and 

on suitable expressions characterizing the evolution of structural demand for increasing 

levels of earthquake intensity. In what regards the former, the proposed methodologies 

adopt different approaches: Methodology 1 uses extreme-type probabilistic distributions 

for ground motion hazard representation, while Methodology 2 involves an approximate 

expression that exhibits a clear advantage over the model adopted by the SAC/FEMA 

method. With respect to the evolution of structural demand with increasing earthquake 

intensity, distinction is made between deformation-based and force-based structural 

parameters in the definition of such relations. While the considered functional form for 

deformation-based demand is founded on the results of existing studies, the proposed 

force-based demand expressions were defined on the basis of an in-depth analysis of 

force-based structural demand evolutions, namely of shear force demand. Two functional 

forms were proposed for shear force demand evolutions: one for smoother evolutions 

based on a logarithmic function and one for bilinear-type evolutions based on an inverted 

exponential function. In the context of Methodology 1, the development of analytical 

expressions for the assessment of limit state exceedance probabilities was able to 

incorporate both proposals for the shear force demand evolution. On the other hand, the 

development of expressions in the context of Methodology 2 was not able to account for 

the bilinear-type evolution. 

An application of the proposed methodologies to the assessment of different limit 

state probabilities of members from a RC structure was presented to illustrate their 

applicability. The limit states and their corresponding capacities were defined by scalar 

EDPs (member chord rotation and shear force) according to the proposals found in 

EC8-3. The application example of Methodology 1 addressed several issues related to the 

uncertainty of the component limit state capacities. Four different scenarios involving the 

variability of material properties and/or the modelling error associated to the limit state 

capacity expressions were analysed. Furthermore, issues related to the probabilistic 

consistency and computational efficiency of the proposed procedure were also addressed. 

With respect to Methodology 2, the presented application example only addressed part of 

the example of Methodology 1 in order to validate the results obtained.  

Due to their generalized formulations, the proposed procedures were found suitable 

to assess the probability of exceedance of any desired component limit state with direct 
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inclusion of the ground motion hazard information, considering any demand variable and 

ground motion IM, without the need to compute the fragility curve. Furthermore, the 

presented application examples illustrated the simplicity of the proposed procedures. 

In the overall, the global analysis of the results of the proposed example applications 

indicated that considering the uncertainty of the limit state capacities increases significantly 

the estimate of the probability of exceedance of the limit states. Furthermore, for the cases 

that were analysed, the modelling error of the limit state capacity expressions was seen to 

be the main factor governing both the estimate of the probability of exceedance of the limit 

state and its variability. With the exception of a few situations, the effects of the variability 

of the material properties were found to be small. When comparing results obtained when 

record-to-record variability was the only source of uncertainty to those where the 

modelling error was also considered, the effects of the latter were seen, in many cases, to at 

least duplicate the variability of the probability of exceedance. Therefore, for such cases, 

the variability introduced by the modelling error was seen to be, at least, 70% larger than 

that of the record-to-record variability. Given the significance of the referred modelling 

error, further research efforts should concentrate on developing alternative formulations 

for the limit state capacities to obtain expressions providing capacity estimates with less 

uncertainty.  
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Chapter 9 
Probabilistic performance analysis of  

existing buildings under earthquake loading  
 

 

9.1 Introduction 

Probabilistic seismic safety assessment methods are intrinsic to the conceptual 

framework established by current Performance-Based Earthquake Engineering (PBEE) 

methodologies. This framework involves key aspects such as the use of adequate methods 

of analysis to determine building behaviour and the definition of quantifiable targets to 

measure performance. In this context, the ATC-63 probabilistic methodology (Kircher and 

Heintz, 2008; Deierlein et al., 2008; ATC, 2009) for the assessment of building safety 

against collapse due to earthquake loading is one of the most recent proposals. The 

methodology involves incremental dynamic analysis (IDA) (Vamvatsikos and Cornell, 

2002) and probabilistic procedures to evaluate seismic fragility margins of the building 

system against collapse and to calibrate appropriate values of design-related parameters 

such as the behaviour factor and other parameters affecting the response of the building. 

Although the main objective of this approach is to evaluate the seismic performance of 

new structures, in order to determine the effectiveness of design rules established by 

current codes and standards, this probabilistic methodology can also be adapted to assess 

the safety of existing structures against collapse (ATC, 2009).  

With respect to existing constructions, the recent widespread interest in 

methodologies addressing their assessment and retrofit has led to the development of 

several normative documents and guidelines for the assessment of their seismic 

performance (e.g. see ATC, 1996; ASCE, 2003; EC8-3 2005; OPCM 3431, 2005; NZSEE, 

2006; ASCE, 2007; NTC, 2008). The assessment methods proposed in these documents 

consist, essentially, of deterministic approaches involving the evaluation of the seismic 

response for different limit states which are quantitatively established by limit values of 

local (member level) demand parameters. Although these methods are expected to be 
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reliable, since they may include modelling, analysis and verification procedures more 

detailed than those commonly considered in the design of new structures, a probabilistic 

validation of such safety assessment approach appears to be essential to observe the 

adequacy of such procedures. Given these considerations, a probabilistic approach suitable 

for the evaluation of the seismic safety of existing structures following the concepts which 

are found in recently developed codes and standards is presented herein. 

The proposed probabilistic methodology analyses the seismic safety of a building 

using global performance metrics to determine if its behaviour conforms to a given limit 

state. The considered performance metrics are the probability of occurrence   of the limit 

state, the corresponding expected loss scL  associated to the repair of the building, and the 

corresponding number and type of mechanisms that are developed and that establish 

possible scenarios for the occurrence of that limit state. The term mechanism is considered 

herein as referring to the occurrence of a limit state capacity in one or in a combination of 

several structural members. The consideration of these assessment parameters can be seen 

to widen the scope of the limit state definitions proposed in current codes since 

performance is now controlled using high-level parameters. Furthermore, the simultaneous 

development of different member or global (system level) limit state mechanisms can also 

be included. Moreover, it is also possible to use the proposed approach to validate the 

seismic safety assessment procedures for existing constructions which are available in 

current standards and codes. By analysing seismic safety according to the assumptions 

underlying such procedures, it is possible to determine the corresponding values of the 

referred global performance metrics which are then used to examine the adequacy of the 

code procedures.  

The consideration of  , scL  and the occurrence of several mechanisms as global 

performance parameters for a given limit state can be seen to require an update of existing 

limit state descriptions. Based on some of the limitations identified from interpreting the 

limit state descriptions of the seismic safety assessment procedures proposed in Part 3 of 

Eurocode 8 (EC8-3) (EC8-3, 2005), alternative proposals are discussed to establish risk- 

and cost-related limit state definitions. These alternative proposals are then used to analyse 

the performance of two reinforced concrete (RC) structures using the proposed 

methodology and to evaluate the reliability of some of the EC8-3 procedures. It is noted 

that although EC8-3 is used as a reference, the issues raised by this analysis of the limit 

states extend beyond this code since similar limit states or performance levels are also 

considered by other international standards. 

 

 

9.2 General analysis and interpretation of limit state definitions 

The presented methodology addresses the seismic safety assessment of existing 

structures with respect to limit states other than global collapse. More specifically, the 



9.3 

methodology involves the probabilistic performance analysis of structures considering 

code-defined limit states which are usually associated to damage control, life safety or near 

collapse conditions. In order to identify some of the shortcomings about the limit state 

descriptions established by the seismic safety assessment procedures proposed by existing 

codes, a discussion addressing their interpretation is presented in the following. Although 

the limit state definitions considered for this analysis are those presented in EC8-3 (EC8-3, 

2005), the issues raised extend beyond this code since other international standards also 

consider similar limit states or performance levels.  

The descriptions of the performance requirements associated to the limit states 

defined by EC8-3 are initially formulated in qualitative terms and make reference to 

different damage states which can be related to the global behaviour of the structure (i.e. 

using a system level approach). Three damage states of increasing severity are established 

by EC8-3 and the corresponding limit states are termed: Damage Limitation (DL), 

Significant Damage (SD) and Near Collapse (NC). Although their general descriptions are 

defined globally at first, the safety verifications required to meet these limit states are 

established using parameters associated to the behaviour of structural members (i.e. using a 

local level approach). From Chapter 2, it is recalled that if the member mechanism 

associated to a given limit state is ductile, the general approach is to check if the member 

deformation demand is lower than an admissible deformation capacity. In the case where 

the member mechanism associated to a given limit state is of the brittle type, one has to 

check if the member capacity in terms of strength is not exceeded by the corresponding 

demand. The different limit state ductile and brittle mechanism capacities are obtained 

according to given expressions of empirical or semi-empirical nature defined by EC8-3 

(EC8-3, 2005), e.g. see Chapter 2. In general terms, the safety of a given mechanism 

associated to a certain limit state is accepted when the damage variable   associated to the 

member verifies the condition 

 1
D

C
    (9.1) 

where D is the member mechanism demand and C is the limit state capacity of the 

mechanism.  

From the point of view of the global safety of the structure, a literal interpretation of 

the EC8-3 procedures appears to indicate that compliance with a selected limit state is only 

accepted when all the individual structural members/sections meet their corresponding 

safety requirement. Depending on the selected limit state, this situation can be seen to be 

either excessively conservative or permissive. In this context, conservative or permissive 

states are considered to be referring to situations where the admissible deformation 

conditions are too low or too high, respectively. An example of a conservative case can be 

defined when considering the DL limit state, for which the maximum admissible member 

deformation is the yield chord rotation. In such case, if only one member demand is found 
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to exceed the yield deformation, and irrespective of which member, the whole building is 

considered to be nonconforming to this limit state. Based on this interpretation, one can 

argue that such condition is not easily correlated with a global limit state description that 

requires the structure to be only lightly damaged, with structural elements prevented from significant 

yielding and retaining their strength and stiffness properties (EC8-3, 2005) and that indicates the 

possibility of having more than one yielding section. However, the number and type of 

sections for which this situation is admissible is not able to be inferred from the 

description.  

When analysing the limit state of SD, it is possible to establish another example 

scenario for which the code interpretation of the limit state might now be seen as too 

permissive. For a given structure, when comparing the situation where there is only one 

section with a   value above 1.0, along with a number of sections where   is in the range 

0.85-0.95, with the situation where there is only a significant number of sections with   

values in the range 0.85-0.95, the safety assessment according to the code proposal implies 

the latter case to be conforming to the limit state, while the former is not. Based on the 

description of the SD limit state proposed by EC8-3, which refers, among other aspects, 

that the structure will be significantly damaged and likely to be uneconomic to repair (EC8-3, 2005), one 

can argue that, given the high values of   observed in both situations, their levels of 

damage are expected to be similar. Therefore, from an economic point of view, both cases 

could be seen as equivalent.  

With respect to the limit state of NC, EC8-3 refers, among other aspects, that the 

structure will be heavily damaged, with low residual lateral strength and stiffness (EC8-3, 2005). Since 

the structure is expected to remain standing after a severe earthquake, the NC limit refers 

to a state of the structure that precedes global collapse. However, it is believed that its level 

of damage renders the building uneconomic to repair. For this limit state, the EC8-3 

verification procedure accounts only for failure prevention at the section level and does not 

contemplate the potential development of global yield mechanisms. Following the 

definition proposed in Jalayer et al. (2007), the development of a yield mechanism 

corresponds to a situation involving the yielding of several sections (with different levels of 

inelastic demand) that forms a structural configuration having a significantly reduced lateral 

stiffness. As can be seen, this type of global structural behaviour fits within the general 

description of the NC limit state proposed by EC8-3, but the corresponding safety 

verifications do not refer the possibility of contemplating such mechanisms. With respect 

to the local failure prevention situation, it is also referred that EC8-3 makes no distinction 

between column and beam failure. It is seen to be generally accepted (e.g. see Pinto et al., 

2004; Deierlein and Haselton, 2005; Jalayer et al., 2007; Fajfar and Dolšek, 2011) that 

column failure (either by reaching its deformation or shear force capacity) is a more severe 

scenario than that of beam failure. Hence, the safety assessment results obtained from the 
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EC8-3 procedure can be considered to be conservative if   values above 1.0 only occur 

on beams.  

Given these example situations, it is believed that compliance to a given limit state 

should be connected to acceptance measures of wider scope that would be able to include 

different proposals to represent that limit state (e.g. a variable number of accepted sections 

in yield or a variable range of acceptable damage, depending on the structure) as well as to 

provide a better correlation with the global behaviour of the structure. A description of a 

seismic performance assessment methodology of this type is addressed in the following. 

 

 

9.3 Probabilistic performance analysis methodology 

9.3.1 General overview of the methodology 

To analyse building performance for a given limit state, the proposed methodology 

uses the probability of occurrence   of the limit state, the corresponding loss scL  

associated to the repair of the building, and the corresponding number of structural 

sections LSn  where the limit state mechanism occurs. By defining a value for LSn , one 

establishes a possible scenario for the occurrence of a given limit state. The   and scL  

performance metrics of each of the scm  considered scenarios are then combined to obtain a 

global performance value representing the expected loss EL over a given reference period 

of time which can be defined by: 

 ,
1

scm

i sc i
i

EL L


   (9.2) 

Finally, the EL value can be compared with an admissible limit admEL  defined by: 

 adm adm sc admEL L   (9.3) 

where adm  and sc admL  are global acceptance thresholds defined for   and scL . The value 

of adm  can be based on proposals recommended by existing standards and other technical 

documents (ISO 2394, 1998; JCSS, 2001b; DOE, 2002; Diamantidis and Bazzurro, 2007; 

ISO 13822, 2010; Vrouwenvelder and Scholten, 2010), while the value of sc admL  can be set, 

for example, by the building owner.  

The value of   is estimated by  

    
0

f

dH x
p x dx

dx




   (9.4) 
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where  .H  is the earthquake hazard curve defined in terms of a selected earthquake 

intensity measure (IM) and  .fp  is the fragility curve representing the probability of 

exceeding a given state of performance conditional to a certain value of the IM. The 

considered formulation of the fragility curve is similar in nature to the IM-based approach 

referred by Ibarra et al. (2002), which is also the basis for the ATC-63 methodology, but it 

is used for limit states other than collapse. With respect to the expected value of the loss 

scL , its quantification is carried out using the storey-based approach proposed by Ramirez 

and Miranda (2009).  

Although the potential total loss due to damage from earthquakes totL  can be 

formulated in order to include different types of direct costs (costs due to structural 

damage, to non-structural damage or due to loss of contents) and indirect costs (costs due 

to business interruption, or due to injuries and fatalities), it is not straightforward to 

formulate all of them as a function of a unique engineering demand parameter (EDP) in 

order to simplify the quantification of totL . For example, depending on the type of 

non-structural element, damage and costs can be more easily correlated to inter-storey drift 

or to floor acceleration levels (Foltz, 2004). Furthermore, since most of the indirect costs 

can be considered to be unique for each building, this situation requires an extensive and 

updated inventory which may not be available for the seismic safety analysis. In light of 

these considerations, the use of a simplified loss model that only addresses losses due to 

structural and non-structural damage, represented by scL , is suggested instead. 

When analysing the evolution of   and scL  for increasing values of the number of 

structural sections LSn  where a given mechanism occurs (which can be seen as a proxy for 

the behaviour of the building), it can be seen that   and scL  have opposite evolution 

trends (Fig. 9.1). When LSn  increases,   decreases since higher intensity ground motions 

(with lower probability of occurrence) are required to reach the limit state capacity at a 

larger number of sections. On the other hand, the value of scL  increases since admitting 

that a larger number of sections can reach the EDP capacity also leads to higher levels of 

global building damage. Figure 9.1 also shows the evolution of EL which, as expected, is 

seen to increase as LSn  increases. Based on the value set for the admEL  restriction, it is then 

possible to establish the admissible building performance which corresponds to the largest 

value of LSn  that conforms with admEL . 
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Figure 9.1. Evolution of  , scL  and EL for increasing values of LSn . 

 

9.3.2 Estimating the limit state fragility curve by using the IM-based 

approach 

Considering that a suitable earthquake hazard curve defined in terms of the selected 

earthquake IM is available, the quantification of the probability of occurrence   of a given 

limit state according to Eq. (9.4) requires the adequate definition of the fragility curve fp . 

The determination of fp  involves the characterization of the structural behaviour, usually 

obtained by the numerical simulation of a detailed mathematical model of the structure 

subjected to sets of earthquake ground motions scaled for increasing intensities. As 

previously referred, the fragility curve is estimated by the IM-based approach (Ibarra et al., 

2002), which is an efficient procedure that makes use of the IM-capacity concept and can 

be dated back to the works of Veneziano et al. (1983). The IM-based approach defines the 

fragility curve using a random variable, termed the IM-capacity (IMC), that represents the 

ground motion intensity at which a given limit state occurs for the structure under 

assessment. Several realizations of IMC associated to the selected limit state can then be 

obtained by analysing the structure under a set of earthquake records using the IDA 

procedure (Vamvatsikos and Cornell, 2002) where each record is scaled for increasing 

intensities until the limit state occurs. The cumulative distribution function (CDF) defined 

by the statistical distribution of the several IMC realizations represents the fragility curve of 

the selected limit state. This fragility curve has been, in many cases (Ibarra and Krawinkler, 

2005; Jalayer et al., 2007; Zareian and Krawinkler, 2007; Bradley and Dhakal, 2008; ATC, 

2009; Liel et al., 2009; Haselton et al., 2011; Liel et al., 2011), assumed to be well represented 

by a lognormal CDF which enables it to be written as:  
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where  .  is the normal CDF, and ln
CIM  and 

CIM  are the mean and the standard 

deviation, respectively, of the distribution. In this approach, the value of 
CIM  represents 

the uncertainty in the estimate of IMC due to several factors, e.g. due to the record-to-

record variability of the demand, among others (ATC, 2009).  

 

 

9.3.3 Estimating the limit state expected loss Lsc 

As previously referred, the expected value of the loss scL  associated to the 

occurrence of a given limit state is estimated using the storey-based approach proposed by 

Ramirez and Miranda (2009). This approach has established loss curves which represent 

the losses of all the individual components of an entire building storey as a function of a 

selected EDP, |sc EDPL . Different curves have been defined to quantify the losses in 

structural and non-structural components, and different EDPs are also selected depending 

on the type of component. To illustrate this type of data, Fig. 9.2 presents |sc EDPL  loss 

curves for structural and inter-storey drift-sensitive non-structural components associated 

to a typical storey of a mid-rise reinforced concrete interior frame of an office building 

(adapted from Ramirez and Miranda (2009)). For both cases, the selected EDP was the 

inter-storey drift Δ. The presented loss values, which are normalized by the storey 

replacement cost, can be seen to amount to maximum values close to 25% of the storey 

cost, for the case of the structural losses, and close to 50% of the storey cost, for those 

associated to the inter-storey drift-sensitive non-structural components. The remaining 

losses are assigned to acceleration-sensitive non-structural components (Ramirez and 

Miranda, 2009). 
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Figure 9.2. Loss curves for structural and inter-storey drift-sensitive non-structural components associated to 
a typical storey of a mid-rise reinforced concrete interior frame of an office building (adapted from Ramirez 

and Miranda (2009)). 

 

To quantify the expected loss value associated to the ith building storey, ,sc iL , due to 

the occurrence of a given limit state, the | ,sc EDP iL  curve must be combined with the 

exceedance probability of the selected EDP at the ith storey,  i iP EDP edp . The 

probabilistic characterization of the ith storey EDP can be defined by determining the EDP 

values corresponding to the several IMC realizations, EDPC. The CDF of these EDPC 

values represents the fragility curve of the ith storey EDP associated to the occurrence of 

the limit state under analysis, 
,C iEDPp , which can also be assumed to be represented by a 

lognormal CDF: 
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where 
,

ln
C iEDP  and 

,C iEDP  are the mean and the standard deviation, respectively, of the 

EDP distribution at the ith storey. The value of ,sc iL  can then be obtained by: 
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in which 
,| C isc EDPL  represents | ,sc EDP iL  for the case where the EDP values correspond to 

those of EDPC. Finally, the total expected value of the loss scL  associated to the occurrence 

of the limit state under analysis is obtained by summing the losses of each storey.  
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Although the values of ,sc iL  can be obtained by numerical integration of Eq. (9.7), 

simplified analytical expressions can also be derived to define ,sc iL . After analysing the 

|sc EDPL  loss curves presented in Fig. 9.2, piecewise linear functions are considered to be 

adequate enough to represent their shape. Depending on the precision that is required to 

approximate the |sc EDPL  loss curves, and also on the range of inter-storey drift which may 

govern the performance of a given structure, the curves presented in Fig. 9.2 can be 

approximated by the linear functions presented in Figs. 9.3 and 9.4. The linear 

approximations of 
,| C isc EDPL  proposed in Fig. 9.3 (Option 1) represent a simplified version 

of the loss curves according to the general expression defined by: 

  
,

1
|

1

0
C isc EDP

A x x
L x

B x

   
   

 (9.8) 

The linear approximations proposed in Fig. 9.4 (Option 2) enable a more realistic 

representation of the loss curves, namely of the initial branches, and follow the general 

expression defined by: 
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 (9.9) 

In both cases, A, B and C represent the slope of the different linear pieces, and 0 , 1  and 

2  represent the abscissas of the breakpoints.  
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Figure 9.3. Loss curves of Fig. (9.2) and their corresponding piecewise linear approximations using two pieces 
(Option 1) 
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Figure 9.4. Loss curves of Fig. (9.2) and their corresponding piecewise linear approximations using four 
pieces (Option 2) 

 

After replacing 
,| C isc EDPL  in Eq. (9.7) with the linear approximations of Eqs. (9.8) and 

(9.9), integration by parts is then used to solve the corresponding integrals. For the case of 

Option 1, the following expression is obtained for ,sc iL :  
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where the functions  .a  and  .b  are given by: 
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The first term of the sum in Eq. (9.10) is the contribution of the first piece of Eq. (9.8) to 

the integral, which makes use of the following relation (Wolfram|Alpha, 2011): 
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  (9.13) 

where  .erf  is the error function (i.e. twice the integral of the normal distribution with 

zero mean and a variance of 0.5). For the case of Option 2, the following expression is 

obtained for ,sc iL , which also uses the relation defined by Eq. (9.13): 
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 (9.14) 

 

 

9.3.4 Definition of the limit states 

According to the arguments referred in Section 9.2 and to the format of the 

proposed methodology, an update of the limit state definitions is required. Proposals to 

define the previously analysed limit states accounting for the issues raised are addressed in 

the following. 

 

 

9.3.4.1 The limit state of Damage Limitation 

For limit states that follow a general description similar to the one proposed by 

EC8-3 for the limit state of DL, the fundamental issue requiring a more objective 

consideration is related to the number of structural sections where yielding is admissible so 

that the structure under analysis can still be considered to conform to this limit state. An 

example of such type of approach is the one proposed by the draft code for performance-

based seismic design of buildings in Taiwan (Xue et al., 2008) where, for a given limit state, 

20% of the members are accepted to be nonconforming to the limit state criterion. 

However, it is believed that an approach defining a fixed number of admissible yielding 

sections is as subjective as the example case addressed in Section 9.2 where only one 

section exceeding the yield deformation would be sufficient to consider the structure to be 

nonconforming.  

Therefore, a conformity condition based on risk and loss criteria is proposed instead 

which establishes that the occurrence of the limit state can be accepted in a number of 

scenarios, as long as the corresponding value of EL is not greater than an admissible value 

,adm DLEL . In this case, each scenario corresponds to the situation where a different number 

DLn  of structural sections reaches or exceeds the yield limit. By defining the admissible 

consequences of reaching this limit state in terms of the ,adm DLEL , which is a function of 

the values set for ,adm DL  and ,sc adm DLL , the number of admissible yielding sections is set by 

a more rational decision-making process. Given the type of global structural performance 

that must be met for the DL limit state, namely the low level of structural damage that is 

expected, it is suggested that the previously referred simplified loss model could consider 

the value of ,sc adm DLL  such as to reflect repair costs due to non-structural damage only.  
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In order to control the level of inelastic behaviour that is admissible at the section 

level, this definition of the DL limit state can also be associated to additional conditions 

limiting the ductility demand of beams and/or columns up to a certain specified value that 

could also be connected to the repair cost. Moreover, if required, it is also possible to 

associate an additional condition reflecting the global behaviour of the structure, such as a 

limit value for the admissible inter-storey drift (e.g. 1% as proposed by ASCE (2007)) that, 

again, can be established based on economic requirements. Another type of global 

behaviour condition has been proposed by Wang et al. (2011) which consists on defining a 

limit for the reduction of the slope of the IDA curve obtained for a given ground motion. 

For a limit state similar to the DL limit state, Wang et al. (2011) suggest a 10% reduction. 

Although it is established for a different type of limit state, this condition can be seen to be 

similar in nature to that which is defined to determine global collapse in methodologies 

such as the one proposed by ATC-63 (ATC, 2009) where a near 100% reduction of the 

slope of the IDA curve indicates that global collapse has occurred. However, the reduction 

value proposed for the DL limit state (10%) is arbitrary and is not able to be objectively 

connected to the physical state of the structure. Hence, such type of approach is not 

recommended. 

 

 

9.3.4.2 The limit state of Significant Damage 

For limit states involving conditions similar to those of the EC8-3 SD limit state, the 

focus of the revised definition proposed herein is related to both the number of structural 

sections where the corresponding deformation limit can be attained so that the structure 

can still be considered to conform to this limit state, and to the level of deformation that 

should be defined for such limit value. As for the DL limit state, a conformity condition 

based on risk and loss criteria is also proposed which establishes that the occurrence of the 

limit state can be accepted in a number of scenarios, as long as the corresponding value of 

EL is not greater than an admissible value ,adm SDEL . In this case, each scenario 

corresponds to the situation where a different number SDn  of structural sections reaches or 

exceeds a selected deformation limit limd . It is believed that limd  should be defined based on 

economic considerations involving estimates of the expected damage-related costs. The 

value of ,adm SDEL  is set as a function of the values defined for ,adm SD  and ,sc adm SDL , where 

the latter should reflect the maximum admissible cost for the repair of the whole structure. 

Therefore, in terms of the simplified loss model previously referred, ,sc adm SDL  should reflect 

the admissible value of the repair costs of both the structural and the non-structural 

elements.  
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Furthermore, it is also mentioned that, as for the DL limit state, it is also possible to 

associate an additional condition reflecting the global behaviour of the structure, such as a 

limit value for the admissible inter-storey drift (e.g. 2% as proposed by ASCE (2007)). 

 

 

9.3.4.3 The limit state of Near Collapse 

With respect to limit states comprising conditions similar to those of the EC8-3 NC 

limit state, the revised definition proposed herein involves different bounding conditions 

than those of the previous limit states. Given that, when reaching this limit state, the 

building is expected to be uneconomic to repair, a bounding condition setting a value for 

the admissible loss is not considered to be a relevant global performance measure. Hence, 

the building performance is controlled by limiting the probability of occurrence   of the 

limit state to an admissible value ,adm NC , and by defining conditions in terms of the 

number of sections where a given demand/mechanism is accepted. With respect to this last 

performance measure, when analysing the occurrence of local (section level) mechanisms, 

distinction must be made between mechanisms occurring in beams and in columns. Given 

the larger severity of the consequences due to the failure of a column, the occurrence of 

the NC limit state at a single section is considered to be enough to reflect a nonconforming 

structure. On the other hand, for beams, it is considered that the limit state capacity of the 

considered mechanism can occur at several sections. In this case, a nonconforming 

condition is established when the NC limit state has occurred in all of the beam sections of 

a given storey. 

In addition to the local (section level) analysis of the demand, a global analysis of the 

building behaviour should be carried out also for this limit state in order to include the 

influence of the previously referred global yield mechanisms. Existing methodologies 

identifying the occurrence of such yield mechanisms can be divided in two main types: 

methodologies tracking the evolution, for increasing levels of the selected IM, of the value 

of a demand parameter capable of reproducing the global behaviour of the building 

(Vamvatsikos and Cornell, 2002) or approaches tracking the occurrence of a number of 

yield mechanisms specified beforehand (Jalayer et al., 2007).  

The first type of methodologies is mostly associated to procedures aiming to track 

the occurrence of global structural collapse such as, for example, the ATC-63 framework 

(ATC, 2009). Furthermore, the accuracy of this approach can be seen to depend on the 

adequacy of the relation (i.e. the IDA curve) between the selected EDP (usually the 

inter-storey drift) and the IM to represent the occurrence of the referred mechanisms. The 

development of these mechanisms is typically associated to a flatness of the IDA curve 

representing a very large increase of the EDP for a small increase of the IM which, in turn, 

indicates that a considerable reduction of the global stiffness of the structure has occurred, 

e.g. such as when a soft-storey mechanism develops. If the referred flatness does not occur, 
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the identification of a global mechanism becomes more difficult and some of them might 

only be identified if deterioration is modelled in the structural analysis (Krawinkler and 

Lignos, 2009). With respect to the second approach, although the procedure proposed in 

Jalayer et al. (2007) allows the consideration of any type of global mechanism, it has the 

downside of requiring that all of them must be identified. Given the multitude of 

possibilities, the adequacy of this approach relies considerably on the opinion and 

experience of the analyst. Furthermore, this procedure can also be seen to disregard the 

realistic correlation between the behaviour of the components that are part of the 

mechanism since it considers that a mechanism occurs when its strongest component 

begins to yield (Jalayer et al., 2007), i.e. a mechanism is assumed to be formed by a parallel 

arrangement of fully correlated components. Given the disadvantages of both approaches, 

an alternative methodology is proposed in the following to identify the occurrence of any 

type of yield mechanism.  

The proposed approach identifies the occurrence of yield mechanisms by assessing 

the singularity of an equivalent stiffness matrix representing the current state of the 

building behaviour. This approach is defined by the following steps which are carried out at 

each time increment of the nonlinear dynamic analysis: 

 Step 1 - Check the behaviour state of each structural section to determine if its 

current loading state is located in a positive or negative post-yield loading branch of 

the behaviour path. Sections meeting this condition are termed active yielding sections. 

To illustrate the definition of the referred loading branches, Fig. 9.5 presents a 

generalized force-displacement relation representing different stages of the 

hysteretic behaviour. In Fig. 9.5, branches 3 and 10 are positive post-yield loading 

branches, the latter occurring after a negative loading cycle and a positive reloading, 

while branch 6 is a negative post-yield loading branch. 

 Step 2 - If one or more active yielding sections are found, an equivalent elastic 

Euler-Bernoulli stiffness matrix of the structure Keq is formulated with zero-stiffness 

terms assigned to the flexural terms of those sections. 

 Step 3 - If matrix Keq is singular, a situation that represents an unstable structure 

(Nafday, 2008), the configuration of active yielding sections under consideration is 

that of a yield mechanism and the corresponding IM value of the ground motion is 

recorded. 

By using such procedure, it is then possible to identify any type of yield mechanism 

taking into account the correlation of the behaviour between the components forming the 

mechanism and accounting only for sections actively loaded with post-yield stiffness at 

each time increment of the analysis. 

In addition to the section level and yield mechanisms criteria, it is mentioned that, as 

for the previous limit states, it is also possible in this case to associate an additional 
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condition reflecting a lateral deformation limit for the inter-storey drift (e.g. 4% as 

proposed by ASCE (2007)). 
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Figure 9.5. Generalized hysteretic force-displacement relation.  

 

9.3.5 Accounting for the uncertainty in the limit state capacities 

As referred in Jalayer et al. (2007), the uncertainty associated to the modelling of 

member limit state capacities has a significant contribution to the probability of occurrence 

  of a given limit state. Depending on the considered standard, the limit state capacities 

are seen to be established either by fixed values of a given EDP (e.g. ASCE (2007)) or by 

expressions of semi-empirical nature (e.g. EC8-3 (2005)) defining the limit values of the 

referred EDPs. In the former case, the proposed values are expected to be conservative 

estimates of the real capacity (Haselton, 2006) while in the latter, the average estimates 

provided by the referred expressions are known to have a large uncertainty (Haselton, 

2006; fib, 2003a; fib, 2003b). In this case, the uncertainty in the limit state capacities can be 

associated to the modelling error deriving from the proposed capacity formulas as well as 

to the variability of the mechanical parameters entering those formulas (Jalayer et al. 2007). 

Among the different methods which are available to account for this uncertainty 

component (e.g. see Pinto et al., 2004; Jalayer et al., 2007; Liel et al., 2009), the selected 

approach assumes that limit state capacities C can be modelled according to the following 

general format:  

 ˆ
UCC C    (9.15) 

where Ĉ  is the estimate given by the referred semi-empirical expressions, and UC  is a 

lognormal random variable with unit median and a dispersion UC  accounting for the 
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variability sources previously mentioned. In order to reflect the section-level limit state 

capacity uncertainty at the system level, i.e. in the uncertainty associated to the estimate of 

IMC, the possible correlation between the capacities of different sections must be 

accounted for. To address this issue, an approach similar to the one proposed by Jalayer et 

al. (2007) is considered herein. Therefore, it is assumed that for a given mechanism (e.g. 

yield deformation, shear failure) the corresponding limit state capacities of all members are 

fully correlated. On the other hand, for a given member, the limit state capacities of 

different mechanisms are considered to be uncorrelated. Given this assumption, the effect 

of this uncertainty on the estimate of IMC can be included by sampling different 

realizations of the individual member capacities using Eq. (9.15) which are then paired with 

the IDA curves obtained from the considered earthquake ground motions. Therefore, for a 

given IDA curve, an array of member capacities (i.e. a number of realizations, UCn , of the 

capacities for each member) is established and each sample of capacities (i.e. one realization 

of the capacity of each member) will lead to a different realization of the IMC associated to 

the limit state under analysis. Using this approach, the quantification of parameters 
CIM  

and 
CIM  which characterize the limit state fragility curve, Eq. (9.5), are now able to 

account for the uncertainty in the member capacities. 

