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Abstract

The two-dimensional irregular cutting and packing problems (aka nesting problems)
have been studied over the past six decades and consist in cutting (packing) convex
and non-convex small pieces from (in) large boards without overlapping. There are
several variants of this problem that are defined according to the board shapes and
the objective of each problem. There are a number of heuristics proposed in the lit-
erature to solve irregular cutting and packing problems, but only few mixed-integer
programming models. Specifically, these models were developed for the irregular strip
packing problem, that consists in packing pieces into a single board with fixed width
and length to be minimized. For the other problem variants, there is no exact methods
presented in the literature. The main difficulty in solving irregular cutting and packing
problems is how to handle with the geometric constraints. These constraints depend
on the type of placement of the pieces on the board that can be continuous or discrete.
In this thesis, we present two mixed-integer programming models for the irregular strip
packing problem in which the pieces can be continuously placed on the board. These
models do not demand complex structures to be built. We also present a new dot data
structure to store the information on the placement of the pieces and overlapping po-
sitions bringing flexibility and efficiency to discrete approaches. Using this structure,
a matheuristic is proposed, combining the advantages of the models with discrete and
continuous placement positions for the pieces on the board. Furthermore, constraint
programming models for several variants of irregular cutting and packing problems are
exploited. For some variants, these models are the first modelling representation. A
new global constraint is developed to eliminate the overlap among pieces. Computa-

tional experiments were conducted to evaluate the developed approaches.

Keywords: Irregular cutting and packing, mixed-integer programming models, con-

straint programming models, heuristics, geometric tools.






Resumo

Os problemas de corte e empacotamento de pecas irregulares bidimensionais vém
sendo estudados ha décadas e consistem em cortar (empacotar) pecas menores, con-
vexas e nao convexas, a partir de (em) placas maiores de forma a nao se sobreporem.
Existem diversas variantes deste problema, definidas de acordo com o formato da placa
e objetivo de cada problema. Na literatura, muitas heuristicas foram propostas para a
resolucao dos problemas de corte e empacotamento de pecas irregulares, porém, pou-
cos modelos de programacao inteira mista podem ser encontrados. Especificamente,
estes modelos foram desenvolvidos para o problema de empacotamento em faixa, que
consiste em empacotar as pecas em uma placa de largura fixa e comprimento a ser
minimizado. Para as demais variantes do problema, nao existem métodos exatos pro-
postos na literatura. A principal dificuldade na resolucao dos problemas de corte e
empacotamento de pecas irregulares estd na manipulacao das restricoes geométricas.
Estas restricoes dependem do tipo de posicionamento das pecas na placa, que pode ser
discreto ou continuo. Nesta tese, apresentamos dois modelos de programacao inteira
mista para o problema de empacotamento de pecas em faixa, no qual cada peca pode
ser alocada de forma continua na placa. Estes modelos nao demandam estruturas com-
plexas para serem construidos. Também apresentamos uma nova estrutura de dados
para armazenar informagoes sobre o posicionamento das pecas e as posicoes de sobre-
posicao, trazendo flexibilidade e eficiéncia para abordagens discretas. Utilizando esta
estrutura, uma matheuristica foi proposta, combinando as vantagens dos modelos com
alocagao discreta e continua das pecas na placa. Além disso, modelos de programa-
¢ao por restricoes para diversas variantes dos problemas de corte e empacotamento de
pecas irregulares foram explorados. Para algumas variantes, estes modelos sao a pri-
meira representacao via modelagem. Uma nova restricao global foi desenvolvida para
eliminar a sobreposicao entre as pecas. Experimentos computacionais foram realizados

para avaliar as abordagens propostas.

Palavras chave: Corte e empacotamento de pecas irregulares, modelos de progra-
macao inteira mista, modelos de programacao por restricoes, heuristicas, ferramentas

geomeétricas.
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Chapter 1
Introduction

Irregular cutting and packing problems are hard combinatorial optimization problems
(Fowler et al., 1981) that consist in cutting small, convex or non-convex items (pieces)
from larger objects (boards). The items are placed on the object - with no overlap-
ping among them - and completely contained in the boards. The objective may vary
according to the application, however, it generally invokes waste (the boards’ area not
occupied by pieces) reductions or/and increase in the profits.

