
Nesting problems

Luiz Henrique Cherri





Luiz Henrique Cherri

Nesting problems

Thesis  submitted  to  the  Instituto  de  Ciências
Matemáticas e de Computação - ICMC-USP and to
the  Faculdade  de  Engenharia  da  Universidade  do
Porto - FEUP, in partial fulfillment of the requirements
for  the  degrees  of  the  Doctorate  Program  in
Computer  Science and Computational  Mathematics
(ICMC-USP) and of PhD (FEUP), in accordance with
the international academic agreement for PhD double
degree  signed  between  ICMC-USP  and  FEUP.
FINAL VERSION

Concentration  Area:  Computer  Science  and
Computational Mathematics / Industial engenering

Advisor:  Profa.  Dra.  Franklina  Maria  Bragion
deToledo  (ICMC-USP,  Brasil)Advisor:  Profa.  Dra.
Maria  Antónia  da  Silva  Lopes  deCarravilla  (FEUP,
Portugal)

USP – São Carlos
June 2016





SERVIÇO DE PÓS-GRADUAÇÃO DO ICMC-USP

Data de Depósito:

Assinatura:______________________

Luiz Henrique Cherri

O problema de corte de peças irregulares

Tese  apresentada  ao  Instituto  de  Ciências
Matemáticas  e  de  Computação  -  ICMC-USP  e
àFaculdade  de  Engenharia  da  Universidade  do
Porto-  FEUP,  como  parte  dos  requisitos  para
obtenção  dos  títulos  de  Doutor  em  Ciências  -
Ciências  deComputação  e  Matemática
Computacional  (ICMC-USP)  e  PhD  (FEUP),  de
acordo com o convênioacadêmico internacional para
dupla titulação dedoutorado assinado entre o ICMC-
USP e a FEUP. VERSÃO REVISADA

Área de Concentração: Ciências de Computação e
Matemática Computacional

Área de Concentração: Ciências de Computação e
Matemática Computacional / Engenharia indústrial 

Orientadora: Profa. Dra. Franklina Maria Bragion de
Toledo (ICMC-USP, Brasil) 
Orientadora:  Profa.  Dra.  Maria  Antónia  da  Silva
Lopes de Carravilla (FEUP, Portugal)

USP – São Carlos
Junho de 2016





�Find something that you enjoy

doing so much that you would be

willing to do it for nothing and you

will never work a day in your life.�

Anonymous





Acknowledgements

This thesis marks the end of a path that started three years ago, and this path I did

not walk alone. I am glad to have many individuals that supported, inspired and

understood me even in the most di�cult times.

For my family, that is responsible for my education and gave me the unconditional

support and motivation since the beginning. Especially for my parents, Maria and

Luiz, for my brothers, Adriana and Cesar, and for my brothers-in-law, Leda and Celso.

Furthermore, I am grateful for my niece, Maria Alice, who inspired me in the last nine

months.

It would not be possible to explore all the content of this thesis without the orienta-

tion and support of my Brazilian advisor Franklina and my Portuguese advisor Maria

Antónia. Thank you, Fran and Maria Antónia, you have been wonderful academic

advisors and friends to me. I also would like to thank the Professor José Fernando

and Cristina Ribeiro for the collaboration, ideas and friendship. Their ideas deeply

contributed for the quality of this thesis.

I am grateful for all my friends of LOt - Laboratório de Otimização which aided me

on this journey. In particular for Aline for the supporting in the writing of this thesis

and for the great friendship and for Artur, Marcos and Leandro, whose friendship goes

beyond the laboratory. I also thank my friends of laboratory at FEUP for the excellent

reception, that made my period in Portugal so pleasurable.

I thank FAPESP - Fundação de Amparo a Pesquisa do Estado de São Paulo (grants

BEPE/2014/10740-4 and 2012/18653-8) - for the �nancial support. I also must express

my gratitude to the professors and sta� of ICMC and FEUP.

Finally, I would like to thank everyone who helped me to �nish one of the most

important chapters of my life.





Abstract

The two-dimensional irregular cutting and packing problems (aka nesting problems)

have been studied over the past six decades and consist in cutting (packing) convex

and non-convex small pieces from (in) large boards without overlapping. There are

several variants of this problem that are de�ned according to the board shapes and

the objective of each problem. There are a number of heuristics proposed in the lit-

erature to solve irregular cutting and packing problems, but only few mixed-integer

programming models. Speci�cally, these models were developed for the irregular strip

packing problem, that consists in packing pieces into a single board with �xed width

and length to be minimized. For the other problem variants, there is no exact methods

presented in the literature. The main di�culty in solving irregular cutting and packing

problems is how to handle with the geometric constraints. These constraints depend

on the type of placement of the pieces on the board that can be continuous or discrete.

In this thesis, we present two mixed-integer programming models for the irregular strip

packing problem in which the pieces can be continuously placed on the board. These

models do not demand complex structures to be built. We also present a new dot data

structure to store the information on the placement of the pieces and overlapping po-

sitions bringing �exibility and e�ciency to discrete approaches. Using this structure,

a matheuristic is proposed, combining the advantages of the models with discrete and

continuous placement positions for the pieces on the board. Furthermore, constraint

programming models for several variants of irregular cutting and packing problems are

exploited. For some variants, these models are the �rst modelling representation. A

new global constraint is developed to eliminate the overlap among pieces. Computa-

tional experiments were conducted to evaluate the developed approaches.

Keywords: Irregular cutting and packing, mixed-integer programming models, con-

straint programming models, heuristics, geometric tools.
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Resumo

Os problemas de corte e empacotamento de peças irregulares bidimensionais vêm

sendo estudados há décadas e consistem em cortar (empacotar) peças menores, con-

vexas e não convexas, a partir de (em) placas maiores de forma a não se sobreporem.

Existem diversas variantes deste problema, de�nidas de acordo com o formato da placa

e objetivo de cada problema. Na literatura, muitas heurísticas foram propostas para a

resolução dos problemas de corte e empacotamento de peças irregulares, porém, pou-

cos modelos de programação inteira mista podem ser encontrados. Especi�camente,

estes modelos foram desenvolvidos para o problema de empacotamento em faixa, que

consiste em empacotar as peças em uma placa de largura �xa e comprimento a ser

minimizado. Para as demais variantes do problema, não existem métodos exatos pro-

postos na literatura. A principal di�culdade na resolução dos problemas de corte e

empacotamento de peças irregulares está na manipulação das restrições geométricas.

Estas restrições dependem do tipo de posicionamento das peças na placa, que pode ser

discreto ou contínuo. Nesta tese, apresentamos dois modelos de programação inteira

mista para o problema de empacotamento de peças em faixa, no qual cada peça pode

ser alocada de forma contínua na placa. Estes modelos não demandam estruturas com-

plexas para serem construídos. Também apresentamos uma nova estrutura de dados

para armazenar informações sobre o posicionamento das peças e as posições de sobre-

posição, trazendo �exibilidade e e�ciência para abordagens discretas. Utilizando esta

estrutura, uma matheuristica foi proposta, combinando as vantagens dos modelos com

alocação discreta e contínua das peças na placa. Além disso, modelos de programa-

ção por restrições para diversas variantes dos problemas de corte e empacotamento de

peças irregulares foram explorados. Para algumas variantes, estes modelos são a pri-

meira representação via modelagem. Uma nova restrição global foi desenvolvida para

eliminar a sobreposição entre as peças. Experimentos computacionais foram realizados

para avaliar as abordagens propostas.

Palavras chave: Corte e empacotamento de peças irregulares, modelos de progra-

mação inteira mista, modelos de programação por restrições, heuristicas, ferramentas

geométricas.



.



Contents

1 Introduction 1

1.1 Contributions of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Irregular cutting stock problem 5

2.1 Geometry representation . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Exact approaches for the irregular strip packing problem . . . . . . . . 10

2.2.1 An exact method using constraint programming . . . . . . . . . 10

2.2.2 A linear model based on compaction strategies . . . . . . . . . . 11

2.2.3 The Fischetti and Luzzi (2009) model . . . . . . . . . . . . . . . 14

2.2.4 Alvarez-Valdes et al. (2013) approach . . . . . . . . . . . . . . . 16

2.2.5 The dotted board model . . . . . . . . . . . . . . . . . . . . . . 20

2.2.6 The semi-continuous model . . . . . . . . . . . . . . . . . . . . 22

2.3 Heuristic methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4 Solution methods for other cutting and packing problem variants . . . . 27

2.5 Research gaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 New mixed-integer programming models for the irregular strip pack-

ing problem 31

3.1 Description and geometric de�nitions of the irregular strip packing prob-

lems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.1.1 Problem de�nition . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.1.2 Basic concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1.3 Detecting overlaps between two pieces . . . . . . . . . . . . . . 33

3.2 Mathematical models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2.1 Direct Trigonometry Model - DTM . . . . . . . . . . . . . . . . 36

3.2.2 NoFit Polygon Covering Model - NFP−CM . . . . . . . . . . . 41

3.2.3 Incorporating piece rotations . . . . . . . . . . . . . . . . . . . . 45

3.2.4 Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3 Computational results . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

i



3.3.1 Evaluating the models performance . . . . . . . . . . . . . . . . 48

3.3.2 Comparing with the literature . . . . . . . . . . . . . . . . . . . 51

3.3.3 Larger instances from literature . . . . . . . . . . . . . . . . . . 53

3.3.4 New real world based instances . . . . . . . . . . . . . . . . . . 53

3.3.5 Instances with rotations . . . . . . . . . . . . . . . . . . . . . . 57

3.4 Final remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4 A dots data structure to handle the geometry of nesting problems 61

4.1 Problem de�nition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2 The proposed Dot Data Structure . . . . . . . . . . . . . . . . . . . . . 62

4.3 The dotted-board model . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.4 Mesh generation rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.4.1 Piece-based mesh . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.4.2 NFP -based mesh . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.5 Complexity analyses of the structure in time and space . . . . . . . . . 72

4.6 Computational experiments . . . . . . . . . . . . . . . . . . . . . . . . 73

4.6.1 Framework and instances . . . . . . . . . . . . . . . . . . . . . . 74

4.6.2 Piece-based mesh computational results . . . . . . . . . . . . . . 75

4.6.3 NFP -based mesh computational results . . . . . . . . . . . . . . 80

4.6.4 Comparing the mesh generation rules . . . . . . . . . . . . . . . 83

4.6.5 Computational experiments with instances from the literature . 84

4.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5 A model-based heuristic for the irregular strip packing problem 87

5.1 3�Phase Matheuristic (3PM) . . . . . . . . . . . . . . . . . . . . . . . . 88

5.1.1 3PM � Constructive phase . . . . . . . . . . . . . . . . . . . . . 88

5.1.2 3PM � Improvement phase . . . . . . . . . . . . . . . . . . . . . 90

5.1.3 3PM � Compaction Phase . . . . . . . . . . . . . . . . . . . . . 92

5.2 Computational results . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.2.1 De�ning parameters and sets . . . . . . . . . . . . . . . . . . . 95

5.2.2 Matheuristic phases analysis . . . . . . . . . . . . . . . . . . . . 97

5.2.3 Performance of the matheuristic performance compared with mixed-

integer models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.2.4 Performance of the matheuristic compared with those of other

heuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

ii



6 A new constraint logic programming approach to solve nesting prob-

lems 103

6.1 General concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.2 CP formulation based on the Dotted Board Model . . . . . . . . . . . . 107

6.2.1 Binary representation . . . . . . . . . . . . . . . . . . . . . . . . 107

6.2.2 Non-overlap constraints based on the binary representation . . . 108

6.3 CP formulation based on integer domains . . . . . . . . . . . . . . . . . 108

6.3.1 Integer representation . . . . . . . . . . . . . . . . . . . . . . . 108

6.4 NoOverlap: a new global constraint . . . . . . . . . . . . . . . . . . . . 110

6.5 CP models for all the variants of irregular cutting and packing problems 111

6.5.1 Irregular Placement Problem (IPP) and Irregular Identical Item

Placement Problem (IIIPP) . . . . . . . . . . . . . . . . . . . . 112

6.5.2 Constrained Irregular Placement Problem (IPPc) and Irregular

Knapsack Problem (IKP) . . . . . . . . . . . . . . . . . . . . . . 113

6.5.3 Irregular One Open Dimension Problem (I1ODP) . . . . . . . . . 114

6.5.4 Irregular Cutting Stock Problem (ICSP) and Irregular Bin Pack-

ing Problem (IBPP) . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.5.5 Irregular Two Open Dimension Problem (I2ODP) . . . . . . . . . 117

6.6 Computational experiments with the di�erent CP models . . . . . . . . 119

6.6.1 De�ning instances . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.6.2 Output maximization problems . . . . . . . . . . . . . . . . . . 121

6.6.3 Input minimization problems . . . . . . . . . . . . . . . . . . . 124

6.6.4 Memory usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.7 Solving larger problems and comparing with the literature . . . . . . . 129

6.7.1 Solving larger instances . . . . . . . . . . . . . . . . . . . . . . . 130

6.7.2 Comparing with the literature . . . . . . . . . . . . . . . . . . . 132

6.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

7 Conclusions and research directions 135

7.1 Research directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

iii





List of Figures

1.1 Example of a solution to the two-dimensional irregular cutting and pack-

ing problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2.1 Basic cutting and packing problem types (adapted from Wäscher et al.

(2007)). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 A piece and its matrix representation. . . . . . . . . . . . . . . . . . . . 7

2.3 Building an inner�t polygon. . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 A D-function and three points in di�erent positions. . . . . . . . . . . . 8

2.5 The no�t polygon. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.6 Example of a board discretization and a feasible placement position for

a triangle and a square. . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.7 Representing phi-functions (based on Chernov et al. (2010)). . . . . . . 10

2.8 Representing a piece by circles. . . . . . . . . . . . . . . . . . . . . . . 10

2.9 Lines associated to a NFP in the linear model. . . . . . . . . . . . . . . 12

2.10 Intersection evaluation on linear model. . . . . . . . . . . . . . . . . . . 13

2.11 Partitioning the NFP ij region in seven convex regions. . . . . . . . . . 14

2.12 Pieces i and j and their reference points. . . . . . . . . . . . . . . . . . 17

2.13 Creating the slices to Fischetti and Luzzi (2009) model. . . . . . . . . . 17

2.14 Slices generated for the exterior region of a no�t polygon. . . . . . . . . 18

2.15 Example of grid used in Toledo et al.'s model where gx = gy. . . . . . . 21

2.16 Example of board discretized by lines used in Leao et al.'s model. . . . 22

2.17 Representing a no�t polygon by lines. . . . . . . . . . . . . . . . . . . . 23

2.18 Placing a piece in the board using the bottom-left heuristic. . . . . . . 25

3.1 Decomposition of a piece in two convex polygons and distances in the x

and y-axis from the positioning point to the borders. . . . . . . . . . . 33

3.2 Values of Dabr and its implications. . . . . . . . . . . . . . . . . . . . . 34

3.3 Building the no�t polygon using Cuninghame-Green (1989) method. . . 35

3.4 Obtaining the constants gjrqjx , gjrqjy , girqjx and girqjy . . . . . . . . . . . . . 37

3.5 Parts p and q of di�erent pieces that have lines with the same orientation

and di�erent directions. . . . . . . . . . . . . . . . . . . . . . . . . . . 39

v



3.6 Piece i decomposed in three parts. An example of collinear lines is given

by the lines α and β from parts p1 and p3. . . . . . . . . . . . . . . . . 39

3.7 Illustrating the cuts over the solution space. . . . . . . . . . . . . . . . 44

3.8 Example of piece rotations. . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.9 Performance pro�le using computational time as performance measure

and considering all instances. . . . . . . . . . . . . . . . . . . . . . . . 50

3.10 Performance pro�le using computational time as performance measure

and considering the instances for which all models found the optimal

solution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.11 Optimal solutions proved by NFP−CM and not proved for HS2 within

the time limit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.12 Pieces of the metal instances. . . . . . . . . . . . . . . . . . . . . . . . 54