 

 

9.3.6 Stepwise description of the proposed methodology 

Based on the individual features addressed over the previous sections, the sequence 

of steps involved in the presented probabilistic methodology for the analysis of building 

performance is described in the following. 

The proposed method assumes that a set of gmn  IDA curves with an adequate 

number of IM levels have been obtained from the analysis of the structure subjected to gmn  

ground motion records scaled to those IM levels. After selecting the limit state for which 

the performance of the structure is to be assessed, the following steps must then be carried 

out: 

 Step 1 - Select the mechanism for which seismic safety is going to be analysed for 

the selected limit state. 

 Step 2 - Define a value for UCn  (the number of realizations of the capacity of each 

member) and sample UCn  values of UC  from its distribution.  

 Step 3 - Select a value for LSn  (the number of structural sections where the limit 

state mechanism occurs). 

 Step 4 - Select a value of UC  from those sampled in Step 2. 
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 Step 5 - Select one IDA curve from the set of gmn  curves. 

 Step 6 - Select the first IM level from the chosen IDA curve. 

 Step 7 - Determine ˆ
UC

D

C






 for all the secn sections of the structure.  

 Step 8 - Determine the number of sections 1n   with   values larger than 1.0. 

 Step 9 - If 1 LSn n   , select the next IM level and repeat the procedure from Step 

7; if 1 LSn n   , record the current IM level, which corresponds to a realization of 

IMC (the ground motion intensity at which the limit state scenario occurs), e.g. see 

Fig. 9.6a), and proceed to the next IDA curve to repeat the procedure from Step 6. 

 Step 10 - After going through all the IDA curves, the procedure is repeated from 

Step 5 for a different value of UC , until the whole UCn  values have been 

considered. 

 Step 11 - Characterize the limit state fragility curve by Eq. (9.5) based on the 

different realizations of IMC, e.g. see Fig. 9.6b). 

 Step 12 - Determine the probability of occurrence   of the limit state by Eq. (9.4). 

 Step 13 - Characterize the fragility curves of the selected EDP of each storey for 

the storey-based loss quantification by Eq. (9.6), e.g. see Fig. 9.6c). 

 Step 14 - Determine the expected value of the loss of each storey by Eq. (9.7), or 

by the simplified approaches defined by Eqs. (9.10) and (9.14). 

 Step 15 - Determine the value of the loss scL  of the limit state scenario. 

After these steps, the triplet  ; ;LS scn L  defines a limit state performance scenario. 

The building performance quantification procedure is then repeated from Step 4 for a 

different value of LSn . In order to obtain an adequate representation of the building 

performance evolution for different LSn  values, it is suggested that the analysis starts by 

setting LSn  equal to one and that subsequent repetitions of the procedure increase it by 

single units. The several performance triplets are then combined to obtain EL according to 

Eq. (9.2). The value of EL is then analysed in light of the limit defined by admEL  to 

determine which combination of scenarios is admissible for the current limit state.  

In a situation where the uncertainty of the member limit state capacities is not 

considered, the procedure is simplified by considering both UCn  and UC  equal to 1.0 in 

the necessary steps. Furthermore, additional verifications may be carried out in Step 10 if 

provisions other than checking the 1n   condition are required (e.g. checking the 
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occurrence of a yield mechanism, of a deformation limit for the inter-storey drift or of a 

specified limit for the ductility demand of beams and/or columns). 
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Figure 9.6. Illustration of step 9 (a), of step 11 considering 1UCn   (b) and of step 13 considering 1UCn   
and for the ith storey (c). 

 

9.4 Example application of the proposed methodology 

An application of the proposed methodology is presented in the following addressing 

the seismic safety assessment of two RC structures for the limit states defined by EC8-3 

and involving the modifications presented in Section 9.3.4.  

 

 

9.4.1 General description of the selected structures 

The two selected RC structures are the six-storey RC frames previously referred as 

REG6 and IRREG6 in Chapter 5. The elevation views of the frames are presented in 

Figs. 9.7a) and b) along with the column cross section dimensions. All the beams are 

0.30 0.50  m2. Additional information concerning the frame characteristics can be found 

in Chapter 5 and in Ferracuti et al. (2009). Relevant details about the structural modelling, 

the analysis procedure and the quantification of the demand parameters are discussed in 

Chapter 5 and are, therefore, omitted herein.  
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Figure 9.7. Elevation views of the REG6 (a) and of the IRREG6 (b) frames and of their column cross section 
dimensions. 

 

9.4.2 EC8-3 component capacities and probabilistic modelling of their 

uncertainty 

As mentioned in previous chapters, EC8-3 defines ductile capacities in terms of the 

admissible DL, SD and NC member chord rotations, while brittle capacities are 

characterized by the admissible NC shear force. For the quantification of the DL chord 

rotation capacity DL , and assuming that no shear cracking is expected to precede flexural 

yielding, EC8-3 proposes the following expression 

 0.0013 1 1.5 0.13
3

b ys
DL y y

s c

d fL h

L f
  

 
        

 
 (9.16) 

in which y is the yield curvature of the member end section, Ls is the shear span, h is the 

cross section depth, db is the mean diameter of the tension reinforcement, fy is the 

longitudinal reinforcement yield strength and fc is the concrete compressive strength. In 

order to account for the uncertainty in DL  according to Eq. (9.15), fifty UC  values are 

sampled from its distribution, where the dispersion UC  for DL , , DLUC  , is considered to 

be 0.36 (fib, 2003b) which reflects the uncertainty due to the modelling error of Eq. (9.16). 

The uncertainty due to the variability of the mechanical parameters entering Eq. (9.16) is 

not taken into account since its effect is considered to be negligible when compared to that 

of the modelling error (e.g. see Chapter 8). 

For the quantification of the NC chord rotation capacity NC , the following 

semi-empirical expression proposed by EC8-3 is considered herein:  
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where u is the ultimate curvature of the member end section and Lpl is the plastic hinge 

length. The definition of u and of Lpl depends on the selected confined concrete model 

(EC8-3, 2005). As referred in Chapter 8, the purpose of factor el is to account for the 

variability of the capacity. In the present application el is considered equal to one since the 

variability of the capacity values is simulated. To account for the uncertainty in NC  

according to Eq. (9.15), fifty UC  values are sampled from its distribution, where the 

dispersion UC  for NC , , NCUC  , is considered to be 0.90 (fib, 2003b) in order to reflect 

the uncertainty due to the modelling error of Eq. (9.17). As for the case of DL , the 

uncertainty due to the variability of the mechanical parameters is also not taken into 

account. 

For the case of the SD limit state, EC8-3 states that the corresponding chord 

rotation capacity SD  is defined as ,1 0.75SD NC  . In addition to this case, the 

performance analysis of the structures for this limit state was also carried out for the 

situation where a chord rotation capacity ,2 ,10.85SD SD   is considered. This additional 

analysis is performed in order to address the considerations made in Section 9.3.4.2. Since 

SD  is a function of NC , the uncertainty in SD  is that of NC . 

With respect to the shear force capacity NCV  for the limit state of NC, EC8-3 

proposes the formulation defined by: 
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 (9.18) 

where x is the compression zone depth, N is the compressive axial force (equal to zero for 

tension), Ac is the cross section area taken equal to wb d  (bw is the section width and d is 

the structural depth), tot  is the total longitudinal reinforcement ratio, pl  is the ratio 

between the plastic part of the chord rotation demand and the yield chord rotation given 

by Eq. (9.16), and Vw is the contribution of transverse reinforcement to shear resistance 

(EC8-3, 2005). To account for the uncertainty in NCV  according to Eq. (9.15), fifty UC  

values are sampled from its distribution, where the dispersion UC  for NCV , , NCUC V , is 

considered to be 0.14 (fib, 2003a) in order to reflect the uncertainty due to the modelling 

error of Eq. (9.18). 
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9.4.3 Seismic demand and hazard scenario 

The seismic demand considered for each structure consisted of a suite of fifty real 

ground motions extracted from the Pacific Earthquake Engineering Research Center NGA 

database (PEER-NGA, 2009) according to the criteria referred in Chapter 5. Each 

structure was analysed using a multi-stripe analysis (Jalayer and Cornell, 2009) where the 

selected ground motions are scaled for increasing values of  1aS T  until the selected limit 

state is attained -  1aS T  is the 5% damping spectral acceleration ordinate of the ground 

motion for the fundamental period of the structure T1 which is the selected IM and is 

simply referred to as aS  hereon.  

In order to define the earthquake hazard curve  H x  required for Eq. (9.4), seismic 

hazard data was obtained for the aS  values of the considered structures, and for a reference 

period of one year, in order obtain results in terms of annual performance of the structures. 

Details about the selected methodology and the hazard data are referred in Chapter 8. A 

continuous function  H x  was then defined by fitting a probabilistic complementary 

cumulative distribution function (CCDF) to the discrete seismic hazard data. This 

adjustment was performed assuming that the CCDF of a Fréchet distribution (Castillo, 

1988) is adequate enough to represent the hazard data (e.g. see Chapter 8). Therefore, the 

hazard function  H x  is defined by:  

  
x

H x e




  
   (9.19) 

where  and γ are the parameters of the CCDF. Figure 9.8 presents the seismic hazard data 

obtained for the REG6 and the IRREG6 structures, along with the corresponding fitted 

Fréchet CCDFs.  
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Figure 9.8. Probabilistic seismic hazard analysis (PSHA) results and fitted Fréchet distribution CCDF to the 
seismic hazard data for the REG6 (a) and IRREG6 structures (b). 
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9.4.4 Cost analysis data and performance conditions 

The expected loss value associated to the ith building storey, ,sc iL , is quantified using 

the |sc EDPL  structural and non-structural loss curves for mid-rise RC interior frames of an 

office building defined by Ramirez and Miranda (2009). In order to simplify the proposed 

example applications, only non-structural losses associated to inter-storey drift-sensitive 

non-structural components are considered herein. The considered loss curves are presented 

in Fig. 9.9. In addition, the ,sc iL  values are also determined using the |sc EDPL  linear 

approximations defined by Eqs. (9.8) and (9.9).  

With respect to the selected values of the admissible expected losses admEL  defined 

by Eq. (9.3), values were set for the admissible probability of occurrence of the considered 

limit states, adm , and for their expected repair costs, sc admL . For the case of adm , it is 

referred that, for existing structures, current standards and/or available technical 

documents on the subject do not have definitive proposals on this matter. Therefore, the 

adm  values considered herein were defined as a reduction of the target reliability values for 

new structures proposed by the JCSS (2001b) for a one year reference period and for 

ultimate limit states. As referred by Diamantidis and Bazzurro (2007), this approach is 

based on the fact that achieving a higher reliability level in existing structures has a higher 

cost when compared to that of structures under design. Hence, the adm  values presented in 

Table 9.1 were considered for the selected limit states, based on those proposed by the 

JCSS (2001b) for the higher category of the relative cost of implementing safety measures. 

These adm  values are defined for the previously referred reference period of one year and 

were associated to small, moderate and large risks to life and economic consequences for 

the limit states of DL, SD and NC, respectively. Along with the values for adm , Table 9.1 

also presents the corresponding reliability indexes  .  

With respect to the selected values for the admissible expected repair costs, sc admL , 

the considered limit values correspond to average repair costs of all the building storeys. 

Therefore, a value of 10% was assumed for the DL limit state (considering only losses 

associated to inter-storey drift-sensitive non-structural components) and a value of 25% 

was assumed for the SD limit state (considering losses associated to inter-storey 

drift-sensitive non-structural components and losses to structural components). 

Considering the proposed values of adm  and sc admL  for the limit states of DL and SD, the 

corresponding values of admEL  set by Eq. (9.3) are then 410  and  55 10 , respectively. 
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Figure 9.9. Considered loss curves for structural and inter-storey drift-sensitive non-structural components 
for a mid-rise reinforced concrete interior frame of an office building (adapted from Ramirez and Miranda 

(2009)). 

Table 9.1. Considered values for adm  for the selected limit states and the corresponding reliability indexes 
 . 

Limit state 
adm    

DL 0.001 3.09

SD 0.0002 3.54

NC 0.0001 3.70

 

 

9.5 Results of the probabilistic performance analysis 

9.5.1 Initial considerations 

In order to analyse the applicability of the proposed methodology for performance 

assessment, results of the probabilistic analysis of the REG6 and the IRREG6 structures 

for the DL, SD and NC limit states are presented in the following. To emphasize the 

influence of the modelling error of the selected capacity models, the performance results 

are presented separately for the situation where the uncertainty of the component 

capacities is neglected and for the situation where it is accounted for. For the DL limit 

state, the performance of the structures is analysed considering LSn  values of one to six. 

For the SD limit state, the performance is analysed considering LSn  values of one to four 

instead.  
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In addition to these results, loss values obtained using the linear approximations of 

the loss curves are also analysed to observe the accuracy of this approach. Finally, the use 

of the lognormal distribution to model the fragility curves involved in the performance 

analysis is addressed to determine the suitability of this common assumption. Results of 

adequate statistical methods used to test this hypothesis are presented and large-sample 

situations where the hypothesis is rejected are also discussed. 

 

 

9.5.2 Results for the DL limit state 

Based on the IDA curves obtained for all the considered ground motions, the 

performance metrics   and scL  were calculated for LSn  values of one to six according to 

the steps defined in Section 9.3.6. To illustrate the procedure, Fig. 9.10 presents the IDA 

curves of the REG6 structure considering the inter-storey drift Δ of the third storey as the 

represented EDP. The third storey was selected since its Δ values are dominant over those 

of the remaining storeys. The performance points corresponding to the LSn  cases one to 

four of the DL limit state, when the uncertainty of the component capacities is neglected, 

are also represented. In addition to the IDA curves, Fig. 9.10 also presents the probability 

density functions (PDFs) of the ,a CS  realizations (assumed as lognormal distributions) 

corresponding to the referred performance points of the LSn  cases one to four. The CDFs 

of these distributions are the DL limit state fragility curves , LSf n ip  , where i stands for the 

LSn  cases one to four, defined by Eq. (9.5). Furthermore, Fig. 9.10 also shows the PDFs of 

the third storey Δ (assumed as lognormal distributions) which correspond to the referred 

performance points of the LSn  cases one to four, ΔC,3. The CDFs of these distributions are 

the fragility curves 
,3 ,C LSn ip   of the third storey, where i stands for the LSn  cases one to 

four, defined by Eq. (9.6). In the current application of the proposed methodology, the 

mean and the standard deviation of the log of the data required for Eqs. (9.5) and (9.6) 

were obtained using the logistic M-estimator proposed by Rousseeuw and Verboven (2002) 

and the τ-scale truncated standard deviation proposed by Yohai and Zamar (1988), 

respectively. These estimators were selected based on the findings and recommendations 

presented in Chapters 6 and 7. 

From the cloud of performance points corresponding to the LSn  cases one to four 

represented in Fig. 9.10, the ΔC,3 realizations can be seen to range roughly between 0.5% 

and 1%, which is consistent with the behaviour of the structure that is expected for the DL 

limit state conditions. By analysing the probability density functions of Fig. 9.10, it is 

possible to observe the increase of the mean of the lognormal ,a CS  and ΔC,3 data as LSn  

increases, which reflects the need for higher earthquake intensities to reach the limit state 

condition in a larger number of sections. On the other hand, the standard deviation of the 



9.26 

lognormal ,a CS  and ΔC,3 exhibits a smaller variability across the several LSn  values. 

Furthermore, the represented lognormal distributions can be seen to exhibit low levels of 

skewness, a fact reflecting the moderate level of dispersion of the data, which exhibits 

standard deviations of the log of the data between 0.10 and 0.13 for ΔC,3, and between 0.14 

and 0.20 for ,a CS .  
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Figure 9.10. IDA curves of the REG6 structure, performance points and probability density functions of the 

,a CS  and ΔC,3 realizations for the LSn  cases one to four. 

 

The performance metrics   and scL  calculated for the REG6 and the IRREG6 

structures are presented in Fig. 9.11 for the case where the uncertainty of the component 

capacities is neglected. In addition to these results, Fig. 9.11 also presents the cumulative 

sum of EL up to each value of LSn  along with the selected value for admEL . The results of 

the REG6 and IRREG6 structures indicate that performance scenarios up to LSn  equal to 

six can be seen to lead to acceptable values of EL. This simple comparison emphasizes the 

importance of using high-level parameters such as  , scL  and EL to analyse building 

performance. It is recalled that, according to the interpretation of the code-based limit state 

definitions presented in Section 9.2, the case where 1LSn   corresponds to the scenario 

implicit in those definitions. Hence, by using EL as a global performance measure (and 
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accepting the values considered for adm , sc admL  and therefore admEL ), the proposed 

methodology is able to establish admissible performance scenarios that go beyond the 

limitations of the code definitions and allows for a rational decision-making process about 

the need to retrofit or strengthen a given structure. 
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Figure 9.11. Results of the performance analysis of the REG6 (a) and the IRREG6 (b) structures when the 
uncertainty of the component capacities is neglected. 

 

For a more direct analysis about the influence of the modelling error of the capacity 

model, the performance results of both structures are presented in Fig. 9.12 for the 

situation where the uncertainty of the component capacities is neglected and also for the 

situation where it is accounted for. Parameters UC , sc UCL  and UCEL  correspond to the 

values of  , scL  and EL obtained when the uncertainty of the component capacities is 

considered.  

From the results presented in Fig. 9.12, allowing for the uncertainty of the 

component capacities can be seen to increase the risk considerably: the UC  values are 30% 

to 75% larger than the   values. On the other hand, for this limit state, the uncertainty 

effects on the expected costs are different. For structure REG6, the uncertainty of the 

component capacities reduces the expected costs: sc UCL  is, on average, 5% lower than scL . 

For structure IRREG6, the uncertainty increases the expected costs for the LSn  cases of 

one to three ( sc UCL  is 6% larger than scL  when 1LSn  ), while there is virtually no 

difference between sc UCL  and scL  for the remaining LSn  cases. With respect to the 

performance of the REG6 and the IRREG6 structures, the changes from   to UC  and 

from scL  to sc UCL  also modify the number of performance scenarios up to which the 

value of EL is found to be admissible. For REG6, the performance measure UCEL  is 

admissible up to 5LSn  , while for IRREG6 the performance is only acceptable up to 

3LSn  . Therefore, accounting for the uncertainty in the component capacities can be seen 



9.28 

to have a significant influence on the acceptable performance of the structures, namely due 

to the significant increase of    to UC .  

The differences between   and UC  can be explained by the analysis of the limit 

state fragility curves , LSf n ip   presented in Fig. 9.13a) of the various LSn  cases of IRREG6 

and for the situations where the uncertainty is and is not considered. When uncertainty is 

accounted for, the presented fragility curves indicate there is an increase in the variability of 

the data (i.e. there is a flattening of the curves) as well as a reduction in the median of the 

data. This reduction ranges from 1% to 5% for IRREG6 and from 10% to 12% for REG6. 

Such shift in the median values of ,a CS  has also been reported by Liel et al. (2009) and can 

be seen to be the dominant factor leading to the higher values of UC  since, according to 

Eq. (9.4), the higher values of  dH x dx  have now a larger contribution to  .  

Using a similar reasoning, the fragility curves 
,3 ,C LSn ip   of the ΔC,3 realizations of 

REG6 presented in Fig. 9.13b) (which are similar to those obtained for the remaining 

storeys) are also able to justify the differences between scL  and sc UCL . When uncertainty is 

accounted for, these fragility curves also indicate an increase in the variability of the data 

and a reduction in the median of the data, which, in this case, ranges from 5% to 9%. For 

this situation, the shift in the median of the data leads to lower values of sc UCL  since, 

according to Eq. (9.7), the lower values of the loss curve have now a larger contribution to 

the ith storey loss. Although these results may seem rather counterintuitive, the reduction in 

the expected loss is easier to understand when analysing its connection to UC . The shift in 

the median of ,a CS  that occurs when uncertainty is accounted for indicates there is a 

significant number of cases where lower values of ,a CS  lead to the occurrence of the limit 

state condition, i.e. a significant number of earthquakes with lower IM values are more 

likely to lead to the occurrence of the limit state condition. Given that, according to the 

earthquake hazard curve  H x , such lower IM values have a higher probability of 

occurrence, the risk will increase for this situation. Since the Δ values corresponding to 

those lower ,a CS  values are also lower than those obtained when uncertainty is not 

considered, the corresponding expected losses will decrease. 

Although a similar type of behaviour is found in the evolution of the loss data for 

IRREG6, since the shift in the median Δ of the several storeys only ranges from 1% to 5%, 

the combined effect of a reduction in the median with that of an increase in the dispersion 

of the data actually leads to a slight increase in the value of UCEL  with respect to that of 

EL for some LSn  cases.  

According to Liel et al. (2009), the shift in the median can be related to the number of 

possible failure modes and to the fact that considering the uncertainty or the randomness 

in the parameters of a given model may lead to the activation of different failure modes. 
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Furthermore, Liel et al. (2009) also refer that structures where a larger number of failure 

modes are activated tend to be associated with a more significant shift of the median 

collapse capacity. In the context of the current methodology, the occurrence of the limit 

state condition at a given section and the ,a CS  value associated to the occurrence of the 

limit state play the role of the failure modes and of the collapse capacity, respectively, 

reported by Liel et al. (2009). Hence, for the DL limit state, the number of possible failure 

modes corresponds to the number of sections where the limit state condition is analysed: 

sixty sections for REG6 and forty-four for IRREG6. In order to determine if a trend 

similar to the one reported by Liel et al. (2009) is found for the current structures, the 

percentage of times that the sections where the limit state condition occurs when 

considering uncertainty are the same as those where it occurs when uncertainty is not 

considered, represented by 
UCLS LSs s , is analysed for the LSn  cases of one and two. The 

results of this analysis are presented for each ground motion in Fig. 9.14. By comparing the 

results obtained for both structures, it can be observed that, for both LSn  cases, larger 

values of 
UCLS LSs s  occur more times for IRREG6 than for REG6. Even though the 

differences between the 
UCLS LSs s  values of both structures are not very large, the results 

do indicate the existence of a trend similar to that reported by Liel et al. (2009). 
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Figure 9.12. Results of the performance analysis of the REG6 (a) and the IRREG6 (b) structures when the 
uncertainty of the component capacities is neglected and considered also. 
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Figure 9.13. Fragility curves of the ,a CS  realizations for IRREG6 (a) and fragility curves of the ΔC,3 

realizations for REG6 (b), with and without the uncertainty of the component capacities and for LSn  values 
of one to six. 

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

80

90

100

Ground motion number

s L
S =

 s
L

S U
C

 (
%

)

 

 

REG6
IRREG6

   a) 

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

80

90

100

Ground motion number

s L
S =

 s
L

S U
C

 (
%

)

 

 

REG6
IRREG6

   b) 

Figure 9.14. Percentage of times that, for a given ground motion, the sections where the limit state condition 
occurs when considering uncertainty are the same as those where it occurs when uncertainty is not 

considered, for both structures, and for the cases where LSn  is one (a) and two (b). 
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9.5.3 Results for the SD limit state 

The performance metrics  , scL  and EL obtained for the limit state of SD for the 

REG6 and the IRREG6 structures are presented in Fig. 9.15 for LSn  values of one to four, 

for the case where the uncertainty of the component capacities is neglected, and 

considering the chord rotation capacity defined by ,1SD . Globally, the results of the REG6 

and IRREG6 structures indicate that performance scenarios up to LSn  equal to four can be 

seen to lead to acceptable values of EL. However, unlike for the case of the DL limit state, 

the results of Fig. 9.15 indicate that   values are globally higher for REG6 than for 

IRREG6. This situation arises from the fact that, for REG6, larger deformation demands 

occur at the bottom columns, while for IRREG6 the larger deformation demands are 

obtained for the columns immediately above the setback. Since the limit state capacity of 

the bottom columns of REG6 is smaller than that of the IRREG6 third storey columns, 

REG6 reaches the limit state condition for smaller IM values, thus leading to a larger value 

of  .  

To analyse the influence of the modelling error of the capacity model, the 

performance results of both structures are presented in Fig. 9.16 for the situation where the 

uncertainty of the component capacities is neglected and also for the situation where it is 

accounted for. As for the DL limit state, UC , sc UCL  and UCEL  correspond to the values 

of  , scL  and EL obtained when the uncertainty of the component capacities is 

considered.  

From the results presented in Fig. 9.16, including the uncertainty of the component 

capacities increases the risk considerably: the UC  values are 50% to 120% larger than the 

  values. On the other hand, as observed for the limit state of DL, the influence of the 

uncertainty on the expected costs has an opposite effect: the sc UCL  values are 6% to 15% 

lower than the scL  values. As opposed to what was observed for the DL limit state, 

accounting for the uncertainty in the component capacities reduces the expected costs of 

both structures and for all the LSn  cases. As referred for the cases of the DL limit state, the 

increase of   to UC  and the reduction from scL  to sc UCL  reflects the shift of the 

probabilistic distribution of the data due to the uncertainty, which as the direct effect of 

reducing the corresponding median values. 

As for the DL limit state, accounting for the uncertainty in the component capacities 

also modifies the number of performance scenarios up to which the value of EL is found 

to be admissible. For REG6, the performance measure UCEL  is only admissible for 

1LSn  , while for IRREG6 the performance is acceptable up to 3LSn  . Although in this 

case the performance changes arise from the mixed effects of the increase in the risk and of 
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the reduction of the expected costs, the significant increase of   to UC  is still the 

governing factor. 
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Figure 9.15. Results of the performance analysis of the REG6 (a) and the IRREG6 (b) structures when the 
uncertainty of the component capacities is neglected, and when the chord rotation capacity is ,1SD . 
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Figure 9.16. Results of the performance analysis of the REG6 (a) and the IRREG6 (b) structures when the 
uncertainty of the component capacities is neglected and considered also, and when the chord rotation 

capacity is ,1SD . 

 

As previously referred, the performance of the REG6 and the IRREG6 structures 

for this limit state was also carried out for the case where the chord rotation capacities are 

defined by ,2SD . This situation was considered in order to analyse the issue referred in 

Section 9.2 regarding the performance equivalence of the case where a number of sections 

has   values around 0.85-0.95 and the case where only one section has a   value of 1.0. 

These two scenarios are considered to be equivalent if similar ,a CS  realizations are required 

to activate them. Since it may be difficult to obtain a scenario with several sections having 

  values around 0.85-0.95 that matches the scenario where only one section has a   value 

of 1.0, the scope of the analysis presented herein is extended. Therefore, scenarios where 

,2SDn  sections have   values around 0.85-0.95 are compared to scenarios where 
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,1 ,2SD SDn n  sections have a   value of 1.0. In order to perform these comparisons, 

Fig. 9.17 presents the performance results of REG6 and IRREG6 when the uncertainty of 

the component capacities is considered, and for the cases where the chord rotation capacity 

is ,1SD  and ,2SD . The results of ,UC 1 and ,sc UC 1L  refer to the cases where the chord 

rotation capacity is ,1SD , while the results of ,UC 2  and ,sc UC 2L  are those where the chord 

rotation capacity is ,2SD . As previously referred, the scenario comparison must be carried 

out for the LSn  cases where , ,UC 1 UC 2  , i.e. the performance scenarios for which the 

distribution of the ,a CS  realizations considering ,1SD  or ,2SD  is roughly the same. For the 

case of REG6, such similarity is found for 2LSn  , when ,1SD  is considered, and for 

4LSn  , when ,2SD  is considered instead. In order to observe this similarity, Fig. 9.18a) 

presents the fragility curves corresponding to the Sa,C realizations of these two scenarios. 

When comparing the expected costs of these two scenarios, ,sc UC 2L  can be seen to be 10% 

larger than ,sc UC 1L . For the case of IRREG6, two sets of scenarios can be seen to be 

similar. The first set of scenarios is found for 1LSn  , when ,1SD  is considered, and for 

2LSn  , when ,2SD  is considered instead. Again, in order to observe the similarity of the 

scenarios, Fig. 9.18b) presents the fragility curves corresponding to their ,a CS  realizations. 

In this case, comparing the expected costs of the two scenarios shows that ,sc UC 2L  is only 

2% larger than ,sc UC 1L . The second set of scenarios is found for 2LSn  , when ,1SD  is 

considered, and for 4LSn  , when ,2SD  is considered instead. In this case, comparing the 

expected costs of the two scenarios shows that ,sc UC 2L  is about 5% larger than ,sc UC 1L . 

Based on these results, it is found that, for performance scenarios where the 

distribution of the ,a CS  realizations is similar, a lower limit state capacity occurring over a 

larger number of sections may lead to expected costs which are larger than those of the 

situation where a higher limit state capacity occurs over a smaller number of sections. 

Although these results may not be enough to generalize these findings, the observed trend 

should be further investigated given its potential influence in one of the performance 

metrics considered in the proposed methodology. 
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Figure 9.17. Results of the performance analysis of the REG6 (a) and the IRREG6 (b) structures when the 
uncertainty of the component capacities is considered, and the chord rotation capacity is ,1SD  and ,2SD . 
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Figure 9.18. Similarity of the fragility curves of the Sa,C realizations obtained for different nLS values and when 
the chord rotation capacity is ,1SD  and ,2SD  for REG6 (a) and for IRREG6 (b). 

 

9.5.4 Results for the NC limit state 

Given the assumptions established in Section 9.3.4.3, only   values are presented to 

analyse the performance of the REG6 and the IRREG6 structures for the limit state of 

NC. With respect to the limit state conditions also defined in Section 9.3.4.3, it was found 

that the occurrence of a NC limit state nonconforming condition in all of the beam 

sections of a given storey was not a governing scenario in any of the cases analysed, both in 

terms of the rotation capacity NC  and of the shear force capacity NCV . Furthermore, the 

occurrence of the shear force capacity NCV  in columns was not a governing scenario also. 

Hence, the NC limit state performance of the structures was governed by the occurrence 

of the NC rotation capacity in columns and by the development of global yield 

mechanisms. In order to observe the importance of each of these nonconforming 

conditions, the following five scenarios were analysed for this limit state:  
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 Scenario 1 - Only the column rotation demand is controlled and the uncertainty of 

the rotation capacities is not considered (
NC

S ); 

 Scenario 2 - Only the column rotation demand is controlled and the uncertainty of 

the rotation capacities is accounted for (
,NC U

S ); 

 Scenario 3 - Only the development of global yield mechanisms is controlled 

( GYMS ); 

 Scenario 4 - Both the column rotation demand and the development of global yield 

mechanisms are controlled and the uncertainty of the rotation capacities is not 

considered (
NC GYMS S  ); 

 Scenario 5 - Both the column rotation demand and the development of global yield 

mechanisms are controlled and the uncertainty of the rotation capacities is 

accounted for (
,NC U GYMS S  ). 

Based on the definition of these scenarios, it is reminded that the uncertainty in the 

development of the global yield mechanisms due to the uncertainty in the value of the yield 

curvature of the components has not been considered. The   values which correspond to 

the performance results of REG6 and IRREG6 for the five scenarios are presented in 

Table 9.2. The presented results indicate that only scenarios that do not involve the 

development of global yield mechanisms are able to conform to the condition 

0.0001adm   . As can be observed, when the development of global yield mechanisms 

is considered, the   values almost duplicate. This fact clearly emphasizes the importance 

of considering this type of condition when analysing structural safety and performance 

under earthquake loading.  

When considering the scenario 
NC GYMS S  , the analysis of the results of both 

structures indicated that the limit state capacity was governed by the rotation demand in a 

column for only one ground motion. This situation implies that the median of the ,a CS  

realizations has a 0.2% reduction from the scenario GYMS  to the scenario 
NC GYMS S   and 

that the standard deviations of the log of the ,a CS  realizations has a reduction of about 

2.7%. The latter reduction is the governing factor and leads to the slight decrease of the   

value from GYMS  to 
NC GYMS S  . When comparing the scenarios GYMS  and 

,NC U GYMS S  , 

the uncertainty in the rotation capacities plays a larger role and reduces the median of the 

,a CS  realizations by 1.9%. Although there is also a 1.9% reduction of the standard 

deviations of the log of the ,a CS  realizations from GYMS  to 
,NC U GYMS S  , the shift of the 
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median is now the governing factor leading to the increase of the   value from GYMS  to 

,NC U GYMS S  . 

Table 9.2. Performance results of REG6 and IRREG6 for the NC limit state considered scenarios. 

Scenario   - REG6   - IRREG6 

NC
S  3.13E-5 4.95E-5 

,NC U
S  4.52E-5 7.02E-5 

GYMS  1.27E-4 1.91E-4 

NC GYMS S   1.26E-4 1.90E-4 

,NC U GYMS S   1.33E-4 2.00E-4 

 

With respect to the global yield mechanisms that were found when analysing this 

limit state, the unpredictability of their configurations and the importance of using a 

technique such as the one presented in Section 9.3.4.3 should be emphasized. In order to 

illustrate some of the global yield mechanisms that were found, Fig. 9.19 presents two 

examples for each structure. Although the cases presented in Figs. 9.19a) and c) ended up 

being controlled by a familiar mechanism (a soft-storey mechanism), the cases of 

Figs. 9.19b) and d) are less common. These results indicate clearly that approaches such as 

the one referred in Jalayer et al. (2007) that require the identification of the global yield 

mechanism configurations may not be practical to use due to the multitude of possibilities.  