The irregular cutting and packing problems are not only scientifically relevant, but
also economically and environmentally important, given their many industrial applica-
tions and the reductions in the use of raw materials they involve. From an economic
point-of-view, a solution to the problem reduces the amount of material necessary for
the production of the pieces, hence, the production costs, and contributes to waste re-
duction, as industries tend to discard less raw-material, which provides environmental
benefits.

Industries of garment, furniture and shoe manufacture, sheet metal cutting and

others are faced with such a problem. Figure 1.1 illustrates a solution to an instance

MA

of the problem.

Figure 1.1: Example of a solution to the two-dimensional irregular cutting and packing
problem.



The irregular cutting and packing problems comprehend several variants classified
by Wéscher et al. (2007). For many of these variants no exact method or mathematical
model has been developed to solve or represent them. Specifically, the exact methods
proposed focus on a single variant, i.e., the irregular strip packing problem (or one open
dimensional problem), as only heuristics have been proposed for the other variants.

The most studied variant is the irregular strip packing problem, in which all pieces
must be placed into a board of fixed height and variable length, so that the minimum
length is used. Some exact methods have been developed to solve this problem. A
mixed-integer programming model in which pieces can be freely placed on the board was
proposed by Fischetti and Luzzi (2009). Some structures of this model were formalized
by Alvarez-Valdes et al. (2013), who also developed a branch and bound algorithm
to solve the problem and extended a linear compaction model designed by Gomes
and Oliveira (2006) for a mixed-integer programming model that represents the whole
problem. Although all such models accurately represent the problem, they demand
complex geometric structures not easy to be obtained.

Considering a finite set of positions for placing each piece, Carravilla et al. (2003)
and Ribeiro and Carravilla (2004) proposed constraint programming methods to solve
the problem. Toledo et al. (2013) developed a mixed-integer programming model to rep-
resent the problem also considering a discrete approximation. This geometric represen-
tation is also used by heuristics (Carravilla and Ribeiro, 2005; Bennell and Dowsland,
2001; Dowsland et al., 1998). Using a predetermined set of positions for the placement
of the pieces, some geometric features can be determined prior to the application of
the solution method. Despite the simplicity introduced by discrete approaches, some
valuable solutions may be lost because of the discretization.

Several authors have combined heuristics with linear and non-linear programming
to obtain more compact layouts. Examples can be found in the simulated annealing
algorithm (Gomes and Oliveira, 2006), the hybrid tabu search (Bennell and Dowsland,
2001), and the iterated local search (Imamichi et al., 2009). The methods combine the
efficiency of the heuristics with the compactness of the layouts generated by linear and
non-linear programming. Although in the last decade several mixed-integer program-
ming models were proposed to represent the irregular strip packing problem, they were

never used for the development of a heuristic for the irregular strip packing problem.

1.1 Contributions of this thesis

The contributions of this thesis regard the development of innovative exact and heuris-
tic methods to solve the irregular cutting and packing problems. We propose two

mixed-integer programming models for the strip packing problem; a new dot structure



to handle the geometry of cutting and packing problems; pieces rotations were included
to the dotted board model (Toledo et al., 2013) and a matheuristic was build using it;
constraint programming methods were proposed to all variants of cutting and packing
problems classified by Wéascher et al. (2007). Also, a global constraint is proposed to
eliminate the overlap between pieces. In the following the contributions of each subject

studied are described.

Two mixed-integer programming models to solve the irregular strip packing problem
are proposed. In both models, the placement of the pieces is continuous inside the
board. They differ on how the non-overlapping among pieces is ensured. One of
them guarantees that the pieces do not overlap using only the information of the piece
vertices, i.e., complex structures, as nofit polygons or phi-functions are not necessary
for the construction of the model. The other model uses the nofit polygon covering to
avoid overlapping among pieces and outperformed the best results from the literature
for exact methods. In both approaches, the geometric concepts used for the creation
of the model are simpler than those of previous models proposed in the literature
and easily deal with non convex pieces and pieces with holes. They are also the first

continuous models that enable the rotation of the pieces.