3.13 Optimal solutions of metal0 instances. . . . . . . . . . . . . . . . . . . 56

4.1 Data types used in the data structure. . . . . . . . . . . . . . . . . . . 63

4.2 The dot data structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.3 An application of the dot data structure � piece types and their admis-

sible rotations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.4 An application of the dot data structure � board and feasible dots. . . . 65

4.5 An application of the dot data structure � intersection list with a piece

of type 2 when a piece of type 1 is placed at dot 5. . . . . . . . . . . . 65

4.6 Example of a piece-based mesh for one piece type. . . . . . . . . . . . . 68

4.7 Example of a piece-based mesh for two piece types. . . . . . . . . . . . 69

4.8 Example of an NFP -based mesh for two piece types. . . . . . . . . . . . 71

4.9 The MF instance set of pieces. . . . . . . . . . . . . . . . . . . . . . . . 74

4.10 The CS instance set of pieces. . . . . . . . . . . . . . . . . . . . . . . . 74

4.11 Optimal solutions for the MF1 and MF2 instances, obtained with the

piece-based mesh. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.12 Optimal solutions for the MF1 and MF2 instances, obtained with the

regular mesh. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.13 Solution for the MF8 instance obtained with the piece-based mesh. . . 79

4.14 Optimal solutions for the CS1 and CS2 instances obtained with the

NFP -based mesh. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.15 Optimal solution for the CS1 instance and a feasible solution for CS2

instance obtained with the regular mesh. . . . . . . . . . . . . . . . . . 81

4.16 Solution for the CS6 instance obtained by the NFP -based mesh. . . . . 82

5.1 Steps of the constructive phase. . . . . . . . . . . . . . . . . . . . . . . 89

5.2 The neighborhoods for a piece reference point. . . . . . . . . . . . . . . 91

vi



6.1 Variants of the irregular cutting and packing problems. . . . . . . . . . 103

6.2 Representing a placement position that is feasible for the binary repre-

sentation and is infeasible for the integer representation. . . . . . . . . 110

6.3 Example of set Ψtrd. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.4 Board used on irregular cutting stock problems and irregular bin packing

problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.5 Board used on open dimension problem with two open dimensions. . . 118

6.6 Enumerating pieces in the Blaz2 instance. . . . . . . . . . . . . . . . . 120

6.7 Enumerating pieces in the Shapes1 instance. . . . . . . . . . . . . . . . 120

vii





List of Tables

3.1 Computational results for the proposed models. . . . . . . . . . . . . . 49

3.2 Comparing the results of NFP Covering Model with the literature. . . . 52

3.3 Computational results for instances with more than 16 pieces. . . . . . 54

3.4 Pieces demand of metal instance set. . . . . . . . . . . . . . . . . . . . 55

3.5 Computational results for instances derived from the metal layout. . . . 56

3.6 Computational results with rotations of 0 and 180 degrees. . . . . . . . 57

4.1 Test instances from the literature and their characteristics. . . . . . . . 75

4.2 Computational experiments using the piece-based mesh generation rule. 76

4.3 Results of the computational experiments, obtained using NFP -based

mesh and regular mesh generation rules. . . . . . . . . . . . . . . . . . 80

4.4 Comparing results achieved with the piece-based and NFP -based mesh

built models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.5 Computational experiments using various mesh generation rules. . . . . 84

5.1 Instances used in the benchmark. . . . . . . . . . . . . . . . . . . . . . 95

5.2 Di�erent phases of the proposed solution method. . . . . . . . . . . . . 98

5.3 Results from exact methods and the proposed matheuristic. . . . . . . 100

5.4 Comparison of the results of the exact methods with the 3-Phase Matheuris-

tic (3PM). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.1 Results reached for irregular IIIPP . . . . . . . . . . . . . . . . . . . . 121

6.2 Results reached for IPP without demand constraints. . . . . . . . . . . 122

6.3 Results reached for IPP with demand constraints. . . . . . . . . . . . . 123

6.4 Results reached for IKP. . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.5 Results reached for I1ODP. . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.6 Results reached for ICSP. . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.7 Results reached for IBPP. . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.8 Results reached for I2ODP. . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.9 For the IPP, the Constraint Programming Model with the Global Con-

straint (IGC) uses signi�cantly less memory than in the other models. . 128

ix



6.10 For the I1ODP, the Constraint Programming Model with the Global

Constraint (IGC) uses signi�cantly less memory than in the other models.129

6.11 A feasible solution was found for all the problem variants and instances

with ∆ = 0.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.12 Comparing the IGC and DBM to solve the I1ODP. . . . . . . . . . . . . . 133

x



Chapter 1

Introduction

Irregular cutting and packing problems are hard combinatorial optimization problems

(Fowler et al., 1981) that consist in cutting small, convex or non-convex items (pieces)

from larger objects (boards). The items are placed on the object - with no overlap-

ping among them - and completely contained in the boards. The objective may vary

according to the application, however, it generally invokes waste (the boards' area not

occupied by pieces) reductions or/and increase in the pro�ts.

The irregular cutting and packing problems are not only scienti�cally relevant, but

also economically and environmentally important, given their many industrial applica-

tions and the reductions in the use of raw materials they involve. From an economic

point-of-view, a solution to the problem reduces the amount of material necessary for

the production of the pieces, hence, the production costs, and contributes to waste re-

duction, as industries tend to discard less raw-material, which provides environmental

bene�ts.

Industries of garment, furniture and shoe manufacture, sheet metal cutting and

others are faced with such a problem. Figure 1.1 illustrates a solution to an instance

of the problem.

Figure 1.1: Example of a solution to the two-dimensional irregular cutting and packing
problem.
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The irregular cutting and packing problems comprehend several variants classi�ed

by Wäscher et al. (2007). For many of these variants no exact method or mathematical

model has been developed to solve or represent them. Speci�cally, the exact methods

proposed focus on a single variant, i.e., the irregular strip packing problem (or one open

dimensional problem), as only heuristics have been proposed for the other variants.

The most studied variant is the irregular strip packing problem, in which all pieces

must be placed into a board of �xed height and variable length, so that the minimum

length is used. Some exact methods have been developed to solve this problem. A

mixed-integer programming model in which pieces can be freely placed on the board was

proposed by Fischetti and Luzzi (2009). Some structures of this model were formalized

by Alvarez-Valdes et al. (2013), who also developed a branch and bound algorithm

to solve the problem and extended a linear compaction model designed by Gomes

and Oliveira (2006) for a mixed-integer programming model that represents the whole

problem. Although all such models accurately represent the problem, they demand

complex geometric structures not easy to be obtained.

Considering a �nite set of positions for placing each piece, Carravilla et al. (2003)

and Ribeiro and Carravilla (2004) proposed constraint programming methods to solve

the problem. Toledo et al. (2013) developed a mixed-integer programming model to rep-

resent the problem also considering a discrete approximation. This geometric represen-

tation is also used by heuristics (Carravilla and Ribeiro, 2005; Bennell and Dowsland,

2001; Dowsland et al., 1998). Using a predetermined set of positions for the placement

of the pieces, some geometric features can be determined prior to the application of

the solution method. Despite the simplicity introduced by discrete approaches, some

valuable solutions may be lost because of the discretization.

Several authors have combined heuristics with linear and non-linear programming

to obtain more compact layouts. Examples can be found in the simulated annealing

algorithm (Gomes and Oliveira, 2006), the hybrid tabu search (Bennell and Dowsland,

2001), and the iterated local search (Imamichi et al., 2009). The methods combine the

e�ciency of the heuristics with the compactness of the layouts generated by linear and

non-linear programming. Although in the last decade several mixed-integer program-

ming models were proposed to represent the irregular strip packing problem, they were

never used for the development of a heuristic for the irregular strip packing problem.

1.1 Contributions of this thesis

The contributions of this thesis regard the development of innovative exact and heuris-

tic methods to solve the irregular cutting and packing problems. We propose two

mixed-integer programming models for the strip packing problem; a new dot structure

2



to handle the geometry of cutting and packing problems; pieces rotations were included

to the dotted board model (Toledo et al., 2013) and a matheuristic was build using it;

constraint programming methods were proposed to all variants of cutting and packing

problems classi�ed by Wäscher et al. (2007). Also, a global constraint is proposed to

eliminate the overlap between pieces. In the following the contributions of each subject

studied are described.

Two mixed-integer programming models to solve the irregular strip packing problem

are proposed. In both models, the placement of the pieces is continuous inside the

board. They di�er on how the non-overlapping among pieces is ensured. One of

them guarantees that the pieces do not overlap using only the information of the piece

vertices, i.e., complex structures, as no�t polygons or phi-functions are not necessary

for the construction of the model. The other model uses the no�t polygon covering to

avoid overlapping among pieces and outperformed the best results from the literature

for exact methods. In both approaches, the geometric concepts used for the creation

of the model are simpler than those of previous models proposed in the literature

and easily deal with non convex pieces and pieces with holes. They are also the �rst

continuous models that enable the rotation of the pieces.

An innovative dot structure is proposed to deal with the geometry of the problem

according to a discrete placement of the pieces inside the board. It converts the ge-

ometric analyses over polygons into information of the dots. Each piece type can be

placed in its own set of dots that can be di�erent from the set of dots for other types

of pieces. The use of di�erent dots for the placement of di�erent piece types has never

been explored in the literature. Therefore, the structure simpli�es and improves the

e�ciency of the creation of solution methods in which pieces can only be placed over

speci�c positions.

The proposed dot structure enables the dotted board model to be reformulated,

allowing it to be constructed using a speci�c set of dots for each piece type. Therefore,

a model that represents the problem more precisely is generated with fewer variables

and solutions with better quality. Rotations for the pieces with a �nite number of

angles are considered in the reformulation of the dotted board model.

As the dot structure simpli�es the management of the dots on the board, a model-

based heuristic has been developed with this new structure. The matheuristic uses the

dotted board model in two phases and a linear compaction model in the last phase. In

the �rst and second phases, a constructive heuristic based on relax and �x obtains an

initial feasible solution that is improved through the addition of more dots, so that the

pieces can be placed and then in the second phase local searches are performed using

the dotted board model. In the last phase, a linear compaction model eliminates the

gaps among pieces.
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We also propose new constraint programming models to solve all variants of the

irregular cutting and packing problems classi�ed by Wäscher et al. (2007), as the litera-

ture lacks an exact method that solves many of such problems. Although each problem

has speci�c constraints, some general characteristics, as non-overlap among pieces, are

required in feasible solutions by all problem variants. Therefore, we propose new con-

straint programming models to represent all these variants. Three solution methods

were developed for each problem variant and they di�er only in the way they represent

the domains of the variables and deal with the core constraints of the problem. A

global constraint to avoid the overlapping between pieces is also proposed. It promotes

quick search with less memory usage in comparison with the built-in constraints of the

constraints solver.

1.2 Thesis outline

After this introductory chapter, Chapter 2 addresses the de�nition of irregular cutting

and packing problems and provides a review of the geometry of the heuristic methods

and the mixed-integer programming models developed for the irregular strip packing

problems. Two new mixed-integer programming models for the irregular strip packing

problem are presented in Chapter 3. An innovative dot structure that represents the

geometry of irregular cutting and packing problems and simpli�es the construction of

heuristics and models based on discrete placement positions for the pieces is described

in Chapter 4. A matheuristic that uses the structure combined with the dotted board

model is proposed in Chapter 5. Chapter 6 presents new constraint programming

models to solve the irregular cutting and packing problem variants classi�ed byWäscher

et al. (2007). Finally, Chapter 7 provides the conclusions and future research directions.
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Chapter 2

Irregular cutting stock problem

In the literature, the cutting and packing problems are classi�ed into di�erent variants.

The �rst classi�cation scheme was proposed by Dyckho� and Finke (1992) and was

later extended by Wäscher et al. (2007). This classi�cation is based on �ve criteria:

dimensionality, kind of assignment, assortment of pieces, assortment of containers (or

boards in the two-dimensional case) and shape of the pieces (for problems with more

than one dimension).

The dimensionality concerns the number of relevant dimensions of the problems

that can have one, two, three or more dimensions. Output value maximization and

input value minimization are two kinds of assignment considered. The pieces can be

classi�ed as strongly heterogeneous (many pieces of many types), weakly heterogeneous

(many pieces of few types) and identical (many pieces of a single type). The assortment

of the boards can be classi�ed into several large boards with �xed dimensions and a

single board with �xed or variable dimensions. If the problem has two dimensions or

more, the shapes of the pieces can be classi�ed into regular (e.g., rectangle, circles,

boxes, spheres, etc.) and irregular (non-regular).

In this thesis, we study the irregular two-dimensional cutting and packing problems,

that, according to the typology of Wäscher et al. (2007), can be classi�ed into six basic

types: Identical Item Packing Problem (IIPP ), Placement Problem (PP ), Knapsack

Problem (KP ), Cutting Stock Problem (CSP ), Bin Packing Problem (BPP ) and Open

Dimension Problem (ODP ). IIPP , PP and KP are output maximization problems and

ODP , BPP and CSP are input minimization problems. Figure 2.1 shows a diagram

that classi�es the basic two-dimensional cutting and packing problem types.

Looking at the output maximization problems, in the IIPP the problem consists in

placing many copies of the same item type on the board. In PP , many piece types with

several copies of each one must be placed on the board. The number of copies of each

piece type that need to be cut can be �nite (PPr) or large enough to be considered

in�nite (PP ). If exactly one copy of many piece types must be placed on the board, the
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Figure 2.1: Basic cutting and packing problem types (adapted from Wäscher et al.
(2007)).

problem is called KP . In these problems the board has �nite dimensions and, usually,

there is no space on the board to cut all the demanded pieces. The objective is to

extract the maximum value performing the cut (pack) of the pieces.

For input minimization problems, there are su�cient resources to cut all pieces and

the objective is to minimize the used resource. In CSP , a minimum number of boards

must be used to place many piece types with several copies of each. When only one

piece of each type must be placed on the boards, the problem is called BPP . In ODP ,

many piece types with several copies of each one must be placed on the boards with

one (1ODP , also known as strip packing problem) or two (2ODP ) variable dimensions.

The objective for CSP , BPP and 1ODP is typically to minimize the amount of resources

used to cut all the demanded pieces. This objective can be reached by minimizing the

number of boards used or the length of the board used to perform the cut. Solving

2ODP , several objectives can be used, for example, the area or perimeter of the bounding

box of the packing or other relations between the length and the width of the board.

The focus of this thesis is the irregular strip packing problem. However, other

variants of cutting and packing problems were investigated. In the reminder of this

chapter, Section 2.1 describes the possible geometric representations for pieces and

how to use them to tackle the geometric constraints of the problem. A review of exact

methods and mixed-integer programming models is presented in Section 2.2. Some

heuristics for the irregular strip packing problem are reviewed in Section 2.3. Heuristics

for the other variants of irregular cutting and packing problems are presented in Section

2.4.
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2.1 Geometry representation

The irregular cutting and packing problems have two common constraints: i) ensure

that the pieces do not overlap; and ii) the guarantee of the pieces are completely on the

board. The solution methods for these problems are directly related with the geometry

used to represent the pieces and, consequently, to handle these constraints. A complete

review about the problem geometry can be found in Bennell and Oliveira (2008).

In the literature, di�erent approaches were used to represent the geometry of the

problems. The most common are: raster points, D-functions, no�t polygons and phi-

functions.

Approaching the problem by raster points, the pieces and the board are represented

by a set of matrices. These matrices contain the positions occupied by each piece on

a grid, as exempli�ed in Figure 2.2. The representation of the board and the pieces is

similar. Furthermore, the matrices that represent the board contain all the positions

that are free or occupied by the pieces. Using this representation, the pieces intersection

analysis is reduced to evaluate if the matrix that composes the pieces, when placed on

the board, overlap in non-zero positions. In addition, the piece is inside of the board if

all the non-zero positions that compose its matrix are inside of the board. Although it

is a simpler approach, the raster points cannot represent the pieces precisely generating

some gaps among the pieces and the re�nement of the representation of the pieces can

demand huge computational resources.
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Figure 2.2: A piece (on the left) and its matrix representation (on the right).