Finally, it is noted that, for this limit state, the   values of IRREG6 are again higher 

than those of REG6. For the 
NC

S  and the 
,NC U

S  scenarios, this situation occurs since, for 

this limit state, the contribution of the REG6 upper storeys to the lateral demand is now 

much more significant, thus reducing the bottom storey demand concentration previously 

referred. Since, for IRREG6, the larger deformation demands still occur at the columns 

immediately above the setback, IRREG6 was found to reach the limit state condition for 

IM values lower than those of REG6, thus leading to higher values of  . For scenarios 

where the development of global yield mechanisms governs the performance, IRREG6 

was found to reach the limit state condition for IM values lower than those of REG6 since 

less yielding sections are usually required to develop the referred mechanisms. 
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 a)   b)   c)   d) 

Figure 9.19. Examples of global yield mechanism configurations that were found when analysing the NC limit 
state. 

 

9.5.5 Loss results obtained using the linear approximations of the loss 

curves 

In order to observe the accuracy of the expected loss estimates obtained using 

Eqs. (9.10) and (9.14) which involve the linear approximations of the loss curves defined 

by Eqs. (9.8) (Option 1) and (9.9) (Option 2), respectively, an example application of the 

proposed formulations is presented. The expected losses of the third storey of the REG6 

structure calculated for the several LSn  cases of the DL and SD limit states using 

Eqs. (9.10) and (9.14) are compared herein with the values obtained using the real loss 

curves. The linear approximations of the loss curves considered for this example are those 

presented in Figs. 9.3 and 9.4. Table 9.3 presents the results obtained for the DL limit state, 

while Table 9.4 presents those of the SD limit state. As can be observed, the results 

obtained with Option 1 for both limit states involve larger relative errors  . On the other 

hand, Option 2 is able to capture the real loss value with relative errors below 2%. 

Although Option 2 performs better, the usefulness of both approaches will depend on the 

level of accuracy required for a given application and on the level of detail of the available 

data to define the loss curve.  

 

Table 9.3. Comparison of the losses of the third storey of REG6 for the DL limit state calculated using the 
real loss curves and the proposed linear approximations, and their relative error ε. 

LSn  Real loss (%) Loss with Option 1 (%) and ε (%) Loss with Option 2 (%) and ε (%)

1 9.32 8.74 (ε = -6.22) 9.49 (ε = 1.82) 

2 10.28 9.21 (ε = -10.41) 10.34 (ε = 0.58) 

3 11.02 9.59 (ε = -12.98) 11.02 (ε = 0.00) 

4 11.77 9.96 (ε = -15.38) 11.70 (ε = -0.59) 

5 12.38 10.27 (ε = -17.04) 12.25 (ε = -1.05) 

6 13.04 10.61 (ε = -18.63) 12.86 (ε = -1.38) 
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Table 9.4. Comparison of the losses of the third storey of REG6 for the SD limit state calculated using the 
real loss curves and the proposed linear approximations, and their relative error ε. 

LSn  Real loss (%) Loss with Option 1 (%) and ε (%) Loss with Option 2 (%) and ε (%) 

1 18.99 16.34 (ε = -13.95) 18.78 (ε =-1.11) 

2 22.94 18.88 (ε = -17.70) 22.46 (ε =-2.09) 

3 24.66 20.34 (ε = -17.52) 24.18 (ε =-1.95) 

4 26.74 21.93 (ε =-17.99) 26.21 (ε =-1.98) 

 

 

9.5.6 Analysis of the lognormal distribution hypothesis for the 

representation of fragility curves 

As previously referred, the assumption that the fragility curves involved in the 

quantification of performance can be adequately modelled by lognormal distributions was 

also analysed. Although this hypothesis is commonly assumed, the analysis of its validity is 

seldom found. More specifically, for the case of fragility curves obtained using an IM-based 

approach such as the one considered in the performance analysis methodology proposed 

herein, results addressing the validity of the lognormal distribution hypothesis may only be 

found for the case of collapse assessment, e.g. see (Ibarra and Krawinkler, 2005). 

Furthermore, such results are based on graphical methods (e.g. cumulative distribution 

function plots) or based on the use of the Kolmogorov-Smirnov/Lilliefors statistical test 

(Lilliefors, 1967) usually applied to the log of the data. As discussed in Chapter 5, the use of 

such procedures to validate this statistical hypothesis for samples of small to moderate sizes 

is inadequate.  

A more efficient approach is, therefore, presented in which the suitability of the 

lognormal distribution to represent fragility curves is assessed using statistical tests with 

adequate characteristics. The considered tests were selected according to the results of the 

benchmark efficiency test presented in Appendix A and were also used in the statistical 

distribution analyses of structural demand data presented in Chapter 5. In the considered 

approach, the lognormality assumption is tested by assessing the normality hypothesis of 

the log of the data. Therefore, the selected tests are best suited to identify non-normal 

distributions when the data is symmetric. Given the random nature of the data under 

analysis, the following four tests that have different characteristics and analyse different 

aspects of the data were selected:  

 The 2
3  normality test based on a polynomial regression proposed by Coin (2008). 

 The RsJ normality test focussing on detecting heavier tails proposed by Gel et 

al. (2007). 

 The modified measure of kurtosis Tw suggested by Bonett and Seier (2002). 
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 The CS test statistic based on normalized spacings defined by Chen and 

Shapiro (1995).  

Details of the tests are omitted herein but comprehensive descriptions of their 

formulations and performance are presented in Chapter 5 and Appendix A. 

The selected tests were applied to the data samples corresponding to the log of the 

,a CS  realizations and to the log of all the storeys ΔC,i realizations, where i stands for the ith 

storey. The considered data samples are those obtained from the analysis of both structures 

for the various LSn  cases of the DL, the SD and the NC limit states. For the case of the SD 

limit state, data samples obtained considering both cases of the chord rotation capacity (i.e. 

,1SD  and by ,2SD ) were analysed. With respect to the NC limit state, the selected data 

samples are only those of the ,a CS  realizations obtained from the scenario where both the 

column rotation demand and the development of global yield mechanisms are controlled. 

The total number of analysed samples of ,a CS  realizations is 30 while that of the ΔC,i 

realizations is 168, which amounts to a total of 120 and 672 test results, respectively. The 

analysis of the lognormality hypothesis was first carried out for the cases where the 

uncertainty of the component capacities is not considered. A second batch of analyses was 

then carried out for the large-sample situation corresponding to the case where the 

uncertainty of the component capacities is accounted for.  

With respect to the samples where the uncertainty was not considered, the results 

show that the lognormal distribution hypothesis was accepted in 86.7% of the 120 tests 

that were carried out on samples of ,a CS  realizations. For the samples of ΔC,i realizations, 

the lognormal distribution hypothesis was accepted in 81.1% of the 672 tests. Therefore, 

these results indicate that the lognormal distribution is suitable for the probabilistic 

modelling when the data dispersion source is the record-to-record variability of the ,a CS  

realizations and of the ΔC,i realizations. 

With respect to the samples where the uncertainty of the component capacities was 

accounted for, the test results are significantly different. For the samples of ,a CS  

realizations, the lognormal distribution hypothesis was accepted in only 14.2% of the tests, 

while for the samples of ΔC,i realizations the percentage is even lower. The reason behind 

such disproportion of results is relatively well known. Most goodness-of-fit tests such as 

those considered herein are much more sensitive when dealing with larger samples where 

modest departures from the selected hypothesis are less influential. Since the size of the 

samples analysed in this case is considerably large (i.e. 2500), the assumption of normality 

was seen to be rejected for several samples exhibiting only slight imperfections with respect 

to the theoretical model. To illustrate this situation, Fig. 9.20 presents normal 

quantile-quantile (Q-Q) plots of the log of the REG6 ,a CS  realizations corresponding to the 

SD limit state when 2LSn   and 3LSn  . Although the two plots are apparently very 
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similar, as well as visually presenting a good fit to the theoretical model, all four tests 

rejected the lognormal distribution hypothesis for the sample of Fig. 9.20a), while three of 

the tests accepted the hypothesis for the sample of Fig. 9.20b). Still, not all samples where 

the lognormality hypothesis was rejected present such slight deviations. Several of the 

samples exhibit more pronounced departures from the assumed hypothesis. Figure 9.21 

presents two additional examples of normal Q-Q plots of the log of the IRREG6 ΔC,5 

realizations corresponding to the SD limit state and 3LSn  , and ,a CS  realizations 

corresponding to the DL limit state when 2LSn  . In these two cases, the tails of the 

samples exhibit a more pronounced deviation from the assumed theoretical model. Only 

one test accepted the hypothesis for the sample of Fig. 9.21a), while all four tests rejected 

the hypothesis for the sample of Fig. 9.21b).  

Although the goodness-of-fit results obtained when the uncertainty of the 

component capacities was not considered seem to be impaired by those obtained for the 

situation where it is accounted for, the importance of the latter must be interpreted in light 

of the following. Although visual analysis of the data is far from being an objective method 

to establish the validity of a given distribution hypothesis, the decision to validate an 

assumption based on such approach is believed to be acceptable in large sample situations 

involving small visual departures from the theoretical model, e.g. see Fig. 9.20b). On the 

other hand, for samples exhibiting more pronounced departures from the assumed 

hypothesis, such deviations are seen to occur in the tails of the data, especially in the upper 

tail. In this situation, the influence of using an assumed distribution also depends on the 

fact that the actual data may have a tail heavier, Fig. 9.21a) or lighter, Fig. 9.21b), than that 

of the assumed model. Distributions with heavier tails have a larger contribution of data 

with higher values, while in distributions with light tails the contribution of the higher 

values is smaller.  
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Figure 9.20. Examples of Q-Q plots of the REG6 ,a CS  realizations for the SD limit state for 2LSn   (a) and 

3LSn   (b), when uncertainty is accounted for. 
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Figure 9.21. Examples of Q-Q plots of the IRREG6 ΔC,5 realizations for the SD limit state and 3LSn   (a) 

and ,a CS  realizations for the DL limit state and 2LSn   (b), when uncertainty is accounted for. 

 

After a detailed analysis of all the tested samples, it was found that more than 95% of 

the samples of ,a CS  realizations have upper tails which are lighter than that of the 

theoretical model, while more than 95% of the samples of ΔC,i realizations have upper tails 

which are heavier than that of the theoretical model. Therefore, with respect to the 

influence of using the lognormal distribution to represent fragility curves instead of using a 

more data-fitting distribution, the findings indicate that: 

 When evaluating Eq. (9.4), larger contributions from the hazard function will be 

included since the assumed lognormal distribution has a heavier tail than that of the 

empirical data. Hence, the value of   calculated using Eq. (9.4) will be 

overestimated; 

 When evaluating Eq. (9.7), the contribution of the higher values of the loss curve 

will be smaller since the assumed lognormal distribution has a lighter tail than that 

of the empirical data. Hence, the value of the ith storey loss ,sc iL  calculated using 

Eq. (9.7) will be underestimated. 

In order to estimate the amount of overestimation/underestimation produced by the 

lognormality assumption, the values of   and ,sc iL  of both structures and for all the 

considered limit states (but only for the cases where the uncertainty of the component 

capacities is considered) were recalculated using fragility curves that have lighter and 

heavier tails, respectively, than those of the lognormal fragility assumption. The new values 

of   and ,sc iL  were calculated after switching the normal CDFs of Eqs. (9.5) and (9.7) by 

fragility curves simulated by the CDF of the Generalized Normal Distribution (GND) 

(Nadarajah, 2005) defined as: 
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where  sgn .  represents the sign function,  .  is the Gamma function and  .  is the 

incomplete Gamma function. In order to define fragility functions in agreement with those 

previously defined by the lognormal distribution, parameters   and   must be replaced 

by ln
CIM  and 

CIM , when evaluating  , and by 
,

ln
C iEDP  and 

,C iEDP , when evaluating 

,sc iL . The simulation of CDFs with different tail weights is regulated by parameter  , 

(Nadarajah, 2005). When 2   and 2  , the simulated CDFs have tails which are 

heavier and lighter, respectively, than those of the normal CDF. When 2  , Eq. (9.20) 

represents an exact normal CDF. In order to simulate the light and heavy tails required for 

the present analysis,   was considered to be 4.0 and 1.5, respectively. These values were 

chosen by visually fitting several ,a CS  and ΔC,i data distributions over GND Q-Q plots. By 

comparing the new values of   and ,sc iL  with those previously obtained, the following 

was found: 

 The values of   obtained using the lognormal fragility curves overestimate the risk 

values obtained using the GND CDFs by 4% to 18%. 

 The values of ,sc iL  obtained using the lognormal fragility curves may underestimate 

up to 13% the storey loss values obtained using the GND CDFs. 

Globally, the results indicate that, when considering fragility curves modelled by the 

lognormal distribution, the level of error that may be involved is still acceptable. Therefore, 

based on these results, it is believed that the lognormal distribution is suitable for the 

probabilistic modelling of the fragility curves of the ,a CS  realizations and of the ΔC,i 

realizations when the variability of the data stems from the record-to-record variability and 

from the uncertainty of the component capacities. Nonetheless, since this conclusion is 

based on a limited set of data, additional cases should be analysed in order to generalize 

this finding. 

 

 

9.6 Conclusions 

A probabilistic methodology was proposed to analyse the seismic performance of 

existing buildings using global metrics to determine if the behaviour conforms to a given 

limit state. The considered performance metrics are the probability of occurrence   of the 

limit state, the corresponding loss scL  associated to the repair of the building, and the 

corresponding number LSn  and type of mechanisms that occur. Each case of LSn  
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establishes a scenario corresponding to the occurrence of the limit state. The   and scL  

performance metrics of each considered scenario are then combined to define a global 

performance value representing the expected loss EL associated to that limit state. In order 

to consider  , scL  and the occurrence of several scenarios of the mechanisms as global 

performance parameters, an update of existing limit state descriptions was performed. The 

limit state descriptions proposed by EC8-3 were analysed and alternative proposals were 

discussed to establish risk- and cost-related limit state definitions. These proposals were 

then used to analyse the performance of two RC structures using the proposed 

methodology for the EC8-3 limit states of DL, SD and NC. Although EC8-3 was used as a 

reference, the issues raised by this analysis of the limit states extend beyond this code since 

similar limit states or performance levels are also considered by other international 

standards. 

In order to emphasize the influence of the modelling error of the selected capacity 

models, the performance assessment results were presented separately for the situation 

where the uncertainty of the component capacities is neglected and for the situation where 

it is accounted for. A global analysis of the performance results indicates that, with respect 

to the situation where the uncertainty of the component capacities is not considered, 

allowing for such uncertainty increases the risk considerably (e.g. more than duplicating the 

risk in some cases) while leading to moderate reductions of the expected losses. Such 

differences were discussed and accounting for the uncertainty of the component capacities 

was found to produce a shift of the probabilistic distribution of the data. As a direct effect 

of such shift, there is a reduction in the median of the data, which was found to be the 

governing factor for the increase and the reduction in the risk and expected loss values. 

Moreover, such results are seen to disagree with the conventional assumption that 

accounting for modelling uncertainties has the unique effect of increasing the dispersion of 

the fragility curves without influencing the median of the data (a fact also disputed by the 

findings reported by Liel et al. (2009)). 

In the overall, the proposed methodology was found to be able to determine 

admissible performance scenarios that go beyond the limitations of the code definitions, 

which may allow for a rational decision-making process about the need to retrofit or 

strengthen a given structure. In this context, the performance analysis for the SD limit state 

showed that, for performance scenarios where the distribution of the ,a CS  realizations is 

similar, a lower limit state capacity occurring over a larger number of sections may lead to 

expected costs which are larger than those of the situation where a higher limit state 

capacity occurs over a smaller number of sections. Although these results may not be 

enough to generalize these findings, the observed trend should be further investigated 

given its potential influence in the assessment of the expected losses. Furthermore, the 

performance analysis carried out for the NC limit state also emphasized the importance of 
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considering the potential occurrence of global yield mechanisms, as well as that of having a 

process able to account for the unpredictability of their configurations.  

Additionally, two simplified analytical expressions were also defined to estimate the 

expected storey loss value. These expressions were established by using different piecewise 

linear approximations of the structural and non-structural loss curves. The results obtained 

from these simplified expressions were analysed and the accuracy of one of the proposals 

was seen to be superior. Still, the usefulness of both approaches will depend on the level of 

accuracy required for a given application. 

Finally, the use of the lognormal distribution to model the fragility curves involved in 

the performance analysis was also addressed to determine the suitability of this common 

assumption. Results of adequate statistical methods used to test this hypothesis were 

presented and large-sample situations where the hypothesis is rejected were also discussed. 

The results found indicate that the lognormal distribution is suitable for the probabilistic 

modelling of the fragility curves involved in the proposed methodology when the variability 

of the data is due to the record-to-record variability. On the other hand, when using the 

lognormal distribution to model fragility curves in which the variability of the data stems 

from the record-to-record variability and from the uncertainty of the component capacities, 

some lack of fit may be involved in the tails of the data. This situation was analysed and 

simulations were carried out to assess the expected level of error that may occur when 

considering the lognormal distribution. Since the results obtained indicate that the error is 

acceptable, the lognormal distribution is also recommended for this situation. Still, 

additional cases should be analysed in order to generalize this finding. 

 



10.1 

 

 

 

 

 

 

 

 

Chapter 10 
 Closure  

 

 

10.1 Conclusions 

The present dissertation addressed several topics related to the development and the 

application of seismic safety assessment methodologies. Although the main observations 

and conclusions of the work were discussed in each chapter, the most relevant findings 

alongside important conclusions are presented in the following. 

 

 

10.1.1 Conclusions regarding the EC8-3 safety assessment methodology  

Several aspects of the safety assessment methodology that is proposed in Part 3 of 

Eurocode 8 (EC8-3) (EC8-3, 2005) were analysed and discussed in order to identify issues 

that require additional research. After a detailed examination of the difficulties associated to 

the quantification of the member chord rotation according to the method proposed by 

EC8-3, several alternatives were analysed. The theoretical based method termed Exact 

Geometrical Method, combined with corrective alternatives dealing with cases where the 

abscissa of the point of contraflexure 
sLx  is ill-defined, is an approach less sensitive to 

numerical issues that produced adequate results. Moreover, the proposed approximate 

geometrical method that does not require the quantification of 
sLx  and considers member 

drift and nodal rotations for beams and columns was also seen to produce adequate results. 

A sensitivity analysis of the EC8-3 limit state capacity models was also carried out 

with respect to the shear-span sL  in order to validate previous results by Mpampatsikos et 

al. (2008a) which stated that sL  could be generally considered to be 2L , where L  is the 

member length. The results presented in Chapter 2 indicated that for 0.2sL L , the 

approximation 2sL L  will yield capacity results with an acceptable accuracy. Moreover, 
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this approximation was also recommended throughout the whole range of sL  values for 

the case of the shear force limit state capacity. On the other hand, such recommendation is 

not applicable to the deformation capacity models since results indicate that sL  values 

lower than 0.2L  are more frequent, especially in beams. Therefore, the correct value of 

sL  should always be computed in this case. 

The results obtained from the application of the EC8-3 methodology to assess the 

seismic safety of two reinforced concrete (RC) structures indicated that linear analysis was 

not able to be considered. Furthermore, results also indicated that, for structures where 

seismic design measures were not considered, the applicability of linear analysis might be 

restricted to the limit state of Damage Limitation (DL) only. Nonetheless, given the 

potential complexity of the process that verifies if linear analysis is admissible for the case 

of larger structures, a more practical verification methodology was proposed that allows for 

a reduction on the number of joints that need to be analysed.  

Results obtained from the safety assessment based on nonlinear analyses indicated 

that DL is the dominant deformation limit state. A similar conclusion was also noted by 

Mpampatsikos et al. (2008b) which also refer that considering the equivalent secant-to-yield 

stiffness proposed by EC8-3 for this limit state may lead to a significant underestimation of 

the seismic safety. With respect to the results based on nonlinear dynamic analysis, these 

revealed that the characteristics of the considered ground motions have a considerable 

influence on the deformation assessment results. On the other hand, the shear force 

assessment results can be seen to be much less sensitive to the record characteristics. After 

exploring different possibilities, it was found that real records having an average response 

spectrum that matches closely the code spectrum showed a good agreement between their 

mean demand and that obtained by using artificial accelerograms (the type of records that 

match more efficiently the EC8-3 requirements) for all the limit states. On the other hand, 

demand obtained from real records scaled for the 5% damping spectral acceleration 

ordinate of the ground motion for the fundamental period of the structure  1aS T  only 

exhibited an adequate agreement with that obtained by using artificial accelerograms for the 

DL limit state. Still, adequate results were obtained for the Significant Damage (SD) and 

Near Collapse (NC) deformation limit states using an alternative scaling procedure based 

on a representative inelastic period of the structure. 

With respect to the use of pushover analysis, results were seen to be generally on the 

safe side with respect to those of nonlinear dynamic analysis. Still, more applications should 

be carried out to determine if this conclusion can be extended to other structures. 

To address the consistency and reliability of the safety levels obtained when using the 

EC8-3 methodology, a probabilistic analysis was carried out to determine fragility values 

associated to the several limit states analysed. Results of this probabilistic analysis indicated 

that similar demand-to-capacity ( D C ) ratios obtained for different situations may lead to 

fragility values that may differ considerably. This variability was found to be dependent on 



10.3 

the limit state and on the type of demand (chord rotation or shear force). Nonetheless, the 

overall results allowed for the definition of estimated ranges for the expected fragility 

values, given a set of ranges of the D C  ratios. However, the adequacy of these values 

should be examined within the scope of the general safety format of the EC8-3 procedure, 

namely in terms of their implications on the system-level safety, and additional applications 

should be carried out to determine if similar values are obtained for other structures. 

In terms of the influence of the selected Knowledge Level (KL) in the assessment 

results (i.e. by measuring the changes on the limit state capacity values), it was found that 

going from levels KL1 to KL2 or from KL2 to KL3 produces changes that vary according 

to the considered limit state. For the case of the deformation-based SD and NC capacity 

values, these changes were seen to be small, while for the case of the DL and the shear 

force capacities the variations were seen to be significant in some situations. Hence, from 

the material characterization point of view, the need for an increase in knowledge about 

their properties must be carefully thought out due to the increase in work, costs and on-site 

difficulties that may be implied.  

To gain a more comprehensive understanding about the influence of the information 

that is required to define the KLs and about the reliability of the corresponding Confidence 

Factor (CF) values, a more detailed review of the EC8-3 procedures was carried out. This 

analysis indicated that only the uncertainty related to the materials is adequately reflected in 

the quantification of the EC8-3 safety measures. Therefore, the reliability of the CFs was 

assessed using a probabilistic framework focussing the influence of the characterization of 

material properties where the essential features are the number of material tests and the 

existence of prior knowledge. The presented study uses the concrete compressive strength 

to analyse the CFs but conclusions for other materials and other material properties were 

also inferred from the results. For cases where the normal and the lognormal distribution 

assumptions are considered to represent the statistical distribution of the selected material 

property, the probabilistic framework that was defined to obtain the CF values depends 

only on the coefficient of variation (CoV) of the material property. Hence, the proposed 

expressions can be applied to the properties of other materials of interest for which these 

statistical distribution assumptions are acceptable. 

Results obtained when the existence of prior knowledge is not considered indicated 

that the EC8-3 proposed CFs are more consistent with the assumption of known variance. 

Moreover, the KL1 and KL2 CFs were believed to be adequate, assuming that the selected 

confidence levels are satisfactory. With respect to KL3, the EC8-3 proposed CF is not met 

by any of the cases studied. Nonetheless, the known variance assumption is also selected 

since it leads to lower values of the CF. For this case, a CF value of 1.08 is seen to be more 

adequate to the assumptions made in the study. Furthermore, it was observed that if the 

EC8-3 minimum number of tests are met, and assuming a maximum CoV of 20% for the 

concrete compressive strength, the CF values could be significantly reduced for buildings 
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higher than three-storeys (e.g. from 1.35 to 1.14, for KL1, and from 1.20 to 1.08, for KL2). 

Similarly, the EC8-3 proposed CF for KL2 and the proposed value of 1.08 for KL3 was 

seen to agree also with the unknown variance hypothesis for buildings higher than three-

storeys, even assuming a value for the sample CoV as high as 40%. For the case of KL1, 

this situation can only be attained if the maximum sample CoV is reduced to 32%. 

Results for the case where the existence of prior knowledge is considered were only 

obtained for the situation where the material property under analysis follows a normal 

distribution. By using a Bayesian framework, the results obtained lead to the conclusion 

that when the prior knowledge and the new test data are in agreement, the necessary CF 

decreases, when compared to the value obtained in the absence of prior knowledge. 

Nonetheless, the CF value obtained for KL3 is still larger than the value proposed by EC8-

3. In addition, the case of combining different sources of testing data was also addressed 

considering the same Bayesian framework, as it is a special case of the situation where prior 

knowledge exists. Results of this analysis indicate that combining different types of tests 

leads to CF values that are lower than those obtained in the first part of the proposed study 

for all KLs.  

 

 

10.1.2 Conclusions addressing the probabilistic characterization of the 

demand under earthquake loading 

The goodness-of-fit results obtained by analysing structural demand distributions 

using appropriate statistical methods indicated that the lognormal distribution is suitable 

for the probabilistic modelling of the curvature, of the chord rotation and of the inter-

storey drift demands. With respect to the shear force demand, the results indicated that 

both the normal and the lognormal distributions have the same potential to model its 

probabilistic distribution. Still, the results obtained for the shear force were not found to be 

entirely satisfactory, either due to the occurrence of demand distributions with very low 

levels of dispersion in yielding elements or, in other cases, due to the occurrence of a larger 

number of outlying observations. With respect to the type of intensity measure (IM), 

 1aS T  was seen to be generally more adequate than the peak ground acceleration (PGA) 

to obtain demand distributions compatible with the selected distribution hypotheses.  

Furthermore, the goodness-of-fit results obtained also emphasized the influence of 

outlying observations that were seen to occur in several situations. Therefore, it was found 

that adequate robust methods should be used to determine the distribution parameters in 

order to minimize their effects. In this context, the results obtained from the analysis of the 

statistical performance of robust estimators to compute central value estimates of structural 

demand distributions indicated that estimators ,3HubT , ,2HamT , ,3HamT , ,3TukT  and logT  (see 

Chapter 6 for their description) are recommended for samples of size between fifty and 
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fifteen. On the other hand, for samples of smaller size, estimators 0.08 1HQx   and 0.12 1HQx   

(see Chapter 6 for their description) are recommended instead. With respect to the effects 

of the selected IMs,  1aS T  and PGA, on the efficiency of these estimators, no definite 

trend was observed as their efficiencies are similar irrespective of the IM. Although such 

results indicate that these estimators are fit to be considered under various conditions of 

the variability of the demand, further IMs should be analysed to confirm this conclusion. In 

addition, reference is made to the performance results obtained for the median, a widely 

used estimator in performance-based earthquake engineering (PBEE) methodologies. The 

results obtained for the median pointed out the inadequate performance of this estimator 

in all cases analysed, when compared to that of the recommended estimators. Therefore, it 

is suggested that in future PBEE applications, central values estimates of seismic demand 

should be obtained by one of these estimators instead.  

In order to define a complete probabilistic model for the structural demand data that 

was found to follow a lognormal or a normal distribution, the characterization of the 

dispersion of the data using robust estimators was also addressed. This analysis resulted in 

the definition of combinations of robust central value and dispersion estimators found to 

be more adequate to define the referred probabilistic models. After analysing the statistical 

performance of several combinations, it was found that, for larger sample sizes (e.g. larger 

than fifteen), combinations involving ,3HubT  or logT  as the central value estimator and with 

s  as the dispersion estimator (see Chapter 7 for its description) should be used. On the 

other hand, for samples of smaller sizes (e.g. lower than fifteen), combinations involving 

0.08 1HQx   or logT  as the central value estimator and with ,3ts  as the dispersion estimator (see 

Chapter 7 for its description) are suggested instead. As for the previous results obtained for 

the central value estimators, no definite trend was observed regarding the effects of the 

selected IMs,  1aS T  and PGA, on the efficiency of the dispersion estimators. 

 

 

10.1.3 Conclusions associated to the development of methodologies for 

seismic risk assessment 

The methodologies (Methodology 1 and Methodology 2) that were proposed for the 

seismic risk assessment of building components involved the development of analytical 

closed form expressions for the quantification of limit state exceedance probabilities. The 

development of these expressions was achieved by introducing original contributions for 

the probabilistic representation of the ground motion hazard and by defining suitable 

expressions characterizing the evolution of structural demand for increasing levels of 

earthquake intensity. Methodology 1 has proposed the use of extreme-type probabilistic 

distributions to represent ground motion hazard, while Methodology 2 involves an 
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approximate expression that exhibited a clear advantage over the model adopted by the 

SAC/FEMA method. With respect to the evolution of structural demand with increasing 

earthquake intensity, two proposals were made for force-based demand evolutions, namely 

for shear force demand: one for smoother evolutions based on a logarithmic function and 

one for bilinear-type evolutions based on an inverted exponential function. Within the 

scope of developing Methodology 1, both proposals for the shear force demand evolution 

were able to be incorporated. On the other hand, the development of Methodology 2 was 

not able to account for the bilinear-type evolution.  

Due to their generalized formulations, the proposed procedures were found suitable 

to assess the probability of exceedance of component limit states without obtaining the 

fragility curve. Furthermore, the presented application examples illustrated the simplicity of 

the proposed procedures. The analysis of the results of the example applications indicated 

that the uncertainty of the limit state capacities increases significantly the estimate of the 

probability of exceedance of the limit states. Furthermore, for the cases that were analysed, 

the modelling error of the limit state capacity expressions was seen to be the main factor 

governing both the estimate of the probability of exceedance of the limit state as well as its 

variability. 

The probabilistic methodology that was proposed to analyse the seismic performance 

of existing buildings for a given limit state uses global performance metrics to determine 

the admissibility of building behaviour. These performance metrics are the probability of 

occurrence of the limit state, the corresponding expected loss associated to the repair of 

the building, and the corresponding number and type of mechanisms that are developed, 

which establish possible scenarios for the occurrence of that limit state. Furthermore, the 

development of the proposed methodology has involved limit state definitions adapted 

from those proposed by EC8-3 in order to extend their scope and establish risk- and 

cost-related limit state definitions.  

Results obtained from applying the proposed methodology to case-study examples 

indicated that the methodology was able to establish admissible performance scenarios that 

go beyond the limitations of the code definitions, which may allow for a rational decision-

making process about the need to retrofit or strengthen a given structure. In this context, 

the performance analysis for the SD limit state showed that, for performance scenarios 

where the distribution of the IM-capacities (i.e. the distribution of the ground motion 

intensities at which a given limit state occurs for the structure under assessment) is similar, 

a lower limit state capacity occurring over a larger number of sections may lead to expected 

costs which are larger than those of the situation where a higher limit state capacity occurs 

over a smaller number of sections. Although these results may not be enough to generalize 

these findings, the observed trend should be further investigated given its potential 

influence in the assessment of the expected losses. Furthermore, the performance analysis 

carried out for the NC limit state also emphasized the importance of considering the 
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potential occurrence of global yield mechanisms, as well as that of having a process able to 

account for the unpredictability of their configurations.  

The results of the considered application example also emphasized the influence of 

the modelling error of the capacity models. The performance results indicated that, with 

respect to the situation where the uncertainty of the component capacities was not 

considered, allowing for such uncertainty increases the risk considerably (e.g. more than 

duplicating the risk in some cases) while leading to moderate reductions of the expected 

losses. Accounting for the uncertainty of the component capacities was found to produce a 

shift of the probabilistic distribution of the data. As a direct effect of such shift, there is a 

reduction in the median of the data, which was found to be the governing factor for the 

increase and the reduction in the risk and expected loss values. Moreover, such results were 

seen to disagree with the conventional assumption that accounting for the modelling 

uncertainties has the unique effect of increasing the dispersion of the fragility curves 

without influencing the median of the data (a fact also disputed by the findings reported by 

Liel et al. (2009)). 

Within the scope of this methodology, two simplified analytical expressions were also 

defined to estimate the expected storey loss value. These expressions were established by 

using different piecewise linear approximations of the structural and non-structural loss 

curves. Based on the results obtained from these simplified expressions, the accuracy of 

one involving more linear branches was found to be superior. Still, the usefulness of both 

approaches will depend on the level of accuracy required for a given application. 

Finally, the use of the lognormal distribution to model the fragility curves involved in 

the performance analysis was also addressed to determine the suitability of this common 

assumption. Results of adequate statistical methods used to test this hypothesis were 

presented and large-sample situations where the hypothesis is rejected were also discussed. 

The lognormal distribution was found to be suitable for the probabilistic modelling of the 

fragility curves involved in the proposed methodology when the variability of the data is 

due to the record-to-record variability. On the other hand, if the variability of the data 

stems from the record-to-record variability and from the uncertainty of the component 

capacities, the lognormal distribution may present some lack of fit in the tails of the data. 

Simulations were carried out to assess the expected level of error that may occur when 

considering the lognormal distribution under this situation and the results obtained 

indicated that the error was acceptable. 