An innovative dot structure is proposed to deal with the geometry of the problem
according to a discrete placement of the pieces inside the board. It converts the ge-
ometric analyses over polygons into information of the dots. Each piece type can be
placed in its own set of dots that can be different from the set of dots for other types
of pieces. The use of different dots for the placement of different piece types has never
been explored in the literature. Therefore, the structure simplifies and improves the
efficiency of the creation of solution methods in which pieces can only be placed over
specific positions.

The proposed dot structure enables the dotted board model to be reformulated,
allowing it to be constructed using a specific set of dots for each piece type. Therefore,
a model that represents the problem more precisely is generated with fewer variables
and solutions with better quality. Rotations for the pieces with a finite number of

angles are considered in the reformulation of the dotted board model.

As the dot structure simplifies the management of the dots on the board, a model-
based heuristic has been developed with this new structure. The matheuristic uses the
dotted board model in two phases and a linear compaction model in the last phase. In
the first and second phases, a constructive heuristic based on relax and fix obtains an
initial feasible solution that is improved through the addition of more dots, so that the
pieces can be placed and then in the second phase local searches are performed using
the dotted board model. In the last phase, a linear compaction model eliminates the

gaps among pieces.



We also propose new constraint programming models to solve all variants of the
irregular cutting and packing problems classified by Wischer et al. (2007), as the litera-
ture lacks an exact method that solves many of such problems. Although each problem
has specific constraints, some general characteristics, as non-overlap among pieces, are
required in feasible solutions by all problem variants. Therefore, we propose new con-
straint programming models to represent all these variants. Three solution methods
were developed for each problem variant and they differ only in the way they represent
the domains of the variables and deal with the core constraints of the problem. A
global constraint to avoid the overlapping between pieces is also proposed. It promotes
quick search with less memory usage in comparison with the built-in constraints of the

constraints solver.

1.2 Thesis outline

After this introductory chapter, Chapter 2 addresses the definition of irregular cutting
and packing problems and provides a review of the geometry of the heuristic methods
and the mixed-integer programming models developed for the irregular strip packing
problems. Two new mixed-integer programming models for the irregular strip packing
problem are presented in Chapter 3. An innovative dot structure that represents the
geometry of irregular cutting and packing problems and simplifies the construction of
heuristics and models based on discrete placement positions for the pieces is described
in Chapter 4. A matheuristic that uses the structure combined with the dotted board
model is proposed in Chapter 5. Chapter 6 presents new constraint programming
models to solve the irregular cutting and packing problem variants classified by Wascher

et al. (2007). Finally, Chapter 7 provides the conclusions and future research directions.



Chapter 2
Irregular cutting stock problem

In the literature, the cutting and packing problems are classified into different variants.
The first classification scheme was proposed by Dyckhoff and Finke (1992) and was
later extended by Wéscher et al. (2007). This classification is based on five criteria:
dimensionality, kind of assignment, assortment of pieces, assortment of containers (or
boards in the two-dimensional case) and shape of the pieces (for problems with more
than one dimension).

The dimensionality concerns the number of relevant dimensions of the problems
that can have one, two, three or more dimensions. Output value maximization and
input value minimization are two kinds of assignment considered. The pieces can be
classified as strongly heterogeneous (many pieces of many types), weakly heterogeneous
(many pieces of few types) and identical (many pieces of a single type). The assortment
of the boards can be classified into several large boards with fixed dimensions and a
single board with fixed or variable dimensions. If the problem has two dimensions or
more, the shapes of the pieces can be classified into regular (e.g., rectangle, circles,
boxes, spheres, etc.) and irregular (non-regular).

In this thesis, we study the irregular two-dimensional cutting and packing problems,
that, according to the typology of Wischer et al. (2007), can be classified into six basic
types: Identical Item Packing Problem (I/IPP), Placement Problem (PP), Knapsack
Problem (KP), Cutting Stock Problem (CSP), Bin Packing Problem (BPP) and Open
Dimension Problem (ODP). IIPP, PP and KP are output maximization problems and
ODP, BPP and CSP are input minimization problems. Figure 2.1 shows a diagram
that classifies the basic two-dimensional cutting and packing problem types.