The gap among the pieces can be reduced using polygons to represent the pieces.

Each piece is represented by a set of vertices and a reference point used to control

where the piece will be placed on the board. To ensure that the piece is entirely

contained on the board, the inner�t polygon (IFP ) is used. The IFP of a piece t (IFPt)

represents all the positions where the reference point of piece t can be placed keeping

the piece entirely inside of the board. Note that, if the board is a rectangle with length

L and widthW , the IFP is also a rectangle. Consider lleft the horizontal distance from

the leftmost piece vertex to the reference point, wtop the vertical distance from the

highest piece vertex to the reference point, wbottom the vertical distance from the lowest
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piece vertex to the reference point, and lright the distance of the piece reference point

to its rightmost vertex. The piece dimensions are illustrated in Figure 2.3a where

its reference point is highlighted in a darker circle. The IFP is the rectangle with

left bottom vertex (lleft, wbottom) and the top right vertex (L − lright,W − wbottom) as
illustrated in Figure 2.3b.

lleft lright

wbottom

wtop

IFP

lleft

wbottom

lright

wtop

(a) (b)

Figure 2.3: Building an inner�t polygon. (a) shows how lleft, wtop, lright and wbottom

are obtained. In (b) the IFP is built using the constants found in (a).

Performing the overlapping analysis between the pieces using this geometric rep-

resentation is a complex task. One of the techniques used for this analysis is the

D-function, that determines whether a point is to the left or to the right side of an

oriented line. Therefore, the overlap between pieces can be veri�ed using the informa-

tion of vertices and edges of polygon that compose the piece. The use of D-functions

is exempli�ed in Figure 2.4 where the point B is over the D-function, C is on the right

side of the D-function and A is on the left side of the D-function.

A
B

C

Figure 2.4: A D-function and three points in di�erent positions.

To simplify the veri�cation of non-overlap among pieces, the no�t polygon can be

used. The no�t polygon represents the contact area between two pieces reducing the

problem of checking if two pieces overlap is reduced to the veri�cation if a point is

strictly inside of this polygon. The no�t polygon between two pieces is illustrated in

Figure 2.5.

Aiming to combine the simplicity of raster points with the precision of the polygonal

representation, some authors used discrete positions (dots) to place the pieces, while the
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Figure 2.5: The no�t polygon composed by the pieces on the left is presented hatched
on the right.

non-overlap analysis is performed using no�t polygons. As the placement positions for

the pieces are known, it is possible to predict which dots of the board cause intersection

of pieces if both representations are used simultaneously. Figure 2.6 illustrates an

example using the pieces in Figure 2.5, where if the triangle is placed over a grid dot,

the square reference point cannot be placed at the dots inside of the no�t polygon of

these pieces (that are highlighted by larger circles).

Figure 2.6: Example of a board discretization and a feasible placement position for a
triangle and a square.

To represent the pieces with better precision, linear or non-linear functions (phi-

functions) can be used. The phi-function of two pieces is the function that gives the

distance between them. Although this representation is more general and accurate,

the task of de�ne functions for all pieces is di�cult. Generally, the phi-functions are

obtained combining primary objects, i.e, objects that the phi-functions are already

known. Figure 2.7 illustrates the representation of pieces using phi-functions.

It is possible to represent the pieces using circles to cover its entire surface. This

representation is simpler than representing the pieces by any functions, however, it is

not precise and can lead to small intersections between the pieces. In addition, de�ne

the a set of circles to cover the pieces can be a di�cult task. Figure 2.8 shows a

representation of a rectangle using circles.
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Figure 2.7: Representing phi-functions (based on Chernov et al. (2010)). The polygon
is on the left and a possible representations using phi-functions is on the right.

Figure 2.8: Representing a piece by circles. The piece is on the left and a possible
representations is on the right.

2.2 Exact approaches for the irregular strip packing

problem

The irregular strip packing problem consists in cutting a number of convex and con-

cave pieces from a rectangular board of �xed width (W ) and in�nite length. The

objective is to minimize the board length (L) used to perform the cuts. This problem

is NP-complete (Nielsen and Odgaard, 2003) and because of its di�culty, only few

exact methods were proposed to solve it. By solving this problem by exact solution

methods, a search over the solution space of the problem is made, ensuring the solu-

tion optimality. Besides solving the problem to optimality, these methods are also a

great tool to analyse the quality of heuristic methods. All exact methods proposed

to the irregular cutting and packing problem deal with the irregular strip packing

problem variant. We present here an exact constraint programming method and the

mixed-integer approaches proposed in the literature to solve the irregular strip packing

problem.

2.2.1 An exact method using constraint programming

Based on formal logic, logical programming can represent combinatorial optimization

problems by a set of logical sentences, expressing some rules to build the problem

domain. Constraint logical programming extends logical programming by allowing the

problem to be also represented by constraints instead of only by logical statements
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(Ja�ar and Maher, 1994).

Carravilla et al. (2003) developed an exact method to solve the irregular strip

packing problem based on constraint logical programming, a �nite domain variables

and an implicit enumeration scheme. The method deals with problems with non-convex

pieces through the decomposition of the no�t polygon in convex parts. The placement

position of each piece i is represented by discrete (xi, yi) coordinates of its reference

point. The initial domain for the (xi, yi) coordinate is built using the width, the upper

bound of the board length and the piece i dimensions as depicted in Figure 2.3. The

no�t polygons are used to avoid the overlap among pieces. When the position of one

piece is �xed, the domain of the variables related to all other pieces is reduced based

on their NFP 's.

On the enumeration phase, the choice of the placement points follows the order of

the pieces. Along the search, the best solution found so far is memorized and every

piece positioned beyond the best solution is not considered.

Ribeiro and Carravilla (2004) proposed a global constraint called �outside�, the �rst

global constraint designed for the irregular strip packing problem. With this constraint,

expressing the problem is easier and the authors claim that its resolution become more

e�cient. They also proposed an improved pruning procedure of the search that is based

on the concept of the piece �responsible� for the total length.

2.2.2 A linear model based on compaction strategies

A mixed-integer programming model to represent the irregular strip packing problem

can be derived from the compaction models that were used in literature as part of

heuristic methods (Li and Milenkovic, 1995; Stoyan et al., 1996; Bennell and Dowsland,

2001; Gomes and Oliveira, 2006). Alvarez-Valdes et al. (2013) presented the complete

formulation for the problem based on this model.

Di�erent from Carravilla et al.'s method, in this mathematical model the placement

coordinates of each piece i are de�ned by continuous coordinates (xi, yi). The total

number of pieces is denoted by N and the reference point of piece i, pi, has coordinates

denoted by (xi, yi), i = 1, ...,N . To ensure that piece i is entirely on the board, IFPi

is represented by constraints (2.1)-(2.3), that guarantee that the piece reference point

is always in a feasible position in relation to the board.

yi ≤ W − wbottomi , i = 1, ...,N , (2.1)

yi ≥ wtopi , i = 1, ...,N , (2.2)

xi ≥ llefti , i = 1, ...,N . (2.3)
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where wtopi , llefti and wbottomi are constants associated with the piece as shown in Fig-

ure 2.3.

To avoid the overlap between pieces i and j, consider the NFPij. De�ne Eij as

the set of lines that correspond to edges of the NFPij as illustrated in Figure 2.9b.

The equation of the line e ∈ Eij corresponds to an edge of NFPij and is given by

αije(xj − xi) + βije(yj − yi) = γije, where αije, βije and γije are the coe�cients of a line

e ∈ Eij.

NFPij

e1

e2

e3

e4

e5

e6

Eij lines

(a) (b)

Figure 2.9: In (a) a NFP is presented and in (b) the lines associated with the respective
edges are shown.

Suppose that piece i is �xed. To avoid overlap the reference point of piece j must

be over the edge of NFPij or outside NFPij (the reference points of i and j must

be on opposite sides of at least one edge of NFPij). Figure 2.10 illustrates the cases

that the pieces are separated (Figure 2.10a), touching (Figure 2.10b) and overlapping

(Figure 2.10c). Since it is not possible for two pieces to be at di�erent sides of all lines

de�ned by NFP edges, new variables are necessary to relax some of these constraints.

For each line e ∈ Eij, a binary variable vije is de�ned, which is 1 if pieces i and j are on
di�erent sides or touching line e, and 0 otherwise. The general form of the constraints

that prevent overlap is de�ned by:

αije(xj − xi) + βije(yj − yi) ≤ γije +M(1− vije), 1 ≤ i < j ≤ N , ∀e ∈ Eij, (2.4)

where M is a real constant that is large enough to relax this constraint if vije = 0. To

ensure that at least one variable vije associated with lines e ∈ Eij is active, constraints
(2.5) are imposed.

∑
e∈Eij

vije ≥ 1, 1 ≤ i < j ≤ N . (2.5)
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Figure 2.10: In (a) the reference points of the pieces are at di�erent sides of a line,
then the pieces are separated. In (b), the reference point of piece j touches one line,
then the pieces touch. In (c), the reference point of both pieces are at the same side of
all lines, then the pieces overlap.

The objective is to minimize the used board length L. Based on constraints (2.6),

the variable L is always larger than the used board length, consequently, the objective

is to �nd the smallest L that satis�es all these constraints.

L− xi ≥ lrighti , i = 1, ...,N , (2.6)

where lrighti is a constant of piece i as presented in Figure 2.3.

The mixed-integer programming model presented in Alvarez-Valdes et al. (2013) is

given as follows.

minimize L (2.7)

subject to:

L− xi ≥ lrighti , i = 1, ...,N , (2.8)

xi ≥ llefti , i = 1, ...,N , (2.9)

yi ≤ W − wbottomi , i = 1, ...,N , (2.10)

yi ≥ wtopi , i = 1, ...,N , (2.11)

αije(xj − xi) + βije(yj − yi) ≤ γije +M(1− vije), 1 ≤ i < j ≤ N ,∀e ∈ Eij, (2.12)∑
e∈Eij

vije ≥ 1, 1 ≤ i < j ≤ N , (2.13)

vije ∈ {0, 1}, i, j = 1, ...,N ,∀e ∈ Eij, (2.14)

xi, yi ≥ 0, i = 1, ..., N. (2.15)

Despite the simplicity of this model, it is di�cult to develop constraints for non

convex polygons or polygons with holes. Precisely, in these cases two problems as-
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sociated with the no�t polygons are found: (i) the generation, that can be di�cult

considering any piece shapes; and (ii) the usage, since the authors did not detail how

to handle holes and non convexities in the model.

2.2.3 The Fischetti and Luzzi (2009) model

Fischetti and Luzzi (2009) proposed the �rst mixed-integer programming model to

represent the irregular strip packing problem. The authors performed a lifting over

some coe�cients of the model, reducing the solution space and then improving the

performance of solution methods. To tackle the geometric constraints, the no�t polygon

and the inner�t polygon were used. The di�erence between this model and the one

presented in Section 2.2.2 is the way of preventing the overlap.

Given two pieces i and j and the no�t polygon between them (NFPij), the locus of

point (xj, yj) of piece j must not be inside ofNFPij translated by (xi, yi) from the origin,

i.e., (xj, yj)− (xi, yi) must be contained in NFP ij, where NFP ij is the complementary

set of NFPij. In order to derive linear constraints preventing overlaps, the authors

divided the NFP ij in mij convex and disjoint sub-regions (slices) whose union set must

be equal to the NFP ij. These regions are created by drawing lines from convex NFPij

vertices to its exterior side. Only the vertices which are formed by segments with

external angle bigger than 180 degrees are chosen to trace these lines. The authors did

not explain clearly how to choose the direction of each line. Figure 2.11 illustrates one

possible NFP ij division.

NFPij
NFPij

4

NFPij
3 NFPij

2

NFPij
1

NFPij
7

NFPij
6NFPij

5

Figure 2.11: Partitioning the NFP ij region in seven convex regions.

To ensure that piece j does not overlap piece i, the reference point of piece j must

be in one of the slices NFP
k

ij, k = 1, ...,mij. Consider the variable uijk that is equal to

one if the reference point of piece j is allocated on the slice NFP
k

ij, and 0 otherwise.

Any NFP
k

ij slice can be expressed by a set of skij linear inequalities. Then, a natural
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way to ensure that the pieces do not overlap is the use of inequalities similar to those

presented in (2.4). These constraints are:

αkfij (xj−xi)+βkfij (yj−yi) ≤ γkfij +M(1−uijk), 1 ≤ i < j ≤ N , k = 1, ...,mij, f = 1, ..., skij,

(2.16)

where M is large enough to ensure that constraints (2.16) are valid.

The authors lifted the M term of constraints (2.16) by calculating a speci�c coef-

�cient for each combination of constraint indices. In order to de�ne these coe�cients,

the M term in expressions (2.16) is replaced by a new set of terms related to each pair

of pieces i and j resulting in:

αkfij (xj − xi) + βkfij (yj − yi) ≤ γkfij +

mij∑
h=1

θkfhij uijh, (2.17)

1 ≤ i < j ≤ N , k = 1, ...,mij, f = 1, ..., skij.

Note that
∑mij

h=1 θ
kfh
ij = 1, and then γkfij can be expressed as γkfij

∑mij

h=1 θ
kfh
ij . Conse-

quently, constraint (2.17) can be rewritten as:

αkfij (xj −xi) +βkfij (yj − yi) ≤
mij∑
h=1

φkfhij uijh, 1 ≤ i < j ≤ N , k = 1, ...,mij, f = 1, ..., skij,

(2.18)

where φkfhij = θkfhij + γkfij .

In order to keep the inequality valid, each coe�cient φkfhij is de�ned as the maximum

value of the left-hand side of the inequality if the variable uijh = 1. These values are

computed by:

φkfhij = max
((xj ,yj)−(xi,yi))∈NFP

h
ij

⋂
B

(
αkfij (xj − xi) + βkfij (yj − yi)

)
,

1 ≤ i < j ≤ N , k = 1, ...,mij, f = 1, ..., skij,

where B is a rectangle large enough to contain the possible placements of pieces i and

j, for example, a rectangle with width 2W and length 2L (where L is an upper bound

of the board length).

The model must ensure that exactly one slice of NFP ij is active. Then, constraints

(2.19) are de�ned.
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mij∑
k=1

uijk = 1, 1 ≤ i < j ≤ N . (2.19)

Additional constraints are de�ned as in (2.8) - (2.11) and the objective is also to

minimize the used length of the board L. A second objective imposed by the authors

is that the pieces must be positioned as low and to the left as possible. Fischetti and

Luzzi's model is presented as follows.

minimize L− ε
∑N

i=1(xi + yi) (2.20)

subject to:

L− xi ≥ lrighti , i = 1, ...,N , (2.21)

xi ≥ llefti , i = 1, ...,N , (2.22)

yi ≤ W − wbottomi , i = 1, ...,N , (2.23)

yi ≥ wtopi , i = 1, ...,N , (2.24)

αkfij (xj − xi) + βkfij (yj − yi) ≤
mij∑
h=1

φkfhij uijh,

1 ≤ i < j ≤ N , k = 1, ...,mij, f = 1, ..., skij, (2.25)
mij∑
k=1

uijk ≥ 1, 1 ≤ i < j ≤ N , (2.26)

uijk ∈ {0, 1}, i, j = 1, ...,N , k = 1, ...,mij, (2.27)

xi, yi ≥ 0, i = 1, ..., N. (2.28)

With this model, the authors were able to solve to optimality problems with up

to seven pieces. As in the model presented in Section 2.2.2, it is not clearly stated

how to solve problems when the no�t polygons have holes or more di�cult convexities.

Furthermore, the authors did not state clearly how to generate the slices of the no�t

polygon complement used to avoid the overlap among pieces.