 

 

10.2 Recommendations for future research 

The course of this research raised several questions that were not addressed in this 

thesis. In this context, some topics requiring further analysis are referred in the following:  
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 An in-depth analysis of the surveying procedures proposed in EC8-3 should be 

carried out. The practicability of the procedures must be addressed based on real-

case applications, namely examine aspects such as the percentage of structural 

members that need to be checked and the number of material samples that need to 

be analysed. A more clear relation should also be established between the amount 

and the quality of the information that is obtained by performing more detailed and 

intrusive surveys and the corresponding losses implied by those operations; 

 In order to assist in the structural survey procedures, guidelines defining specific 

characteristics of the structures and construction practice according to the period 

of their construction should be established at the national level. This historical 

information would facilitate the survey of older structures for which design data is 

seldom available, allowing also to reduce the number of intrusive survey operations;  

 Specific studies involving Bayesian analysis and real data obtained from different 

types of material tests should be developed in order to include the various sources 

of uncertainty inherent to the characterization of a given material property. Such 

uncertainty should then be reflected in the statistical definition of the CF; 

 Given the analysis presented in Chapter 4 along with results from other existing 

studies (e.g. Franchin et al., 2010), a revision of the CF concept proposed by EC8-3 

should be further analysed. In particular, the possibility of defining a CF that would 

incorporate more objectively the influence of several sources of uncertainty (both 

aleatory and epistemic) should be envisaged, for example, by considering a CF that 

affects the capacity parameter instead of the material properties, similar to the CF 

concept proposed by ASCE (2007); 

 Given the importance of the modelling error of the limit state capacity expressions 

proposed in EC8-3, further research should address the development of alternative 

formulations providing a more adequate fitting to the available experimental results;  

 Studies similar to the one presented in Chapter 5 for the characterization of the 

type of statistical distribution for structural demand should be carried out for other 

relevant engineering demand parameters (EDPs). In particular, the assumption that 

the probabilistic distribution of the peak floor acceleration follows a lognormal 

distribution (Miranda and Aslani, 2003) should be further examined; 

 For situations where the distribution of the EDP under analysis is seen to exhibit a 

significant number of outlying observations, additional studies should address the 

possibility of using statistical distributions other than the normal and the lognormal 

to characterize its probabilistic distribution. Given the nature of the Ex-Gaussian 

distribution, a distribution obtained from the convolution of a normal distribution 

and an exponential distribution, and its ability to capture the behaviour of more 
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extreme observations (Luce, 1986), its applicability to model the probabilistic 

distribution of certain EDPs should be investigated; 

 Studies similar to those presented in Chapters 6 and 7 for the characterization of 

the central value an the dispersion of structural demand should be carried out for 

other relevant EDPs (e.g. the peak floor acceleration) and further IMs should be 

analysed in order to determine if this parameter influences the performance of the 

estimators; 

 In the context of Methodology 2 (see Chapter 8), an alternative expression should 

be examined for the bilinear-type evolution of the shear force for increasing levels 

of the earthquake intensity to obtain a risk assessment expression also for this case. 

A suggestion is made to analyse the adequacy of approximating the shear force 

evolution using a piecewise linear function; 

 In order to establish a full probabilistic model for structural demand, the effects of 

the uncertainty in the structural modelling parameters and of the randomness of the 

material properties must be examined. In particular, assumptions regarding the type 

of probabilistic distribution of the demand when these effects are included must be 

analysed. Furthermore, variations on both the central value and the dispersion of 

the demand resulting from these effects must also be characterized with respect to 

the case where the record-to-record variability of the demand is the only source of 

uncertainty. It should be noted that variations in the central value due to the 

inclusion of other sources of uncertainty are particularly important (e.g. see Chapter 

9) and specific procedures should be developed to include them in methodologies 

such as the one proposed in ATC (2009); 

 The methodology proposed in Chapter 9 to analyse the seismic performance of 

existing buildings should be improved in order to include the quantification of the 

losses for acceleration-sensitive non-structural components. 
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Appendix A 
An empirical power comparison of  univariate 

goodness-of-fit tests for normality 
 

 

A.1 Introduction 

There is a multitude of statistical models and procedures which rely on the validity of 

a given data hypothesis, being the normality of the data assumption one of the most 

commonly found in statistical studies. As observed in many econometric models and in 

research on applied economics, following the normal distribution assumption blindly may 

affect the accuracy of inference and estimation procedures, in both cross-sectional and time 

series datasets (Costa et al., 2005). The evaluation of this distributional assumption has been 

addressed, for example, in Min (2007) where the conditional normality assumption in the 

sample selection model applied to housing demand is examined, or in Liesenfeld and Jung 

(2000) and Herbst (2007) where the normality assumption has been addressed in the 

context of stock market data, a type of data that has been found to be typically heavy-tailed 

(Gel and Gastwirth, 2008; Nematollahi and Tafakori, 2007). The analysis of the normality 

hypothesis can also be found in the characterization of error terms in the context of 

regression analysis models applied to economic time-series (Giles, 2007; Dufour et al., 1998; 

Thadewald and Büning, 2007), to probit models (Wilde, 2008) or to other types of time 

series (Önder and Zaman, 2005; Quddus, 2008). In medical research the assumption of 

normality is also very common (Shoder and Himmelmann, 2006; Sürücü and Koç, 2007) 

but the suitability of this assumption must also be verified with adequate statistical tests as, 

for example, in the case of the variability of gene expression data (Mathur and Dolo, 2008) 

or in the case of assessing the effectiveness of new treatments using clinical trials (Tsong et 

al., 2007). Similarly, the normality hypothesis considered in the field of quality control 

(Vännman and Albing, 2007; Muttlak and Al-Sabah, 2003; Madan et al., 2008) also needs 

verification, namely when using techniques based on Shewhart control charts that are based 

on the normality assumption (Oakland, 2008). In addition, it can be seen that the 
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lognormality assumption, which is frequent in many science fields, e.g. see Limpert et al. 

(2001) and the several references presented in Chapter 5, can also be examined by testing 

the normality hypothesis after the logarithmic transformation of the data (Halley and 

Inchausti, 2002; Bengtsson et al., 2005; Singh et al., 1997). 

The definition of adequate normality tests can, therefore, be seen to be of much 

importance since the acceptance or rejection of the normality assumption of a given dataset 

plays a central role in numerous research fields. As such, the problem of testing normality 

has gained considerable importance in both theoretical and empirical research and has led 

to the development of a large number of goodness-of-fit tests to detect departures from 

normality. Given the importance of this subject and the widespread development of 

normality tests over the years, comprehensive descriptions and power comparisons of such 

tests have also been the focus of attention, thus helping the analyst in the choice of suitable 

tests for his particular needs. Examples of such comprehensive reviews on the 

effectiveness of many normality tests towards a wide range of non-normality alternatives 

may be found, for example, in Shapiro (1968), Stephens (1974), Pearson et al. (1977), 

D’Agostino and Stephens (1986), Baringhaus et al. (1989), Gan and Koehler (1990), 

Royston (1991), Landry and Lepage (1992), Seier (2002), Thode (2002), Farrel and Rogers-

Stewart (2006), Henderson (2006), Yazici and Yolacan (2007) and in the references cited 

therein. Since the tests that have been developed are based on different characteristics of 

the normal distribution, it can be seen from these comparison studies, that their power to 

detect departures from normality can be significantly different depending on the nature of 

the non-normality.  

Furthermore, although the referred comparison studies have been appearing over the 

years, it is worth mention that some of the more recent ones, e.g. Farrel and Rogers-

Stewart (2006) and Yazici and Yolacan (2007), do not include several interesting and more 

recently developed tests. Moreover, power results presented in Yazici and Yolacan (2007) 

appear to contradict those resulting from previous studies. A further comparison of 

normality tests, such as the one proposed herein, can therefore be considered to be of 

foremost interest. 

An extensive simulation study is presented herein to estimate the power of 

thirty-three tests aiming to assess the validity of the univariate normality assumption of a 

data set. The selected tests include a group of well established normality tests as well as 

more recently developed ones. Section  A.2 presents a general description of the normality 

tests selected for the study, while Section  A.3 discuses, for some of the considered tests, 

the adequacy of the asymptotical critical values when compared to the empirical ones. The 

effects on the power of the tests due to the sample size, the selected significance level and 

the type of alternative distribution are also considered in the proposed study. The study is 

carried out for various sample sizes n and considering several significance levels . With 

respect to the considered alternative distributions, the study considers a number of 

statistical distributions which are categorized into three sets. The first set includes several 
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types of symmetric non-normal distributions, the second set includes several types of 

asymmetric distributions and the third set comprises a number of modified normal 

distributions with various shapes. Section  A.4 presents a more detailed description of the 

distributions included in these three sets. Section  A.5 presents the simulation approach 

considered in the study and the power results of the normality tests for the different 

alternative distribution sets, which are then discussed in Section  A.6. Finally, conclusions 

and recommendations resulting from the study are provided in Section  A.7. 

 

 

A.2 Goodness-of-fit tests for normality  

The selected normality tests are considered for testing the composite null hypothesis 

for the case where both location and scale parameters,   and  , respectively, are 

unknown. Normality test formulations differ according to the different characteristics of 

the normal distribution they focus. The goodness-of-fit tests considered in the proposed 

study are grouped into four general categories and a brief review of each test is presented 

herein. 

In the following review, it is considered that 1 2, , ... nx x x  represent a random sample 

of size n, (1) ( 2 ) ( ), , ... nx x x  represent the order statistics of that sample, x , s2, 1b  and b2 are 

the sample mean, variance, skewness and kurtosis, respectively, given by  

 1

1

n

i
i

x n x
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where the jth central moment mj is defined by 

  1

1

n
j

j i
i

m n x x



  ; (A.3) 

 

 

A.2.1 Tests based on the empirical distribution function  

A.2.1.1 The Kolmogorov-Smirnov test modified by Lilliefors  

Lilliefors (Lilliefors, 1967) proposed a modification of the Kolmogorov-Smirnov test 

for normality when the mean and the variance are unknown, and must be estimated from 

the data. The test statistic K-S is defined as  

 K-S      2 2

1
max ; ; 1 ; ; ;i i

i n
x x s i n i n x x s

 
        (A.4) 
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where  2; ;ix x s  is the cumulative distribution function of the normal distribution with 

parameters estimated from the data. The normality hypothesis of the data is then rejected 

for large values of K-S. Although the competitiveness of this test has been contested in 

several comparison studies (e.g. see D’Agostino and Stephens (1986), Gan and Koehler 

1990)), it is considered in the proposed study due to its large availability in commercial 

software and also due to the recent performance results presented in Yazici and Yolacan 

(2007)  which contradict the aforementioned about K-S.  

 

 

A.2.1.2 The Anderson-Darling test 

Anderson and Darling (Anderson and Darling, 1952) proposed a test statistic AD of 

the form 

        2

nAD n F x x x dF x




     (A.5) 

where  nF x  is the empirical distribution function (EDF),  x  is the cumulative 

distribution function of the standard normal distribution and  x  is a weight function 

given by      1
1x x


     . It can be seen (Anderson and Darling, 1954) that AD can 

be written has 

      1
1

1
2 1 ln ln 1

n

i n i
i

AD n i p p
n  



         (A.6) 

where the ip  values are given by   iz , with     i iz x x s  . In order to increase its 

power when µ and σ are estimated from the sample, a modification factor has been 

proposed for AD (Stephens, 1974) resulting in the new statistic AD*:  

  2* 1 0.75 2.25AD AD n n    (A.7) 

The normality hypothesis of the data is then rejected for large values of the test statistic. 

 

 

A.2.1.3 The Zhang-Wu ZC and ZA tests 

Zhang and Wu (Zhang and Wu, 2005) recently proposed test statistics ZC and ZA of 

the general form  
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where  0F x  is a hypothetical distribution function completely specified and  w x  is a 

weight function. When  dw x  is considered to be       0 0 01 1 1F x F x dF x        and 

 0F x  is  x , the test statistic ZC is obtained (Zhang and Wu, 2005) 
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  (A.9) 

In the case where  dw x  is considered to be       1 1 1n n nF x F x dF x       , the test 

statistic ZA is then obtained (Zhang and Wu, 2005) 
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For both tests, the normality hypothesis of the data is rejected for large values of the test 

statistic. Zhang and Wu (Zhang and Wu, 2005) have also proposed another test statistic, 

ZK, which is not included it in the proposed study, as results presented in (Zhang and Wu, 

2005) indicate that ZC and ZA are generally more powerful than ZK. 

 

 

A.2.1.4 The Glen-Leemis-Barr test 

Glen, Leemis and Barr (Glen et al., 2001) recently proposed a test statistic based on 

the quantiles of the order statistics. Given the relation between the order statistics and the 

EDF, this test was included in this category. The Glen-Leemis-Barr test statistic Ps is given 

by  

        ( ) ( )
1

1
2 1 2 ln 2 1 ln 1

n

s i i
i

P n n i p i p
n 

           (A.11) 

where ( )ip  are the elements of the vector p containing the quantiles of the order statistics 

sorted in ascending order. Following the proposal in (Glen et al., 2001), the elements of p 

can be obtained by defining vector u, with elements sorted in ascending order and given by 

  ( )i iu z  . Considering that (1) ( 2 ) ( ), , ... nu u u  represent the order statistics of a sample 

taken from a Uniform distribution  0;1U , their quantiles, which correspond to the 

elements of p, can be determined knowing that ( )iu  follows a Beta distribution 

 ; 1B i n i   (D’Agostino and Stephens, 1986). The normality hypothesis of the data is 

rejected for large values of the test statistic.  
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A.2.2 Tests based on measures of the moments 

A.2.2.1 The D’Agostino-Pearson K2 test 

D’Agostino and Pearson (D’Agostino and Pearson, 1973) proposed the test statistic 

K2 that combines normalizing transformations of skewness and kurtosis,  1Z b  and 

 2Z b , respectively. The statistic K2 is given by    
2 2

1 2Z b Z b       , in which the 

transformed skewness  1Z b  is obtained by (D’Agostino et al., 1990) 

       2

1 ln 1 lnZ b Y c Y c w    (A.12) 

with Y, c and w obtained by 
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and the transformed kurtosis  2Z b  is obtained by (D’Agostino et al., 1990) 
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with A and y obtained by 
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The normality hypothesis of the data is rejected for large values of the test statistic. 

Furthermore, according to (D’Agostino et al., 1990), the statistic K2 is approximately chi-

squared distributed with two degrees of freedom.  

 

 

A.2.2.2 The Jarque-Bera test 

The Jarque-Bera test is a popular goodness-of-fit test in the field of economics. It has 

been first proposed by Bowman and Shenton (Bowman and Shenton, 1975) but is mostly 
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known from the proposal of Jarque and Bera (Jarque and Bera, 1980). The test Statistic JB 

is defined by 

 
 2

2
1

3

6 4

bn
JB b

 
   

 
 (A.18) 

The normality hypothesis of the data is rejected for large values of the test statistic. In 

addition, according to Bowman and Shenton (1975), it can be seen that JB is asymptotically 

chi-squared distributed with two degrees of freedom.  

 

 

A.2.2.3 The Doornik-Hansen test 

Various modifications of the Jarque-Bera test have been proposed over the years in 

order to increase its efficiency. For example, Urzúa (1996) introduced a modification 

consisting of a different standardization process for b1 and b2, though Thadewald and 

Büning (2007) showed that such modification did not improve the power of the original 

formulation. A less known formulation is that of Doornik and Hansen (2008) which 

suggest the use of the transformed skewness according to Eq. (A.12) and the use of a 

transformed kurtosis according to the proposal in Bowman and Shenton (1977). The 

statistic of the Doornik-Hansen test DH is thus given by    
2 2

1 2Z b z    , in which the 

transformed kurtosis 2z  is obtained by (Doornik and Hansen, 2008) 
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with ξ and a obtained by 

  2 11 2b b k    ; 
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The normality hypothesis of the data is rejected for large values of the test statistic and, 

according to (Doornik and Hansen, 2008), DH is also approximately chi-squared 

distributed with two degrees of freedom.  
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A.2.2.4 The Gel-Gastwirth robust Jarque-Bera test 

Gel and Gastwirth (Gel and Gastwirth, 2008) recently proposed a robust version of 

the Jarque-Bera. Stemming from the fact that sample moments are, among other things, 

known to be sensitive to outliers, see e.g. Henderson (2006), Gel and Gastwirth have 

proposed a modification of JB that uses a robust estimate of the dispersion in the skewness 

and kurtosis definitions given in Eq. (A.2) instead of the second order central moment m2. 

The selected robust dispersion measure is the average absolute deviation from the median 

and leads to the following statistic of the robust Jarque-Bera test RJB given by 

 
2 2

3 4
3 4

3
6 64n n

m mn n
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J J
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with Jn obtained by 

 
1

2 n

n i
i

J x M
n





   (A.23) 

in which M is the sample median. The normality hypothesis of the data is rejected for large 

values of the test statistic and, according to Gel and Gastwirth (2008), RJB asymptotically 

follows the chi-square distribution with two degrees of freedom.  

 

 

A.2.2.5 The Hosking L-moments based test 

Given the several disadvantages associated with the use of central moments 

(Henderson, 2006; Hoskings, 1990; Hoskings, 1992; Ulrych et al., 2000), Hosking 

(Hoskings, 1990) advocated the use of linear combinations of the order statistics instead, 

termed L-moments, which are less affected by sample variability and, therefore, are more 

robust to outliers and better for making inferences about an underlying probability 

distribution. Hosking (Hoskings, 1990) has shown the rth order sample L-moment can be 

estimated by 
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where *
,r kp  and bk are obtained by 
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    (A.25) 

Based on the second, third and fourth sample L-moments, which have similarities 

with the corresponding central moments, Hosking (Hoskings, 1990) also defines new 

measures of skewness and kurtosis, termed L-skewness τ3 and L-kurtosis τ4, and given by  
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 3 3 2l l  , 4 4 2l l   (A.26) 

The value of τ3 is bounded between -1 and 1 for all distributions and is close to 0 for the 

normal distribution, while the value of τ4 is 1  for all distributions and is close to 0.1226 

for the normal distribution. As referred in (Hoskings, 1990), Hosking as suggested that 

normality could be tested based on τ3 and τ4 according the following statistic TLmom  

 
   

3 43 4

3 4var varLmomT     
 

 
   (A.27) 

where 
3

  and 
4

  are the mean of τ3 and τ4, and  3var   and  4var   are their 

corresponding variances. The values of 
3

 , 
4

 ,  3var   and  4var   can be obtained by 

simulation. Nonetheless, 
3

  and 
4

  are expected to be close to 0 and 0.1226, and 

Hosking (Hoskings, 1990) provides an approximation for  3var  . For the case of 

 4var   there is no approximation currently available. Details concerning the values of 

these parameters considered in this study are presented in Section  A.5. The normality 

hypothesis of the data is rejected for large values of TLmom, which is also approximately chi-

squared distributed with two degrees of freedom according to Henderson (2006).  

 

 

A.2.2.6 The Hosking test based on trimmed L-moments 

Although L-moments exhibit some robustness towards outliers in the data, as 

previously referred, they may still be affected by extreme observations (Elamir and Seheult, 

2003). A robust generalization of the sample L-moments has, therefore, been formulated 

by Elamir and Seheult (Elamir and Seheult, 2003) leading to the development of trimmed 

L-moments. The proposed formulation for the trimmed L-moments allows for both 

symmetric and asymmetric trimming of the smallest and largest sample observations. For 

the case of normality testing suggested herein, only symmetric trimming is considered.  

Considering an integer symmetric trimming level t, Elamir and Seheult (Elamir and 

Seheult, 2003) have shown the rth order sample trimmed L-moment  t
rl can be estimated 

by 
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Based on the second, third and fourth sample trimmed L-moments, Elamir and 

Seheult (Elamir and Seheult, 2003) also define new measures of skewness and kurtosis, 

termed TL-skewness  
3
t  and TL-kurtosis  

4
t , given by  

      
3 3 2
t t tl l  ,      

4 4 2
t t tl l   (A.29) 

Based on these new measures, the following test, similar to that given by Eq. (A.27), is 

considered in the present study:  
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where, for a selected trimming level t, 
3

( )t
  and 

4

( )t
  are the mean of ( )

3
t  and ( )

4
t , and 

 ( )
3var t  and  ( )

4var t  are their corresponding variances. As for the previous test, the 

values of 
3

( )t
 , 

4

( )t
 ,  ( )

3var t  and  ( )
4var t  can be obtained by simulation. Details 

concerning the values of these parameters considered in this study are presented in Section 

 A.5.  

Three versions of this test are considered in the proposed study, which correspond 

to symmetric trimming levels t of 1, 2 and 3. For each test, the normality hypothesis of the 

data is rejected for large values of the statistic  t
TLmomT .  

 

 

A.2.2.7 The Bontemps-Meddahi tests 

Bontemps and Meddahi (Bontemps and Meddahi, 2005) recently proposed a family 

of normality tests based on moment conditions known as the Stein equations and their 

relation with Hermite polynomials. The test statistics are developed using the generalized 

method of moments approach (Hansen, 1982) associated to Hermite polynomials, which 

leads to test statistics that are robust against parameter uncertainty. The general expression 

of the test family is thus given by 
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where  i iz x x s   and  .kH  represents the kth order normalized Hermite polynomial 

having the general expression given by the following recursive formulation 

      1 2

1
1, 1i i ii H u u H u i H u

i
 

         ,  0 1H u  ,  1H u u  (A.32) 
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It can be seen from Eq. (A.31) that a number of different tests can be obtained by 

assigning different values to p, which represents the maximum order of the considered 

normalized Hermite polynomials. Based on the results presented in Bontemps and 

Meddahi (2005), two different tests are considered in the study presented herein. Following 

the terminology provided in Eq. (A.31), these tests are termed 3 4BM   and 3 6BM  . In both 

cases, the normality hypothesis of the data is rejected for large values of the test statistic 

and, according to Bontemps and Meddahi (2005), the general 3 pBM   family of tests 

asymptotically follows the chi-square distribution with p-2 degrees of freedom. 

 

 

A.2.2.8 The Brys-Hubert-Struyf MC-LR test 

Brys, Hubert and Struyf (Brys et al., 2008) have proposed a goodness-of-fit test based 

on robust measures of skewness and tailweight. The considered robust measure of 

skewness is the medcouple MC (Brys et al., 2003; Brys et al., 2004) defined as 
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Fi j

i jx m x
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  (A.33) 

where med stands for the median, mF is the sample median and the kernel function h is 

given by  
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and for which a fast computation algorithm is provided in Brys et al. (2004). For the case 

where     Fi jx x m  , h is then set by  

     
1
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1
i j

i j

h x x i j

i j


 
 

 (A.35) 

The left medcouple (LMC) and the right medcouple (RMC) are the considered 

robust measures of left and right tail weight (Brys et al., 2006), respectively, and are defined 

by 

  FLMC MC x m   ;  FRMC MC x m   (A.36) 

The test statistic TMC-LR is then defined by 

    1t

MC LRT n w V w        (A.37) 
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in which w is set as  , ,
t

MC LMC RMC , and   and V are obtained based on the influence 

function of the estimators in w (Brys et al., 2004, Brys et al., 2006). For the case of a normal 

distribution   and V are defined as (Brys et al., 2008)  

  0, 0.199, 0.199
t  ; 

1.25 0.323 0.323

0.323 2.62 0.0123

0.323 0.0123 2.62

V

 
   
   

 (A.38) 

The normality hypothesis of the data is rejected for large values of TMC-LR and, 

according to Brys et al. (2007), it is suggested that TMC-LR approximately follows the chi-

square distribution with three degrees of freedom. 

 

 

A.2.2.9 The Bonett-Seier test 

Bonett and Seier (Bonett and Seier, 2002) have suggested a modified measure of 

kurtosis for testing normality, which is based on a modification of Geary’s proposal (Geary, 

1936). The test statistic of the new kurtosis measure Tw is thus given by:  

  ˆ2 3 3.54wT n      (A.39) 

in which ̂  is set by 
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  (A.40) 

The normality hypothesis of the data is rejected for both small and large values of Tw 

using a two-sided test and, according to (Bonett and Seier, 2002), it is suggested that Tw 

approximately follows a standard normal distribution.  

 

 

A.2.2.10 The Brys-Hubert-Struyf-Bonett-Seier joint test 

Considering that the Brys-Hubert-Struyf MC-LR test is, mainly, a skewness 

associated test and that the Bonett-Seier proposal is a kurtosis based test, a joint test, 

termed TMC-LR-Tw, considering both these measures is proposed herein for testing normality. 

This joint test attempts to make use of the two referred focused tests in order to increase 

the power to detect different kinds of departure from normality. This joint test is proposed 

herein based on the assumption that the individual tests can be considered independent. 

This assumption is based on a simulation of the two statistics considering 200000 samples 

of size 100 drawn from a standard normal distribution that yielded a correlation coefficient 

of approximately -0.06. In order to control the overall Type I error at the nominal level α, 
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the normality hypothesis of the data is rejected for the joint test when rejection is obtained 

for either one of the two individual tests for a significance level of 2 .  

 

 

A.2.2.11 The Cabaña-Cabaña tests 

Cabaña and Cabaña (Cabaña and Cabaña, 2003) have recently proposed four families 

of normality tests based on transformed empirical processes. Two test families are of the 

Kolmogorov-Smirnov type while the other two are of the Cramér-von Mises type. One 

family of each type of test focuses on changes on skewness and the other one is sensitive to 

changes in kurtosis. Considering the results provided in Cabaña and Cabaña (2003), the 

power of the Kolmogorov-Smirnov type tests is seen to be very similar to that of the 

Cramér-von Mises type tests. Therefore, only the Kolmogorov-Smirnov type tests were 

selected in the proposed study, as their implementation complexity is comparatively lower 

than that of the Cramér-von Mises type tests.  

The test statistics proposed in Cabaña and Cabaña (2003) are based on the definition 

of approximate transformed estimated empirical processes (ATEEP) sensitive to changes 

in skewness or kurtosis. The proposed ATEEP sensitive to changes in skewness is defined 

as:  

        , 3 1 3
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w x x H x H x H
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where   is a dimensionality parameter,  x  is the probability density function of the 

standard normal distribution,  .jH  represents the jth order normalized Hermite 

polynomial given by Eq. (A.32) and jH  is the jth order normalized mean of the Hermite 

polynomial defined as 
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The proposed ATEEP sensitive to changes in kurtosis is defined as:  
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According to Cabaña and Cabaña (2003), the dimensionality parameter   ensures the 

test is consistent against alternative distributions differing from the normal distribution 

having the same mean and variance in at least one moment of order not greater than 3 . 
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The Kolmogorov-Smirnov type test statistics sensitive to changes in skewness and in 

kurtosis, ,ST   and ,KT  , respectively, are defined as 

  , ,maxS ST w x  ;  , ,maxK KT w x   (A.44) 

For both cases, the normality hypothesis of the data is rejected for large values of the 

test statistic. Based on results presented in Cabaña and Cabaña (2003), parameter   was 

considered to be 5. 

 

 

A.2.3 Regression and correlation tests 

A.2.3.1 The Shapiro–Wilk test 

The Shapiro and Wilk W statistic (Shapiro and Wilk, 1965) is a well-established and 

powerful test of normality. The statistic W represents the ratio of two estimates of the 

variance of a normal distribution and is obtained by 
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where the vector of weights a is obtained by     0.51 1 1
1 , ...,

t
na a m V m V V m

        , in 

which m and V are the mean vector and covariance matrix of the order statistics of the 

standard normal distribution. The computation of the vector of weights a considered 

herein is defined according to the improved algorithm presented by Royston (1995) which 

considers the methodology described in Royston (1992) and Royston (1993a). Given the 

definition of W, it is intuitive to observe the normality hypothesis of the data is rejected for 

small values of W. In order to simplify the application of this test, transformations g have 

been defined in Royston (1993a) for different sample sizes such that  g W  approximately 

follows a standard normal distribution.  

 

 

A.2.3.2 The Shapiro–Francia test 

Since explicit values of m and V are not readily available and the computation of 
1V   is time consuming for large samples, Shapiro and Francia (Shapiro and Francia, 1972) 

have proposed a modification of the Shapiro–Wilk test, hereon termed WSF, based on the 

fact that, for large samples, the samples observations can be treated as being independent. 

In this context, Shapiro and Francia suggested to replace 1V   by an identity matrix, which 
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leads to a vector of weights a defined as   0.5tm m m


  . The computation of the WSF test 

considered herein is defined according to the procedure proposed in Royston (1993b). 

Similarly to the W test, the normality hypothesis of the data is rejected for small values of 

WSF. As for the previous test, transformations g have also been defined in Royston (1993a) 

for different sample sizes such that  SFg W  approximately follows a standard normal 

distribution. 

 

 

A.2.3.3 The Rahman-Govindarajulu modification of the Shapiro–Wilk test 

Rahman and Govindarajulu (Rahman and Govindarajulu, 1997) have proposed a 

modification to the Shapiro–Wilk test, hereon termed WRG, which is simpler to compute 

and relies on a new definition of the weights a using the approximations to m and V 

suggested in Mosteller (1946) and Blom (1958). According to these proposals, each element 

ai of the new vector of weights becomes  

           1 1 1 11 2 2i i i i i i i ia n n m m m m m m m               (A.46) 

where it is assumed that    0 0 1 1 0n nm m m m    . With this modification, the new test 

statistic WRG assigns larger weights to the extreme order statistics than the original W test, 

which has been seen to result in higher power against short tailed alternative distributions 

(Rahman and Govindarajulu, 1997; Bai and Chen, 2003). As for the original W test, the 

normality hypothesis of the data is rejected for small values of WRG. 

 

 

A.2.3.4 The D’Agostino D test 

D’Agostino (D’Agostino, 1971) proposed the D test statistic as an extension of the 

Shapiro–Wilk test. The D’Agostino proposal eliminates the need to define the vector of 

weights a of the Shapiro–Wilk test and is obtained by  
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The normality hypothesis of the data is rejected for both small and large values of D using 

a two-sided test. 
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A.2.3.5 The Filliben correlation test 

Filliben (Filliben, 1975) described the probability plot correlation coefficient r as a 

test for normality. The correlation coefficient is defined between the sample order statistics 

and the estimated median values of the theoretical order statistics. 

Considering that (1) ( 2 ) ( ), , ... nm m m  represent the estimated median values of order 

statistics from a Uniform distribution  0;1U , each ( )im  is obtained by 
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upon which the estimated median values of the theoretical order statistics can be obtained 

using the transformation     1
i iM m  . The correlation coefficient r is then defined as  
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leading to the rejection of the normality hypothesis of the data for small values of r. 

 

 

A.2.3.6 The Chen–Shapiro test 

Chen and Shapiro (Chen and Shapiro, 1995) introduced an alternative test statistic 

CS based on normalized spacings and defined as 
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in which Mi is the ith quantile of a standard normal distribution obtained by 

   1 0.375 0.25i n     . Since a close relation between CS and the Shapiro-Wilk test 

has been shown to exist (Bai and Chen, 2003), their performance is expected to be similar 

also. According to (Chen and Shapiro, 1995), the normality hypothesis of the data is 

rejected for small values of CS.   
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A.2.3.7 The Zhang Q tests 

Zhang (Zhang, 1999) introduced the Q test statistic based on the ratio of two 

unbiased estimators of standard deviation, q1 and q2, and given by  1 2lnQ q q . The 

estimators q1 and q2 are obtained by  1
1

n

i i
i

q a x


   and  2
1

n

i i
i

q b x


  where the ith order 

linear coefficients ai and bi result from 

    1

1 1 , 1i ia u u n for i
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2

n

i
i

a a
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where the ith expected value of the order statistics of a standard normal distribution, ui, is 

defined by    1 0.375 0.25i n     . According to Zhang (1999), Q is less powerful 

against negatively skewed distributions. Therefore, Zhang (Zhang, 1999) has also proposed 

the alternative statistic Q* by switching the ith order statistics  ix  in q1 and q2 by 

   
*

1i n ix x    . Based on the definition of both Q and Q*, the normality hypothesis of the 

data is rejected for both small and large values of the statistic using a two-sided test.  

In addition to these two tests, Zhang (Zhang, 1999) has also proposed a joint test Q-

Q*, stemming from the fact that Q and Q* are approximately independent. Therefore, for 

the case of the joint test Q-Q*, the normality hypothesis of the data is rejected at the 

significance level α when rejection is obtained for either one of the two individual tests for 

a significance level of 2 .  

According to Zhang (1999), both Q and Q* approximately follow a normal 

distribution. However, Hwang and Wei (Hwang and Wei, 2007) have proven otherwise and 

state that the performance of these tests is better when based on their empirical 

distribution. Since the joint test has shown to be more powerful than the individual tests 

(Zhang, 1999; Hwang and Wei, 2007), the joint test Q-Q* is the primary choice for the 

proposed study. Nonetheless, the Q test is also included for comparison purposes.  

 

 

A.2.3.8 The del Barrio-Cuesta-Albertos-Matrán-Rodríguez-Rodríguez quantile 

correlation test 

A novel approach for normality testing based on the L2-Wasserstein distance has 

been proposed by del Barrio, Cuesta-Albertos, Matrán and Rodríguez-Rodríguez (del 

Barrio et al., 1999; Krauczi, 2007). The BCMR test statistic is defined by  
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where, according to del Barrio et al. (1999), the numerator represents the squared L2-

Wasserstein distance. The normality hypothesis of the data is rejected for large values of 

the test statistic.  

 

 

A.2.3.9 The 2
3  Coin test 

Coin (Coin, 2008), has recently proposed a normality test based on a polynomial 

regression focused on detecting symmetric non-normal alternative distributions. According 

to Coin (2008), the analysis of standard normal Q-Q plots of different symmetric non-

normal distributions suggests that fitting a model of the type:  

  
3

1 3i iiz         (A.54) 

where 1  and 3  are fitting parameters and i  represent the expected values of standard 

normal order statistics, leads to values 3  different from zero when in presence of 

symmetric non-normal distributions. Therefore, Coin (Coin, 2008) suggests the use of 2
3  

as a statistic for testing normality, thus rejecting the normality hypothesis of the data for 

large values of 2
3 . As suggested in Coin (2008), the values of i  are obtained using the 

approximations provided in Royston (1982). 