Looking at the output maximization problems, in the I[IPP the problem consists in
placing many copies of the same item type on the board. In PP, many piece types with
several copies of each one must be placed on the board. The number of copies of each
piece type that need to be cut can be finite (PPr) or large enough to be considered
infinite (PP). If exactly one copy of many piece types must be placed on the board, the

3
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Figure 2.1: Basic cutting and packing problem types (adapted from Wéscher et al.
(2007)).

problem is called KP. In these problems the board has finite dimensions and, usually,
there is no space on the board to cut all the demanded pieces. The objective is to

extract the maximum value performing the cut (pack) of the pieces.

For input minimization problems, there are sufficient resources to cut all pieces and
the objective is to minimize the used resource. In CSP, a minimum number of boards
must be used to place many piece types with several copies of each. When only one
piece of each type must be placed on the boards, the problem is called BPP. In ODP,
many piece types with several copies of each one must be placed on the boards with
one (10DP, also known as strip packing problem) or two (20DP) variable dimensions.
The objective for CSP, BPP and 10DP is typically to minimize the amount of resources
used to cut all the demanded pieces. This objective can be reached by minimizing the
number of boards used or the length of the board used to perform the cut. Solving
20DP, several objectives can be used, for example, the area or perimeter of the bounding

box of the packing or other relations between the length and the width of the board.

The focus of this thesis is the irregular strip packing problem. However, other
variants of cutting and packing problems were investigated. In the reminder of this
chapter, Section 2.1 describes the possible geometric representations for pieces and
how to use them to tackle the geometric constraints of the problem. A review of exact
methods and mixed-integer programming models is presented in Section 2.2. Some
heuristics for the irregular strip packing problem are reviewed in Section 2.3. Heuristics
for the other variants of irregular cutting and packing problems are presented in Section
2.4.



2.1 Geometry representation

The irregular cutting and packing problems have two common constraints: i) ensure
that the pieces do not overlap; and ii) the guarantee of the pieces are completely on the
board. The solution methods for these problems are directly related with the geometry
used to represent the pieces and, consequently, to handle these constraints. A complete
review about the problem geometry can be found in Bennell and Oliveira (2008).

In the literature, different approaches were used to represent the geometry of the
problems. The most common are: raster points, D-functions, nofit polygons and phi-
functions.

Approaching the problem by raster points, the pieces and the board are represented
by a set of matrices. These matrices contain the positions occupied by each piece on
a grid, as exemplified in Figure 2.2. The representation of the board and the pieces is
similar. Furthermore, the matrices that represent the board contain all the positions
that are free or occupied by the pieces. Using this representation, the pieces intersection
analysis is reduced to evaluate if the matrix that composes the pieces, when placed on
the board, overlap in non-zero positions. In addition, the piece is inside of the board if
all the non-zero positions that compose its matrix are inside of the board. Although it
is a simpler approach, the raster points cannot represent the pieces precisely generating
some gaps among the pieces and the refinement of the representation of the pieces can

demand huge computational resources.

0/0[{0|0|0 0/0[{0|0|0
0/0[0|0 1|1 0/0[0|0
0/0|0 1/1/1|1 0/0|0
0|0 11|11 |1|1 0|0
0 1(1(1|{1|1|1|1|1 0
11111 |1|1]|1
1(1(1|{1|1|1|1]|1
0 11111 |1|1]|1 0
0|0 11|11 |1|1 0|0
0/0|0 1/1/1|1 0/0|0
0/0[0|0 1)1 0/0[0|0
0/0[{0|0|0 0/0[{0|0|0

Figure 2.2: A piece (on the left) and its matrix representation (on the right).

The gap among the pieces can be reduced using polygons to represent the pieces.
Each piece is represented by a set of vertices and a reference point used to control
where the piece will be placed on the board. To ensure that the piece is entirely
contained on the board, the innerfit polygon (IFP) is used. The IFP of a piece t (IFP;)
represents all the positions where the reference point of piece ¢ can be placed keeping
the piece entirely inside of the board. Note that, if the board is a rectangle with length
L and width W, the IFP is also a rectangle. Consider I'*/* the horizontal distance from
the leftmost piece vertex to the reference point, w!°? the vertical distance from the

highest piece vertex to the reference point, w""™ the vertical distance from the lowest
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piece vertex to the reference point, and "9 the distance of the piece reference point
to its rightmost vertex. The piece dimensions are illustrated in Figure 2.3a where
its reference point is highlighted in a darker circle. The IFP is the rectangle with
left bottom vertex (I!¢/t w%°m) and the top right vertex (L — ["9" W — wbtom) as

illustrated in Figure 2.3b.