2.2.4 Alvarez-Valdes et al. (2013) approach

Alvarez-Valdes et al. (2013) reviewed the mixed-integer models presented in Sections

2.2.2 and 2.2.3 and de�ned a procedure to design the slices of Fischetti and Luzzi (2009)

model. Furthermore, they lifted the bound constraints (2.21)-(2.23) and developed a

branch-and-cut method to solve the model proposed by Fischetti and Luzzi (2009).

The procedure to de�ne the slices is performed in three steps. In order to explain
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these steps, consider pieces i and j as illustrated in Figure 2.12 and the no�t polygon

between them (Figure 2.13a). The complementary region of the polygon in Figure

2.13a must be divided into slices. First, the authors de�ne slices to the holes and dots

inside of the NFPij, associating them with variable uijk, i.e., each hole becomes one of

the slices where piece j can be placed. If a hole is not convex, it is divided into convex

polygons and one variable is associated with each polygon. In Figure 2.13b, the �rst

step is exempli�ed. The second step is iterative and consists in �lling the concavities

of the no�t polygon. A variable uijk is associated with each concavity of NFPij as

illustrated in Figures 2.13c and 2.13d. Finally, in the third step, the exterior regions of

a convex polygon are de�ned by cutting the region in horizontal slices as exempli�ed

in Figure 2.13e.

i
j

Figure 2.12: Pieces i and j and their reference points.

(a) (b)

(c) (d)

(e)

Uij2

Uij3

Uij1

Uij1

Uij2

Uij3

Uij4

Uij1

Uij2

Uij3

Uij4

Uij1
Uij5

Uij6

Uij7

Uij8

Uij9

Figure 2.13: Creating the slices to Fischetti and Luzzi (2009) model. (a) Shows the
no�t polygon between the piece i and piece j. In (b) the holes are identi�ed as slices.
(c) and (d) �ll the the holes by setting them as slices. The division of the polygon
complementary area in convex horizontal slices is shown in (e).
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Having de�ned the slices, the authors lifted the bound constraints (2.21)-(2.23).

Consider the slices of NFP ij between pieces i and j as illustrated in Figure 2.14. For

each slice, constants xijk and xijk represent the minimum and maximum values respec-

tively that xj can assume if uijk = 1. Likewise, constants y
ijk

and yijk represent the

minimum and maximum value that yj can take if uijk = 1. Moreover, the constant X ij

(Y ij) represents the rightmost (lowest) point of the NFPij. These values are illustrated

in Figure 2.14 for slice 2 (u2
ij depicted in darkgray in Figure 2.14).

j

i

NFP i ,j

u1
ij

u2
ij

u3
ij

u4
ij

u5
ij

u6
ij

u7
ij

u8
ij

Xij

Y ij

yij2

y
ij2

xij2xij2

Figure 2.14: Slices generated in the exterior region of a no�t polygon de�ned by pieces
i and j (based on Alvarez-Valdes et al. (2013)).

In order to represent the relative position of the reference point of pieces i and j,

four subsets of variables are de�ned. Consider DNij (DSij) as the subset of variables

that contain the reference point of piece j on its respective slice and ensure that it is

above (below) the reference point of piece i. Similarly, subsets DEij (DRij) contain the

variables associated with the slices that the reference point of piece j is to the right

(left) of the reference point of piece i. These sets are described below.

DNij = {uijk ∈ NFP
k

ij|k = 1, ...,mij, yijk ≥ 0}

DSij = {uijk ∈ NFP
k

ij|k = 1, ...,mij, yijk ≤ 0}

DGij = {uijk ∈ NFP
k

ij|k = 1, ...,mij, xijk ≥ 0}

DRij = {uijk ∈ NFP
k

ij|k = 1, ...,mij, xijk ≤ 0}

In the example of Figure 2.14, DNij = {uij1, uij2, uij8}, DSij = {uij4, uij5, uij6},
DEij = {uij6, uij7, uij8} and DRij = {uij2, uij3, uij4}.

Based on these four sets, the authors de�ned the lifted bound constraints. If the

reference point of piece j is on the slices of DEij set, the distance between pieces i and
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j must be at least xijk. The new constraints are given by (2.29).

xj ≥ llefti +
∑

k∈DEij

xijkuijk, 1 ≤ i < j ≤ N. (2.29)

A similar idea is applied when the reference point of piece j is placed above the

reference point of piece i, activating a slice of Nij and resulting in constraints (2.30).

yj ≥ wtopi +
∑
k∈Nij

y
ijk
uijk, 1 ≤ i < j ≤ N. (2.30)

If the reference point of piece j is on the slices of the DRij set, the minimum

distance from the reference point of this piece to the rightmost point of the board is

lrighti − (xij + X ij). Likewise, if the reference point of piece j is on the slices of DSij

set, the minimum distance from the reference point of this piece to topmost point of

the board must be wtopi − (yij + Y ij). The lifted left bound constraints are given by

2.31 and 2.32.

xj ≤ L− lrightj −
∑
k∈R′ij

lrighti − (xijk −X ij)uijk, 1 ≤ i < j ≤ N, (2.31)

yj ≤ W − wbottomj −
∑
k∈S′ij

wbottomi − (yijk − Y ij)uijk, 1 ≤ i < j ≤ N. (2.32)

The revised model of Fischetti and Luzzi (2009) with the lifted bound constraints

is presented next.

minimize L− ε
∑N

i=1(xi + yi) (2.33)

subject to:
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xj ≥ llefti +
∑

k∈DEij

xijkuijk, 1 ≤ i < j ≤ N, (2.34)

xj ≤ L− lrightj −
∑

k∈DR′ij

lrighti − (xijk −Xij)uijk, 1 ≤ i < j ≤ N, (2.35)

yj ≥ wtopi +
∑

k∈DNij

y
ijk
uijk, 1 ≤ i < j ≤ N, (2.36)

yj ≤W − wtopj −
∑

k∈DS′ij

wtopi − (yijk − Y ij)uijk, 1 ≤ i < j ≤ N, (2.37)

αkfij (xj − xi) + βkfij (yj − yi) ≤
mij∑
h=1

φkfhij uijh,

1 ≤ i < j ≤ N , k = 1, ...,mij , f = 1, ..., skij , (2.38)
mij∑
k=1

uijk ≥ 1, 1 ≤ i < j ≤ N , (2.39)

uijk ∈ {0, 1}, 1 ≤ i < j ≤ N , k = 1, ...,mij , (2.40)

xi, yi ≥ 0, i = 1, ..., N. (2.41)

The authors also developed a branch and cut method that uses specialized branching

strategies for the irregular strip packing problem. The lower bounds are calculated by a

mixed-integer programming model based on the 1-contiguous bin packing problem. The

results of this branch and cut method outperformed the ones found by the commercial

solver.

Although the authors de�ned clearly how to generate the slices for the Fischetti

and Luzzi (2009) model, identify holes and non convexities of the no�t polygon can

still be a di�cult task. Furthermore, obtain the no�t polygons of pieces with holes or

narrow entries is tough, making di�cult to generate an instance of this problem.

2.2.5 The dotted board model

The mathematical models presented in Sections 2.2.2-2.2.4 consider the continuous

placement of pieces over the board, i.e., each piece can be allocated in any feasible

position of the board. Toledo et al. (2013) proposed a model where the reference point

of the pieces can only be positioned at the dots of a given grid on the board. The grid

used was regular, i.e., the horizontal distance between any two di�erent points of the

grid must be multiple of constant gx. Likewise, the vertical distance between any two

di�erent points of the grid must be multiple of constant gy. The authors emphasized

that these constants must be carefully de�ned because they impact directly on the

number of variables and constraints of the model and also on the solution quality. An
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example of a grid is illustrated in Figure 2.15.

gy

gx

Figure 2.15: Example of grid used in Toledo et al.'s model where gx = gy.

Consider the binary variable δdt which is equal to 1, if the reference point of the

piece of type t ∈ T is placed at dot d ∈ D, and 0 otherwise. Note that, unlike the

previous models, the dotted board model is based on types of pieces and not on each

particular piece of a certain type. Therefore, the number of pieces of the same type

to be packed does not increase the number of variables in the model. The feasible

placement positions for each piece of type t ∈ T are the dots d ∈ D belonging to IFPt,

which de�nes the DIFPt set. Constraints (2.42) ensure that demand qt for each piece

of type t is met.

∑
d∈DIFPt

δdt = qt, t ∈ T . (2.42)

An important condition for a solution to be feasible is the non overlap between

pieces. Consider that for each pair of pieces of types t and u, with the reference point

of t positioned at dot d, the intersection points are represented by the dots DIFPu

inside NFPtu, de�ning the DNFP d
tu set. If reference point of piece t is at dot d and

the reference point of piece u is placed at a dot d′ ∈ DNFP d
tu then the pieces overlap.

Constraints (2.43) ensure that the pieces do not overlap.

δdt + δd
′

u ≤ 1, d′ ∈ DNFP d
t,u, t, u ∈ T , d ∈ DIFPt. (2.43)

The objective is to minimize the used board length L. Consider that the reference

point of piece t is placed at dot d with coordinates (dx, dy). Constraints (2.44) ensure

that L is equal or greater to the used board length.

(dx + lrightt )× δdt ≤ L, t ∈ T , d ∈ DIFPt. (2.44)

The dotted board model is presented in the following.

minimize L (2.45)
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subject to:

(dx + lrightt )× δdt ≤ L, d ∈ DIFP t, t ∈ T , (2.46)

δd
′

u + δdt ≤ 1, d ∈ DNFP d
t,u, t, u ∈ T , d ∈ DIFP t, (2.47)∑

d∈DIFPt

δdt = qt, t ∈ T , (2.48)

δdt ∈ {0, 1}, d ∈ DIFP t, t ∈ T , (2.49)

L ≥ 0. (2.50)

Note that the optimality of this model is associated with the used grid, i.e., a re�ned

grid allows the pieces to �t better leading to solutions of a better quality. On the other

hand, the grid should not be too re�ned because the number of variables is proportional

to the number of dots on the board.

Using this model, the optimal solution for instances with up to 56 pieces of two

di�erent types and instances with up to 21 pieces of seven di�erent types were found.

Recently, Rodrigues (2015) studied the non overlap constraints (2.47) and proposed

a reformulation of these constraints. The new constraints are based on clique covering

and, with this reformulation, the number of constraints of the problem is reduced and

the bounds of the model are improved.

2.2.6 The semi-continuous model

Aiming to merge the compactness of the linear models and the �exibility of the dotted

board model, Leao et al. (2016) proposed a semi-continuous model. The pieces can be

placed inside of the board along the x-axis and only on discretized positions on y-axis,

i.e., the reference point of the pieces can be placed only on horizontal stripe lines in

the board. The stripes are parallel and they are equally distributed, i.e., the distance

among the stripes on the y-axis is multiple of a constant gy. This distance must be

carefully de�ned since the solution quality depends on it. Figure 2.16 illustrates a

board discretized by stripes used in the semi-continuous model.

gy

Figure 2.16: Example of board discretized by lines used in Leao et al.'s model.

In this model, the locus of piece i is de�ned by the continuous variable xi and the

binary variable ϑpii which is 1 if the piece i is placed on stripe pi and 0 otherwise, for

22



i = 1, ...,N , pi = 0, ...,W . Using these variables, the authors ensure that the pieces

are entirely inside the board using constraint (2.3) and restricting pi in the interval

[wtopi ,W − wbottomi ].

To ensure that the pieces do not overlap, the authors used the no�t polygon. Con-

sider that NFPij is divided in horizontal stripes, with the lowest stripe nminij and the

highest stripe nmaxij . Consider also aocij (a
′oc
ij ) the x coordinate of the leftmost (rightmost)

point of stripe o related to concavity c of NFPij. Figure 2.17 illustrates the division

of the no�t polygon by horizontal stripes and parameters nminij , nmaxij , aocij and a
′oc
ij .

i

j

x

y

nminij

nmaxij

a11
ij a′11

ij
a12
ija′12

ij

ao1ij a′o1ij

(a) (b)

Figure 2.17: (a) shows pieces i and j and the resulting NFPij. The division of NFPij
in horizontal stripes and the discretization parameters are presented in (b).

Consider Co
ij the number of concavities of stripe o of the NFPij. The variable $

c
ij

which is 1 if the reference point of piece i is placed on the right side of concavity c

of piece j and 0 otherwise, c = 1, ..., C
pj−pi
ij . Note that when the reference points of

pieces i and j are respectively placed on pi and pj board stripes, pj − pi is the vertical
distance between pieces i and j reference points.

To avoid the overlap among pieces the authors presented inequalities (2.51) and

(2.52).

xi ≤ xj − a′
(pi−pj)c
ij +$c

ijM+(1− ϑpii )M + (1− ϑpjj )M, 1 ≤ i < j ≤ N ,

c = 1, ..., C
pj−pi
ij , wtopi ≤ pi ≤ W − wbottomi ,

wtopj ≤ pj ≤ W − wbottomj , nmaxij ≤ pj − pi ≤ nmaxij , (2.51)

xi ≥ xj − a
(pi−pj)c
ij + (1−$c

ij)M+(1− ϑpii )M + (1− ϑpjj )M, 1 ≤ i < j ≤ N ,

c = 1, ..., C
pj−pi
ij , wtopi ≤ pi ≤ W − wbottomi ,

wtopj ≤ pj ≤ W − wbottomj , nmaxij ≤ pj − pi ≤ nmaxij .

(2.52)
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In inequality (2.51) if the piece i is on stripe pi, piece j is on stripe pj and the

reference point of piece i is on the left of concavity c then xj must be greater or equal

to xi +a′
(pi−pj)c
ij . The inequality (2.52) ensures that if the pieces i and j are receptively

on stripes pi and pj and the reference point of piece i is on the right side of concavity

c then xj must be smaller than or equal to xi + a′
(pi−pj)c
ij .

To ensure that all the pieces are placed on the board, the authors impose con-

straints (2.53) which assign the piece reference point of each to a line.

W−wbottom
i∑

p=wtop
i

ϑpii = 1, 1 ≤ i ≤ N . (2.53)

The semi-continuous model proposed by Leao et al. (2016) is given as follows.

minimize L (2.54)

subject to:

L− xi ≥ lrighti , i = 1, ...,N , (2.55)

xi ≥ llefti , i = 1, ...,N , (2.56)

xi ≤ xj − a′
(pi−pj)c
ij +$c

ijM + (1− ϑpii )M + (1− ϑpjj )M, 1 ≤ i < j ≤ N ,

c = 1, ..., C
pj−pi
ij , wtopi ≤ pi ≤ W − wbottomi ,

wtopj ≤ pj ≤ W − wbottomj , nmaxij ≤ pj − pi ≤ nmaxij , (2.57)

xi ≥ xj − a
(pi−pj)c
ij + (1−$c

ij)M + (1− ϑpii )M + (1− ϑpjj )M, 1 ≤ i < j ≤ N ,

c = 1, ..., C
pj−pi
ij , wtopi ≤ pi ≤ W − wbottomi ,

wtopj ≤ pj ≤ W − wbottomj , nmaxij ≤ pj − pi ≤ nmaxij , (2.58)

W−wbottom
i∑

p=wtop
i

ϑpii = 1, i = 1, ...,N , (2.59)

ϑpii ∈ {0, 1}, i = 1, ...,N , wtopi ≤ pi ≤ W − wbottomi , (2.60)

$c
ij ∈ {0, 1}, 1 ≤ i < j ≤ N , (2.61)

xi ∈ R+, i = 1, ...,N . (2.62)

As in the dotted board model, the optimality of this model depends on how sparse

are the stripe lines that represent the board. In addition, the number of variables and

constraints depends on this discretization. Note that the discretization has less impact

on the semi-discrete model than on the dotted board model since it discretizes only
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the y-coordinates where the pieces can be placed.

2.3 Heuristic methods

In contrast to the number of exact approaches, many heuristics were proposed to solve

the irregular strip packing problem. A review of heuristics was presented in Bennell and

Oliveira (2009). These heuristics can be classi�ed into constructive and improvement

heuristics.