 

 

A.2.4 Other tests 

A.2.4.1 The Epps-Pulley test 

Epps and Pulley (Epps and Pulley, 1983; BS 2846-7, 1997) have proposed a test 

statistic EPT  based on the following weighted integral  

      
2

0
ˆ

EP nT t t dG t 




   (A.55) 

where  n t  is the empirical characteristic function given by  1

1

exp
n

j
j

n itx


 ,  0

ˆ t  is the 

sample estimate of the characteristic function of the normal distribution given by 

 2
2exp 0.5itx m t  and  G t  is an adequate function chosen according to several 
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considerations (Epps and Pulley, 1983). By setting    dG t g t dt  and selecting 

   2
2 22 exp 0.5g t m m t    the following statistic can be obtained (Epps and Pulley, 

1983). 
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for which the normality hypothesis of the data is rejected when large values of EPT  are 

obtained. To simplify the use of this test by eliminating the need for tables of percentage 

points of EPT , an approximation to the limit distribution of EPT  has been  presented in 

Henze (1990). 

 

 

A.2.4.2 The Martinez-Iglewicz test 

Martinez and Iglewicz (Martinez and Iglewicz, 1981) have proposed a normality test 

based on the ratio of two estimators of variance, where one the estimators is the robust 

biweigth scale estimator 2
bS  
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where M is the sample median,    9i iz x M A  , with A being the median of 

ix M , and when 1iz  , iz  is set to 0. The Martinez-Iglewicz test statistic In is then 

given by 
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for which the normality hypothesis of the data is rejected for large values of In. 

 

 

A.2.4.3 The Gel-Miao-Gastwirth test 

Gel, Miao and Gastwirth (Gel et al., 2007) have recently proposed a directed 

normality test which focuses on detecting heavier tails and outliers of symmetric 

distributions. The test is based on the ratio of the standard deviation and on the robust 

measure of dispersion Jn defined in Eq. (A.23). The normality test statistic sJR  is therefore 
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given by sJ nR s J  which should tend to one under a normal distribution. According to 

Gel et al., (2007), the normality hypothesis of the data is rejected for large values of sJR  and 

the statistic  1sJn R   is seen to asymptotically follow the normal distribution 

 0; 2 1.5N   . However, it has been empirically found that rejecting the normality 

hypothesis using a two-sided test extends the range of application of this test, namely to 

light-tailed distributions, without a significant reduction of its power towards heavy-tailed 

distributions.  

Given its enhanced behaviour, the two-sided test is the primary choice for the 

proposed study. Nonetheless, a detailed power comparison of the two-sided test with the 

one-sided test, hereon termed ,1sJR , is also presented. 

 

 

A.3 Comparison of empirical and asymptotical critical values 

For many normality tests, the sampling distributions of their corresponding statistics 

are intractable, for both finite and large sample situations. Nonetheless, in cases where such 

limit distribution can be approximated, it is of interest to determine how close the 

simulated percentile values of such distributions are to the corresponding asymptotic values 

and how fast is the convergence to such values. The tests presented in the previous Section 

for which the limit distribution has been examined in previous studies are referred herein. 

Reference to previous works on the adequacy of such limit distributions is also made when 

available. For the remaining cases, comparison results from this study clarifying the 

suitability of their asymptotical critical values are presented herein. For a given test, the 

referred results correspond to the comparison of the asymptotical critical values to the 

empirical ones based on 1000000 samples drawn from the standard normal distribution, for 

five sample sizes n (n = 25, n = 50, n = 100, n = 200 and n = 500) and considering several 

significance levels  . 

The matter of the limit distribution has been previously addressed for statistics 

BCMR, D, ,ST  , ,KT  , EPT , JB, RJB, W, WSF, sJR , DH, K2, TLmom, 3 4BM  , 3 6BM  , TMC-LR and 

Tw. Furthermore, as stated before, a limit distribution was also proposed for statistics Q and 

Q*, but was rejected based on the subsequent studies (Hwang and Wei, 2007).  

According to Krauczi (2007), the asymptotic distribution of BCMR can be obtained 

numerically by computing its characteristic function and performing a numerical inversion. 

The convergence of the numerically simulated critical values to those obtained by the 

asymptotic distribution is very slow and the use of the asymptotic critical values generally 

yields conservative results (i.e. the normality hypothesis is rejected more times when 

considering the asymptotical values than when using the simulated ones) for sample sizes 

as low as 10. Hence, the use of asymptotic critical values is not recommended for this test. 
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With respect to the D statistic, a standardized version can be defined in order to transform 

D into a standard normal variable (D’Agostino, 1971; D’Agostino, 1972). Nonetheless, 

studies have shown that, even for a sample size of 1000, the percentiles of this new 

standard statistic do not converge to those of the standard normal distribution and exhibit 

asymmetric behaviour (Thode, 2002). Hence, there is evidence of low convergence to the 

asymptotic distribution and the use of empirical critical values is recommended. For the 

case of statistics ,ST   and ,KT  , the theoretical basis of their limit distribution is addressed 

in Cabaña and Cabaña (2003) but a closed analytical expression is not available. 

Nonetheless, through some refined numerical analysis, the asymptotic critical percentiles 

were determined and compared to those obtained through simulation. Despite the relative 

proximity of the asymptotic and simulated values, the latter are seen to be more 

conservative and their use is recommended for a more accurate performance of these tests 

(Cabaña and Cabaña, 2003). With respect to the limit distribution of EPT , a numerical 

definition of the first four moments of the referred distribution as well as approximations 

to the limit distribution, obtained by fitting members of the Johnson and of the Pearson 

system of distributions, can be found in Henze (1990). By comparing the upper percentiles 

given by the approximated limit distributions with those simulated numerically, it can be 

observed that for moderate sample sizes (n ≥ 50) the simulated upper percentiles are very 

close to the asymptotic values and convergence to these values is seen to be rather fast. 

Furthermore, a transformation to normality of EPT  that enables the use of standard normal 

percentiles to apply the test is also proposed. Nonetheless, it should be noted that, in either 

case, for smaller sample sizes, the use of numerically simulated critical values is 

recommended. According to results presented for JB in Thadewald and Büning (2007), for 

α ≥ 0.05 the normality hypothesis is rejected more times when considering the simulated 

values than when using the asymptotical ones, especially for small sample sizes, while for α 

< 0.05 the pattern is not as definite. Figure A.1a) presents the comparison of the JB 

asymptotical critical values to the empirical ones, which leads to conclude that, in the 

overall, the chi-squared distribution approximation of the limit distribution does not work 

well, even for large sample sizes, and that the speed of convergence is slow. Thus, for a 

meaningful application of JB, empirical critical values have to be used (Thadewald and 

Büning, 2007). Similar results were also reported for RJB in Gel and Gastwirth (2008), 

where it is concluded that the asymptotic chi-squared approximation of critical values is not 

accurate enough in small to moderate sized samples. Figure A.1b) presents the comparison 

of the RJB asymptotical critical values to the empirical ones where it can be seen that the 

asymptotical approximation is inadequate, even for large sample sizes, and that the speed 

of convergence is also slow. Hence, the use of empirical critical values is also 

recommended for RBJ. The problem of finding the limit distribution of W and WSF has 

been addressed over the years by several researchers using different approaches (Royston, 

1993a; Leslie et al., 1986; Verril and Johnson, 1988; Sen, 2002; del Barrio et al., 2005). 
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Special emphasis is given to Verril and Johnson (1988) where their asymptotic null 

distributions are derived and are seen to be identical, though convergence to their critical 

values is seen to be very slow. As previously referred, transformations g have been defined 

in Royston (1993a) for different sample sizes such that  g W  and  SFg W  have an 

approximately standard normal distribution. According to this approximation, the 

normality hypothesis is rejected if the transformed variable is larger than the upper 

percentile of the standard normal distribution. As can be seen from the results presented in 

Figs. A.1c) and d) for both tests, the transformed statistics have empirical critical values 

very close to the standard normal percentiles. Hence, these transformations to normality 

and the use of critical values obtained from the standard normal distribution are 

recommended for practical use of these tests. With respect to sJR , although the statistic 

 1sJn R   asymptotically follows the normal distribution as previously referred, 

observation of Fig. A.1e) shows that the asymptotical critical values differ from the 

empirical ones, the latter being more conservative. In the overall, the empirical values can 

be seen to exhibit an asymmetric distribution and a slow convergence towards the 

asymptotical values. Hence, the use of empirical critical values is recommended for sJR . 

Similar conclusions can be drawn from Fig. A.1f) for the case of Tw. Nonetheless, empirical 

and asymptotical critical values of Tw are closer and the speed of convergence is higher than 

that of sJR . For the case of DH, results presented in Fig. A.1g) show that, for α ≥ 0.05, the 

asymptotical and empirical critical values are very close and that convergence is fast. On 

the other hand, for α < 0.05 the empirical critical values are more conservative. Similar 

conclusions can be drawn from the results of test K2 presented in Fig. A.1h), although 

convergence to the asymptotical values is slower for this test, especially for α < 0.05. Thus, 

for DH and K2, the use of asymptotical critical values is recommended for α ≥ 0.05, while 

empirical ones should be used for α < 0.05. For the case of TLmom, results presented in 

Fig. A.1i) show that the asymptotical and the empirical critical values are very close and 

that convergence is very fast for all significance levels. Hence, the use of asymptotical 

critical values is recommended for this test. For the case of tests 3 4BM   and 3 6BM  , results 

presented in Figs. A.1j) and k) show an overall low agreement between asymptotical and 

empirical critical values. In general, the speed of convergence is slow and convergence does 

not appear to increase with sample size, especially for 3 4BM  . Hence, for an adequate 

application of these tests, empirical critical values have to be used. Finally, with respect to 

TMC-LR, results presented in Fig. A.1l) show that, although the convergence speed is slow, 

the empirical critical values are close to the asymptotical ones. Nevertheless, the use of 

empirical critical values is recommended for an adequate use of this test.  
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  j)  

Figure A.1. Comparison of empirical and asymptotical critical values for JB (a), RJB (b), W (c), WSF (d), sJR  

(e), Tw (f), DH (g), K2 (h), TLmom (i), 3 4BM   (j), 3 6BM   (k) and TMC-LR (l). 
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Figure A.1 (continued). Comparison of empirical and asymptotical critical values for JB (a), RJB (b), W (c), 
WSF (d), sJR  (e), Tw (f), DH (g), K2 (h), TLmom (i), 3 4BM   (j), 3 6BM   (k) and TMC-LR (l). 

 

 

A.4 Statistical distributions considered in the simulation study  

As previously referred, the simulation study considers a number of statistical 

distributions over which the performance of the presented normality tests is to be assessed. 

The selected alternative distributions were chosen in order to be a representative set 

exhibiting different values of important properties such as skewness and kurtosis, as found 

in available power studies. These alternative distributions are categorized into three sets. 

The first set includes several types of symmetric distributions, the second set includes 

several types of asymmetric distributions and the third set comprises a number of modified 

normal distributions with various shapes. A brief description of these distributions is 

presented in the following. 

 

 

A.4.1 Symmetric distributions 

The considered symmetric distributions are: 

 Three cases of the Beta(a,b) distribution, where a and b are the shape parameters, 

defined as Beta(0.5;0.5), Beta(1;1) and Beta(2;2). 

 Three cases of the Cauchy(t,s) distribution, where t and s are the location and scale 

parameters, respectively, defined as Cauchy(0;0.5), Cauchy(0;1) and Cauchy(0;2); 

 One case of the Laplace(t,s) distribution, where t and s are the location and scale 

parameters, respectively, defined as Laplace(0;1); 

 One case of the Logistic(t,s) distribution, where t and s are the location and scale 

parameters, respectively, defined as Logistic(2;2); 
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 Four cases of the t-Student(ν) distribution, where ν is the number of degrees of 

freedom, defined as t(1), t(2), t(4) and t(10); 

 Five cases of the Tukey(λ) distribution, where λ is the shape parameter, defined as 

Tukey(0.14), Tukey(0.5), Tukey(2), Tukey(5) and Tukey(10); 

 One case of the normal distribution, corresponding to the standard normal 

distribution defined as N(0;1). This distribution is included in order to confirm the 

nominal significance levels. 

 

 

A.4.2 Asymmetric distributions 

The considered asymmetric distributions are: 

 Four cases of the Beta(a,b) distribution, defined as Beta(2;1), Beta(2;5), Beta(4;0.5) 

and Beta(5;1); 

 Four cases of the chi-squared(ν) distribution, where ν is the number of degrees of 

freedom, defined as χ2(1), χ2(2), χ2(4) and χ2(10); 

 Six cases of the Gamma(a,b) distribution, where a and b are the shape and scale 

parameters, respectively, defined as Gamma(2;2), Gamma(3;2), Gamma(5;1), 

Gamma(9;1), Gamma(15;1) and Gamma(100;1); 

 One case of the Gumbel(t,s) distribution, where t and s are the location and scale 

parameters, respectively, defined as Gumbel(1;2); 

 One case of the lognormal(t,s) distribution, where t and s are the location and scale 

parameters, respectively, defined as LN(0;1); 

 Four cases of the Weibull(a,b) distribution, where a and b are the scale and shape 

parameters, respectively, defined as Weibull(0.5;1), Weibull(1;2), Weibull(2;3.4) and 

Weibull(3;4). 

 

 

A.4.3 Modified normal distributions 

The considered modified normal distributions are: 
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 Six cases of the standard normal distribution truncated at a and b Trunc(a;b), where 

a and b are the lower and upper truncations points, respectively, defined as Trunc(-

1;1), Trunc(-2;2), Trunc(-3;3), Trunc(-2;1), Trunc(-3;1) and Trunc(-3;2); 

 Nine cases of a location-contaminated standard normal distribution, hereon termed 

LoConN(p;a), consisting of randomly selected observations with probability 1-p 

drawn from a standard normal distribution and with probability p drawn from a 

normal distribution with mean a and standard deviation 1. The selected cases are 

defined as LoConN(0.3;1), LoConN(0.4;1), LoConN(0.5;1), LoConN(0.3;3), 

LoConN(0.4;3), LoConN(0.5;3), LoConN(0.3;5), LoConN(0.4;5) and 

LoConN(0.5;5); 

 Nine cases of a scale-contaminated standard normal distribution, hereon termed 

ScConN(p;b), consisting of randomly selected observations with probability 1-p 

drawn from a standard normal distribution and with probability p drawn from a 

normal distribution with mean 0 and standard deviation b. The selected cases are 

defined as ScConN(0.05;0.25), ScConN(0.10;0.25), ScConN(0.20;0.25), 

ScConN(0.05;2), ScConN(0.10;2), ScConN(0.20;2), ScConN(0.05;4), 

ScConN(0.10;4) and ScConN(0.20;4); 

 Twelve cases of a mixture of normal distributions, hereon termed MixN(p;a;b), 

consisting of randomly selected observations with probability 1-p drawn from a 

standard normal distribution and with probability p drawn from a normal 

distribution with mean a and standard deviation b. The selected cases are defined as 

MixN(0.3;1;0.25), MixN(0.4;1;0.25), MixN(0.5;1;0.25), MixN(0.3;3;0.25), 

MixN(0.4;3;0.25), MixN(0.5;3;0.25), MixN(0.3;1;4), MixN(0.4;1;4) , MixN(0.5;1;4), 

MixN(0.3;3;4), MixN(0.4;3;4) and MixN(0.5;3;4); 

 Five cases of standard normal distributions with outliers, hereon termed Nout1 to 

Nout5, consisting of observations drawn from a standard normal distribution 

where some of the values are randomly replaced by extreme observations. The 

extreme observations are separated into upper and lower extreme observations, 
*
upx and *

lowx , respectively. An observation *
upx  is defined as 3qx k IQR  , where 

IQR represents the inter-quartile range of the standard normal distribution, 3qx  is 

the 75% quartile of the standard normal distribution and k is a selected constant. 

An observation *
lowx  is defined as 1qx k IQR  , where 1qx  is the 25% quartile of 

the standard normal distribution. The distribution Nout1 has one extreme 

observation *
upx  with k = 2, the distribution Nout2 has one extreme observation 

*
upx  with k = 3, the distribution Nout3 has two extreme observations *

upx  with 
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k = 2 and k = 3, the distribution Nout4 has one extreme observation *
upx  and one 

extreme observation *
lowx  both with 2k   and the distribution Nout5 has two 

extreme observations *
upx  and two extreme observations *

lowx , with k = 2 and 

k = 3. This set of distributions was specifically considered in order to identify 

which normality tests are less sensitive to extreme observations that may be present 

in an underlying normal data sample. 

 

 

A.5 Simulation study and power results 

An extensive simulation study is presented in the following to estimate the power of 

the selected normality tests. The effects on the power of the tests due to the sample size, 

the selected significance level and the type of alternative distribution are considered in the 

simulation study. The study is carried out for three sample sizes (n = 25, n = 50 and 

n = 100) and considering significance levels   of 0.10, 0.05, 0.025 and 0.01. 

Although critical values or limiting distributions of the tests statistics are available for 

some of the tests considered herein, critical values for each sample size under consideration 

were, nonetheless, derived empirically for each test for the considered nominal significance 

levels, before carrying out the power study. These critical values were based on 1000000 

samples drawn from the standard normal distribution. In addition to the referred critical 

values, the values of 
3

 , 
4

 ,  3var   and  4var  , for the Hosking L-moments based 

test, and the values of 
3

( )t
 , 

4

( )t
 ,  ( )

3var t  and  ( )
4var t , for the Hosking trimmed 

L-moments based test, were also determined for each sample size by simulation from 

1000000 samples drawn from the standard normal distribution. For the latter test, the 

parameters were obtained for each of the previously referred trimming levels t of 1, 2 and 

3. The values resulting from this empirical evaluation are presented in Table A.1. As can be 

seen, the values of 
3

  and of 
3

( )t
  for the different trimming levels are very close to zero, 

and are considered to be zero in the subsequent power study. 

Since complete lists of the simulated power values of the several normality tests, for 

the different sample sizes and significance levels represent a prohibitive amount of data, 

only a sample of these results, considered to be representative of the general trend of 

results, is presented herein. Hence, Tables A.2 to A.10 present the power results for the 

symmetric, asymmetric and modified normal distribution sets, considering samples sizes of 

25, 50 and 100 and a significance level   of 0.05. Within the symmetric and asymmetric 

sets, distributions are ordered according to their skewness ( 1 ) and kurtosis ( 2 ) values 

while for the modified normal distributions set this ordering is performed for each group 

of distributions. To complement these results, Tables A.11 and A.12 and Fig. A.2 present 
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the average power results of the different tests over each distribution set and for 

significance levels   of 0.05 and 0.10. For Fig. A.2, the numbering of the tests is defined 

according to Table A.13. In the definition of the average powers, the N(0;1) distribution 

case is not considered for the case of symmetric distributions and distributions Nout1 to 

Nout5 are also not considered for the modified normal distributions case. The format of 

the performance results of Tables A.11 and A.12 is defined such that power values above 

75% are in bold and values between 50% and 75% are in italic.  

 

Table A.1.  Empirical values of 
3

 , 
4

 ,  3var  ,  4var  , 
3

( )t
 , 

4

( )t
 ,  ( )

3var t  and  ( )
4var t . 

Sample size n  
3

  
4

   3var    4var   

25  -1.3015e-5 * 1.2383e-1 8.8038e-3 4.9295e-3 

50  -2.5783e-5 * 1.2321e-1 4.0493e-3 2.0802e-3 

100  7.9729e-6 * 1.2291e-1 1.9434e-3 9.5785e-4 

      

Sample size n 
Trimming 

level t 3

( )t
  

4

( )t
   ( )

3var t   ( )
4var t  

1 2.8032e-5 * 6.7077e-2 8.1391e-3 4.2752e-3 

2 3.0692e-5 * 4.4174e-2 8.6570e-3 4.2066e-3 25 

3 2.0512e-5 * 3.3180e-2 9.5765e-3 4.4609e-3 

      

1 -3.7182e-5 * 6.4456e-2 3.4657e-3 1.5699e-3 

2 -1.4220e-5 * 4.0389e-2 3.3818e-3 1.3301e-3 50 

3 8.5138e-6 * 2.8224e-2 3.3813e-3 1.1823e-3 

      

1 -1.7081e-5 * 6.3424e-2 1.6064e-3 6.8100e-4 

2 -1.4710e-5 * 3.9030e-2 1.5120e-3 5.4207e-4 100 

3 -3.5160e-6 * 2.6645e-2 1.4547e-3 4.5107e-4 

* these values are considered to be zero in the remaining of the power study. 

 

 

 



A.29 

Table A.2. Empirical power results for symmetrical distributions ( = 0.05, n = 25). 

Distribution √1 2 K-S AD* Z c Z a P s K 2 JB DH RJB T Lmom T TLmom
(1) T TLmom

(2) T TLmom
(3) BM 3-4 BM 3-6 T MC-LR

Beta(0.5;0.5) 0 1.50 41.1 75.9 90.5 85.0 75.8 69.4 0.5 62.1 0.2 83.7 38.9 18.1 10.8 0.0 0.0 45.8

Beta(1;1) 0 1.80 12.1 22.9 32.3 22.2 22.8 23.9 0.1 13.2 0.1 28.1 9.4 5.3 4.4 0.0 0.0 12.9

Tukey(2) 0 1.80 12.0 23.1 32.5 22.4 23.0 24.0 0.2 13.4 0.1 28.4 9.4 5.2 4.4 0.0 0.0 13.0

Tukey(0.5) 0 2.08 6.3 8.1 8.2 5.2 8.0 6.4 0.2 3.2 0.2 7.8 4.8 4.0 4.0 0.1 0.1 7.4

Beta(2;2) 0 2.14 5.7 6.7 6.6 4.2 6.7 5.0 0.3 2.6 0.3 6.2 4.4 3.9 4.0 0.1 0.1 6.8

Tukey(5) 0 2.90 13.6 13.3 4.0 4.4 13.4 2.4 2.9 4.9 7.0 9.6 25.1 23.7 19.9 1.9 2.0 5.3

Tukey(0.14) 0 2.97 5.0 4.9 4.7 4.8 4.9 4.7 4.7 4.7 4.8 4.9 4.8 4.7 4.7 4.6 4.6 4.9

N(0;1) 0 3.00 5.0 5.1 5.0 5.0 5.1 5.0 5.0 5.0 5.0 5.0 4.8 4.7 4.7 5.0 5.0 4.9

t(10) 0 4.00 7.6 9.4 11.4 11.2 9.5 13.0 13.9 13.4 14.2 11.2 6.1 5.5 5.2 13.8 13.9 4.8

Logistic(0;2) 0 4.20 9.1 11.8 13.6 13.6 11.9 15.8 17.0 16.7 17.9 14.1 7.2 6.2 5.7 16.6 16.8 4.8

Tukey(10) 0 5.38 95.4 96.2 71.9 80.6 96.2 51.6 58.8 68.4 89.3 92.7 98.3 96.9 93.7 41.2 44.7 55.7

Laplace(0;1) 0 6.00 25.8 32.3 28.7 29.9 32.8 32.5 35.3 36.6 41.7 38.1 22.5 16.4 13.0 32.1 32.9 5.4

t(4) 0 ∞ 19.7 26.1 28.6 28.8 26.4 32.0 34.0 33.9 36.0 30.4 11.0 8.0 6.9 32.6 33.2 4.9

t(2) 0 ∞ 52.5 61.3 59.7 61.0 61.6 62.7 65.1 66.1 69.3 65.9 29.1 16.6 12.4 61.5 62.5 6.6

t(1) 0 ∞ 90.6 93.5 90.7 91.9 93.7 90.7 92.1 93.0 95.0 94.7 74.1 51.3 38.8 88.9 89.7 17.0

Cauchy(0;0.5) - - 90.7 93.6 90.7 91.9 93.7 90.7 92.1 93.1 95.0 94.8 74.0 51.1 38.6 88.9 89.8 17.0

Cauchy(0;1) - - 90.8 93.5 90.6 91.8 93.6 90.6 92.0 92.9 94.9 94.6 74.2 51.3 38.6 88.9 89.7 17.1

Cauchy(0;2) - - 90.7 93.4 90.6 91.8 93.5 90.6 92.0 92.9 94.8 94.6 73.9 51.1 38.5 88.9 89.7 17.1
 

 

Table A.2. (continued) Empirical power results for symmetrical distributions ( = 0.05, n = 25). 

Distribution √1 2 T w T MC-LR -T w T S, l T K, l W W SF W RG D r CS Q Q-Q* BCMR  3
2 T EP I n R s,J

Beta(0.5;0.5) 0 1.50 67.7 67.6 3.3 5.7 86.5 65.5 96.1 3.9 60.9 88.7 61.5 86.0 82.4 90.5 63.2 0.8 60.1

Beta(1;1) 0 1.80 30.8 25.6 1.1 3.0 28.2 11.2 51.3 14.3 9.3 32.0 20.5 24.0 23.2 44.0 18.0 0.2 29.1

Tukey(2) 0 1.80 30.9 25.7 1.1 3.0 28.4 11.4 51.4 14.3 9.5 32.3 20.8 24.2 23.4 44.0 18.3 0.2 29.2

Tukey(0.5) 0 2.08 13.5 11.0 0.8 2.4 7.9 2.8 17.9 11.0 2.3 9.3 6.5 6.4 6.2 13.4 6.5 0.3 13.3

Beta(2;2) 0 2.14 11.3 9.4 0.8 2.5 6.4 2.4 14.5 9.8 2.0 7.6 5.5 5.2 5.0 10.5 5.5 0.4 11.2

Tukey(5) 0 2.90 11.2 8.8 3.3 12.5 7.3 8.0 5.6 6.3 8.1 6.6 2.4 2.0 7.4 7.8 7.5 10.0 11.1

Tukey(0.14) 0 2.97 4.8 4.7 4.8 4.9 4.8 4.8 4.8 4.8 4.8 4.8 4.7 4.6 4.8 4.8 4.9 4.8 4.8

N(0;1) 0 3.00 5.0 4.8 5.0 5.0 5.0 5.0 5.0 5.1 5.0 5.0 5.0 4.9 5.0 5.0 5.0 5.0 5.0

t(10) 0 4.00 9.4 8.0 12.5 10.1 10.8 12.8 6.8 10.6 13.0 10.4 9.2 11.1 11.5 11.3 9.9 13.0 9.5

Logistic(0;2) 0 4.20 11.9 9.6 14.9 12.1 13.2 15.9 7.7 13.2 16.2 12.6 10.9 13.2 14.1 14.3 12.1 16.3 11.9

Tukey(10) 0 5.38 83.8 90.4 48.8 50.9 89.0 91.7 72.5 89.7 91.9 87.2 37.9 46.7 89.9 82.2 80.4 14.7 95.5

Laplace(0;1) 0 6.00 34.4 28.2 30.0 25.3 30.9 36.9 17.1 33.8 37.5 29.2 19.7 27.1 32.8 36.3 30.7 33.2 35.7

t(4) 0 ∞ 26.8 22.8 29.9 24.4 28.4 32.8 17.9 29.5 33.2 27.3 19.8 28.0 29.8 30.3 26.8 27.5 27.4

t(2) 0 ∞ 61.8 57.0 58.9 51.3 61.4 66.2 47.4 64.0 66.6 60.1 39.2 57.9 63.0 63.9 61.2 31.9 63.4

t(1) 0 ∞ 92.8 91.3 88.0 82.0 92.6 94.2 86.0 93.8 94.3 92.0 64.9 88.4 93.1 92.9 92.7 11.2 94.3

Cauchy(0;0.5) - - 92.9 91.5 88.2 82.0 92.6 94.2 86.0 93.8 94.3 92.0 64.9 88.5 93.1 92.9 92.7 11.1 94.3

Cauchy(0;1) - - 92.8 91.5 88.0 82.1 92.5 94.1 85.9 93.7 94.2 91.9 64.7 88.4 93.0 92.8 92.6 11.2 94.3

Cauchy(0;2) - - 92.8 91.4 87.9 82.0 92.4 94.0 85.9 93.7 94.2 91.8 64.8 88.5 93.0 92.8 92.5 11.1 94.3  
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Table A.3. Empirical power results for symmetrical distributions ( = 0.05, n = 50). 

Distribution √1 2 K-S AD* Z c Z a P s K 2 JB DH RJB T Lmom T TLmom
(1) T TLmom

(2) T TLmom
(3) BM 3-4 BM 3-6 T MC-LR

Beta(0.5;0.5) 0 1.50 80.0 99.1 100.0 100.0 99.2 99.5 38.8 97.6 0.0 99.6 82.2 51.3 30.9 0.0 0.0 69.8

Beta(1;1) 0 1.80 26.0 57.6 82.6 79.4 57.9 77.8 0.8 45.7 0.0 70.5 25.9 11.7 7.3 0.0 0.0 19.0

Tukey(2) 0 1.80 26.0 57.7 82.7 79.5 58.1 77.8 0.8 46.0 0.0 70.7 26.0 11.8 7.5 0.0 0.0 19.0

Tukey(0.5) 0 2.08 9.8 17.2 24.3 20.2 17.4 28.8 0.1 8.7 0.0 23.1 8.9 5.5 4.6 0.0 0.0 8.6

Beta(2;2) 0 2.14 8.2 13.3 17.4 14.3 13.4 21.4 0.1 6.0 0.0 17.3 7.4 5.0 4.3 0.0 0.0 7.7

Tukey(5) 0 2.90 23.6 24.9 4.1 3.5 25.2 0.8 1.1 1.7 6.3 13.2 44.4 45.2 40.1 0.2 0.2 7.7

Tukey(0.14) 0 2.97 5.0 4.9 4.4 4.6 4.9 4.3 4.3 4.4 4.4 4.8 4.8 4.8 4.8 4.1 4.1 5.0

N(0;1) 0 3.00 5.0 5.0 5.0 5.0 5.0 5.1 5.0 5.1 5.0 5.0 4.8 4.9 4.9 5.1 5.1 5.0

t(10) 0 4.00 8.8 12.0 16.2 14.6 12.1 17.9 20.5 19.9 21.2 14.5 7.1 6.1 5.7 19.9 20.0 4.7

Logistic(0;2) 0 4.20 11.3 15.9 19.7 18.0 16.0 22.2 25.8 25.2 27.4 19.6 9.1 7.3 6.5 24.1 24.4 4.8

Tukey(10) 0 5.38 100.0 100.0 94.9 97.4 100.0 66.0 78.9 84.7 99.3 99.8 100.0 100.0 99.9 42.6 46.2 83.6

Laplace(0;1) 0 6.00 43.2 54.6 45.6 45.4 55.2 48.8 55.5 56.8 65.6 61.7 41.4 29.6 23.0 47.5 48.3 7.2

t(4) 0 ∞ 30.6 42.1 46.0 44.1 42.5 49.3 54.0 54.0 56.9 47.4 16.7 10.6 8.6 50.4 50.9 5.4

t(2) 0 ∞ 77.8 85.9 84.0 84.1 86.1 85.2 88.1 88.7 91.1 88.8 53.2 29.4 20.2 84.0 84.6 9.4

t(1) 0 ∞ 99.4 99.7 99.3 99.5 99.7 99.2 99.5 99.6 99.8 99.8 96.8 83.4 66.9 98.7 98.9 34.2

Cauchy(0;0.5) - - 99.4 99.7 99.4 99.5 99.7 99.3 99.6 99.6 99.8 99.8 96.8 83.4 66.9 98.8 98.9 34.2

Cauchy(0;1) - - 99.4 99.7 99.3 99.5 99.7 99.2 99.5 99.6 99.8 99.8 96.8 83.4 66.9 98.8 98.9 34.2

Cauchy(0;2) - - 99.4 99.7 99.3 99.4 99.7 99.2 99.5 99.6 99.8 99.8 96.8 83.4 67.0 98.8 98.9 34.1  
 

Table A.3. (continued) Empirical power results for symmetrical distributions ( = 0.05, n = 50). 

Distribution √1 2 T w T MC-LR -T w T S, l T K, l W W SF W RG D r CS Q Q-Q* BCMR  3
2 T EP I n R s,J

Beta(0.5;0.5) 0 1.50 96.4 95.7 14.4 5.9 99.9 99.2 100.0 11.8 98.8 100.0 94.1 99.9 99.9 100.0 97.7 0.1 93.2

Beta(1;1) 0 1.80 64.7 56.0 2.3 2.3 74.9 46.2 93.8 56.3 40.6 80.6 55.5 69.2 68.7 90.7 54.3 0.0 62.2

Tukey(2) 0 1.80 64.8 55.9 2.3 2.4 75.0 46.4 93.8 56.1 40.8 80.8 55.4 69.4 68.8 90.7 54.5 0.0 62.3

Tukey(0.5) 0 2.08 29.2 22.6 0.8 1.6 20.8 7.3 45.5 36.4 5.8 26.0 14.3 14.9 16.7 40.8 16.5 0.0 28.7

Beta(2;2) 0 2.14 23.7 18.2 0.7 1.5 15.2 5.0 35.9 30.0 3.9 19.3 11.0 11.0 12.0 31.1 12.6 0.0 23.0

Tukey(5) 0 2.90 19.8 15.0 1.9 16.9 13.0 10.7 13.7 7.2 10.5 11.8 1.1 0.8 11.9 5.4 9.5 9.7 20.0

Tukey(0.14) 0 2.97 4.7 4.7 4.4 4.5 4.6 4.5 4.9 4.5 4.5 4.6 4.5 4.2 4.6 4.6 4.9 4.5 4.7

N(0;1) 0 3.00 5.1 4.9 5.0 5.0 5.0 5.0 5.0 5.1 5.0 5.0 5.1 5.0 5.0 5.0 5.0 5.1 5.1

t(10) 0 4.00 13.7 11.2 16.3 16.0 15.5 18.8 7.4 16.1 19.2 14.2 12.0 15.3 16.6 17.1 12.5 20.8 13.8

Logistic(0;2) 0 4.20 18.7 15.2 19.6 19.1 19.5 24.0 8.5 21.3 24.5 17.7 14.0 18.1 21.0 22.9 16.4 27.2 18.8

Tukey(10) 0 5.38 98.6 99.7 64.7 60.5 99.7 99.7 97.9 99.5 99.8 99.5 33.6 36.3 99.7 97.0 98.2 10.6 100.0

Laplace(0;1) 0 6.00 62.9 55.0 41.5 40.1 52.1 59.2 26.7 59.9 60.0 48.4 26.9 37.6 54.4 60.9 51.5 54.9 63.9

t(4) 0 ∞ 47.1 41.5 43.5 42.6 46.8 52.7 27.4 51.1 53.3 44.3 29.2 42.5 48.8 52.1 42.9 44.7 47.6

t(2) 0 ∞ 88.6 85.8 79.5 77.8 86.4 89.2 72.1 89.4 89.4 84.8 55.3 78.7 87.3 89.3 85.9 33.3 88.8

t(1) 0 ∞ 99.8 99.7 98.4 97.5 99.7 99.8 98.6 99.8 99.8 99.6 78.8 98.0 99.7 99.7 99.7 2.9 99.8

Cauchy(0;0.5) - - 99.8 99.7 98.4 97.5 99.7 99.8 98.7 99.8 99.8 99.6 78.6 98.1 99.7 99.7 99.7 2.8 99.8

Cauchy(0;1) - - 99.8 99.7 98.4 97.4 99.6 99.8 98.6 99.8 99.8 99.6 78.9 98.1 99.7 99.7 99.7 2.8 99.8

Cauchy(0;2) - - 99.8 99.7 98.3 97.4 99.6 99.7 98.6 99.8 99.8 99.6 78.7 98.1 99.7 99.7 99.7 2.9 99.8  
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Table A.4. Empirical power results for symmetrical distributions ( = 0.05, n = 100). 