_-0 — —
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- ~_ ~._!

wtop O'\"— ,’ < . :

~ 4 |

9 y IFP ‘

o _ ' - -

bottom S y e = -7 )
w Tl bottom S —_—— N A
-3 w ¢ S~ ~-

— o o

lleft lright left [right

(a) (b)

Figure 2.3: Building an innerfit polygon. (a) shows how [!¢/t !°P  [ri9ht and qbottem
are obtained. In (b) the IFP is built using the constants found in (a).

Performing the overlapping analysis between the pieces using this geometric rep-
resentation is a complex task. One of the techniques used for this analysis is the
D-function, that determines whether a point is to the left or to the right side of an
oriented line. Therefore, the overlap between pieces can be verified using the informa-
tion of vertices and edges of polygon that compose the piece. The use of D-functions
is exemplified in Figure 2.4 where the point B is over the D-function, C'is on the right
side of the D-function and A is on the left side of the D-function.

,,,,,,,,,,,,,,,,

Figure 2.4: A D-function and three points in different positions.

To simplify the verification of non-overlap among pieces, the nofit polygon can be
used. The nofit polygon represents the contact area between two pieces reducing the
problem of checking if two pieces overlap is reduced to the verification if a point is
strictly inside of this polygon. The nofit polygon between two pieces is illustrated in
Figure 2.5.

Aiming to combine the simplicity of raster points with the precision of the polygonal

representation, some authors used discrete positions (dots) to place the pieces, while the
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Figure 2.5: The nofit polygon composed by the pieces on the left is presented hatched
on the right.

non-overlap analysis is performed using nofit polygons. As the placement positions for
the pieces are known, it is possible to predict which dots of the board cause intersection
of pieces if both representations are used simultaneously. Figure 2.6 illustrates an
example using the pieces in Figure 2.5, where if the triangle is placed over a grid dot,
the square reference point cannot be placed at the dots inside of the nofit polygon of

these pieces (that are highlighted by larger circles).

Figure 2.6: Example of a board discretization and a feasible placement position for a
triangle and a square.

To represent the pieces with better precision, linear or non-linear functions (phi-
functions) can be used. The phi-function of two pieces is the function that gives the
distance between them. Although this representation is more general and accurate,
the task of define functions for all pieces is difficult. Generally, the phi-functions are
obtained combining primary objects, i.e, objects that the phi-functions are already

known. Figure 2.7 illustrates the representation of pieces using phi-functions.

It is possible to represent the pieces using circles to cover its entire surface. This
representation is simpler than representing the pieces by any functions, however, it is
not precise and can lead to small intersections between the pieces. In addition, define
the a set of circles to cover the pieces can be a difficult task. Figure 2.8 shows a

representation of a rectangle using circles.



=

Figure 2.7: Representing phi-functions (based on Chernov et al. (2010)). The polygon
is on the left and a possible representations using phi-functions is on the right.

Figure 2.8: Representing a piece by circles. The piece is on the left and a possible
representations is on the right.

2.2 Exact approaches for the irregular strip packing

problem

The irregular strip packing problem consists in cutting a number of convex and con-
cave pieces from a rectangular board of fixed width (W) and infinite length. The
objective is to minimize the board length (L) used to perform the cuts. This problem
is NP-complete (Nielsen and Odgaard, 2003) and because of its difficulty, only few
exact methods were proposed to solve it. By solving this problem by exact solution
methods, a search over the solution space of the problem is made, ensuring the solu-
tion optimality. Besides solving the problem to optimality, these methods are also a
great tool to analyse the quality of heuristic methods. All exact methods proposed
to the irregular cutting and packing problem deal with the irregular strip packing
problem variant. We present here an exact constraint programming method and the
mixed-integer approaches proposed in the literature to solve the irregular strip packing

problem.

2.2.1 An exact method using constraint programming

Based on formal logic, logical programming can represent combinatorial optimization
problems by a set of logical sentences, expressing some rules to build the problem
domain. Constraint logical programming extends logical programming by allowing the

problem to be also represented by constraints instead of only by logical statements
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(Jaffar and Maher, 1994).