Constructive heuristics aim to build a solution to the problem using a particular

strategy. The most popular strategy is the bottom-left heuristic introduced by Art

(1966). This heuristic is performed in steps and in each step one piece is placed on

the layout. Every time a piece is placed, it is moved horizontally from the top right

corner of the board to its leftmost position (Figure 2.18(a)). Then, the piece is moved

vertically to the bottom until it can be moved to the left again (Figure 2.18(b)). The

process ends when the piece can not be moved to the left or downwards (Figure 2.18(c)

and 2.18(d)). Figure 2.18(e) illustrates the place where piece 5 is inserted in the layout

using the bottom-left heuristic.

5

1

2

3 4

(a)

5

1

2

3 4

(b)

5

1

2

3 4

(c)

5

1

2

3 4

(d)

51

2

3 4

(e)

Figure 2.18: Placing a piece in the board using the bottom-left heuristic.

The solution found by the bottom-left heuristic depends on the sequence of the

pieces. Similar strategies can be derived from the bottom-left heuristic by moving

pieces to di�erent directions.

Some authors investigated sequences for the placement of the pieces in the bottom-

left heuristic. Oliveira et al. (2000) presented �ve rules to arrange the pieces to be

inserted in the board. Based on these rules, 126 variations of the bottom-left heuristic

were derived. Dowsland et al. (2002) proposed nine rules for ordering the pieces to
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perform the heuristic and an e�cient implementation of the bottom-left heuristic is

described. A search over the sequence of input pieces in the bottom-left heuristic

was performed by Gomes and Oliveira (2002). In each iteration, the authors changed

the position of two pieces in the input sequence and then performed the bottom-

left heuristic again. Albano and Sapuppo (1980) proposed a heuristic similar to the

bottom-left where each piece is placed in the position that least increases the length of

the layout.

Given a feasible solution, improvement heuristics search for solutions with better

quality. A solution method based on simulated annealing was presented by Gomes

and Oliveira (2006). Speci�cally, the bottom-left heuristic is used to �nd the initial

layout. Then simulated annealing is used to perform a search over the sequence of

pieces. To obtain better layouts, the authors used linear models for compaction (Li

and Milenkovic, 1995) obtaining a local optimum.

Jakobs (1996) presented a genetic algorithm to search over the input sequence of

the pieces in the bottom-left heuristic. Another genetic algorithm that also searches

over the input sequence was proposed by Babu and Babu (2001). The procedure can

handle prede�ned rotations of the pieces.

By also using bottom-left heuristic to �nd the initial solution, Egeblad et al. (2007)

proposed a fast neighbourhood search to solve the problem. The method used local

search to move the pieces horizontally and vertically over the layout aiming to reduce

overlaps. A guided local search was used to escape the local minimum. If a solution

with no overlap is found, the layout length is reduced and the process is applied again.

The heuristic was extended for three-dimensional packing problems.

Burke et al. (2006) applied tabu search and hill climbing heuristics over the input

sequence of the bottom-left heuristic. In their method, the pieces can be packed in

holes formed by other pieces and the polygons can also be represented by arcs.

Rather complex and sophisticated heuristic methods have been developed and re-

cently published. Umetani et al. (2009) presented an overlap minimization algorithm

based on translations of pieces on vertical and horizontal directions. This algorithm

is incorporated into a guided local search in order to solve the strip packing problem.

Imamichi et al. (2009) proposed an iterated local search heuristic to solve the prob-

lem. The local search swaps the position of a pair of pieces in the solution and a non

linear programming separation algorithm ensures the non-overlap between the pieces.

An extended local search heuristic to solve the problem was proposed by Leung et al.

(2012). Two neighbourhoods are used to change the piece positions during the local

search and the feasibility of a solution is reached by non-linear programming separa-

tion and compaction models. Sato et al. (2012) proposed two constructive heuristics

using the concept of collision free regions and identifying pieces that �t well. These
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heuristics are combined with a simulated annealing algorithm in order to obtain better

solutions. A compaction model is used to reduce the length of the solutions obtained

in each iteration of the algorithm. Elkeran (2013) proposed a heuristic where �rst the

pieces are clustered in pairs, then a guided cuckoo search heuristic is used to pack the

pieces into the board. This heuristic reached the best results in the literature for the

irregular strip packing problem.

2.4 Solution methods for other cutting and packing

problem variants

Heuristics have been proposed for other cutting and packing problem variants. To

solve the irregular two-dimensional knapsack problem, Dalalah et al. (2014) proposed

a heuristic where the pieces are placed inside of the board by an iterative process. First

the pieces are ordered by area, then they are placed in the board with a rule based

on their area and on the area of the convex hull of the solution layout. Alves et al.

(2012) proposed several placement heuristics trying to quickly obtain good quality

solutions for the problem. Their placement method uses information of the contact

region among pieces in order to obtain a compact layout. The authors use this method

to solve the leather cutting problem of automotive industry. A genetic algorithm to

solve the problem was presented by Crispin et al. (2005). The algorithm was developed

to solve the problem of cutting shoe components. At each iteration of their algorithm,

the placement heuristic is based on the contact region among the pieces and the genetic

algorithm is responsible to improve the solution quality.

Valle et al. (2012) proposed heuristics for the irregular binary knapsack problem and

the irregular unconstrained knapsack problem. To solve the irregular binary knapsack

problem, a GRASP heuristic is combined with a constructive heuristic in order to

obtain solutions for the problem. For the irregular unconstrained knapsack problem

the pieces are �rst clustered in small rectangles that are packed in the board using an

exact method that solves the rectangular knapsack problem with guillotine constraints.

Using this last heuristic, the authors also proposed a column generation procedure to

solve the irregular cutting stock problem.

Song and Bennell (2014) proposed the �rst method to solve the irregular cutting

stock problem. The authors consider that all boards have the same size. First the

problems are decomposed into master problem and sub-problem, then a column gen-

eration procedure is used to solve it. The sub-problem de�nes a cutting pattern to be

used in cutting stock problem which represents a column in the master problem. These

columns are heuristically generated and thus the procedure is a heuristic.
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To solve the irregular two-dimensional bin packing problem considering a single

board size, Lamousin and Waggenspack (1997) proposed a constructive heuristic. The

heuristic tries to mimic the work of a human, which consists of placing one piece on the

board at each iteration. The piece chosen to be placed is the one that generates less

waste. Okano (2002) proposed a heuristic to solve the problem by approximating the

bins and pieces by lines. Using this representation, the authors proposed a placement

heuristic to build the solution. López-Camacho et al. (2013) proposed a constructive

heuristic to solve this problem where the order by which the pieces will be placed is

�rst de�ned, then a placement heuristic is used to build the solution. The authors

use seven criteria to de�ne the piece sequence. Two placement heuristics were used:

an adaptation of the bottom-left heuristic, and a constructive heuristic proposed by

the authors. A heuristic to solve this problem considering that the pieces are convex

polygons were proposed in Terashima-Marín et al. (2010). The authors proposed a

genetic algorithm to decide the piece sequences and several constructive heuristics to

build the solution layout.

To solve irregular bin packing problem where the board is irregular with defects,

Babu and Babu (2001) proposed a genetic algorithm. In their method, the genetic

algorithm chose a sequence of pieces and speci�c angles to rotate them. This sequence

is used to place the pieces on the board using the same strategy of the bottom-left

heuristic and considering the irregular parts and board defects. Baldacci et al. (2014)

proposed a heuristic to solve the irregular bin packing problem with an irregular board

with defects and quality regions where only a subset of pieces can be placed. In their

method, solutions for each single irregular board are built using di�erent constructive

heuristics, that generate a set of cutting patterns. This algorithm to generate cutting

patterns is embedded in a heuristic for solving the bin packing problem.

2.5 Research gaps

After this review over di�erent aspects of the two-dimensional irregular cutting and

packing problems, some gaps in the literature can be pointed:

1. The mixed-integer programming models for the strip packing problem demand

geometric structures that generally are tough to be obtained to be formulated.

It suggests as research direction the proposal of new models considering simpler

structures to be built and with competitive results compared with the literature.

2. Looking to the geometry, there is no structure to handle the case where discrete

placement for the pieces in the board is considered and the no�t polygon is
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used to evaluate the overlap. Such structure could make easy and �exible the

development methods based on this geometry.

3. Among the proposed heuristic methods, only a few combine exact approaches

and heuristics. In addition, there is no method in the literature that combines

the recently mixed-integer programming models with heuristics strategies.

4. Despite the number of mathematical models and heuristics for the irregular strip

packing problem, for the other variants of the irregular cutting and packing prob-

lems there are only a few heuristics and no exact method. Furthermore, the

development of constraint programming methods to solve cutting and packing

problems seem promising and not fully explored.

The next chapters of this thesis are dedicate to investigate these gaps.
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Chapter 3

New mixed-integer programming

models to the irregular strip packing

problem1

The geometric representation of the pieces and the board is the main problem in the

development of models and heuristics for the irregular strip packing problem. The

models in the literature handle with pieces and board geometry by discretising the

pieces and the board or by not considering non-convex pieces with holes, pushing the

models away from the real-world needs. Part of the models' limitations are due to the

algorithms available to build the no�t polygons (Bennell and Oliveira, 2008). While

the construction of the no�t polygon of convex pieces is just a matter of ordering

the edge angles, for non-convex pieces, this process is harder. Moreover, pieces with

narrow crevices, consecutive edges with similar slopes and holes lead to complex and

numerically unstable algorithms.

In this chapter, mixed-integer programming models to solve the irregular strip pack-

ing problem are proposed. The direct trigonometry model (DTM) is built using only

geometric information about the pieces and the board, that is, more advanced struc-

tures as no�t polygons are avoided making the model implementation easier. The no�t

polygon covering model (NFP−CM) uses the no�t polygon to avoid overlaps among

pieces. Both approaches are robust in terms of the geometry of the pieces they can

address, considering convex and non-convex polygons with or without holes. They are

also simpler to implement than the previous literature models. This simplicity allowed

to consider for the �rst time a variant of the linear models that deals with piece ro-

tations. Computational experiments with benchmark instances show that NFP−CM
outperforms both DTM and the best mixed-integer programming models from the lit-

erature. In addition, new real-world based instances with more complex geometries are

1This chapter is strongly based on Cherri et al. (2016)
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proposed and used to verify the robustness of the new models.

The remainder of this chapter is strongly based on the paper �Mixed-integer linear

programming models for the irregular strip packing problem� (Cherri et al., 2016) and

is organized as follows. Section 3.1 presents the speci�c geometric de�nitions used

along the chapter. In Section 3.2, two new mathematical programming models are

proposed, including some variants based on valid inequalities and variable reduction

strategies and, in Section 3.3, computational experiments on benchmark instances from

the literature are presented. The performance of the models is evaluated by comparing

their resuts with the best results previously published for exact methods. Further-

more, computational experiments including piece rotations and pieces with holes are

presented.

3.1 Description and geometric de�nitions of the ir-

regular strip packing problems

This section presents the geometric de�nitions and the notations that will be used

along this chapter. Some basic de�nitions have already appeared in chapter 2 and are

presented with more details.

3.1.1 Problem de�nition

The two-dimensional irregular strip packing problem can be formally de�ned by a set

of pieces of m distinct types, each one described by a polygon Pi, i = 1, . . . ,m, that

have to be placed, in an amount of di units, on a large rectangle board characterized

by a width W and a length L. For the sake of legibility and comparability the models

will be presented and tested considering that piece rotations are not allowed, as in all

previous exact approaches to this problem. However, an extension of the models allow-

ing di�erent orientations for each piece will be proposed and discussed in Section 3.2.3.

As the length L is not �xed, the board can be considered as having �in�nite� length

and the problem's goal is to minimise L, i.e. the length of the board that is necessary

to cut all demanded pieces. In practice, this corresponds to minimising the amount of

raw-material used to satisfy a given order of irregularly shaped pieces.

The problem constraints are of three types:

1. each piece type i has to be cut in the demanded quantities di, in a total of

N =
∑m

i=1 di pieces;

2. pieces must not overlap, i.e. int(Pj)
⋂
int(Pl) = ∅, ∀j, l = 1, . . . , N ; j 6= l;
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3. pieces must be completely contained inside the board, i.e.:

int(Pj)
⋂
int(rect(L,W )) = int(Pj), ∀j = 1, . . . , N ;

where int() stands for the topological interior and rect(L,W ) for the rectangle of length

L and width W .

3.1.2 Basic concepts

In the new models, each piece i is not described by a single polygon but it is decomposed

and represented by a set of convex polygons, the parts of piece i, that may or may

not overlap, allowing to represent convex and non-convex pieces, as well as pieces with

holes.

Each part of piece i is represented by a list of (clockwise) ordered points in the

plane that represents its vertices. One of the vertices of one of the parts of piece

i is chosen to be its reference point, denoted by (xi, yi). llefti and lrighti are de�ned

as the distances in the x-axis from xi to the leftmost and rightmost vertex in piece

i, respectively. Analogously, wtopi and wbottomi are de�ned as the distance in the y-

axis from yi to the vertices of piece i that are closest and farthest from the origin,

respectively. Figure 3.1 illustrates a piece decomposed in two convex polygons, its

reference point and the corresponding measures for llefti , lrighti , wtopi and wbottomi as well

as the coordinate system and its origin.

llefti lrighti

wbottomi

wtopi

y

(0, 0) x

Figure 3.1: Decomposition of a piece in two convex polygons and distances in the x
and y-axis from the positioning point to the borders.

3.1.3 Detecting overlaps between two pieces

To ensure that pieces i and j do not overlap, each one of the parts of piece i must not

overlap each one of the parts of piece j and vice-versa. Therefore, it is only necessary

to detect if a part of a piece overlaps a part of another piece. As stated in Bennell and

Oliveira (2008) two methods for the detection of the overlaps between two pieces are

the D-function, that uses direct trigonometry and the no�t polygon.
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The D-function

Given an oriented edge ab, where a = (ax, ay) and b = (bx, by) and a point r = (rx, ry),

the D-function gives the relative position of the point with respect to the oriented edge

and is de�ned by equation (3.1).

Dabr = (ax − bx)(ay − ry)− (ay − by)(ax − rx). (3.1)

Figure 3.2 shows the di�erent values that Dabr can have and its implications. If

Dabr = 0 (Figure 3.2a), point r is over the line de�ned by ab; if Dabr < 0 (Figure 3.2b),

point r is on the right side of line ab; and if Dabr > 0 (Figure 3.2c), point r is on the left

side of line ab. This particular relationship between the sign of the D-function and the

right-left position of point r is dependent on where the origin of the coordinate system

is de�ned (Figure 3.1). In our implementation, as other authors (in the literature), for

historical reasons we consider that the origin of the coordinate system is on the left-top

corner (as it happens with screens and pixel numbering), i.e. x-coordinates grow to the

right and y-coordinates grow downwards. This has an impact on the interpretation of

the result of the D-function, e.g. a negative value of the D-function means that the

point is on the right side of the edge if and only if the top-left origin for the coordinate

system is considered.

a

br

Dabr > 0
a

b
r

Dabr = 0
a

b

r

Dabr < 0
(a) (b) (c)

Figure 3.2: Values of Dabr and its implications.

The D-function is used to analise the intersection of two polygons that represent

two pieces by evaluating the relative position between the edges of one polygon and

the vertices of the other one. If pieces i and j are convex, consider Ki to be the set

of edges of piece i. Given an edge e ∈ Ki, the D-function can be used to verify if the

vertices of piece j are on the right side of e. If it is true for at least one edge e ∈ Ki,

then piece i does not overlap piece j.

The no�t polygon

The no�t polygon of two pieces i and j, denoted by NFPij, is the locus of all the points

where the reference point of piece j cannot be placed without overlapping piece i. Since
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the pieces are de�ned as sets of convex parts, the NFPij can be de�ned as the set of

all no�t polygons of parts of i and parts of j, that is, each part of NFPij is the no�t

polygon of p and q, where p ∈ Pi and q ∈ Pj. Note that as all the parts of pieces i

and j are convex polygons all parts of NFPij are also convex polygons and they might

overlap.