Distribution √1 2 K-S AD* Z c Z a P s K 2 JB DH RJB T Lmom T TLmom
(1) T TLmom

(2) T TLmom
(3) BM 3-4 BM 3-6 T MC-LR

Beta(0.5;0.5) 0 1.50 99.4 100.0 100.0 100.0 100.0 96.8 100.0 100.0 62.8 100.0 99.3 88.4 67.1 0.0 0.0 93.4

Beta(1;1) 0 1.80 58.7 95.0 99.9 99.9 95.2 99.7 74.4 95.2 0.8 97.7 59.2 28.6 16.0 0.0 0.0 32.3

Tukey(2) 0 1.80 58.8 95.0 99.9 100.0 95.2 99.7 74.4 95.3 0.8 97.7 59.4 28.6 16.2 0.0 0.0 32.2

Tukey(0.5) 0 2.08 19.5 42.7 70.9 70.5 43.3 75.7 8.9 38.5 0.0 56.8 19.7 9.8 6.6 0.0 0.0 11.3

Beta(2;2) 0 2.14 15.0 31.9 55.6 55.0 32.3 63.0 4.6 26.4 0.0 44.4 15.1 7.9 5.8 0.0 0.0 9.6

Tukey(5) 0 2.90 44.8 51.9 16.4 11.3 52.7 0.4 0.4 0.5 6.9 22.2 72.7 76.1 71.5 0.0 0.0 16.0

Tukey(0.14) 0 2.97 4.9 4.9 3.9 4.2 4.9 3.9 3.8 3.9 4.0 4.7 4.9 4.9 4.9 3.4 3.4 5.0

N(0;1) 0 3.00 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 4.8 4.8 4.8 5.0 5.1 4.9

t(10) 0 4.00 10.8 16.2 23.6 19.4 16.3 26.0 30.8 29.5 31.9 19.8 8.4 6.7 6.1 28.7 28.4 5.0

Logistic(0;2) 0 4.20 15.6 24.0 29.7 25.0 24.2 33.3 39.5 38.5 42.4 29.6 12.3 8.7 7.3 35.0 34.6 5.3

Tukey(10) 0 5.38 100.0 100.0 100.0 100.0 100.0 89.4 96.4 97.6 100.0 100.0 100.0 100.0 100.0 43.0 41.0 98.3

Laplace(0;1) 0 6.00 70.4 82.6 69.5 68.9 83.0 72.1 80.0 80.7 88.8 87.4 70.2 53.2 41.3 66.4 65.5 13.1

t(4) 0 ∞ 49.0 65.2 68.7 65.5 65.6 72.0 77.4 77.4 80.4 70.6 27.6 15.0 11.0 71.3 70.7 6.9

t(2) 0 ∞ 95.9 98.5 97.7 97.7 98.5 98.0 98.8 98.9 99.3 99.0 82.1 50.7 32.5 97.0 96.8 17.1

t(1) 0 ∞ 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 98.7 91.6 100.0 100.0 65.2

Cauchy(0;0.5) - - 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 98.7 91.6 100.0 100.0 65.1

Cauchy(0;1) - - 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 98.7 91.5 100.0 100.0 65.3

Cauchy(0;2) - - 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 98.6 91.4 100.0 100.0 65.0  
 

Table A.4. (continued) Empirical power results for symmetrical distributions ( = 0.05, n = 100). 

Distribution √1 2 T w T MC-LR -T w T S, l T K, l W W SF W RG D r CS Q Q-Q* BCMR  3
2 T EP I n R s,J

Beta(0.5;0.5) 0 1.50 100.0 100.0 71.0 7.8 100.0 100.0 100.0 37.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 0.0 99.9

Beta(1;1) 0 1.80 94.2 90.5 15.8 2.6 99.6 96.5 100.0 95.6 95.0 99.8 95.9 99.6 99.3 100.0 94.3 0.0 93.6

Tukey(2) 0 1.80 94.3 90.5 15.7 2.5 99.6 96.5 100.0 95.5 95.1 99.8 95.8 99.6 99.3 100.0 94.3 0.0 93.6

Tukey(0.5) 0 2.08 59.1 48.5 2.5 1.3 60.4 32.3 88.3 79.6 27.5 69.7 40.9 46.2 53.6 86.0 45.6 0.0 58.5

Beta(2;2) 0 2.14 49.0 39.2 1.7 1.2 45.7 21.1 78.1 70.6 17.4 55.2 30.4 33.2 39.2 75.1 34.3 0.0 48.6

Tukey(5) 0 2.90 38.9 31.7 1.4 27.2 37.8 25.1 53.1 9.8 23.6 39.1 2.6 1.8 32.8 3.1 15.2 8.4 39.4

Tukey(0.14) 0 2.97 4.7 4.7 4.3 4.0 4.3 4.1 4.8 4.4 4.1 4.3 4.1 3.8 4.2 4.4 4.8 4.2 4.8

N(0;1) 0 3.00 5.0 4.9 5.0 5.0 5.0 5.0 4.9 5.0 5.0 5.0 5.1 4.9 5.0 5.0 5.0 5.0 5.0

t(10) 0 4.00 21.1 17.1 20.6 23.2 23.1 28.0 8.4 25.7 28.6 20.4 15.7 20.8 24.7 27.1 17.1 32.6 21.3

Logistic(0;2) 0 4.20 31.7 25.6 25.3 27.8 30.7 36.9 10.7 36.4 37.6 27.1 18.4 24.7 32.7 38.1 25.1 44.1 31.7

Tukey(10) 0 5.38 100.0 100.0 91.0 70.5 100.0 100.0 100.0 100.0 100.0 100.0 24.3 21.6 100.0 99.9 100.0 4.4 100.0

Laplace(0;1) 0 6.00 90.2 86.3 57.3 56.9 79.7 84.1 48.8 87.2 84.7 75.8 36.5 50.7 81.1 86.1 80.1 74.7 90.6

t(4) 0 ∞ 73.5 68.2 59.8 63.1 71.2 76.3 44.8 77.6 76.9 67.8 41.8 60.1 72.9 78.1 66.7 61.3 73.6

t(2) 0 ∞ 99.2 98.8 94.7 94.6 98.6 99.0 93.8 99.3 99.1 98.2 73.1 93.6 98.7 99.2 98.5 24.9 99.2

t(1) 0 ∞ 100.0 100.0 100.0 99.9 100.0 100.0 100.0 100.0 100.0 100.0 89.3 99.9 100.0 100.0 100.0 0.3 100.0

Cauchy(0;0.5) - - 100.0 100.0 100.0 99.9 100.0 100.0 100.0 100.0 100.0 100.0 89.2 99.9 100.0 100.0 100.0 0.2 100.0

Cauchy(0;1) - - 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 89.3 99.9 100.0 100.0 100.0 0.2 100.0

Cauchy(0;2) - - 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 89.3 99.9 100.0 100.0 100.0 0.3 100.0  
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Table A.5. Empirical power results for asymmetrical distributions ( = 0.05, n = 25). 

Distribution √1 2 K-S AD* Z c Z a P s K 2 JB DH RJB T Lmom T TLmom
(1) T TLmom

(2) T TLmom
(3) BM 3-4 BM 3-6 T MC-LR

Beta(4;0.5) -1.79 6.35 89.5 97.9 99.2 99.6 97.7 76.3 83.4 95.7 75.1 98.2 64.2 62.6 62.2 49.8 51.0 73.8

Beta(5;1) -1.18 4.20 47.0 69.3 78.1 83.3 68.4 43.3 48.3 64.9 39.2 70.5 24.5 23.0 22.5 26.0 26.5 28.7

Beta(2;1) -0.57 2.40 22.1 34.3 40.5 43.6 33.8 11.9 8.5 25.6 5.7 34.6 11.9 10.3 9.9 2.6 2.6 16.9

Weibull(3;4). -0.09 2.75 4.8 4.6 4.0 4.0 4.6 3.2 2.8 3.2 2.8 4.1 4.5 4.6 4.6 2.5 2.5 5.1

Weibull(2;3.4) 0.05 2.71 4.5 4.3 3.6 3.5 4.3 3.0 2.4 2.8 2.4 3.6 4.4 4.6 4.6 2.3 2.3 5.2

Gamma(100;1) 0.20 3.06 5.5 5.8 6.2 6.2 5.8 6.2 6.2 5.8 6.0 5.9 4.9 4.9 4.9 6.0 5.9 5.2

Gamma(15;1) 0.52 3.40 9.4 11.4 13.5 13.7 11.3 12.4 12.9 11.2 11.7 11.6 6.4 6.3 6.1 10.6 10.5 6.1

Beta(2;5) 0.60 2.88 13.7 18.6 21.3 23.3 18.3 11.9 11.8 14.7 9.3 17.4 7.8 7.5 7.4 7.1 7.1 9.0

Weibull(1;2) 0.63 3.25 12.0 15.7 19.3 20.6 15.5 14.3 14.5 14.1 12.1 15.4 6.7 6.6 6.5 10.7 10.6 7.6

Gamma(9;1) 0.67 3.67 12.3 15.9 18.9 19.6 15.7 16.6 17.3 15.5 15.6 16.1 7.3 7.0 6.8 13.7 13.7 6.9

2(10) 0.89 4.20 18.5 25.5 30.4 31.9 25.1 24.7 26.1 25.0 22.9 25.6 9.6 9.1 8.9 19.2 19.2 8.6

Gamma(5;1) 0.89 4.20 18.5 25.5 30.3 31.9 25.2 24.8 26.3 25.0 23.1 25.7 9.8 9.2 8.9 19.2 19.2 8.6

Gumbel(1;2) 1.14 5.40 24.5 33.6 38.7 40.2 33.2 33.6 35.4 33.8 32.2 34.3 12.6 11.5 11.0 26.5 26.7 9.5

2(4) 1.14 6.00 39.8 57.1 64.8 68.8 56.4 46.2 49.8 56.2 43.4 57.7 19.4 17.9 17.3 33.3 33.7 17.4

Gamma(3;2) 1.15 5.00 27.9 40.2 46.8 49.9 39.6 35.3 37.7 39.6 32.9 40.4 13.6 12.6 12.2 26.1 26.2 11.9

Gamma(2;2) 1.41 6.00 39.6 57.1 64.7 68.8 56.3 46.3 49.9 56.1 43.6 57.6 19.4 17.8 17.2 33.4 33.8 17.5

2(2) 2.00 9.00 69.4 87.6 92.3 94.7 87.0 68.3 73.6 85.3 66.0 88.3 39.5 36.7 35.9 48.8 49.7 40.2

Weibull(0.5;1) 2.00 9.00 69.4 87.4 92.2 94.6 86.8 68.4 73.6 85.3 66.0 88.2 39.4 36.7 36.0 48.9 49.8 40.3

2(1) 2.83 15.00 95.2 99.3 99.7 99.9 99.2 87.8 92.2 98.3 87.5 99.4 74.6 73.0 72.8 67.2 68.5 79.8

LN(0;1) 6.18 113.90 88.0 96.0 97.5 98.2 95.8 87.4 90.5 95.4 86.9 96.3 62.2 57.5 56.5 72.3 73.3 51.0  
 

Table A.5. (continued) Empirical power results for asymmetrical distributions ( = 0.05, n = 25). 

Distribution √1 2 T w T MC-LR -T w T S, l T K, l W W SF W RG D r CS Q Q-Q* BCMR  3
2 T EP I n R s,J

Beta(4;0.5) -1.79 6.35 21.3 71.5 89.7 39.4 99.1 98.2 99.4 76.8 98.0 99.2 50.3 99.8 99.0 14.5 96.4 39.7 50.6

Beta(5;1) -1.18 4.20 10.8 24.6 60.1 18.6 78.3 71.2 80.1 31.5 69.8 79.2 23.7 82.7 76.7 8.0 69.5 34.8 18.2

Beta(2;1) -0.57 2.40 13.7 16.7 15.4 1.4 40.8 27.8 52.0 6.2 25.9 42.9 2.5 49.7 37.4 15.5 34.0 6.1 11.5

Weibull(3;4). -0.09 2.75 4.7 4.7 3.2 3.0 4.2 3.4 5.5 4.4 3.3 4.4 3.5 3.8 4.0 4.0 4.5 3.0 4.7

Weibull(2;3.4) 0.05 2.71 4.8 4.9 2.8 3.3 3.8 3.0 5.4 4.6 2.9 4.1 3.5 3.6 3.6 4.0 4.1 2.6 4.8

Gamma(100;1) 0.20 3.06 5.2 5.1 6.4 5.7 6.1 6.1 5.8 5.6 6.1 6.1 5.1 5.8 6.1 5.2 6.0 5.7 5.3

Gamma(15;1) 0.52 3.40 6.4 6.5 14.7 9.1 13.3 13.1 11.4 8.7 12.9 13.2 8.5 10.8 13.4 5.9 12.9 10.1 7.2

Beta(2;5) 0.60 2.88 7.1 8.3 18.2 11.8 21.9 17.3 24.5 7.6 16.6 22.5 25.5 18.9 20.7 5.6 20.9 8.2 7.4

Weibull(1;2) 0.63 3.25 6.8 7.4 18.7 10.4 19.2 16.9 19.0 9.3 16.5 19.5 17.6 15.8 18.7 5.4 18.0 10.2 7.7

Gamma(9;1) 0.67 3.67 7.3 7.5 20.5 11.4 18.8 18.1 16.2 11.1 17.9 18.7 11.8 14.8 18.7 6.3 18.2 13.2 8.6

2(10) 0.89 4.20 9.1 9.9 31.8 15.9 30.4 28.7 27.0 16.1 28.3 30.3 20.2 23.2 30.1 7.3 29.0 19.1 11.9

Gamma(5;1) 0.89 4.20 9.1 9.9 31.8 15.9 30.4 28.8 27.0 16.1 28.4 30.3 20.3 23.2 30.1 7.4 29.1 19.2 11.9

Gumbel(1;2) 1.14 5.40 12.9 13.4 41.3 20.7 38.9 37.8 33.8 23.4 37.5 38.7 21.8 29.4 38.8 11.2 37.7 25.7 17.5

2(4) 1.14 6.00 15.0 19.8 61.0 28.3 65.1 60.6 63.7 34.0 59.8 65.5 60.1 58.2 64.2 11.1 60.7 34.8 23.0

Gamma(3;2) 1.15 5.00 11.6 13.9 46.5 21.8 47.1 43.9 44.2 24.0 43.2 47.3 36.6 37.6 46.5 9.0 44.5 27.0 16.7

Gamma(2;2) 1.41 6.00 14.9 19.8 60.8 28.3 65.0 60.6 63.5 34.1 59.7 65.5 60.1 58.1 64.1 11.1 60.6 34.9 23.2

2(2) 2.00 9.00 23.6 42.7 84.9 42.6 92.4 89.1 92.9 60.7 88.4 92.8 95.9 94.3 91.8 17.2 87.3 44.5 41.8

Weibull(0.5;1) 2.00 9.00 23.9 42.8 85.1 42.7 92.3 89.0 92.8 60.7 88.3 92.6 95.8 94.3 91.6 17.6 87.2 44.3 41.7

2(1) 2.83 15.00 39.4 82.2 97.4 58.0 99.7 99.4 99.8 89.0 99.3 99.8 100.0 100.0 99.7 30.9 98.6 27.6 70.9

LN(0;1) 6.18 113.90 50.7 67.3 95.4 61.7 97.6 96.6 97.5 84.6 96.3 97.7 97.6 97.2 97.4 43.6 96.1 30.6 72.5  
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Table A.6. Empirical power results for asymmetrical distributions ( = 0.05, n = 50). 

Distribution √1 2 K-S AD* Z c Z a P s K 2 JB DH RJB T Lmom T TLmom
(1) T TLmom

(2) T TLmom
(3) BM 3-4 BM 3-6 T MC-LR

Beta(4;0.5) -1.79 6.35 99.9 100.0 100.0 100.0 100.0 98.9 99.7 100.0 97.3 100.0 96.4 96.6 96.6 67.8 68.8 95.6

Beta(5;1) -1.18 4.20 81.4 96.7 99.2 99.8 96.2 77.3 85.0 96.7 70.4 97.7 58.0 56.9 56.4 35.5 36.1 53.0

Beta(2;1) -0.57 2.40 45.7 72.2 85.2 91.8 71.4 29.0 20.0 67.9 8.5 77.8 30.6 25.4 23.5 0.7 0.7 29.5

Weibull(3;4). -0.09 2.75 5.1 5.1 3.7 4.1 5.0 3.1 1.8 2.7 1.8 4.4 4.8 4.8 4.9 1.4 1.4 5.4

Weibull(2;3.4) 0.05 2.71 4.7 4.6 3.6 3.9 4.5 3.3 1.6 2.3 1.6 4.0 4.4 4.5 4.5 1.5 1.5 5.2

Gamma(100;1) 0.20 3.06 6.3 6.9 7.7 7.8 6.9 7.5 7.6 7.1 7.3 7.2 5.4 5.4 5.4 6.6 6.6 5.2

Gamma(15;1) 0.52 3.40 14.2 18.7 23.2 24.4 18.2 20.1 21.1 20.4 18.9 19.9 8.7 8.6 8.5 14.4 14.4 7.2

Beta(2;5) 0.60 2.88 25.7 39.6 49.1 58.6 38.6 21.9 22.3 39.8 15.7 43.0 15.0 14.2 13.8 7.1 7.0 13.4

Weibull(1;2) 0.63 3.25 20.8 31.0 41.0 47.6 30.0 25.7 26.5 33.8 21.3 33.8 11.5 11.2 11.1 14.2 14.1 10.4

Gamma(9;1) 0.67 3.67 20.4 28.6 35.5 37.9 27.9 29.2 31.0 31.8 27.4 30.8 11.7 11.5 11.3 19.7 19.7 8.9

2(10) 0.89 4.20 33.6 48.6 58.1 62.5 47.5 44.9 48.1 53.8 42.2 51.8 18.4 17.9 17.8 28.7 28.8 13.0

Gamma(5;1) 0.89 4.20 33.2 48.4 57.8 62.3 47.3 44.7 47.9 53.5 41.9 51.6 18.4 17.9 17.7 28.5 28.6 13.0

Gumbel(1;2) 1.14 5.40 43.8 60.3 67.6 70.4 59.3 58.4 61.7 65.0 56.8 63.4 24.8 23.4 22.8 40.4 40.6 14.9

2(4) 1.14 6.00 69.9 89.1 94.8 97.1 88.2 77.3 82.4 91.6 73.9 91.3 44.1 43.0 42.8 49.6 50.0 32.4

Gamma(3;2) 1.15 5.00 51.4 72.2 81.4 86.1 70.8 62.6 67.1 77.0 59.1 75.5 29.4 28.5 28.3 39.2 39.4 20.5

Gamma(2;2) 1.41 6.00 69.9 89.3 94.8 97.1 88.4 77.4 82.4 91.8 73.9 91.4 44.3 43.2 42.9 49.5 49.9 32.6

2(2) 2.00 9.00 96.1 99.7 99.9 100.0 99.6 95.4 97.6 99.7 93.3 99.8 79.0 78.6 78.7 69.4 70.1 70.2

Weibull(0.5;1) 2.00 9.00 96.2 99.7 100.0 100.0 99.6 95.4 97.6 99.7 93.3 99.8 79.1 78.7 78.8 69.5 70.2 70.2

2(1) 2.83 15.00 100.0 100.0 100.0 100.0 100.0 99.8 100.0 100.0 99.4 100.0 98.6 98.8 98.8 86.8 87.5 97.5

LN(0;1) 6.18 113.90 99.5 100.0 100.0 100.0 100.0 99.5 99.8 100.0 99.3 100.0 94.7 94.3 94.4 91.3 91.8 82.6  
 

Table A.6. (continued) Empirical power results for asymmetrical distributions ( = 0.05, n = 50). 

Distribution √1 2 T w T MC-LR -T w T S, l T K, l W W SF W RG D r CS Q Q-Q* BCMR  3
2 T EP I n R s,J

Beta(4;0.5) -1.79 6.35 30.5 95.0 99.8 70.2 100.0 100.0 100.0 96.7 100.0 100.0 68.8 100.0 100.0 16.1 100.0 49.4 73.8

Beta(5;1) -1.18 4.20 11.5 45.6 92.0 38.2 99.2 98.0 99.4 53.2 97.7 99.3 33.0 99.8 99.0 8.8 96.1 58.4 24.3

Beta(2;1) -0.57 2.40 25.7 32.3 34.1 1.0 84.2 69.7 92.3 6.7 66.6 86.8 0.8 94.5 81.2 40.4 71.9 5.0 18.3

Weibull(3;4). -0.09 2.75 4.9 5.0 2.8 2.1 4.2 2.9 6.8 4.8 2.7 4.7 2.7 3.7 3.8 4.0 5.1 1.8 4.9

Weibull(2;3.4) 0.05 2.71 5.3 5.2 2.4 1.9 3.9 2.5 6.8 5.4 2.4 4.4 3.7 3.8 3.5 4.3 4.4 1.5 5.3

Gamma(100;1) 0.20 3.06 5.4 5.3 8.3 5.2 7.7 7.6 6.8 5.9 7.5 7.6 5.7 6.7 7.7 5.3 7.4 6.6 5.5

Gamma(15;1) 0.52 3.40 7.1 7.6 26.7 9.8 23.6 22.4 19.6 11.2 22.1 23.5 14.2 16.8 23.4 6.3 21.6 14.7 8.2

Beta(2;5) 0.60 2.88 9.1 12.3 40.4 10.0 50.2 39.6 56.0 8.2 37.7 52.4 62.2 49.3 47.7 9.3 44.6 9.9 8.4

Weibull(1;2) 0.63 3.25 7.7 9.5 39.1 10.3 41.5 35.0 42.3 11.8 33.8 42.7 43.4 35.6 40.0 6.6 35.7 14.7 8.4

Gamma(9;1) 0.67 3.67 8.6 9.6 39.7 13.4 36.2 34.0 31.2 15.7 33.4 36.2 22.7 25.1 35.9 7.1 33.2 20.9 10.6

2(10) 0.89 4.20 11.5 14.4 60.7 19.8 59.2 55.1 54.7 25.4 54.3 59.5 43.5 44.1 58.4 8.8 54.2 32.3 16.0

Gamma(5;1) 0.89 4.20 11.4 14.4 60.4 19.6 58.9 55.0 54.4 25.1 54.1 59.3 43.3 43.8 58.2 8.7 54.0 32.0 15.8

Gumbel(1;2) 1.14 5.40 19.3 21.8 71.8 29.1 69.0 66.7 62.7 39.4 66.1 68.9 42.3 50.4 68.7 15.8 65.4 43.8 27.1

2(4) 1.14 6.00 21.4 34.8 91.9 37.4 94.9 92.3 94.8 56.8 91.7 95.3 95.8 93.9 94.4 14.3 90.7 57.1 35.4

Gamma(3;2) 1.15 5.00 15.8 22.5 80.0 28.3 82.1 77.8 80.4 39.9 76.8 82.7 75.4 72.4 81.2 11.3 76.3 45.8 24.3

Gamma(2;2) 1.41 6.00 21.4 35.0 91.9 37.5 95.0 92.4 94.9 56.7 91.8 95.4 95.8 93.9 94.5 14.4 90.8 57.1 35.2

2(2) 2.00 9.00 37.5 73.2 99.5 56.7 99.9 99.8 100.0 87.5 99.8 100.0 100.0 100.0 99.9 24.6 99.5 60.9 64.5

Weibull(0.5;1) 2.00 9.00 37.4 73.4 99.5 56.7 99.9 99.8 100.0 87.6 99.8 100.0 100.0 100.0 99.9 24.5 99.6 60.8 64.5

2(1) 2.83 15.00 63.0 98.4 100.0 76.7 100.0 100.0 100.0 99.4 100.0 100.0 100.0 100.0 100.0 47.6 100.0 21.6 92.1

LN(0;1) 6.18 113.90 77.2 93.4 100.0 84.3 100.0 100.0 100.0 98.4 100.0 100.0 100.0 100.0 100.0 67.1 100.0 23.3 93.3  
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Table A.7. Empirical power results for asymmetrical distributions ( = 0.05, n = 100). 

Distribution √1 2 K-S AD* Z c Z a P s K 2 JB DH RJB T Lmom T TLmom
(1) T TLmom

(2) T TLmom
(3) BM 3-4 BM 3-6 T MC-LR

Beta(4;0.5) -1.79 6.35 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 85.5 84.7 100.0

Beta(5;1) -1.18 4.20 99.4 100.0 100.0 100.0 100.0 99.8 99.9 100.0 98.7 100.0 92.3 91.9 91.6 48.3 47.3 86.0

Beta(2;1) -0.57 2.40 81.8 98.3 99.9 100.0 98.0 90.0 84.8 98.5 34.7 99.0 65.6 56.1 51.8 0.0 0.0 56.2

Weibull(3;4). -0.09 2.75 5.9 6.3 4.4 5.7 6.3 4.0 1.5 3.2 1.4 5.8 5.4 5.4 5.4 0.6 0.6 5.6

Weibull(2;3.4) 0.05 2.71 4.9 5.2 4.5 5.5 5.2 4.8 1.4 2.6 1.2 5.1 4.7 4.5 4.5 1.1 1.2 5.3

Gamma(100;1) 0.20 3.06 7.7 8.9 10.3 10.5 8.7 10.0 10.2 9.8 9.8 9.4 6.1 6.1 6.1 7.6 7.5 5.6

Gamma(15;1) 0.52 3.40 23.9 33.9 42.5 45.3 32.7 36.6 38.6 41.0 35.0 38.0 14.4 14.1 14.1 20.0 19.8 10.2

Beta(2;5) 0.60 2.88 50.0 75.9 90.5 96.2 74.2 56.6 59.4 83.4 38.7 82.3 32.4 30.2 29.4 6.4 6.3 24.7

Weibull(1;2) 0.63 3.25 39.2 61.1 79.6 88.2 59.0 53.2 56.3 72.5 44.3 68.5 22.6 21.9 21.7 18.9 18.6 17.1

Gamma(9;1) 0.67 3.67 36.9 53.1 64.1 68.3 51.5 54.2 57.2 62.9 51.4 58.6 21.9 21.5 21.4 28.1 27.8 14.4

2(10) 0.89 4.20 59.6 80.6 89.6 92.8 79.0 78.0 81.6 88.4 74.4 85.2 37.6 36.9 36.9 41.6 41.0 24.4

Gamma(5;1) 0.89 4.20 59.7 80.7 89.7 92.8 79.2 78.3 81.8 88.6 74.7 85.3 37.8 37.3 37.1 41.5 41.0 24.5

Gumbel(1;2) 1.14 5.40 73.2 89.0 93.4 94.7 88.0 88.6 90.7 93.6 87.2 91.8 49.8 48.4 48.0 58.6 57.9 29.6

2(4) 1.14 6.00 95.3 99.8 100.0 100.0 99.7 99.1 99.5 99.9 97.9 99.9 80.1 79.9 79.9 69.3 68.5 63.0

Gamma(3;2) 1.15 5.00 82.3 96.5 99.1 99.7 95.8 94.1 95.9 98.6 91.2 97.8 59.7 59.3 59.2 56.3 55.4 41.8

Gamma(2;2) 1.41 6.00 95.3 99.8 100.0 100.0 99.7 99.1 99.5 99.9 98.0 99.9 80.0 79.9 79.9 69.3 68.5 62.8

2(2) 2.00 9.00 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 98.9 99.0 99.0 88.1 87.5 95.6

Weibull(0.5;1) 2.00 9.00 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 98.9 98.9 98.9 88.1 87.5 95.7

2(1) 2.83 15.00 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 97.7 97.5 100.0

LN(0;1) 6.18 113.90 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.1 99.0 98.9  
 

Table A.7. (continued) Empirical power results for asymmetrical distributions ( = 0.05, n = 100). 

Distribution √1 2 T w T MC-LR -T w T S, l T K, l W W SF W RG D r CS Q Q-Q* BCMR  3
2 T EP I n R s,J

Beta(4;0.5) -1.79 6.35 45.6 99.9 100.0 93.3 100.0 100.0 100.0 100.0 100.0 100.0 85.4 100.0 100.0 18.7 100.0 56.9 93.3

Beta(5;1) -1.18 4.20 12.2 80.8 99.9 65.0 100.0 100.0 100.0 80.8 100.0 100.0 44.5 100.0 100.0 10.7 100.0 84.2 34.3

Beta(2;1) -0.57 2.40 48.4 62.5 72.5 0.5 99.9 99.2 100.0 7.0 98.9 99.9 0.3 100.0 99.8 82.2 97.8 3.8 31.6

Weibull(3;4). -0.09 2.75 5.8 5.7 2.8 1.3 5.3 3.1 9.5 6.0 2.8 6.3 2.3 4.3 4.6 5.1 6.6 1.0 5.8

Weibull(2;3.4) 0.05 2.71 6.9 6.0 2.5 1.1 4.6 2.5 9.5 7.7 2.3 5.7 5.3 4.6 3.9 6.2 5.1 0.8 6.8

Gamma(100;1) 0.20 3.06 5.4 5.5 12.3 4.7 10.6 10.2 8.8 6.3 10.1 10.5 7.1 8.1 10.5 5.3 9.9 7.4 5.6

Gamma(15;1) 0.52 3.40 7.8 10.0 49.9 12.1 44.3 41.4 37.2 14.8 40.7 44.4 25.1 26.8 43.8 6.7 39.3 21.6 9.5

Beta(2;5) 0.60 2.88 13.0 22.0 79.1 8.1 89.9 81.8 92.8 8.3 79.8 91.7 97.0 92.8 88.3 19.3 80.1 11.8 10.0

Weibull(1;2) 0.63 3.25 8.5 14.7 73.6 11.4 79.1 71.1 80.6 14.3 69.3 81.1 85.7 77.2 77.5 9.2 67.0 20.8 8.9

Gamma(9;1) 0.67 3.67 9.9 14.2 70.4 18.0 65.9 62.0 59.7 23.0 61.1 66.4 42.5 43.3 65.2 7.8 59.6 32.4 13.3

2(10) 0.89 4.20 14.4 24.4 90.6 28.8 90.3 87.3 88.0 40.0 86.6 90.8 76.6 74.4 89.7 10.2 84.8 50.7 21.8

Gamma(5;1) 0.89 4.20 14.4 24.4 90.6 28.8 90.4 87.4 88.1 40.1 86.8 90.9 76.4 74.2 89.8 10.1 85.0 51.0 22.1

Gumbel(1;2) 1.14 5.40 29.6 38.8 95.5 45.6 94.3 93.1 91.5 62.3 92.8 94.4 68.9 75.1 94.1 22.9 91.8 66.0 42.2

2(4) 1.14 6.00 31.7 64.6 99.9 56.4 100.0 99.9 100.0 82.7 99.9 100.0 100.0 100.0 100.0 18.8 99.8 79.2 54.2

Gamma(3;2) 1.15 5.00 21.8 42.2 98.5 42.5 99.1 98.4 99.0 63.1 98.2 99.3 98.7 97.7 99.0 13.7 97.4 69.0 36.4

Gamma(2;2) 1.41 6.00 31.5 64.4 99.9 56.1 100.0 99.9 100.0 82.7 99.9 100.0 100.0 100.0 100.0 18.6 99.8 79.3 54.0

2(2) 2.00 9.00 57.7 96.8 100.0 80.2 100.0 100.0 100.0 99.1 100.0 100.0 100.0 100.0 100.0 35.6 100.0 71.8 87.2

Weibull(0.5;1) 2.00 9.00 57.5 96.7 100.0 80.3 100.0 100.0 100.0 99.0 100.0 100.0 100.0 100.0 100.0 35.6 100.0 71.8 87.2

2(1) 2.83 15.00 86.6 100.0 100.0 95.5 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 69.3 100.0 14.8 99.5

LN(0;1) 6.18 113.90 95.6 99.9 100.0 98.2 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 88.9 100.0 14.6 99.6  
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Table A.8. Empirical power results for normal modified distributions ( = 0.05, n = 25). 