Carravilla et al. (2003) developed an exact method to solve the irregular strip
packing problem based on constraint logical programming, a finite domain variables
and an implicit enumeration scheme. The method deals with problems with non-convex
pieces through the decomposition of the nofit polygon in convex parts. The placement
position of each piece i is represented by discrete (z;,y;) coordinates of its reference
point. The initial domain for the (x;,y;) coordinate is built using the width, the upper
bound of the board length and the piece i dimensions as depicted in Figure 2.3. The
nofit polygons are used to avoid the overlap among pieces. When the position of one
piece is fixed, the domain of the variables related to all other pieces is reduced based
on their NF'P’s.

On the enumeration phase, the choice of the placement points follows the order of
the pieces. Along the search, the best solution found so far is memorized and every
piece positioned beyond the best solution is not considered.

Ribeiro and Carravilla (2004) proposed a global constraint called “outside”, the first
global constraint designed for the irregular strip packing problem. With this constraint,
expressing the problem is easier and the authors claim that its resolution become more
efficient. They also proposed an improved pruning procedure of the search that is based

on the concept of the piece “responsible” for the total length.

2.2.2 A linear model based on compaction strategies

A mixed-integer programming model to represent the irregular strip packing problem
can be derived from the compaction models that were used in literature as part of
heuristic methods (Li and Milenkovic, 1995; Stoyan et al., 1996; Bennell and Dowsland,
2001; Gomes and Oliveira, 2006). Alvarez-Valdes et al. (2013) presented the complete
formulation for the problem based on this model.

Different from Carravilla et al.’s method, in this mathematical model the placement
coordinates of each piece i are defined by continuous coordinates (z;,v;). The total
number of pieces is denoted by N and the reference point of piece 7, p;, has coordinates
denoted by (z;,4:), i = 1,...,N. To ensure that piece i is entirely on the board, IFP;
is represented by constraints (2.1)-(2.3), that guarantee that the piece reference point

is always in a feasible position in relation to the board.

y; <KW —wbettem =1, N
y >wi i=1,...,N, (2.2)
N

o >t =1,
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where w, and w are constants associated with the piece as shown in Fig-

ure 2.3.

To avoid the overlap between pieces ¢ and j, consider the NFP;;. Define E;; as
the set of lines that correspond to edges of the NIEP;; as illustrated in Figure 2.9b.
The equation of the line e € FE;; corresponds to an edge of NFF;; and is given by
aije(j — ;) + Bije(Yj — Yi) = Vije, Where vje, Bije and v;;. are the coefficients of a line
e € L.

Eij lines
€s €3

’ \
’ 61 \
/ \

(2) (b)

Figure 2.9: In (a) a NFP is presented and in (b) the lines associated with the respective
edges are shown.

Suppose that piece ¢ is fixed. To avoid overlap the reference point of piece 7 must
be over the edge of NFP,; or outside NFP;; (the reference points of ¢ and j must
be on opposite sides of at least one edge of NFP;;). Figure 2.10 illustrates the cases
that the pieces are separated (Figure 2.10a), touching (Figure 2.10b) and overlapping
(Figure 2.10¢). Since it is not possible for two pieces to be at different sides of all lines
defined by NFP edges, new variables are necessary to relax some of these constraints.
For each line e € E;;, a binary variable v;j. is defined, which is 1 if pieces ¢ and j are on
different sides or touching line e, and 0 otherwise. The general form of the constraints

that prevent overlap is defined by:

ozije(xj — xl) + ﬂije(yj — yz) S ’Yije + M(l — Uije); 1 S 1< ] S N, Ve € Eij, (24)
where M is a real constant that is large enough to relax this constraint if v;;. = 0. To

ensure that at least one variable v;;. associated with lines e € L;; is active, constraints

(2.5) are imposed.
> vye>1, 1<i<j<N. (2.5)
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(a) (b) (c)

Figure 2.10: In (a) the reference points of the pieces are at different sides of a line,
then the pieces are separated. In (b), the reference point of piece j touches one line,
then the pieces touch. In (c¢), the reference point of both pieces are at the same side of
all lines, then the pieces overlap.