To build the no�t polygon of convex pieces, the Cuninghame-Green (1989) algo-

rithm can be used as exempli�ed in Figure 3.3. In the method, given two pieces i and

j, the NFPij can be built ordering the edges of the �xed polygon (that represented

the piece i) on clockwise orientation and the orbital polygon (that represent piece j)

edges on counter-clockwise orientation (Figure 3.3a). Then, the edges are translated

in order to start at the same point (Figure 3.3b). Finally, the edges are concatenated

in a increasing angle order (Figure 3.3c).

a

b

c

d

e f

g

j

i

c

d

a

b

f

e

g f

a

bg

c

e

d

NFPij

(a) (b) (c)

Figure 3.3: Building the no�t polygon using Cuninghame-Green (1989) method.

By using the NFPij it is possible to verify if piece i does not overlap piece j just by

checking if the reference point of j is on the border or outside the NFPij.

3.2 Mathematical models

A mathematical formulation for an irregular cutting problem must ensure that the

pieces are entirely inside the board and they do not overlap. The �rst condition can be

easily satis�ed by using the pieces geometric information presented in Figure 3.1. To

guarantee that the pieces do not overlap two di�erent approaches are proposed. The

�rst one uses only the information provided by the geometry of the pieces leading to

a Direct Trigonometry Model presented in Subsection 3.2.1. The second approach is

based on the NFP covering structure presented in Section 3.1, resulting in the NFP

Covering Model presented in Subsection 3.2.2.

Some valid inequalities have been developed for each model and are described in

the respective section. Subsection 3.2.4 presents the bounds used in the models and

includes a short discussion about their importance.
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3.2.1 Direct Trigonometry Model - DTM

This section presents a mixed-integer programming model to solve the irregular strip

packing problem based only on direct trigonometry to infer the set of feasible solutions.

Some variable reductions and valid inequalities are introduced in order to eliminate

redundant constraints and part of the symmetric solutions.

Basic model

The �rst set of constraints must ensure that the pieces do not overlap. Consider two

pieces i and j. Piece i does not overlap piece j if either all the vertices of i are at

the right side of an oriented edge of piece j or the vertices of piece j are at the right

side of an oriented edge of piece i. Note that two pieces composed by several parts do

not overlap if all the pairs of parts of these pieces do not overlap. The D-function in

equation (3.1) is used to build these constraints.

Consider that the points ak = (akx, a
k
y) and b

k = (bkx, b
k
y) represent respectively the

initial and �nal vertices of edge k ∈ Kip, where Kip is the set of edges of part p of piece

i. Consider also girqjx and girqjy to be the horizontal and vertical distances between

(xi, yi), the positioning point of piece i, and the vertex r of part q of piece j. Using

the D-function (3.1) we can write inequality (3.2).

Dabg = (akx − bkx)(aky − girqjy )− (aky − bky)(akx − girqjx ) ≤ 0. (3.2)

If this inequality is satis�ed, the pieces i and j are either separated or touching.

Moreover the distance between each vertex of part q of piece j and the reference

point of piece j must be taken into account. Consider gjrqjx and gjrqjy the vertical and

horizontal distances between the reference point of piece j (xj, yj) and vertex r of part

q of piece j: gjrqjx = xr − xj and gjrqjy = yr − yj. Then, girqjx = xj + gjrqjx − xi and

girqjy = yj + gjrqjy − yi. The distances gjrqjx , gjrqjy , girqjx and girqjy are illustrated in Figure

3.4. Using this information on inequality (3.2), inequality (3.3) is obtained.

(akx − bkx)(aky + yi − yj − gjrqjy )− (aky − bky)(akx + xi − xj − gjrqjx ) ≤ 0⇒

Cpqkr
ij + (akx − bkx)(yi − yj) + (aky − bky)(xi − xj) ≤ 0, (3.3)

where Cpqkr
ij is de�ned as (akx − bkx)(aky − gjrqjy )− (aky − bky)(akx − gjrqjx ).

Note that it is not necessary to create constraints invoking that all the vertices of

q (or p) are on the right side of one line of p (or q). Indeed, given a set of points

and a speci�c line, constraint (3.3) associated with them di�ers only on the constant
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girqjy

girqjx

gjrqjy

gjrqjx

(xi, yi)

(xj, yj)

p

i

q

j

(xr, yr)

Figure 3.4: Obtaining the constants gjrqjx , gjrqjy , girqjx and girqjy .

Cpqkr
ij . By this fact, only the constraint with the largest constant Cpqkr

ij needs to be

inserted in the model. This rule reduces substantially the number of constrains on the

model, leading to a faster search. Then the following constraints prevent two parts

from overlapping.

Cpqk
ij + (akx − bkx)(yi − yj) + (aky − bky)(xi − xj) ≤ 0, (3.4)

where Cpqk
ij is de�ned as maxr{Cpqkr

ij }.

However, only one inequality needs to be satis�ed for each part p to ensure that the

pieces do not overlap. Consider the variable vpqkij that is 1 if the inequality for edge k

of part p of piece i is satis�ed with respect to part q of piece j, and 0 otherwise. These

line constraints (3.4) are formulated as follows:

Cpqk
ij + (akx − bkx)(yi − yj) + (aky − bky)(xi − xj) ≤ (1− vpqkij )Mpqk

ij ,

i = 1, ..., N, j = 1, ..., N, i 6= j, p ∈ Pi, q ∈ Pj, k ∈ Kip,

where Mpqk
ij is a number large enough to make the inequality always valid when vpqkij is

equal to zero. This number is estimated in Section 3.2.1.

As it is not acceptable that the pieces overlap, a constraint to ensure that exactly

one constraint related to a given pair of parts of di�erent pieces is satis�ed must be

created. It is important to reinforce that it is guaranteed that if all the parts of di�erent

pieces do not overlap, the pieces do not overlap. The following constraint ensures that

one inequality of edge k, part p of piece i or of part q of piece j is satis�ed. Clearly,

feasible solutions with more than one edge active for the same pair of parts can exist,

but these solutions are not precluded by activating only one of these edges.
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∑
k∈Kip

vpqkij +
∑
k∈Kjq

vqpkji = 1, 1 ≤ i < j ≤ N, p ∈ Pi, q ∈ Pj.

The constraint that the pieces must be entirely contained inside the board, can be

ensured by the inner�t polygon represented by the following constraints.

llefti ≤ xi, i = 1, ..., N,

wtopi ≤ yi ≤ W − wbottomi , i = 1, ..., N.

The next constraints are imposed to ensure that the used length L of the board

will be minimised.

xi ≤ L− lrighti , i = 1, ..., N.

The Direct Trigonometry Model is presented in (3.5)-(3.11).

min L (3.5)

s.t. llefti ≤ xi ≤ L− lrighti , i = 1, ..., N, (3.6)

wtopi ≤ yi ≤ W − wbottomi , i = 1, ..., N, (3.7)

Cpqk
ij + (akx − bkx)(yi − yj)+

(aky − bky)(xi − xj) ≤ (1− vpqkij )Mpqk
ij , i, j = 1, ..., N, i 6= j,

k ∈ Kip,

p ∈ Pi, q ∈ Pj, (3.8)∑
k∈Kip

vpqkij +
∑
k∈Kjq

vqpkji = 1, 1 ≤ i < j ≤ N,

p ∈ Pi, q ∈ Pj, (3.9)

(xi, yi) ∈ R2, i = 1, ..., N, (3.10)

vpqkij ∈ {0, 1}, i, j = 1, ..., N, i 6= j,

k ∈ Kip, p ∈ Pi, q ∈ Pj. (3.11)

This model does not need special geometric structures, as the no�t polygons, to be

built. This characteristic is interesting since by using these simpler structures it can

be easier, compared to more complex models, to add new constraints to the model or
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to change the existing ones.

Eliminating redundant constraints and variables

It is possible to eliminate redundant constraints by �nding the sets of points and lines

that lead to the same solution space. Consider part p of piece i and part q of piece j

as in Figure 3.5. Notice that the same solutions can be reached either if the constraint

related to line α is active or if the constraint related to line β is active. In other

words, if part p of piece i and part q of piece j have lines with the same orientation

and opposite directions the line β can be removed from Kjq set (or α can be removed

from Kip set). Therefore, the binary variable vqpβji (or vpqαij ) is eliminated reducing the

number of elements in the sum of variables on Constraint (3.9) and one non-overlap

constraint (3.8) is eliminated. The elimination of these redundant constraints keeps

the model's optimality.

α
β

q

p

Figure 3.5: Parts p and q of di�erent pieces that have lines with the same orientation
and di�erent directions.

Collinear lines of di�erent parts of a piece can be represented by the same line in the

model, since it leads to the same solution space. Consider a piece i that is composed

by three parts, as illustrated in Figure 3.6. As the lines α ∈ Kip1 and β ∈ Kip3 are

collinear, the variable β can be removed from Kip3 set and α can be included in the

set. These modi�cations change constraints (3.8) and (3.9) eliminating a variable from

the model for each pair of collinear lines. Note that line γ needs to be maintained.

α β

γ
p1

p2

p3

Figure 3.6: Piece i decomposed in three parts. An example of collinear lines is given
by the lines α and β from parts p1 and p3.

Reducing the number of variables and constraints, the model size and complexity
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are also reduced. These reductions lead the solution method to perform a faster search

over the solution space.

Symmetry breaking

In the proposed formulation items of the same type are considered as di�erent items,

implying that a huge number of symmetric solutions are computed. This can be avoided

by imposing that xi ≤ xj for all i < j ∈ N if pieces i and j are of the same type. These

constraints ensure that the pieces will respect a precedence order and signi�cantly

reduce the symmetry of the solution space.

Big-M estimation

The value of the big-M in constraint (3.8) must be estimated. If vpqkij = 1, the value of

Mpqk
ij is not important since it will be multiplied by zero. However, if vpqkij = 0, then

the following equation holds:

Mpqk
ij ≥ Cpqk

ij + (akx − bkx)(yi − yj) + (aky − bky)(xi − xj).

The value ofMpqk
ij depends on the placement positions of pieces i and j, the variables

xi, xj, yi and yj. To eliminate the variables from the equation we take the board wigth

W and an upper bound for the board length L as upper bounds for (yi − yj) and

(xi − xj), respectively. The coe�cients (akx − bkx) and (aky − bky) are also replaced by

their absolute value. By making these substitutions we obtain the following equation

for big-M that guarantees that Mpqk
ij is large enough to make constraint (3.8) valid.

Mpqk
ij ≥ Cpqk

ij + |akx − bkx|H + |aky − bky|L.

The upper bound on the board length (L) is de�ned as the sum of the lengths of

all the pieces. This value is clearly too high compared to the best solution, leading

to doubts about the importance of the estimation of the big-M term. However, two

facts must be taken into account. The �rst is that with the estimation of the big-M ,

it is possible to apply the model to instances of any size, avoiding numerical errors.

The second is that as we had veri�ed in our experiments, a tight M in the formulation

generally makes it hard to the solver to �nd good quality solutions at the beginning of

the search. A further discussion about upper bounds is provided in Section 3.2.4.

Not using advanced geometric structures in DTM also bring some drawbacks. The

number of variables and constraints in the model is directly correlated with the number
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of vertices of each pair of convex polygons that represented the piece that compose the

di�erent pieces that must be placed. This conclusion led us to use advanced structures,

as the no�t polygon, as described in the next section.

3.2.2 NoFit Polygon Covering Model - NFP−CM

The DTM is relatively easy to built and uses only basic geometric informations. How-

ever, for the cases where several pieces are decomposed in several convex parts, the

model may become di�cult to solve because of the number of constraints and variables.

In this section, a model based on the no�t polygon is proposed. This approach

has at most the same number of constraints and variables as the DTM . Some valid

inequalities proposed for the DTM can also be used in this model. Moreover, a new

set of valid inequalities can be introduced in the model, pruning symmetric solutions

of the search space and leading therefore to a faster search.

Basic model

The main di�erence between the NFP Covering Model and the DTM is in how the

non-overlapping constraints are tackled.

Consider the no�t polygon NFPij generated from pieces i and j as de�ned in Sec-

tion 3.1.3.

NFPij =
⋃

p=1,...,Qij

NFP p
ij,

where NFP p
ij is the part p of NFPij and Qij is the number of parts of NFPij. To ensure

that the pieces do not overlap, the reference point of piece j must be outside NFP p
ij,

for all p = 1, ..., Qij.

Considering that Kp
ij is the set of directed edges of NFP p

ij, these constraints are

ensured by imposing, for each part of NFPij, that the reference point of piece j is

at the right side of exactly one edge in Kp
ij. In order to build these constraints, the

D-function (equation (3.1)) is used. Consider apij = (apij,x, a
p
ij,y) and bpij = (bpij,x, b

p
ij,y)

as two consecutive vertices of the NFP p
ij. Consider also xi and yi the variables which

represent the point where piece i is placed on the board.

(apij,x − b
p
ij,x)(a

p
ij,y − gij,y)− (apij,y − b

p
ij,y)(a

p
ij,x − gij,x) ≤ 0⇒

C
pk

ij − (apij,x − b
p
ij,x)gij,y + (apij,y − b

p
ij,y)gij,x ≤ 0, (3.12)
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where gij,x and gij,y are respectively the horizontal and vertical distance between the

reference points of pieces i and j, i.e., gij,x = xi − xj and gij,y = yi − yj, and

C
pk

ij = (apij,x − b
p
ij,x)a

p
ij,y − (apij,y − b

p
ij,y)a

p
ij,x.

Inequality (3.12) ensures that the reference point of piece j is on the right side or

over the line de�ned by the vertices apij and b
p
ij of the NFP

p
ij. Since only one line must

be activated to avoid the overlap between pieces, the following constraints are imposed.

C
pk

ij − (apij,x − b
p
ij,x)(yj − yi) + (apij,y − b

p
ij,y)(xj − xi) ≤ (1− vpkij )Mpk

ij ,

i = 1, ..., N − 1, j = i+ 1, ..., N, p ∈ Qij, k ∈ Kp
ij,

∑
k∈Kp

ij

vpkij = 1, i = 1, ..., N − 1, j = i+ 1, ..., N, p ∈ Qij,

where the variable vpkij is 1 if the reference point of piece j is on the right side or over

the line k of NFP p
ij and 0 otherwise. The same discussion presented in Section 3.2.1

can be applied to the estimation of the Mpk
ij term. These constraints are su�cient to

ensure that the pieces do not overlap.

To ensure that the pieces are entirely inside the board, constraints (3.6) and (3.7)

of the DTM are imposed in this model as constraints (3.14) and (3.15).

The complete NFP Covering Model formulation is presented in (3.13)-(3.19).
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min L (3.13)

s.t. llefti ≤ xi ≤ L− lrighti , i = 1, ..., N, (3.14)

wtopi ≤ yi ≤ W − wbottomi , i = 1, ..., N, (3.15)

C
ij

pk − (apij,x − b
p
ij,x)(yi − yj)+

(apij,y − b
p
ij,y)(xi − xj) ≤ (1− vpkij )Mpk

ij , i = 1, ..., N − 1,

j = i+ 1, ..., N,

p ∈ Qij, k ∈ Kp
ij, (3.16)∑

k∈Kp
ij

vpkij = 1, i = 1, ..., N − 1,

j = i+ 1, ..., N,

p ∈ Qij, (3.17)

(xi, yi) ∈ R2, i = 1, ..., N, (3.18)

vpkij ∈ {0, 1}, i, j = 1, ..., N,

k ∈ Kp
ij, p ∈ Qij. (3.19)

It is clear that the symmetry breaking constraints presented in Section 3.2.1 are

valid for this case, since they are related only with the feasible placement positions

of the pieces reference points. Some other important inequalities are presented in the

next section.