Distribution √1 2 K-S AD* Z c Z a P s K 2 JB DH RJB T Lmom T TLmom
(1) T TLmom

(2) T TLmom
(3) BM 3-4 BM 3-6 T MC-LR

Trunc(-3;1) -0.55 2.78 10.7 14.8 18.4 20.4 14.6 10.1 9.3 11.3 7.1 14.1 6.1 5.9 6.0 6.1 6.0 8.3
Trunc(-2;1) -0.32 2.27 8.3 11.0 12.0 11.3 10.8 5.3 1.9 6.0 1.5 9.8 5.3 5.1 5.1 0.8 0.8 7.9
Trunc(-3;2) -0.18 2.65 4.7 4.6 4.0 3.8 4.6 3.1 2.4 2.6 2.3 3.8 4.4 4.4 4.5 2.1 2.1 5.3
Trunc(-1;1) 0 1.94 7.5 12.2 16.1 9.9 12.1 12.1 0.1 5.7 0.1 13.9 5.6 4.0 3.9 0.0 0.0 8.7
Trunc(-2;2) 0 2.36 4.3 4.2 3.2 2.5 4.1 2.0 0.5 1.5 0.6 3.0 4.1 4.3 4.4 0.3 0.3 5.3
Trunc(-3;3) 0 2.84 4.8 4.5 3.7 3.8 4.5 3.2 3.0 3.4 3.2 4.1 4.6 4.7 4.6 2.8 2.8 5.0

LoConN(0.5;5) 0 1.51 78.7 92.0 84.1 71.6 92.0 73.8 0.8 72.0 0.8 84.2 84.4 70.1 53.7 0.0 0.0 52.3
LoConN(0.5;3) 0 2.04 15.3 19.4 15.5 10.7 19.4 13.4 0.5 8.1 0.4 17.1 14.4 9.8 7.4 0.2 0.2 13.0
LoConN(0.5;1) 0 2.92 4.9 4.8 4.6 4.6 4.8 4.4 4.3 4.4 4.3 4.6 4.6 4.6 4.7 4.3 4.3 5.0
LoConN(0.4;1) 0.04 2.93 4.9 4.8 4.6 4.7 4.8 4.5 4.4 4.4 4.4 4.6 4.6 4.7 4.6 4.4 4.4 5.1
LoConN(0.3;1) 0.06 2.96 5.0 4.9 4.7 4.8 4.9 4.7 4.6 4.6 4.6 4.8 4.7 4.7 4.8 4.5 4.5 5.0
LoConN(0.4;3) 0.23 2.14 18.0 22.4 17.2 13.6 22.2 11.1 1.6 10.6 1.4 17.6 15.7 12.2 10.8 0.6 0.5 13.8
LoConN(0.4;5) 0.32 1.65 81.3 93.1 85.3 75.2 93.1 60.2 4.1 75.4 3.9 82.4 84.8 72.7 59.9 0.2 0.2 57.0
LoConN(0.3;3) 0.46 2.47 23.8 29.0 21.9 20.6 28.8 9.4 6.7 16.6 6.5 20.6 19.2 18.3 17.6 2.4 2.4 13.9
LoConN(0.3;5) 0.67 2.13 86.6 95.2 88.7 83.5 95.2 38.6 21.1 82.7 20.9 82.0 84.8 78.7 72.1 2.2 2.4 56.8

ScConN(0.05;0.25) 0 3.14 5.6 5.8 5.4 5.5 5.8 5.8 6.2 6.3 6.8 6.1 6.0 6.0 5.8 6.1 6.2 4.7
ScConN(0.10;0.25) 0 3.29 7.1 7.3 6.4 6.5 7.4 7.2 7.9 8.0 9.4 8.2 8.4 8.1 7.5 7.5 7.7 4.4
ScConN(0.20;0.25) 0 3.64 12.7 13.6 9.5 10.0 13.9 11.2 12.6 13.3 16.9 15.5 16.4 14.3 12.1 11.4 11.7 4.6

ScConN(0.05;2) 0 3.97 7.0 8.7 10.9 10.7 8.8 12.0 12.5 11.9 12.2 9.7 5.2 5.0 4.9 12.6 12.7 5.0
ScConN(0.10;2) 0 4.43 8.6 11.4 15.0 14.6 11.5 16.8 17.7 16.8 17.6 13.3 5.8 5.3 5.1 17.8 18.0 5.0
ScConN(0.20;2) 0 4.68 10.6 14.8 18.6 18.5 15.0 21.4 22.9 22.2 23.5 18.1 7.0 5.8 5.4 22.4 22.8 4.9
ScConN(0.20;4) 0 9.75 52.3 65.1 64.1 66.5 65.5 66.6 70.1 71.5 74.5 69.6 26.3 13.2 9.9 64.0 65.7 6.9
ScConN(0.10;4) 0 12.75 37.1 47.5 52.7 52.8 47.8 55.3 57.0 56.4 57.6 50.9 12.7 7.4 6.5 55.3 56.0 5.7
ScConN(0.05;4) 0 13.55 23.6 30.5 35.5 35.1 30.6 37.4 38.2 37.2 38.0 32.4 7.4 5.6 5.4 38.2 38.4 5.3

MixN(0.5;1;0.25) -1.02 3.87 72.6 79.1 66.9 69.4 79.0 39.8 45.9 62.5 45.1 71.2 63.9 60.8 58.3 20.9 21.5 38.8
MixN(0.4;1;0.25) -0.78 3.34 53.3 60.4 48.8 50.9 60.2 24.6 27.5 43.1 25.3 51.4 45.0 42.7 40.8 12.8 13.0 31.3
MixN(0.3;1;0.25) -0.57 3.03 32.2 37.5 30.4 31.8 37.3 14.7 14.8 24.7 12.4 31.0 25.3 23.4 22.0 7.9 8.0 21.0
MixN(0.5;3;0.25) -0.46 1.78 94.9 96.8 96.4 94.2 96.6 56.2 8.6 78.3 6.4 93.9 88.7 80.7 72.6 0.7 0.7 69.8
MixN(0.4;3;0.25) -0.16 1.67 79.4 86.9 85.6 77.9 86.3 55.9 1.2 52.9 0.8 76.3 69.6 54.4 43.5 0.1 0.1 57.1
MixN(0.3;3;0.25) 0.12 1.81 52.6 68.3 65.0 51.5 67.2 35.7 0.8 31.0 0.9 46.4 45.7 34.6 29.3 0.1 0.1 48.7

MixN(0.5;1;4) 0.44 5.21 47.6 55.5 38.3 42.7 56.1 38.1 42.5 46.7 55.3 57.9 46.7 33.6 25.8 32.9 34.3 10.2
MixN(0.4;1;4) 0.56 6.17 56.6 67.1 52.0 57.1 67.7 51.8 56.6 60.8 69.0 70.5 48.4 31.7 23.6 44.7 46.7 10.6
MixN(0.3;1;4) 0.7 7.58 60.2 71.8 62.8 67.1 72.3 63.4 67.9 71.0 76.9 75.9 42.1 24.8 18.1 56.6 58.8 9.6
MixN(0.5;3;4) 0.96 4.37 65.1 72.2 56.7 60.0 72.3 41.5 46.8 55.1 50.8 65.6 59.1 54.2 50.6 25.9 26.7 27.7
MixN(0.4;3;4) 1.21 5.29 75.9 83.3 71.1 74.5 83.4 59.3 64.9 70.1 69.9 80.0 66.4 57.7 52.1 38.7 40.2 27.7
MixN(0.3;3;4) 1.52 6.76 79.1 86.9 80.5 83.1 87.0 74.5 78.9 80.7 83.2 87.0 63.2 49.7 42.6 54.7 56.6 23.3

Nout1 0 3.00 10.0 13.9 26.1 24.6 14.2 34.4 37.3 31.5 34.9 20.5 6.2 5.4 5.2 41.0 40.9 5.2
Nout2 0 3.00 29.6 57.1 91.1 86.2 57.5 95.8 96.6 92.9 94.2 64.7 6.4 5.5 5.3 98.2 98.1 5.4
Nout3 0 3.00 43.2 64.5 74.3 75.9 64.6 85.9 87.4 72.0 85.9 75.7 17.2 8.7 7.5 79.1 79.0 6.8
Nout4 0 3.00 8.6 15.3 7.3 15.2 16.5 9.9 19.7 50.0 30.8 26.1 7.4 5.6 5.1 22.7 28.5 4.6
Nout5 0 3.00 32.3 50.8 10.9 31.3 52.3 10.2 24.2 74.6 63.6 73.5 29.7 8.2 5.9 12.4 18.2 4.7  
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Table A.8. (continued) Empirical power results for normal modified distributions ( = 0.05, n = 25). 

Distribution √1 2 T w T MC-LR -T w T S, l T K, l W W SF W RG D r CS Q Q-Q* BCMR  3
2 T EP I n R s,J

Trunc(-3;1) -0.55 2.78 7.2 7.9 12.8 4.0 18.4 13.8 22.1 6.8 13.1 19.2 5.6 19.0 17.1 6.4 16.1 6.0 7.4
Trunc(-2;1) -0.32 2.27 9.7 9.0 3.6 1.0 12.2 6.3 21.2 7.1 5.7 13.5 1.8 13.6 10.5 10.0 11.0 1.5 9.3
Trunc(-3;2) -0.18 2.65 4.7 4.8 3.0 3.7 4.2 3.1 6.1 4.8 3.0 4.5 3.6 3.7 3.8 3.7 4.5 2.4 4.9
Trunc(-1;1) 0 1.94 19.3 15.5 0.7 2.5 14.1 4.8 30.8 13.6 3.9 16.6 11.3 11.8 11.1 25.0 9.6 0.2 18.7
Trunc(-2;2) 0 2.36 5.7 5.3 1.1 3.0 3.5 1.7 7.2 6.0 1.5 4.0 3.3 3.1 2.9 4.5 3.7 0.8 5.8
Trunc(-3;3) 0 2.84 4.5 4.4 3.5 4.1 4.0 3.5 4.8 4.2 3.5 4.1 3.9 3.6 3.8 4.1 4.3 3.5 4.4

LoConN(0.5;5) 0 1.51 88.4 89.7 5.1 8.3 87.4 71.3 94.0 1.5 67.4 89.7 27.4 35.9 84.7 73.4 84.6 2.1 64.0
LoConN(0.5;3) 0 2.04 30.0 25.3 1.6 2.8 16.4 7.4 28.5 8.6 6.4 18.9 8.8 9.6 13.9 19.6 14.6 0.6 26.5
LoConN(0.5;1) 0 2.92 4.8 4.8 4.4 4.6 4.6 4.4 5.0 4.9 4.4 4.7 4.7 4.5 4.5 4.6 4.7 4.3 4.8
LoConN(0.4;1) 0.04 2.93 4.9 4.8 4.5 4.8 4.7 4.5 5.0 4.9 4.5 4.7 4.7 4.5 4.7 4.8 4.8 4.4 4.9
LoConN(0.3;1) 0.06 2.96 4.9 4.8 4.9 5.2 4.8 4.7 5.0 4.9 4.7 4.8 4.8 4.7 4.7 4.8 4.9 4.6 4.9
LoConN(0.4;3) 0.23 2.14 23.8 21.3 5.1 10.7 19.1 10.4 29.4 7.1 9.3 21.2 14.9 10.9 16.7 15.8 19.2 1.9 19.8
LoConN(0.4;5) 0.32 1.65 73.8 80.2 19.3 33.2 89.1 75.8 94.3 5.0 72.5 90.9 45.5 39.6 86.7 59.5 87.8 7.2 46.7
LoConN(0.3;3) 0.46 2.47 11.8 13.7 15.1 24.2 25.7 18.6 31.2 6.3 17.6 26.8 18.8 13.3 23.8 8.5 29.6 7.3 9.9
LoConN(0.3;5) 0.67 2.13 39.6 58.4 51.8 68.1 92.5 85.0 94.9 21.5 83.1 93.4 55.2 45.7 91.3 29.7 93.7 25.8 27.2

ScConN(0.05;0.25) 0 3.14 5.6 5.0 6.0 6.2 5.6 6.1 4.6 5.6 6.2 5.4 5.3 5.3 5.7 6.2 5.7 6.8 5.5
ScConN(0.10;0.25) 0 3.29 7.4 6.1 7.3 7.8 6.7 7.9 4.5 6.8 8.1 6.3 5.8 6.0 7.0 8.0 6.9 9.2 7.3
ScConN(0.20;0.25) 0 3.64 14.5 10.9 10.9 12.1 11.1 14.0 5.8 11.8 14.3 10.2 7.7 8.5 12.0 14.6 11.5 16.5 14.5

ScConN(0.05;2) 0 3.97 8.7 7.7 11.4 9.6 10.2 11.4 7.3 10.0 11.5 10.0 8.9 10.9 10.6 9.8 9.1 10.9 8.7
ScConN(0.10;2) 0 4.43 11.5 9.9 15.7 12.5 14.0 16.1 8.9 13.7 16.3 13.5 11.6 14.8 14.7 13.5 12.0 15.4 11.8
ScConN(0.20;2) 0 4.68 15.1 12.3 19.9 15.0 17.6 21.1 10.2 17.8 21.5 17.0 14.4 18.3 18.8 18.2 15.7 20.8 15.5
ScConN(0.20;4) 0 9.75 64.3 58.8 60.9 49.2 66.5 72.0 47.4 69.5 72.5 65.0 42.7 60.6 68.4 66.4 65.5 43.7 66.4
ScConN(0.10;4) 0 12.75 47.4 43.5 51.5 43.4 51.9 55.6 39.5 52.8 55.9 51.1 35.0 51.7 53.2 49.8 48.9 33.3 48.5
ScConN(0.05;4) 0 13.55 30.5 28.0 35.4 30.9 34.3 36.6 26.9 34.3 36.8 33.9 23.4 35.4 35.2 32.4 31.4 22.9 31.0

MixN(0.5;1;0.25) -1.02 3.87 16.2 35.1 58.3 13.4 74.2 72.2 68.7 40.3 71.5 74.2 20.7 42.9 74.1 14.2 76.3 37.7 32.3
MixN(0.4;1;0.25) -0.78 3.34 13.1 26.8 38.1 7.4 55.4 51.3 52.5 20.9 50.3 55.9 12.1 31.9 54.8 9.6 56.6 26.1 18.3
MixN(0.3;1;0.25) -0.57 3.03 11.7 18.8 21.2 4.3 34.5 29.9 34.7 10.0 28.9 35.3 7.3 21.5 33.5 7.6 34.5 14.4 12.0
MixN(0.5;3;0.25) -0.46 1.78 81.8 91.6 13.3 1.0 96.8 91.1 98.6 14.5 89.5 97.5 4.0 87.2 96.0 65.9 84.5 7.0 55.9
MixN(0.4;3;0.25) -0.16 1.67 70.7 78.4 3.0 5.5 86.6 72.2 93.0 2.4 68.7 88.6 8.2 63.9 84.0 70.4 63.6 2.1 56.5
MixN(0.3;3;0.25) 0.12 1.81 39.3 53.3 4.2 20.2 67.0 47.3 78.7 1.4 43.6 69.9 13.7 33.7 62.8 50.1 45.6 1.7 30.6

MixN(0.5;1;4) 0.44 5.21 46.8 41.0 37.3 39.1 47.2 54.1 27.9 48.8 54.7 44.6 19.5 30.0 49.4 46.8 49.1 43.4 53.2
MixN(0.4;1;4) 0.56 6.17 58.6 52.5 48.8 44.3 60.8 67.7 39.1 63.4 68.3 58.3 25.8 42.3 63.1 58.8 62.7 47.6 65.0
MixN(0.3;1;4) 0.7 7.58 65.7 60.1 59.0 47.6 69.1 75.1 47.8 71.9 75.7 67.0 31.6 54.4 71.1 66.3 70.1 47.4 71.2
MixN(0.5;3;4) 0.96 4.37 22.5 32.0 56.6 46.7 65.5 66.5 54.9 44.6 66.3 64.6 27.7 35.0 66.2 23.2 69.0 40.7 39.8
MixN(0.4;3;4) 1.21 5.29 36.1 43.6 70.7 51.6 78.7 80.7 67.1 64.3 80.7 77.6 32.2 47.3 79.5 35.7 81.4 45.3 59.1
MixN(0.3;3;4) 1.52 6.76 53.6 56.2 79.4 53.5 85.2 87.4 74.2 78.5 87.5 84.2 34.6 60.4 86.1 50.7 86.8 43.9 73.9

Nout1 0 3.00 14.7 10.8 29.4 5.9 21.1 28.6 8.0 19.5 29.4 20.0 6.1 26.1 23.7 21.1 15.2 30.2 14.8
Nout2 0 3.00 59.3 47.8 89.5 59.5 83.8 91.2 50.8 82.6 91.6 82.7 7.7 93.1 86.8 66.4 62.5 74.5 61.3
Nout3 0 3.00 46.0 35.1 84.1 7.5 73.7 80.0 49.7 67.3 80.5 71.2 12.5 58.5 76.0 44.1 72.4 69.3 53.9
Nout4 0 3.00 31.4 22.4 3.8 6.2 10.8 24.2 0.8 29.8 26.1 9.3 20.6 16.0 14.5 57.9 13.8 42.2 28.7
Nout5 0 3.00 74.6 62.1 5.7 35.5 29.7 50.6 3.2 64.7 53.1 24.4 23.0 15.6 35.8 91.2 43.4 72.1 70.9  
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Table A.9. Empirical power results for normal modified distributions ( = 0.05, n = 50). 

Distribution √1 2 K-S AD* Z c Z a P s K 2 JB DH RJB T Lmom T TLmom
(1) T TLmom

(2) T TLmom
(3) BM 3-4 BM 3-6 T MC-LR

Trunc(-3;1) -0.55 2.78 19.3 31.5 45.8 58.1 30.5 18.4 16.6 31.2 11.1 35.7 10.5 9.6 9.4 5.6 5.5 11.2
Trunc(-2;1) -0.32 2.27 14.5 24.8 35.6 41.2 24.4 16.2 2.0 19.1 1.1 28.7 9.3 7.5 7.1 0.1 0.1 10.1
Trunc(-3;2) -0.18 2.65 5.2 5.4 4.7 5.4 5.4 4.0 1.9 2.8 1.8 5.0 4.5 4.6 4.7 1.1 1.1 5.4
Trunc(-1;1) 0 1.94 14.0 31.0 53.6 48.5 31.3 51.7 0.1 20.3 0.0 42.0 12.7 6.5 4.9 0.0 0.0 10.9
Trunc(-2;2) 0 2.36 4.7 5.5 5.3 4.5 5.5 5.9 0.1 1.8 0.1 5.2 4.4 4.3 4.3 0.0 0.0 5.4
Trunc(-3;3) 0 2.84 4.7 4.4 2.9 3.4 4.4 2.4 1.8 2.4 2.0 3.9 4.7 4.7 4.7 1.2 1.3 5.0

LoConN(0.5;5) 0 1.51 99.3 100.0 99.6 98.9 100.0 99.4 43.6 98.1 0.2 99.9 99.9 99.5 98.1 0.0 0.0 67.7
LoConN(0.5;3) 0 2.04 31.7 44.4 34.4 29.8 44.8 43.4 0.3 20.3 0.1 47.4 39.0 27.8 20.4 0.1 0.1 17.9
LoConN(0.5;1) 0 2.92 4.9 4.8 4.4 4.6 4.8 4.3 3.9 4.1 3.9 4.6 4.6 4.7 4.7 3.9 3.9 5.1
LoConN(0.4;1) 0.04 2.93 5.0 4.9 4.6 4.8 4.9 4.5 4.1 4.3 4.0 4.7 4.7 4.7 4.7 4.1 4.0 5.1
LoConN(0.3;1) 0.06 2.96 5.1 5.1 4.9 5.0 5.1 4.8 4.6 4.6 4.5 5.0 4.8 4.8 4.8 4.5 4.5 5.1
LoConN(0.4;3) 0.23 2.14 37.0 49.2 37.0 33.8 49.4 33.9 1.9 26.4 0.9 46.2 40.6 31.6 26.2 0.2 0.2 22.7
LoConN(0.4;5) 0.32 1.65 99.4 100.0 99.6 99.2 100.0 96.5 51.0 98.6 3.3 99.8 99.9 99.4 98.1 0.0 0.0 83.9
LoConN(0.3;3) 0.46 2.47 47.7 59.3 43.9 43.8 59.1 19.1 11.4 40.1 8.6 48.3 45.2 42.6 41.3 1.0 1.0 25.4
LoConN(0.3;5) 0.67 2.13 99.7 100.0 99.8 99.6 100.0 87.2 74.4 99.4 31.8 99.7 99.9 99.6 99.1 0.3 0.3 91.7

ScConN(0.05;0.25) 0 3.14 6.1 6.2 5.6 5.3 6.2 5.9 6.7 6.5 7.7 6.6 6.8 6.8 6.6 6.4 6.4 4.6
ScConN(0.10;0.25) 0 3.29 8.9 9.1 6.7 6.3 9.2 7.4 9.0 8.8 11.7 10.1 11.2 10.8 10.2 8.0 8.1 4.6
ScConN(0.20;0.25) 0 3.64 20.0 21.6 11.5 11.0 22.0 13.0 16.2 16.5 24.4 23.9 27.6 24.8 21.2 13.0 13.3 5.9

ScConN(0.05;2) 0 3.97 7.6 10.3 16.3 14.6 10.3 17.3 18.7 17.9 18.3 11.7 5.4 5.1 5.0 19.3 19.3 5.0
ScConN(0.10;2) 0 4.43 10.1 15.0 23.5 21.2 15.1 25.2 27.9 26.9 27.6 17.6 6.4 5.6 5.4 27.9 28.1 5.0
ScConN(0.20;2) 0 4.68 13.7 21.4 29.1 26.7 21.6 32.1 36.4 35.8 37.4 25.6 8.8 6.6 6.0 34.6 35.0 5.1
ScConN(0.20;4) 0 9.75 78.0 89.0 89.2 89.7 89.2 89.6 92.9 93.4 94.5 90.8 46.5 21.3 14.3 86.6 87.7 8.9
ScConN(0.10;4) 0 12.75 56.7 70.2 78.0 76.6 70.4 79.4 81.6 81.2 81.5 71.9 18.9 9.4 7.8 80.4 80.7 5.9
ScConN(0.05;4) 0 13.55 35.3 47.1 57.5 55.3 47.2 58.7 60.3 59.5 59.8 48.3 9.1 6.2 5.7 60.7 60.8 5.2

MixN(0.5;1;0.25) -1.02 3.87 96.4 98.2 89.5 91.6 98.2 69.5 76.8 84.7 72.2 94.5 95.7 95.5 95.2 24.6 25.2 74.3
MixN(0.4;1;0.25) -0.78 3.34 85.3 90.3 72.7 75.7 90.3 44.6 51.5 68.3 42.6 81.5 83.3 83.2 82.5 14.1 14.3 60.7
MixN(0.3;1;0.25) -0.57 3.03 60.5 68.0 48.4 51.4 67.9 24.9 26.5 44.6 19.0 57.6 56.4 55.8 54.2 8.5 8.5 37.3
MixN(0.5;3;0.25) -0.46 1.78 100.0 100.0 100.0 100.0 100.0 94.6 62.8 97.7 6.4 99.9 99.8 98.9 96.9 0.2 0.2 73.4
MixN(0.4;3;0.25) -0.16 1.67 99.2 99.8 99.7 99.6 99.8 92.3 23.8 85.1 0.2 97.4 96.7 88.7 77.7 0.0 0.0 69.6
MixN(0.3;3;0.25) 0.12 1.81 90.9 97.2 96.2 93.7 96.8 75.5 6.7 61.5 0.3 79.9 82.7 69.0 58.7 0.0 0.0 78.5

MixN(0.5;1;4) 0.44 5.21 77.8 85.9 59.6 64.6 86.3 55.7 64.3 65.8 81.5 86.1 81.5 65.9 52.6 43.3 44.8 21.9
MixN(0.4;1;4) 0.56 6.17 85.8 93.3 77.6 82.0 93.5 73.6 81.1 82.4 92.4 94.3 82.0 60.6 45.8 60.0 61.9 22.4
MixN(0.3;1;4) 0.7 7.58 87.3 94.6 88.4 90.7 94.8 86.5 91.6 92.3 96.4 96.0 72.9 46.4 33.3 76.4 78.2 17.8
MixN(0.5;3;4) 0.96 4.37 92.7 96.0 80.8 84.2 96.0 67.4 73.3 75.3 77.6 90.7 93.1 91.5 90.0 31.9 32.8 56.6
MixN(0.4;3;4) 1.21 5.29 97.1 98.9 92.6 94.5 98.9 85.8 89.3 88.6 93.3 97.6 95.8 92.2 89.2 50.0 51.4 57.4
MixN(0.3;3;4) 1.52 6.76 97.5 99.2 97.3 98.1 99.2 95.4 96.8 96.0 98.6 99.2 92.4 83.5 77.6 71.0 72.6 49.3

Nout1 0 3.00 7.6 9.7 21.1 17.1 9.8 25.4 31.1 26.4 28.7 14.1 5.7 5.2 5.1 36.7 36.7 5.0
Nout2 0 3.00 19.2 40.1 97.7 89.6 40.5 98.3 99.1 98.0 97.3 46.5 5.7 5.3 5.1 99.9 99.9 5.1
Nout3 0 3.00 34.6 62.8 93.1 88.1 62.3 97.3 98.1 94.5 96.9 72.8 10.3 7.0 6.5 98.4 98.4 5.7
Nout4 0 3.00 7.5 13.6 10.4 15.3 14.5 12.7 29.7 50.1 33.8 20.3 6.7 5.4 5.1 34.0 35.0 4.8
Nout5 0 3.00 42.2 78.6 67.0 80.9 80.2 74.8 94.5 99.0 96.0 86.7 17.0 7.0 5.7 92.7 93.6 5.1  
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Table A.9. (continued) Empirical power results for normal modified distributions ( = 0.05, n = 50). 

Distribution √1 2 T w T MC-LR -T w T S, l T K, l W W SF W RG D r CS Q Q-Q* BCMR  3
2 T EP I n R s,J

Trunc(-3;1) -0.55 2.78 9.8 11.5 27.5 7.1 45.1 33.1 53.9 7.8 31.1 48.0 4.9 57.8 42.1 12.2 34.7 6.3 9.0
Trunc(-2;1) -0.32 2.27 18.6 16.0 6.1 0.3 33.6 17.3 55.3 14.8 15.1 38.3 1.2 46.1 29.0 28.7 26.5 0.5 16.9
Trunc(-3;2) -0.18 2.65 5.6 5.3 3.2 3.3 5.2 3.2 9.3 6.3 3.0 5.9 2.5 4.6 4.6 4.9 5.6 1.3 5.7
Trunc(-1;1) 0 1.94 42.9 34.3 1.1 1.8 44.7 19.2 75.7 50.7 15.7 52.1 33.7 39.0 37.8 69.8 29.3 0.0 41.4
Trunc(-2;2) 0 2.36 9.1 7.4 0.7 2.0 5.1 1.7 14.5 12.6 1.4 6.7 4.8 4.4 4.0 10.0 5.1 0.1 9.1
Trunc(-3;3) 0 2.84 4.2 4.4 2.8 2.9 3.5 2.7 5.2 3.8 2.6 3.8 3.2 2.9 3.2 3.5 4.3 2.3 4.3

LoConN(0.5;5) 0 1.51 99.5 99.8 16.6 7.4 99.9 99.3 100.0 0.8 99.0 99.9 46.3 61.2 99.8 98.4 99.9 0.3 90.1
LoConN(0.5;3) 0 2.04 62.4 54.3 2.0 1.7 37.7 20.7 54.8 26.6 17.9 43.2 14.5 16.6 33.7 46.8 38.3 0.1 57.2
LoConN(0.5;1) 0 2.92 4.9 4.8 4.2 4.2 4.6 4.1 5.4 4.8 4.1 4.7 4.6 4.5 4.4 4.5 4.7 3.8 4.9
LoConN(0.4;1) 0.04 2.93 5.0 5.0 4.4 4.4 4.8 4.4 5.3 4.9 4.3 4.9 4.9 4.6 4.6 4.6 4.9 4.0 4.9
LoConN(0.3;1) 0.06 2.96 5.0 4.8 4.8 4.7 5.0 4.8 5.3 5.0 4.7 5.1 5.0 4.8 4.9 4.8 5.1 4.5 4.9
LoConN(0.4;3) 0.23 2.14 47.5 43.7 11.1 12.1 42.1 26.3 56.5 17.0 23.6 46.8 24.5 18.7 38.5 36.8 45.8 0.7 38.0
LoConN(0.4;5) 0.32 1.65 92.4 98.2 59.2 46.1 99.9 99.5 100.0 3.9 99.3 99.9 68.3 64.3 99.8 90.2 99.9 3.8 61.7
LoConN(0.3;3) 0.46 2.47 17.8 24.7 35.3 33.6 52.9 41.2 60.0 6.9 38.9 55.5 30.2 21.9 50.2 15.7 61.3 6.6 11.9
LoConN(0.3;5) 0.67 2.13 52.2 88.7 93.2 89.5 100.0 99.8 100.0 30.3 99.8 100.0 76.6 68.5 99.9 51.6 100.0 31.3 27.8

ScConN(0.05;0.25) 0 3.14 6.4 5.5 6.0 6.6 5.8 6.5 4.3 5.8 6.6 5.4 5.2 5.2 6.0 6.5 5.9 7.9 6.3
ScConN(0.10;0.25) 0 3.29 10.5 8.2 7.5 8.6 7.7 9.3 4.3 8.2 9.5 6.9 5.5 5.7 8.1 9.6 7.8 12.0 10.4
ScConN(0.20;0.25) 0 3.64 26.4 20.1 12.0 14.7 16.0 19.7 6.6 18.8 20.2 13.8 7.7 8.3 17.0 20.7 16.3 25.2 26.6

ScConN(0.05;2) 0 3.97 11.7 10.1 15.8 15.9 14.8 17.1 8.3 14.6 17.3 14.1 12.2 16.1 15.6 14.2 10.7 16.9 11.6
ScConN(0.10;2) 0 4.43 17.1 14.4 22.3 22.2 21.7 25.5 10.6 21.9 25.9 20.3 16.6 22.6 23.0 21.7 15.8 25.8 17.4
ScConN(0.20;2) 0 4.68 24.9 20.3 27.3 26.3 28.0 33.8 12.3 30.3 34.4 25.9 20.0 26.7 30.0 31.3 22.5 36.2 24.9
ScConN(0.20;4) 0 9.75 90.6 88.1 80.3 75.7 91.1 93.5 74.6 93.3 93.7 89.7 59.3 79.5 91.9 92.3 89.8 51.9 91.0
ScConN(0.10;4) 0 12.75 72.9 69.6 73.0 73.2 77.1 80.2 61.3 78.4 80.4 75.9 53.7 75.5 78.2 76.8 71.5 44.5 73.5
ScConN(0.05;4) 0 13.55 49.9 46.5 54.4 55.4 55.6 58.6 43.1 55.8 58.8 54.6 38.1 57.0 56.7 54.0 48.2 34.3 50.1

MixN(0.5;1;0.25) -1.02 3.87 18.0 68.1 86.9 23.5 96.0 95.8 91.3 65.3 95.7 95.8 24.4 45.8 96.1 16.1 96.9 59.3 47.5
MixN(0.4;1;0.25) -0.78 3.34 15.7 53.9 66.2 12.6 84.1 82.6 77.0 33.6 81.9 84.1 13.6 33.9 84.2 9.9 86.2 42.5 21.9
MixN(0.3;1;0.25) -0.57 3.03 17.0 34.5 39.3 7.3 59.7 55.7 54.3 12.6 54.5 60.4 7.9 23.8 59.4 8.6 62.0 20.2 13.7
MixN(0.5;3;0.25) -0.46 1.78 98.7 99.8 23.8 0.3 100.0 100.0 100.0 18.2 100.0 100.0 3.4 99.3 100.0 93.1 99.6 7.3 74.9
MixN(0.4;3;0.25) -0.16 1.67 94.2 98.5 5.7 5.0 99.8 99.2 99.9 1.3 98.9 99.9 10.2 93.0 99.8 97.2 95.8 0.7 86.2
MixN(0.3;3;0.25) 0.12 1.81 62.9 82.0 14.7 32.2 97.4 92.3 98.8 1.1 90.7 98.0 19.0 64.9 96.6 83.9 85.4 0.3 46.8

MixN(0.5;1;4) 0.44 5.21 78.0 74.5 49.2 49.3 77.1 81.7 50.3 80.0 82.2 73.5 19.9 33.1 78.5 72.3 79.4 64.8 85.0
MixN(0.4;1;4) 0.56 6.17 88.9 86.6 63.7 56.8 89.4 92.2 67.4 91.7 92.5 87.0 28.3 49.3 90.3 85.7 90.9 61.9 93.3
MixN(0.3;1;4) 0.7 7.58 93.3 91.4 76.0 65.5 93.8 95.8 77.7 95.7 95.9 92.4 38.4 67.1 94.5 92.1 94.5 55.7 95.3
MixN(0.5;3;4) 0.96 4.37 31.0 59.5 79.4 49.5 91.6 92.3 81.3 72.4 92.3 90.8 24.9 35.7 92.0 32.6 93.7 62.0 63.6
MixN(0.4;3;4) 1.21 5.29 56.0 75.4 89.1 54.9 97.6 98.1 91.7 91.1 98.1 97.2 30.5 51.4 97.8 53.0 98.4 57.7 86.5
MixN(0.3;3;4) 1.52 6.76 81.1 88.4 93.8 64.3 99.0 99.3 95.5 97.8 99.3 98.7 37.0 69.5 99.1 73.8 99.2 46.7 96.2

Nout1 0 3.00 11.2 8.8 21.3 5.5 16.0 23.1 4.5 14.8 23.9 14.1 5.7 20.3 18.3 18.1 10.4 27.0 11.3
Nout2 0 3.00 54.6 43.1 89.6 91.0 91.1 96.6 42.9 86.9 96.9 89.3 6.8 98.9 93.6 69.1 42.7 87.4 55.2
Nout3 0 3.00 59.2 47.9 92.2 68.7 88.8 94.0 53.5 85.6 94.4 86.0 10.1 91.3 90.9 68.5 69.8 88.2 62.3
Nout4 0 3.00 28.0 20.3 3.5 4.8 12.9 28.4 0.5 35.1 30.5 9.9 20.7 13.3 17.3 57.8 14.2 51.5 27.0
Nout5 0 3.00 91.9 85.7 31.1 21.6 78.2 92.5 13.3 97.1 93.5 70.5 77.8 65.8 84.0 99.5 83.4 95.7 91.0  
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Table A.10. Empirical power results for normal modified distributions ( = 0.05, n = 100). 