The objective is to minimize the used board length L. Based on constraints (2.6),
the variable L is always larger than the used board length, consequently, the objective

is to find the smallest L that satisfies all these constraints.

L—x; > 0" i=1,..,N, (2.6)

where 179" is a constant of piece i as presented in Figure 2.3.
The mixed-integer programming model presented in Alvarez-Valdes et al. (2013) is

given as follows.

minimize L (2.7)
subject to:

L—ax; > 19" i=1,...,N, (2.8)
x; > 1 i=1,...N, (2.9)
y; < W — wbertem, i=1,..,N, (2.10)
yi > wi”, i=1,..,N, (2.11)
Qije(mj — 23) + Bije(y; — vi) < Vije + M(1 —vy5e), 1<i<j<N,Ve€ Ey, (2.12)
> e >1, 1<i<j<N, (2.13)

e€ By
vije €{0,1}, 4,7 =1,..,N,Ve € E;;, (2.14)
i,y > 0, i=1,...,N. (2.15)

Despite the simplicity of this model, it is difficult to develop constraints for non

convex polygons or polygons with holes. Precisely, in these cases two problems as-
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sociated with the nofit polygons are found: (i) the generation, that can be difficult
considering any piece shapes; and (ii) the usage, since the authors did not detail how

to handle holes and non convexities in the model.

2.2.3 The Fischetti and Luzzi (2009) model

Fischetti and Luzzi (2009) proposed the first mixed-integer programming model to
represent the irregular strip packing problem. The authors performed a lifting over
some coefficients of the model, reducing the solution space and then improving the
performance of solution methods. To tackle the geometric constraints, the nofit polygon
and the innerfit polygon were used. The difference between this model and the one
presented in Section 2.2.2 is the way of preventing the overlap.

Given two pieces i and j and the nofit polygon between them (NFP;;), the locus of
point (x;,y;) of piece j must not be inside of NFP,; translated by (z;, y;) from the origin,
i.e., (v;,9;) — (i, y;) must be contained in NFP;;, where NFP;; is the complementary
set of NFP;;. In order to derive linear constraints preventing overlaps, the authors
divided the NFP;; in m;; convex and disjoint sub-regions (slices) whose union set must
be equal to the NFP;;. These regions are created by drawing lines from convex NFP;;
vertices to its exterior side. Only the vertices which are formed by segments with
external angle bigger than 180 degrees are chosen to trace these lines. The authors did
not explain clearly how to choose the direction of each line. Figure 2.11 illustrates one
possible Wij division.

Figure 2.11: Partitioning the NFP;; region in seven convex regions.

To ensure that piece j does not overlap piece ¢, the reference point of piece j must
be in one of the slices NFPZ, k =1,...,m;;. Consider the variable u,j;, that is equal to
k

k v
Any NFP;; slice can be expressed by a set of sfj linear inequalities. Then, a natural

one if the reference point of piece j is allocated on the slice NFP;., and 0 otherwise.

14



way to ensure that the pieces do not overlap is the use of inequalities similar to those

presented in (2.4). These constraints are:

o (wj=) +85 (v—y:) <AV +HM(—uige), 1<i<j<Nb=1..my f=1.
(2.16)
where M is large enough to ensure that constraints (2.16) are valid.

The authors lifted the M term of constraints (2.16) by calculating a specific coef-
ficient for each combination of constraint indices. In order to define these coefficients,
the M term in expressions (2.16) is replaced by a new set of terms related to each pair

of pieces 7 and j resulting in:

mg;

o (= x0) + B (yy —v) < ZH@f”uijh, (2.17)

1<i<j<N,k= 1,...,m,-j,f =1,..,85.
Note that >, Qkf " =1, and then yfjf can be expressed as yfjf S ijf Conse-

quently, constraint (2.17) can be rewritten as:

o (2 — ) + B (y; —wi) < iqsffhuijh, 1<i<j<Nk=1..my f=1,.,s5
! (2.18)

where ¢t" = g% 4 48/,
In order to keep the inequality valid, each coefficient gbf]f " is defined as the maximum
value of the left-hand side of the inequality if the variable w;;;, = 1. These values are

computed by:

kfh