Valid inequalities and variable reductions

As in the DTM model, some valid inequalities and variable eliminations can be per-

formed in order to reduce the model size.

Recalling that there is a binary variable assigned to each edge of each convex com-

ponent p of each no�t polygon NFPij, the �rst variable reduction comes from assigning

the same binary variable to two collinear edges belonging to components p and q of the

same NFPij. The situation is similar to the one presented in Figure 3.6, considering

now the no�t polygon parts instead of parts of the pieces.

Some valid inequalities are also proposed in order to reduce the search space. These

inequalities are driven by the geometric characteristics of the di�erent NFP parts.

Consider two parts, p and q, of a given NFP as shown in Figure 3.7. Consider also a

line k de�ned by two consecutive vertices of polygon p. Similarly, consider the line e

de�ned by two consecutive vertices of polygon q. If these lines are parallel or if, for all

feasible placements of polygons p and q on the board, these lines intersect outside the
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board, then valid inequalities of three di�erent types can be derived based on them.

The �rst set of valid inequalities comes from the observation that there are cases

in which if a constraint, corresponding to the support line of a given edge, is active,

then a constraint corresponding to the supporting line of an edge of another part of the

NFP must also be active, otherwise the problem would be unfeasible. We call to the

later a slave line and this happens whenever the domain of this second line constraint

covers all the domain of the �rst line constraint. Figure 3.7b illustrates a case where

the constraint corresponding to line β is activated (slaved) whenever the constraint

corresponding to line associated to θ is active. Therefore, the constraint vpβij ≥ vqθij can

be included in the model.

Two lines can be classi�ed as covering lines (Figure 3.7c) if when merging the regions

de�ned by the corresponding constraints the entire board is covered. This means that

for any feasible solution at least one of these constraints must be active. Therefore, in

the case depicted in Figure 3.7c the constraint vpβij + vqγij ≥ 1 must be added.

The last set of valid inequalities refers to disjoint lines (Figure 3.7d) and models the

cases when two variables can not be active at the same time. Speci�cally, if two lines

of di�erent NFP parts de�ne a disjoint region, i.e. if the regions do not intersect, then

their corresponding constraints can not be activated at the same time (see α and θ in

Figure 3.7d). In this case, the constraint vpαij + vqθij ≤ 1 must be added to the model.

p q

(a)

β θ

(b)

β γ

(c)

α θ

(d)

Figure 3.7: Illustrating the cuts over the solution space. (a) presents the board, the
no�t polygon and its convex parts. Slave lines, covering lines and disjoint lines are
presented in (b), (c) and (d), respectively.

The procedure to �nd the valid inequalities is presented in Algorithm 1.
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Algorithm 1: Valid inequalities

Input: Kp
ij , K

q
ij .

Output: C set of cuts.

1 C ← ∅;
2 for k ∈ Kp

ij and e ∈ Kq
ij do

3 if (k and e do not intersect inside the board) then

4 Let a be a vertex of edge k, and b be a vertex of edge e;
5 if (b is on the left of k) and (a is on the right of e) then

6 Add cut (vqeij ≥ v
pk
ij ) to set C; \\e ≡ β and k ≡ θ in Figure 3.7(b)

7 end

8 if (b is on the left of k) and (a is on the left of e) then

9 Add cut (vqeij + vpkij ≥ 1) to set C; \\e ≡ β and k ≡ γ in Figure 3.7(c)

10 end

11 if (b is on the right of k) and (a is on the right of e) then

12 Add cut (vqeij + vpkij ≤ 1) to set C; \\e ≡ α and k ≡ θ in Figure 3.7(d)

13 end

14 end

15 end

16 return C;

3.2.3 Incorporating piece rotations

As previously stated, these models suppose that piece's orientation is �xed, i.e. no

rotations are allowed. However, in many real-world applications pieces may have mul-

tiple orientations. In some applications any orientation is feasible, but considering this

continuous rotation in the model would make it non-linear and out of the scope of our

current research. In other applications a discrete and pre-de�ned set of orientations

is possible for each piece. To consider this case each piece will be replicated as many

times as the number of admissible orientations. Each one of the replicas will be treated

in the models as a di�erent piece, and therefore from now on i will stand for a piece in

a given orientation. Variable δi ∈ {0, 1} will stand for the placement or not of piece i

on the layout. Let also consider the existence of S sets Γs, each one of them contain-

ing indices of pieces that are mutually exclusive, as it happens when they represent

di�erent orientations of the same initial piece (Figure 3.8).

To impose that only one piece of each set Γs is placed on the layout constraints

(3.20) have to be added to the models.

∑
i∈Γs

δi = 1, s = 1, . . . , S (3.20)

Additionally, the non-overlap constraints between two pieces in a particular orien-

tation will only be activated if those orientations are the ones chosen by the model for

those pieces. To achieve this, constraints (3.9) and (3.17) are replaced by constraints

45



1

Γ2

2

3Γ1

7

6

5

4

Γ3

N = 7

S = 3

Figure 3.8: Example with S = 3 initial pieces which, after having rotations applied,
originate a total of N = 7 pieces, together with the respective Γ1, Γ2 and Γ3 sets
de�nition.

(3.21)-(3.23) and (3.24)-(3.26), respectively.

∑
k∈Kip

vpqkij +
∑
k∈Kjq

vqpkji ≥ δi + δj − 1, 1 ≤ i < j ≤ N, p ∈ Pi, q ∈ Pj, (3.21)

∑
k∈Kip

vpqkij +
∑
k∈Kjq

vqpkji ≤ δi, 1 ≤ i < j ≤ N, p ∈ Pi, q ∈ Pj, (3.22)

∑
k∈Kip

vpqkij +
∑
k∈Kjq

vqpkji ≤ δj, 1 ≤ i < j ≤ N, p ∈ Pi, q ∈ Pj. (3.23)

∑
k∈Kp

ij

vpkij ≥ δi + δj − 1, i = 1, ..., N − 1, j = i+ 1, ..., N, p ∈ Qij, (3.24)

∑
k∈Kp

ij

vpkij ≤ δi, i = 1, ..., N − 1, j = i+ 1, ..., N, p ∈ Qij, (3.25)

∑
k∈Kp

ij

vpkij ≤ δj, i = 1, ..., N − 1, j = i+ 1, ..., N, p ∈ Qij. (3.26)

Note that the Constraints (3.22) and (3.23) (or (3.25) and (3.26)) are not necessary

to guarantee the feasibility of the solution, but they eliminate symmetries of the model,

improving its performance. This modelling strategy does not only handle piece rota-

tions but can also be used to address irregular packing problems in which the board is

fully limited (both the length and the width are given). According to the typology of
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Wäscher et al. (2007) it is the case of the irregular Knapsack Problem and the irregular

Placement Problem. In these cases constraints (3.20) are satis�ed as equal or less than

one instead of equal to one.

3.2.4 Bounds

De�ning better bounds for the problem may help the task of proving optimality. This

section describes how the lower and upper bounds used in the models were calculated.

Lower bounds are de�ned with simple computations using the pieces and the board

width. The length of a solution will always be greater then or equal to the length of

the longest piece, and then this is assumed as a lower bound for the problem. Another

lower bound that can be used is the length that would be used if the optimal solution

had no waste of material to perform the cut. This value is obtained by dividing the

total area of the pieces by the width of the board and is a simple generalization of the

lower bound of Martello et al. (2003) for the two-dimensional rectangular strip packing

problem. The maximum of these two lower bounds is used in the models aiming to give

more information for the solution method and then leading to a faster convergence.

Unlike the lower bounds, estimating upper bounds as tight as possible does not lead

to a faster convergence of the solution method. This happens because tighter upper

bounds lead the branch-and-cut method to spend more time �nding feasible solutions.

Despite this, it is not useless to estimate upper bounds, since good upper bounds make

the process of de�ning the variable domains and the big-M estimation automated for

any instance dimensionality (see Section 3.2.1). Moreover, for some instance sizes,

huge upper bounds for the board length could lead to numerical instability. In our

experiments, a big-M large enough to solve all instances, including a large instance as

albano, produces numerical instability to solve small instances as three, fu5, shapes_4

For this reason, the used upper bound for the length, L, is instance dependent, it is

the sum of all pieces' length, i.e. L =
∑

i=1,...,N(llefti + lrighti ). This upper bound on the

length avoided the numerical instability for all the instances used in our computational

experiments.

3.3 Computational results

Computational experiments were run to evaluate the performance of both DTM and

NFP−CM . Variations of NFP−CM were tested in order to show the e�ect of using the

proposed valid cuts. We compared the results of our approach with the results presented

in Alvarez-Valdes et al. (2013). The authors presented results for the Fischetti and

Luzzi (2009) model (HS1) and a variation of it with lifted bounds (HS2). They also

presented the results of an extension of Gomes and Oliveira (2006) compaction model
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(GO). In their article, the authors concluded that the HS2 model outperforms the

HS1 and GO model and then only the results of HS2 will be compared with our best

model. In addition, we present the results of our method for larger instances from the

literature and new instances based on real world applications.

Three sets of instances were used in our experiments. The �rst set is the same

used in Alvarez-Valdes et al. (2013) and was used to compare the performance of the

proposed models and to compare the results of our best model against the HS2 model

presented in Alvarez-Valdes et al. (2013). Classical instances of strip packing problems

compose the second instance set. This instance set shows the e�ectiveness of the models

for larger instances. Finally, the last instance set is composed by new instances based

on a real world application, where small pieces can be positioned inside holes of larger

pieces.

To build the proposed models, given the width of the board and the vertices of

the pieces, we have a pre-processing phase. In this phase, the pieces were divided in

the minimum number of convex parts by the Greene's partitioning algorithm proposed

by Greene (1983) and implemented in Cgal. In order to build the no�t polygons,

the ordering edges algorithm presented in Cuninghame-Green (1989) was used. Unlike

other approaches, which also decompose non-convex pieces into convex components to

generate the respective (convex) no�t polygons, these convex parts are not merged in

a single no�t polygon but directly used in the model.

The computational experiments were performed on a Intel Core i7-2600 with 16 GB

of memory using Ubuntu 12.04 operating system. To solve the proposed models we use

the CPLEX 12.6 optimization tool with C/C++ programming language and default

settings. All instances were run until optimality was proven or a time limit (denoted

tl, de�ned as 3600 seconds) was reached. This computational environment and time

limit are similar to the ones used in Alvarez-Valdes et al. (2013).

3.3.1 Evaluating the models performance

In this section the performances of the two proposed models,DTM and NFP−CM , are

analysed and compared. For NFP−CM we show the importance of the valid cuts by

comparing the solutions obtained with the valid cuts (NFP−CM) and without them

(NFP−CMnc). Only the set of instances present in Alvarez-Valdes et al. (2013) was

used in this phase.

Table 3.1 shows the results obtained byDTM and NFP−CM for this set of instances.

In columns ub and lb we present the upper and lower bounds reported by CPLEX on

termination. The solution gap, computed according to the formula (UB−LB)
UB

is given

in column gap. Column time gives the computational time, in seconds, reported by

CPLEX.
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To have a better overview of the models comparison, we build a performance pro�le

graph (Dolan and Moré, 2002), using the computational time as a performance measure.

In this graph, each model is represented by a curve. A point (x, y) in a curve of a model

mmeans that the computational time modelm took to solve (100×y)% of the instances

is at most x times the computational time the fastest model took to solve them. To

build the graphs in Figure 3.9 we used all the 35 instances, but, if a model could not

�nd an optimal solution (i.e. gap greater than 0), we considered that the time it spend

on solving the instance was �in�nite�. To build the graphs in Figure 3.10 we used

only the 20 instances for which the models could compute the optimal solution. In

Figure 3.10 and in Figure 3.9, the graph at the right is a zoom of the left portion of

the graph at the left.
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Figure 3.9: Performance pro�le using computational time as performance measure and
considering all 35 instances. If a model cannot �nd an optimal solution, we consider it
took �in�nite� time. The graph at the right is a zoom of the left portion of the graph
at the left.
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Figure 3.10: Performance pro�le using computational time as performance measure
and considering only the 20 instances for which all models found the optimal solution.
The graph at the right is a zoom of the left portion of the graph at the left.

In Table 3.1 and Figure 3.9, when we compare the computational time spent by the

models to solve all 35 instances we can see that both DTM and NFP−CMnc are the
fastest models for 26% of the instances, whereas NFP−CM is the fastest model for 57%

of the instances. Besides that, DTM was able to solve to optimality 20 instances (57%),

NFP−CMnc solved 25 instances (71%) and NFP−CM solved 27 instances (77%). When

we compare the computational time spent to solve only the 20 instances for which all
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models computed optimal solutions (see Figure 3.10), both DTM and NFP−CMnc are
the fastest models for 45% of the instances, whereas NFP−CM is the fastest model

for 65% of the instances.

In Table 3.1 we can also see that, with the exception of instances threep3, poly1a0

and dighe1, in all the other �ve instances for which NFP−CM could not �nd an optimal

solution (J1-10-20-3, fu, J1-14-20-1, J1-14-20-2 and J1-14-20-4), it obtained either an

equal or a smaller gap than the other two models.

Therefore, NFP −CM has a better performance than the other two models, at

least for this set of instances. We can also see that the performance of NFP−CMnc
is better than the performance of DTM . This behaviour was expected since in DTM

only the geometric information about the pieces parts is used to build the model while

the other proposed models use the information about the no�t polygon. Moreover,

the performance of NFP−CM is better than the performance of NFP−CMnc because
the latter does not have inequalities associating the parts of each no�t polygon used

to build the model. As expected, the amount of information used to build the model

is related with its performance. However, in situations where there are no geometric

tools to generate the no�t polygon or the no�t polygon generator can not handle all the

pieces characteristics, the DTM can be attractive to solve the problem. Furthermore, it

is easier to include additional constraints in a model which depends on less information

to be built, this fact also makes DTM attractive.

Since NFP−CM performed better, we will only use it on the remaining sections to

make performance comparisons.

3.3.2 Comparing with the literature

To assess the performance of NFP−CM we will compare it with the HS2 model which

is the best model presented in Alvarez-Valdes et al. (2013). To do this, we use only

the instances reported in Alvarez-Valdes et al. (2013).

Table 3.2 shows the results obtained by NFP−CM and the results of HS2 reported

in Alvarez-Valdes et al. (2013). In columns lb and gap we have the lower bound and

solution gap (given by (UB−LB)
UB

) for each solution computed. Column time gives the

computational time, in seconds, reported by CPLEX. It is important to notice that,

although the computer environment used in Alvarez-Valdes et al. (2013) is similar to

the one we used, they are not the same (the main di�erence being the CPLEX version -

in Alvarez-Valdes et al. (2013) version 12.1 was used). Therefore, we must be cautious

when comparing the models performance.

As can be seen in Table 3.2, the HS2 and NFP−CM approaches obtained almost

the same number of optimal solutions within the allowed time limit (25 and 27, respec-

tively). In general, for instances with up to nine pieces the results obtained with both
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Table 3.2: Comparing the results of NFP Covering Model with the literature.