Distribution √1 2 K-S AD* Z c Z a P s K 2 JB DH RJB T Lmom T TLmom
(1) T TLmom

(2) T TLmom
(3) BM 3-4 BM 3-6 T MC-LR

Trunc(-3;1) -0.55 2.78 38.2 67.3 91.0 97.6 65.1 47.4 47.6 74.9 28.1 74.7 21.2 18.5 17.7 3.9 3.8 18.9
Trunc(-2;1) -0.32 2.27 30.3 58.5 86.7 93.3 57.6 55.1 19.7 62.0 2.4 67.2 19.7 14.1 12.6 0.0 0.0 15.6
Trunc(-3;2) -0.18 2.65 6.3 7.6 9.2 13.0 7.5 7.1 2.2 5.4 1.8 8.3 5.0 5.0 5.0 0.2 0.2 5.6
Trunc(-1;1) 0 1.94 31.1 72.0 97.3 97.7 72.5 94.9 32.4 71.9 0.0 82.6 29.8 12.8 7.7 0.0 0.0 15.8
Trunc(-2;2) 0 2.36 6.0 9.1 16.8 16.9 9.2 19.7 0.3 5.0 0.0 11.4 5.2 4.4 4.3 0.0 0.0 5.4
Trunc(-3;3) 0 2.84 4.7 4.5 2.6 3.5 4.5 2.3 1.1 1.9 1.3 3.9 4.6 4.7 4.7 0.2 0.2 4.9

LoConN(0.5;5) 0 1.51 100.0 100.0 100.0 100.0 100.0 97.3 100.0 100.0 84.5 100.0 100.0 100.0 100.0 0.0 0.0 82.3
LoConN(0.5;3) 0 2.04 64.2 81.9 69.4 66.5 82.4 82.5 22.7 56.6 0.1 86.6 78.0 64.0 51.5 0.0 0.0 28.3
LoConN(0.5;1) 0 2.92 4.8 4.8 4.4 4.9 4.9 4.4 3.6 3.9 3.5 4.7 4.7 4.6 4.7 3.6 3.6 5.0
LoConN(0.4;1) 0.04 2.93 5.0 4.9 4.5 4.9 4.9 4.5 3.8 4.1 3.7 4.7 4.8 4.8 4.8 3.8 3.8 5.1
LoConN(0.3;1) 0.06 2.96 5.3 5.3 5.0 5.4 5.2 4.9 4.6 4.8 4.6 5.2 5.0 5.0 5.0 4.3 4.3 5.1
LoConN(0.4;3) 0.23 2.14 70.7 85.5 72.1 70.3 85.8 74.2 27.7 65.0 1.4 85.4 79.2 67.8 58.7 0.0 0.0 44.8
LoConN(0.4;5) 0.32 1.65 100.0 100.0 100.0 100.0 100.0 99.4 100.0 100.0 61.1 100.0 100.0 100.0 100.0 0.0 0.0 97.1
LoConN(0.3;3) 0.46 2.47 81.5 91.5 78.6 78.5 91.4 58.3 47.9 79.0 20.7 86.0 82.3 79.2 77.7 0.4 0.4 52.8
LoConN(0.3;5) 0.67 2.13 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 85.4 100.0 100.0 100.0 100.0 0.0 0.0 99.9

ScConN(0.05;0.25) 0 3.14 6.8 7.0 5.7 5.1 7.0 6.1 7.4 7.0 9.1 7.5 8.1 8.2 8.0 6.7 6.7 4.6
ScConN(0.10;0.25) 0 3.29 12.4 12.8 7.3 6.2 13.0 8.4 11.0 10.2 15.6 14.0 16.9 16.4 15.3 8.8 8.7 5.3
ScConN(0.20;0.25) 0 3.64 35.4 39.2 15.2 13.9 39.7 17.0 22.9 22.4 38.1 41.0 49.2 45.4 39.5 15.1 14.8 10.2

ScConN(0.05;2) 0 3.97 8.3 12.5 24.9 20.6 12.6 25.6 28.4 27.3 27.6 14.3 5.6 5.2 5.1 29.5 29.4 5.0
ScConN(0.10;2) 0 4.43 12.2 20.4 36.1 30.4 20.5 37.9 42.7 41.6 42.2 23.6 7.2 5.9 5.6 42.4 42.0 5.1
ScConN(0.20;2) 0 4.68 19.6 33.0 44.8 39.3 33.2 48.6 55.7 55.0 56.8 38.3 11.5 7.6 6.6 50.9 50.2 5.4
ScConN(0.20;4) 0 9.75 96.1 99.1 99.2 99.2 99.1 99.3 99.6 99.7 99.7 99.2 73.2 34.1 19.6 98.0 97.8 12.9
ScConN(0.10;4) 0 12.75 79.5 90.2 95.0 94.0 90.3 95.4 96.4 96.3 96.3 90.1 29.5 11.6 8.7 95.9 95.7 6.4
ScConN(0.05;4) 0 13.55 51.7 67.3 80.5 77.7 67.4 81.0 82.6 82.1 82.0 66.3 11.1 6.6 6.0 83.1 83.0 5.3

MixN(0.5;1;0.25) -1.02 3.87 100.0 100.0 99.5 99.7 100.0 95.7 96.9 97.0 96.3 99.9 100.0 100.0 100.0 30.2 29.6 98.0
MixN(0.4;1;0.25) -0.78 3.34 99.3 99.7 94.1 95.4 99.7 80.8 84.2 88.5 76.3 98.0 99.3 99.4 99.3 16.3 16.1 91.8
MixN(0.3;1;0.25) -0.57 3.03 90.5 94.3 73.4 76.5 94.3 53.0 56.0 68.8 39.9 86.6 89.8 90.4 89.6 9.3 9.2 65.3
MixN(0.5;3;0.25) -0.46 1.78 100.0 100.0 100.0 100.0 100.0 99.6 99.8 100.0 94.0 100.0 100.0 100.0 100.0 0.1 0.1 82.7
MixN(0.4;3;0.25) -0.16 1.67 100.0 100.0 100.0 100.0 100.0 99.3 96.3 99.3 45.4 100.0 100.0 99.7 97.9 0.0 0.0 83.9
MixN(0.3;3;0.25) 0.12 1.81 99.9 100.0 100.0 100.0 100.0 97.5 77.1 92.7 3.7 98.3 99.1 96.2 90.8 0.0 0.0 95.3

MixN(0.5;1;4) 0.44 5.21 97.7 99.3 87.5 90.6 99.3 81.1 88.5 88.0 97.7 99.1 98.7 93.1 83.0 57.3 56.2 53.2
MixN(0.4;1;4) 0.56 6.17 99.2 99.9 97.2 98.2 99.9 94.5 97.5 97.4 99.7 99.9 98.5 88.7 73.7 77.3 76.2 51.7
MixN(0.3;1;4) 0.7 7.58 99.2 99.9 99.4 99.6 99.9 98.9 99.7 99.7 100.0 99.9 95.1 73.9 55.1 92.1 91.5 36.9
MixN(0.5;3;4) 0.96 4.37 99.9 100.0 97.8 98.5 100.0 92.8 94.4 93.0 96.8 99.6 99.9 99.9 99.8 40.9 40.1 90.6
MixN(0.4;3;4) 1.21 5.29 100.0 100.0 99.8 99.9 100.0 99.0 99.3 98.7 99.8 100.0 100.0 99.8 99.6 64.5 63.3 91.8
MixN(0.3;3;4) 1.52 6.76 100.0 100.0 100.0 100.0 100.0 99.9 100.0 99.9 100.0 100.0 99.7 98.5 96.9 86.9 86.0 85.0

Nout1 0 3.00 6.3 7.4 12.8 10.8 7.4 15.0 20.2 17.0 19.5 9.8 5.4 5.1 5.0 23.0 22.7 5.1
Nout2 0 3.00 12.0 22.2 99.4 87.0 22.4 98.6 99.5 99.0 97.5 28.6 5.3 5.0 5.0 100.0 100.0 5.1
Nout3 0 3.00 22.1 44.3 98.5 90.8 43.3 99.0 99.6 98.8 98.6 53.8 7.2 6.0 5.7 99.9 100.0 5.3
Nout4 0 3.00 6.6 10.2 8.6 9.8 10.6 12.3 28.0 37.8 28.3 14.0 5.9 5.1 4.9 32.6 27.1 4.9
Nout5 0 3.00 35.2 80.5 96.9 96.6 82.2 98.7 99.9 100.0 99.6 79.1 10.2 6.1 5.5 100.0 99.9 5.0  
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Table A.10. (continued) Empirical power results for normal modified distributions ( = 0.05, n = 100). 

Distribution √1 2 T w T MC-LR -T w T S, l T K, l W W SF W RG D r CS Q Q-Q* BCMR  3
2 T EP I n R s,J

Trunc(-3;1) -0.55 2.78 15.0 19.3 59.2 12.2 88.9 78.4 93.3 7.8 75.9 91.3 3.2 98.0 86.8 26.1 69.4 6.5 12.2
Trunc(-2;1) -0.32 2.27 37.7 32.1 15.7 0.1 81.4 59.4 95.3 31.1 54.7 86.4 1.7 94.9 76.7 71.8 61.2 0.1 33.2
Trunc(-3;2) -0.18 2.65 7.7 6.7 4.9 3.4 9.3 4.7 18.9 9.8 4.2 11.4 1.6 11.1 7.9 9.0 8.5 0.6 7.6
Trunc(-1;1) 0 1.94 77.7 68.7 5.5 1.7 92.9 73.1 99.6 92.4 67.7 96.0 83.0 92.3 89.5 98.8 72.2 0.0 77.2
Trunc(-2;2) 0 2.36 17.0 12.4 0.8 1.6 12.5 3.7 38.4 30.4 2.8 17.6 11.3 10.5 9.5 30.0 9.5 0.0 17.1
Trunc(-3;3) 0 2.84 4.4 4.4 2.4 1.9 3.3 2.1 5.8 3.9 2.0 3.8 2.8 2.7 2.9 3.2 4.4 1.4 4.3

LoConN(0.5;5) 0 1.51 100.0 100.0 74.2 8.8 100.0 100.0 100.0 1.5 100.0 100.0 71.1 87.1 100.0 100.0 100.0 0.0 99.3
LoConN(0.5;3) 0 2.04 92.8 88.9 6.9 1.3 75.2 58.6 85.2 70.1 54.5 80.3 24.3 30.3 72.3 82.8 78.7 0.0 90.6
LoConN(0.5;1) 0 2.92 5.0 4.9 4.1 4.0 4.5 4.0 5.6 5.0 3.9 4.8 4.6 4.5 4.3 4.6 4.8 3.3 5.1
LoConN(0.4;1) 0.04 2.93 5.0 4.9 4.5 4.0 4.6 4.1 5.7 4.9 4.0 4.9 4.9 4.6 4.5 4.6 4.9 3.5 5.0
LoConN(0.3;1) 0.06 2.96 4.9 4.9 5.3 4.2 5.2 4.8 5.7 4.9 4.8 5.3 5.3 4.8 5.1 4.7 5.4 4.2 5.0
LoConN(0.4;3) 0.23 2.14 78.6 77.4 37.1 18.3 79.5 65.9 86.9 38.6 62.5 83.5 38.4 32.2 77.1 70.5 84.5 0.1 64.5
LoConN(0.4;5) 0.32 1.65 99.4 100.0 99.0 71.7 100.0 100.0 100.0 3.4 100.0 100.0 87.0 86.6 100.0 99.6 100.0 1.2 78.4
LoConN(0.3;3) 0.46 2.47 29.1 49.3 75.8 51.5 87.5 80.2 89.7 7.3 78.4 89.2 44.5 35.0 86.2 32.6 92.7 5.4 14.2
LoConN(0.3;5) 0.67 2.13 69.7 99.7 100.0 99.3 100.0 100.0 100.0 47.1 100.0 100.0 90.7 86.4 100.0 80.6 100.0 34.5 27.9

ScConN(0.05;0.25) 0 3.14 7.9 6.5 6.2 6.8 6.3 7.1 4.3 6.6 7.3 5.7 5.1 5.1 6.5 7.1 6.3 9.3 7.9
ScConN(0.10;0.25) 0 3.29 16.9 12.9 7.8 9.3 9.8 11.6 4.6 11.3 11.9 8.3 5.5 5.6 10.2 11.9 9.9 16.1 16.8
ScConN(0.20;0.25) 0 3.64 49.3 40.6 13.9 16.9 26.7 30.7 10.5 33.2 31.3 23.0 7.7 8.5 27.6 31.1 27.4 39.1 49.6

ScConN(0.05;2) 0 3.97 16.0 13.5 21.0 24.6 22.2 26.0 9.6 21.8 26.4 20.6 17.2 24.1 23.6 21.7 13.2 26.2 16.0
ScConN(0.10;2) 0 4.43 26.4 22.3 29.7 34.5 33.4 39.3 13.1 35.1 39.9 30.5 23.7 33.4 35.5 35.5 22.0 41.2 26.5
ScConN(0.20;2) 0 4.68 41.3 35.0 35.7 40.2 44.8 52.2 17.0 50.7 53.1 40.6 27.2 37.2 47.3 52.1 35.4 57.9 41.5
ScConN(0.20;4) 0 9.75 99.4 99.1 95.8 93.9 99.5 99.6 96.2 99.7 99.7 99.3 74.8 91.7 99.5 99.6 99.2 57.7 99.4
ScConN(0.10;4) 0 12.75 92.5 91.0 90.4 93.2 94.7 95.8 85.0 95.4 95.9 94.0 73.3 92.5 95.1 95.1 91.1 51.1 92.8
ScConN(0.05;4) 0 13.55 72.2 69.0 74.8 79.3 78.8 81.2 63.9 79.0 81.5 77.6 57.1 79.5 79.7 77.9 68.5 43.9 72.1

MixN(0.5;1;0.25) -1.02 3.87 18.8 97.0 99.2 37.0 100.0 100.0 99.7 90.3 100.0 100.0 29.3 44.1 100.0 19.2 100.0 82.1 68.6
MixN(0.4;1;0.25) -0.78 3.34 19.3 89.1 92.6 19.3 98.9 98.7 96.4 55.5 98.7 98.8 15.6 32.1 98.9 9.9 99.1 65.3 26.9
MixN(0.3;1;0.25) -0.57 3.03 26.3 63.1 68.7 10.5 88.3 86.9 80.3 18.3 86.3 88.3 8.7 22.3 88.4 9.3 90.0 28.7 15.7
MixN(0.5;3;0.25) -0.46 1.78 100.0 100.0 53.4 0.1 100.0 100.0 100.0 26.7 100.0 100.0 4.1 100.0 100.0 99.8 100.0 6.8 87.9
MixN(0.4;3;0.25) -0.16 1.67 99.8 100.0 29.0 7.2 100.0 100.0 100.0 1.0 100.0 100.0 15.0 99.8 100.0 100.0 100.0 0.1 98.8
MixN(0.3;3;0.25) 0.12 1.81 87.1 94.9 56.0 60.5 100.0 100.0 100.0 2.9 100.0 100.0 27.2 94.5 100.0 98.9 99.7 0.0 69.0

MixN(0.5;1;4) 0.44 5.21 97.1 97.1 66.8 56.5 97.6 98.2 86.7 98.0 98.3 96.7 22.1 38.5 97.8 93.0 98.1 80.7 99.0
MixN(0.4;1;4) 0.56 6.17 99.5 99.5 83.7 68.5 99.7 99.8 96.1 99.8 99.8 99.5 32.6 58.4 99.7 98.5 99.8 72.1 99.9
MixN(0.3;1;4) 0.7 7.58 99.9 99.8 93.7 83.2 99.9 99.9 98.3 100.0 99.9 99.8 45.5 78.7 99.9 99.7 99.9 62.9 99.9
MixN(0.5;3;4) 0.96 4.37 44.7 92.7 94.9 49.1 99.8 99.8 98.5 94.8 99.8 99.8 19.4 35.6 99.8 48.8 99.9 81.6 87.5
MixN(0.4;3;4) 1.21 5.29 78.7 98.0 98.5 61.3 100.0 100.0 99.9 99.7 100.0 100.0 24.3 55.1 100.0 74.9 100.0 67.7 98.8
MixN(0.3;3;4) 1.52 6.76 97.1 99.7 99.6 81.5 100.0 100.0 100.0 100.0 100.0 100.0 31.6 77.7 100.0 92.6 100.0 50.5 100.0

Nout1 0 3.00 8.5 7.1 13.7 2.8 11.1 15.6 3.0 10.5 16.2 9.2 5.5 9.3 12.5 13.7 7.9 20.0 8.6
Nout2 0 3.00 40.6 30.7 81.7 97.2 93.4 98.2 25.6 81.0 98.5 90.8 6.0 99.9 95.9 63.2 23.4 91.8 40.5
Nout3 0 3.00 53.5 42.6 90.7 93.0 93.9 97.9 43.3 88.2 98.2 90.9 7.9 99.1 95.8 74.4 49.7 94.9 54.9
Nout4 0 3.00 20.2 14.7 3.9 4.6 10.9 23.6 0.3 29.3 25.6 7.3 11.8 5.5 14.4 46.5 11.0 47.4 19.9
Nout5 0 3.00 93.6 89.0 41.1 84.1 96.0 99.4 19.1 99.7 99.6 92.2 97.0 95.9 97.9 99.9 87.6 99.2 93.3  

 

Table A.11. Average empirical power results by distribution type for all sample sizes ( = 0.05). 

Distribution
Sample 

size
K-S AD* Z c Z a P s K 2 JB DH RJB T Lmom T TLmom

(1) T TLmom
(2) T TLmom

(3) BM 3-4 BM 3-6 T MC-LR

Symmetric 25 39.3 45.1 44.4 43.6 45.2 41.5 35.4 41.8 38.9 47.0 33.4 24.6 20.2 32.9 33.5 14.5
50 49.9 57.9 60.0 59.0 58.1 58.6 45.1 55.2 45.4 60.6 47.9 38.4 31.3 39.3 39.7 22.8

100 61.3 71.1 72.7 71.6 71.2 72.3 64.1 69.5 54.0 72.3 60.6 51.4 44.3 43.8 43.5 35.6

Asymmetric 25 36.1 45.3 49.2 50.9 44.9 37.3 39.4 43.8 35.4 45.6 22.0 20.8 20.4 27.3 27.6 22.1
50 52.3 62.2 66.8 69.2 61.6 55.8 57.5 63.7 52.6 63.9 39.4 38.7 38.4 37.9 38.2 33.9

100 67.9 76.8 80.6 82.1 76.2 74.9 75.6 79.6 70.1 78.7 56.8 55.9 55.6 49.2 48.7 48.5

Modified Normal 25 35.9 41.3 37.7 36.7 41.3 29.0 21.3 34.2 22.6 38.8 30.7 25.6 22.4 15.6 16.0 19.0
50 50.0 55.0 52.7 53.1 55.1 46.8 36.4 49.0 31.0 54.4 46.0 41.1 38.0 20.5 20.9 28.9

100 59.9 65.8 66.5 66.6 65.7 62.9 56.9 63.9 47.7 66.6 56.4 51.8 48.7 25.6 25.4 40.9  
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Table A.11. (continued) Average empirical power results by distribution type for all sample sizes ( = 0.05). 

Distribution
Sample 

size
T w T MC-LR -T w T S, l T K, l W W SF W RG D r CS Q Q-Q* BCMR  3

2 T EP I n R s,J

Symmetric 25 45.3 43.2 33.1 31.5 45.5 43.5 44.4 40.0 43.1 45.6 30.5 40.6 45.0 48.5 42.1 11.6 45.8
50 60.7 57.4 40.3 40.1 60.1 56.6 60.1 55.2 55.9 60.6 42.5 52.4 59.4 64.8 56.2 12.8 60.4

100 73.9 70.6 50.6 46.0 73.6 70.6 72.4 71.7 70.0 74.0 55.1 62.1 72.8 76.3 69.2 15.0 73.8

Asymmetric 25 14.9 23.9 44.3 22.5 48.2 45.5 48.1 30.4 45.0 48.5 38.0 46.1 47.6 12.0 45.8 22.1 22.9
50 21.6 35.4 62.0 30.4 65.5 62.5 65.2 41.8 61.9 65.9 52.7 61.7 64.9 17.3 62.5 30.9 31.8

100 30.2 48.7 76.9 41.4 78.7 76.9 78.2 51.8 76.5 79.1 65.8 73.9 78.3 24.7 76.2 40.4 41.2

Modified Normal 25 29.3 31.2 23.5 19.5 40.0 37.5 38.1 22.0 36.9 40.2 16.8 27.4 39.6 27.6 38.3 16.9 28.8
50 42.3 47.2 35.0 26.1 55.2 52.9 53.1 32.9 52.5 55.5 22.2 38.4 54.8 42.4 53.8 22.2 42.0

100 53.7 61.0 50.2 33.8 67.9 65.7 66.4 43.8 65.1 68.2 28.9 49.9 67.6 55.4 65.4 27.8 53.2  
 

Table A.12. Average empirical power results by distribution type for all sample sizes ( = 0.10). 

Distribution
Sample 

size
K-S AD* Z c Z a P s K 2 JB DH RJB T Lmom T TLmom

(1) T TLmom
(2) T TLmom

(3) BM 3-4 BM 3-6 T MC-LR

Symmetric 25 46.3 51.8 52.0 50.8 51.9 49.8 42.8 49.3 43.1 53.6 40.5 31.9 27.2 38.0 38.7 22.6
50 56.9 64.3 66.3 65.0 64.5 65.6 58.6 62.5 48.9 66.4 54.5 45.4 38.5 43.6 44.4 31.8

100 68.3 76.3 78.0 76.8 76.5 76.8 74.0 75.0 68.3 76.8 66.5 57.5 50.9 48.0 48.5 44.0

Asymmetric 25 44.4 52.2 56.6 57.3 51.9 45.7 50.2 51.3 43.8 52.9 30.8 29.9 29.6 34.2 34.5 31.0
50 58.9 67.0 71.8 73.0 66.5 63.7 66.9 68.7 59.9 68.8 47.3 46.6 46.4 44.0 44.5 42.4

100 72.1 78.8 82.2 82.8 78.3 79.0 80.1 81.0 77.1 80.4 62.7 61.9 61.6 53.5 53.6 55.5

Modified Normal 25 44.3 48.7 46.3 45.6 48.7 39.6 35.9 43.0 29.3 47.0 39.2 34.6 31.6 21.4 21.9 27.3
50 56.3 60.8 60.1 60.1 60.8 56.1 53.3 56.7 38.8 60.7 52.4 47.7 44.8 26.1 26.7 37.1

100 65.2 70.2 71.3 71.0 70.1 69.5 68.2 69.6 62.2 70.9 61.2 56.9 54.1 30.7 31.0 47.5  
 

Table A.12. (continued) Average empirical power results by distribution type for all sample sizes ( = 0.10). 

Distribution
Sample 

size
T w T MC-LR -T w T S, l T K, l W W SF W RG D r CS Q Q-Q* BCMR  3

2 T EP I n R s,J

Symmetric 25 52.2 49.6 38.6 36.8 52.6 50.4 51.3 46.1 49.9 52.7 37.7 47.6 52.2 55.6 49.9 15.7 52.4
50 66.8 63.1 47.1 44.9 66.5 63.3 65.4 62.0 62.6 66.7 49.9 59.1 65.8 70.1 63.3 16.2 66.5

100 78.5 75.4 59.2 51.1 78.9 76.3 76.3 76.4 75.7 79.0 61.7 67.9 78.3 79.6 74.7 17.9 78.5

Asymmetric 25 21.6 31.8 53.7 29.1 56.2 53.5 56.1 37.5 53.0 56.4 45.8 53.5 55.6 18.7 54.0 29.5 29.6
50 28.5 43.1 69.6 36.2 71.5 69.0 71.2 47.9 68.5 71.9 59.8 67.8 71.0 24.4 69.1 37.9 38.3

100 37.1 55.8 81.4 45.5 82.0 80.6 81.9 57.1 80.3 82.4 70.9 78.2 81.7 31.8 80.3 46.3 47.3

Modified Normal 25 36.7 39.2 31.9 25.6 48.0 46.3 45.6 28.8 45.8 48.1 24.1 36.0 47.8 36.0 47.0 22.5 36.3
50 48.9 54.0 44.6 32.3 61.6 59.4 59.4 39.4 58.9 61.8 29.9 47.0 61.2 49.7 60.3 27.1 48.5

100 59.3 65.8 59.6 40.0 72.1 70.8 70.2 49.7 70.3 72.2 36.5 56.9 71.9 61.2 70.1 32.1 58.7  
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Figure A.2. Average empirical power results, for all sample sizes, for the symmetric distributions with 
 = 0.05 (a) and  = 0.10 (b); for the asymmetric distributions with  = 0.05 (c) and  = 0.10 (d); for the 

modified normal distributions with  = 0.05 (e) and  = 0.10 (f). 
 

Table A.13. Numbering of the tests. 

Test K-S AD* Z c Z a P s K 2 JB DH RJB T Lmom T TLmom
(1) T TLmom

(2) T TLmom
(3) BM 3-4 BM 3-6 T MC-LR

Test number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16  
 

Test T w T MC-LR -T w T S, l T K, l W W SF W RG D r CS Q Q-Q* BCMR  3
2 T EP I n R s,J

Test number 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33  
 

 

 

 

 

 

 

 

 

a) b)

c) d)

e) f)
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A.6 Discussion of the results 

A summary of the power results is presented in the following comprising several 

different levels of comparison. A preliminary general assessment of the results is presented 

based on the values of 1  and 2 . Then, comparisons are performed by type of 

normality test, by type of simulated distribution, by sample size and also considering the 

totality of results. An additional comparison is also performed with respect to the outlier 

sensitivity of the tests, by specifically addressing the power results obtained for the Nout1 

to Nout5 distributions. 

Regarding the influence of 1  and 2 , it is observed that when their 

corresponding values are near those of the normal distribution, none of the tests produces 

significant power results. With respect to symmetric distributions, most of the tests are 

seen to yield better performance when 2  is either significantly lower or higher than 3. In 

terms of asymmetric distributions, the influence of 1  appears to be slightly larger than 

that of 2  over the power of the tests. In general terms, the power of the tests appears to 

increase with skewness increase. With respect to the modified normal distributions, the 

influence of 1  and 2  is not easily identified due to the additional influence of the 

considered level of contamination.  

In terms of the selected normality tests based on the EDF, with the exception of K-S, 

the remaining tests generally exhibit similar power over the range of selected distributions. 

In general, the powers of AD* and Ps are very similar while those of ZC and ZA are closer 

to each other. For the case of the symmetric distributions, and disregarding K-S, there is no 

clear advantage of one test over the others as their relative performance varies according to 

sample size and significance level. On the other hand, for the asymmetric distributions, ZC 

and ZA are best, with ZA presenting a slight edge over ZC. For the modified normal 

distributions AD* and Ps are better when sample size decreases, while for the larger sample 

size again all tests except K-S yield similar results. 

In terms of the selected normality tests based on measures of the moments, Tw, TLmom 

and K2 generally exhibit better performance for the symmetric distributions. Nonetheless, 

TLmom is best when sample size decreases and K2 loses more power for the smaller sample 

size, for which tests such as TMC-LR-Tw and DH present similar or slightly better power. For 

the case of asymmetric distributions, DH, TLmom and ,ST   are seen to have better power, 

with DH being somewhat better when the sample size is larger while TLmom is slightly better 

for smaller n. For the modified normal distributions, TLmom, DH and K2 appear to be the 

best choices. Nonetheless, for smaller n, TMC-LR-Tw presents, in some cases, better 

performance than K2. 
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In terms of regression and correlation tests, 2
3 , CS and W exhibit better 

performance for the case of symmetric distributions, with 2
3  showing an increasing 

relative power towards the other two tests as n decreases. For the asymmetric distributions, 

CS and W are generally better, with WRG and BCMR closely following with similar power, 

while for the modified normal distributions, CS, W and BCMR present the best 

performance.  

When considering all the normality tests for the selected alternative symmetric 

distributions, 2
3 , CS, Tw and sJR  are generally better, with 2

3  having a slight edge over 

the others. For smaller sample sizes 2
3  is still the best choice and TLmom also shows good 

power, with CS, W, Tw and sJR  close behind. A similar analysis for the case of asymmetric 

distributions shows that ZA, ZC, CS and W appear to be the best choices, with relative 

performance depending on the selected sample size and significance level. For the modified 

normal distributions, CS, BCMR and W are generally better although, as n decreases, AD*, 

Ps and also TLmom become more significant.  

To allow for a more clear view of the individual power results of the best tests 

identified for each distribution set, Fig. A.3 presents their corresponding power results for 

the selected distributions of each set, a significance level   of 0.05 and a sample size of 50. 

Similar relative trends were observed for the other significance levels and sample sizes.  

When considering all the normality tests against all the non-normal alternative 

distributions, but excluding the Nout1 to Nout5 distributions, it can be seen that, for the 

smaller sample size, CS, W and BCMR are generally the best choices, though ZA, ZC, TLmom, 

WRG , AD* and Ps follow closely. For the sample size of 50, CS, W and ZA are better, with 

BCMR, ZC, WRG and TLmom also following closely. For the larger sample size, CS, W and 

BCMR are again the best choices with close performances of ZA, ZC and WRG. Considering 

the whole range of sample sizes, CS, W and BCMR emerge as the best choices, although 

tests such as ZA, ZC, WRG, TLmom, AD*, Ps, WSF and TEP also show an overall comparable 

average power.  

When analysing the power results for the Nout1 to Nout5 distributions, the main 

objective is not to find tests that reject the normality hypothesis as many times as possible. 

Instead, the search is for tests whose power is close to the nominal significance level, 

therefore implying a low sensitivity to outliers. Observation of the power results of all the 

normality tests against these distributions leads to conclude that TMC-LR,  3
TLmomT  and 

 2
TLmomT  are the best choices over the complete set of selected normal distributions with 

outliers. Nonetheless, it is noted that both  1
TLmomT  and Q also have a low sensitivity to few 

outliers, i.e. a single outlier or two outliers defined as one lower and one upper extreme 

observations.  
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Figure A.3. Power of the best tests for with  = 0.05, a sample size of 50, and for the symmetric 
distributions (a), for the asymmetric distributions (b) and for the modified normal distributions (c). 

 

With respect to the power of the proposed joint test TMC-LR-Tw, observation of the 

power of this test for the different distributions shows an advantage over the performance 

of the individual tests for the asymmetric and modified normal distributions, excluding the 

Nout1 to Nout5 distributions. For the symmetric distributions, the individual test Tw is 

generally better than TMC-LR-Tw. 

As previously referred, a comparison of the two-sided RsJ test with the one-sided 

version RsJ,1 was carried out for each distribution set in order to verify the advantages of the 
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former. Fig. A.4 presents the corresponding power results for a significance level   of 

0.05 and a sample size of 100. Similar relative trends were observed for the other 

significance levels and sample sizes. When comparing RsJ to RsJ,1, the former can be seen to 

extend the range of application of this test, namely to light-tailed distributions, without a 

significant reduction of its power towards heavy-tailed distributions. Therefore, when the 

nature of the non-normality is unknown RsJ is considered to be more adequate than RsJ,1. 
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Figure A.4. Comparison of power of tests sJR  and ,1sJR  for with  = 0.05, a sample size of 100, and for the 

symmetric distributions (a), for the asymmetric distributions (b) and for the modified normal distributions (c). 
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Finally, a last remark on the performance obtained for the tests K-S, JB, D and W and 

corresponding comparison with results available in Yazici and Yolacan (2007). Considering 

the common sample size and significance level, results presented herein do not corroborate 

the findings in Yazici and Yolacan (2007) but are in much larger agreement with results of 

other previous studies referenced herein.  

 

 

A.7 Concluding remarks 

A comprehensive power comparison of existing tests for normality has been 

performed in the presented study. Given the importance of this subject and the widespread 

development of normality tests, comprehensive descriptions and power comparisons of 

such tests are of considerable interest. Since recent comparison studies do not include 

several interesting and more recently developed tests, a further comparison of normality 

tests, such as the one presented herein, is considered to be of foremost interest.  

The study addresses the performance of thirty-three normality tests, for various 

sample sizes n, considering several significance levels   and for a number of symmetric, 

asymmetric and modified normal distributions.   

General recommendations stemming from the analysis of the power of the selected 

tests indicate the best choices for normality testing are 2
3 , CS, Tw and sJR  for symmetric 

distributions, ZA, ZC, CS and W for asymmetric distributions and CS, BCMR and W for 

modified normal distributions, excluding normal distributions with outliers. For this latter 

case, the tests TMC-LR,  3
TLmomT  and  2

TLmomT  are recommended since they exhibit less 

sensitivity to outliers. When the nature of the non-normality is unknown, the tests CS, W 

and BCMR appear to be the best choices.  
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