Instances Pieces
HS2 NFP−CM

LB GAP (%) TIME LB GAP (%) TIME
three 3 6.00 0 0.8 6.00 0 0.0
shapes_4 4 24.00 0 0.0 24.00 0 0.1
fu_5 5 17.89 0 0.1 17.89 0 0.0
glass1 5 45.00 0 0.1 45.00 0 0.2
fu_6 6 23.00 0 0.5 23.00 0 0.1
threep2 6 9.33 0 3.9 9.33 0 0.8
threep2w9 6 8.00 0 8.5 8.00 0 4.8
fu_7 7 24.00 0 1.0 24.00 0 0.1
glass2 7 45.00 0 2.8 45.00 0 64.3
fu_8 8 24.00 0 1.3 24.00 0 0.1
shapes_8 8 26.00 0 272.0 26.00 0 479.0
fu_9 9 25.00 0 70.0 25.00 0 5.9
threep3 9 13.53 0 3394.0 11.33 16 TL
threep3w9 9 10.00 9 TL 11.00 0 2144.5
glass3 9 100.00 0 324.0 100.00 0 377.8
fu_10 10 28.68 0 3064.0 28.68 0 278.6
dighe2 10 100.00 0 177.0 100.00 0 37.7
J1-10-20-0 10 18.00 0 45.0 18.00 0 7.7
J1-10-20-1 10 17.00 0 34.0 17.00 0 3.5
J1-10-20-2 10 20.00 0 304.0 20.00 0 5.2
J1-10-20-3 10 20.67 0 TL 20.00 4 TL
J1-10-20-4 10 12.50 0 628.0 12.50 0 149.6
J1-12-20-0 12 12.00 0 509.0 12.00 0 39.9
J1-12-20-1 12 10.00 0 2430.0 10.00 0 39.1
J1-12-20-2 12 12.00 0 2332.0 12.00 0 50.6
J1-12-20-3 12 8.00 0 214.0 8.00 0 160.4
J1-12-20-4 12 12.00 14 TL 13.00 0 1618.7
fu 12 24.00 29 TL 28.50 14 TL
J1-14-20-0 14 11.00 21 TL 12.00 0 844.5
J1-14-20-1 14 8.00 43 TL 9.92 17 TL
J1-14-20-2 14 10.00 36 TL 12.00 14 TL
J1-14-20-3 14 8.00 33 TL 10.00 0 295.4
J1-14-20-4 14 10.00 35 TL 11.90 15 TL
poly1a0 15 13.00 28 TL 13.00 20 TL
dighe1 16 71.00 54 TL 100.00 19 TL
#Optimal 24 27

# Optimal: number of instances for which optimality was proven.

models are very similar, except for threep3 and threep3w9, instances where either HS2

or NFP−CM were better. However, NFP−CM is signi�cantly faster than HS2 for

instances with 10 or more pieces, even considering the di�erence between the CPLEX
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version. According to IBM2, CPLEX 12.6 (used to run NFP−CM) is on average 40%

faster than CPLEX 12.1 (used to run HS2). For these instances, HS2 presented better

results only for the instance J1-10-20-3. Furthermore, even for the instances in which

the time limit was reached, the gaps were smaller for NFP−CM . The optimal solutions

obtained by NFP−CM that were not obtained by HS2 are displayed in Figure 3.11.

threep3w9 J1-12-20-4 J1-14-20-0 J1-14-20-3

Sol. = 11.00 Sol. = 13.00 Sol. = 12.00 Sol. = 10.00

Figure 3.11: Optimal solutions proved by NFP−CM and not proved for HS2 within
the time limit.

3.3.3 Larger instances from literature

To assess the performance of NFP−CM when solving larger instances, we �rst use 10

classical instances from the literature with 16 or more pieces. The results can be seen

on Table 3.3.

From Tables 3.1 and 3.3 we can see that, given a time limit of 3600 seconds, NFP−
CM can �nd an optimal solution for most of the instances with up to 12 pieces (except

instances threep3, J1-10-20-3 and fu). When the number of pieces if greater than 12,

NFP −CM can �nd a feasible solution for all instances with up to 30 pieces. For

instances with more than 30 pieces, NFP−CM cannot �nd a feasible solution. This

indicates that, when the instance is small (at most 12 pieces), NFP−CM has a good

chance of solving it to optimality. On the other hand, if the instance is big (more than

30 pieces), it is probable NFP−CM will not be able to even �nd a feasible solution.

3.3.4 New real world based instances

Since NFP−CM (as well as NFP−CMnc and DTM) can deal with pieces with holes

without any special structure needed to built the model, we propose some instances

based on a metal cutting layout from the industry. These instances are characterized

by large pieces with holes where some small pieces from the instances can be placed.

2http://www-01.ibm.com/software/commerce/optimization/cplex-performance - accessed in De-
cember 12th, 2014.
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Table 3.3: Computational results for instances with more than 16 pieces.

Instances Pieces
NFP−CM

UB LB GAP (%) TIME
blaze2 16 21.44 14.67 31.58 TL
mao 20 2180.97 1473.96 32.42 TL
albano 24 12876.60 8711.34 32.35 TL
marques 24 92.44 69.14 25.21 TL
jakobs1 25 12.00 9.73 18.96 TL
jakobs2 25 30.76 19.26 37.39 TL
blaze1 28 30.51 21.07 30.95 TL
dagli 30 71.04 50.60 28.77 TL
shapes0 48 x 39.68 x TL
trousers 64 x 217.68 x TL
Av. GAP 26.959

x: no feasible solution found,
Av. GAP: average GAP.

The real pieces were approximated by polygonal forms as presented in Figure 3.12.

The instances generated with these pieces were named metal.

1 2 3 4 5

6 7 8 9 10

Figure 3.12: Pieces of the metal instances.

Four instance sets were designed using these pieces, called metal0, metal1, metal2

and metal3. The instance set metal1 is composed of �ve instances, identi�ed as

metal1−i, i = 1, ..., 5. The demand of pieces in metal1-1 was based on the real world

instance and all the piece types presented in Figure 3.12 are in this instance. The

demand of metal1−i, i = 2, ..., 5 is i times the demand of metal1-1.

The instances in sets metal2 and metal3 were derived from metal1 aiming to obtain

layouts with holes where the pieces �t well (metal2) and where they do not �t well

(metal3) in order to analyse these characteristics. Both sets metal2 and metal3 have

four instances each and their names can be identi�ed by the su�x −i, i = 2, ..., 5 on

the set name. We obtain instance metal2-i taking pieces one to �ve from instance

metal1-i, with the corresponding demand. The remaining pieces and corresponding

demands give instance metal3-i. Sets metal2-1 and metal3-1 were omitted because
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they had trivial solutions.

To try to identify the size of instances with pieces that have holes for which the

model can �nd proven optimal solutions, instance set metal0 with a small number of

pieces was proposed. Eleven instances compose metal0 set and can be identi�ed by

the su�x −i, i = 3, ..., 13 on the set name. The demands of the instances metal0-i,

i = 3, ..., 13, were created using the i �rst pieces of Figure 3.12. When the ten di�erent

piece types are used, the pieces whose demand is greater than one on metal1-1 is

increased by one. Clearly, for these instances the strip width is too high and then its

size was reduced by 25%, 50% and 75% depending on the instance.

Table 3.4 shows the demand of the pieces for each instance on these sets.

Table 3.4: Pieces demand of metal instance set.

Strip Piece
Instance width 1 2 3 4 5 6 7 8 9 10
metal0-3 250 1 1 1 0 0 0 0 0 0 0
metal0-4 250 1 1 1 1 0 0 0 0 0 0
metal0-5 250 1 1 1 1 1 0 0 0 0 0
metal0-6 250 1 1 1 1 1 1 0 0 0 0
metal0-7 500 1 1 1 1 1 1 1 0 0 0
metal0-8 500 1 1 1 1 1 1 1 1 0 0
metal0-9 500 1 1 1 1 1 1 1 1 1 0
metal0-10 750 1 1 1 1 1 1 1 1 1 1
metal0-11 750 1 2 1 1 1 1 1 1 1 1
metal0-12 750 1 2 1 2 1 1 1 1 1 1
metal0-13 750 1 2 1 2 2 1 1 1 1 1
metal1-1 1000 1 2 1 2 3 1 1 1 1 1
metal1-2 1000 2 4 2 4 6 2 2 2 2 2
metal1-3 1000 3 6 3 6 9 3 3 3 3 3
metal1-4 1000 4 8 4 8 12 4 4 4 4 4
metal1-5 1000 5 10 5 10 15 5 5 5 5 5
metal2-2 1000 2 4 2 4 6 0 0 0 0 0
metal2-3 1000 3 6 3 6 9 0 0 0 0 0
metal2-4 1000 4 8 4 8 12 0 0 0 0 0
metal2-5 1000 5 10 5 10 15 0 0 0 0 0
metal3-2 1000 0 0 0 0 0 2 2 2 2 2
metal3-3 1000 0 0 0 0 0 3 3 3 3 3
metal3-4 1000 0 0 0 0 0 4 4 4 4 4
metal3-5 1000 0 0 0 0 0 5 5 5 5 5

The pieces' shapes are based on a metal cutting layout from a real world problem.

The piece vertices are presented in Appendix A.

Table 3.5 shows the results obtained by NFP−CM for the metal sets of instances.

Figure 3.13 shows the pictures of the optimal solutions obtained by NFP−CM .
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Table 3.5: Computational results for instances derived from the metal layout.

Instances Pieces
NFP−CM

UB LB GAP (%) TIME
metal0-3 3 501.00 501.00 0.00 0.0
metal0-4 4 501.00 501.00 0.00 0.0
metal0-5 5 501.00 501.00 0.00 0.0
metal0-6 6 785.00 785.00 0.00 0.2
metal0-7 7 501.00 501.00 0.00 3.4
metal0-8 8 529.00 529.00 0.00 9.9
metal0-9 9 529.00 529.00 0.00 11.2
metal0-10 10 356.00 356.00 0.00 3570.9
metal3-2 10 291.13 286.00 1.76 TL
metal0-11 11 364.32 345.00 5.30 TL
metal0-12 12 399.00 295.58 25.92 TL
metal0-13 13 490.00 332.98 32.05 TL
metal1-1 14 300.00 286.00 4.67 TL
metal3-3 15 518.12 321.05 38.04 TL
metal2-2 18 300.00 256.00 14.67 TL
metal3-4 20 668.00 428.06 35.92 TL
metal3-5 25 770.00 535.08 30.51 TL
metal2-3 27 490.00 363.61 25.79 TL
metal1-2 28 644.00 456.44 29.12 TL
metal2-4 36 601.00 484.81 19.33 TL
metal1-3 42 1154.00 684.65 40.67 TL
metal2-5 45 774.00 606.01 21.70 TL
metal1-4 56 x 912.87 x TL
metal1-5 70 x 1141.09 x TL

x: no feasible solution found.

metal0-3 metal0-4 metal0-5 metal0-6

Sol. = 501.00 Sol. = 501.00 Sol. = 501.00 Sol. = 785.00

metal0-7 metal0-8 metal0-9 metal0-10

Sol. = 501.00 Sol. = 529.00 Sol. = 529.00 Sol. = 356.00

Figure 3.13: Optimal solutions of metal0 instances.

56



As we can see in Table 3.5, NFP −CM was able to solve to optimality all metal

instances with up to 10 pieces. For instances with a number of pieces between 10 and

45, NFP −CM was always able to �nd a feasible solution. For instances with more

than 45 pieces, it could not �nd a feasible solution. This is consistent with the results

reported in Sections 3.3.1 and 3.3.3.

3.3.5 Instances with rotations

When considering piece rotations it is not possible to make comparisons with previously

published exact methods because none of them allows piece rotations, i.e. that pieces

may be placed with an orientation among a set of given feasible orientations. However,

in order to provide grounds for future research in the �eld, experiments were run with

the models �NFP−CM with rotations� and �DTM with rotations� using a set of smaller

instances allowing two di�erent orientations for each piece: the original (rotation of

0 degrees) and the orientation corresponding to a rotation of 180 degrees. It should

be noticed that allowing piece rotations signi�cantly increases the number of variables

and the size of the model, and therefore only small instances can be tackled.

As we can see in Table 3.6, as expected, the solutions are always equal or better

than the ones when no rotations are allowed, but the time needed to prove solution

optimality increases quickly and quite soon it is not possible to prove it.

Table 3.6: Computational results with rotations of 0 and 180 degrees.

NFP−CM with rotations DTM with rotations
Instance UB LB GAP (%) TIME UB LB GAP (%) TIME
three 6,00 6,00 0,00 0,04 6,00 6,00 0,00 0,02
threep2 9,22 9,22 0,00 2,77 9,22 9,22 0,00 2,55
threep2w9 7,50 7,50 0,00 6,00 7,50 7,50 0,00 8,41
threep3 14,00 11,45 18,18 TL 13,22 11,00 16,81 TL
threep3w9 10,00 8,50 15,00 TL 10,00 8,00 20,00 TL
fu5 17,89 17,89 0,00 0,07 17,89 17,89 0,00 0,08
fu6 23,00 23,00 0,00 0,10 23,00 23,00 0,00 0,13
fu7 24,00 24,00 0,00 0,16 24,00 24,00 0,00 0,25
fu8 24,00 24,00 0,00 0,20 24,00 24,00 0,00 0,19
fu9 24,71 24,71 0,00 135,71 24,71 24,71 0,00 101,20
fu10 28,00 28,00 0,00 1052,27 28,00 28,00 0,00 698,84
fu 32,70 28,50 12,86 TL 32,18 24,00 25,41 TL
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3.4 Final remarks

This chapter presented two new mathematical programming models for the two-dimen-

sional irregular packing problem. These models aim to overcome the limitations of

previous models in what concerns the geometry of the pieces they are able to deal

with. The �rst model (DTM) states the piece non-overlapping constraints using direct

trigonometry, while the second model (NFP−CM) �rstly decomposes the pieces into

convex parts and then states the non-overlapping constraints using the no�t polygons

between these convex parts, as a covering of the actual non-convex no�t polygons. For

the NFP−CM valid inequalities were developed.

The computational experiments were divided in three phases: �rst the new models

were tested over a set of 35 commonly used benchmark instances; secondly the models

were compared against the best model known in the literature, HS2 by Alvarez-Valdes

et al. (2013), over the same classical set of instances; and �nally the robustness of the

new models was proven by running experiments over a set of new real-world based set

of instances, incorporating geometric characteristics not dealt yet by previous models.

From the �rst phase of experiments resulted the supremacy of the model NFP−CM
that, within the time limit of one hour, was able to solve until optimality 77% of

the instances and, for the instances in which optimal solutions were achieved by more

than one model or variant, it was the fastest model for 57% of the instances. For the 8

instances in which optimality was not proven, NFP−CM was able to generate a feasible

solution and, in 5 of those instances, with a gap smaller than the other models. In the

second phase, when comparing the new NFP−CM model against HS2, NFP−CM solves

more problems until optimality (27 against 25), clearly faster for instances with 10 or

more pieces (around 13 times faster, already taking into account the di�erent versions

of CPLEX used) and, when optimality is not guaranteed, with smaller gaps. In the

third phase of experiments it was possible to successfully solve new instances where

the pieces have holes (the only geometric characteristic not addressed in the previous

experiments), solving until optimality instances until 10 pieces and generating feasible

solutions for instances with up to 45 pieces. The gaps are high, but it is well-known

that irregular strip packing problems have very poor lower bounds.

The new models presented can e�ectively address irregular strip packing problems

with any kind of geometry that can be described by a polygon, without any approxima-

tion or simpli�cation, being therefore robust in what concerns piece geometry. Equally

important is the fact that they resort to much simpler geometric tools than previous

models, easier to implement and without numerical stability problems. The downside

of mathematical programming model based approaches is still the size of the instances

that are possible to solve until optimality and, given the poor quality of the available
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lower bounds, feasible solutions are not better than feasible solutions generated by so-

phisticated (meta)heuristics in the same amount of time. Lower bounds for irregular

strip packing problems is clearly a very di�cult but relevant topic of future research.

In many real-world applications pieces may have a pre-de�ned set of orientations.

This possibility was considered as an extension of the proposed models and required the

replication of each piece as many times as the number of admissible orientations and

an additional binary variable for each of these replicas. The size of the instances that

were possible to solve when considering the possibility was fairly small and e�ciently

tackling rotations in exact approaches is a challenge for future research.
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Chapter 4

A dots data structure to handle the

geometry of nesting problems1

The core constraints for the irregular cutting and packing problems arise from the

geometry of the board and the pieces. As presented in Chapter 2, in the literature,

the geometry is handled by di�erent strategies. Trying to merge the simplicity of the

raster points representation with the accuracy of the no�t polygon, some authors used

a �nite set of dots to place the pieces on the board while the overlap analysis among

pieces is performed using the no�t polygon. Although it is a promising approach,

there is no data structure in the literature to represent this type of geometry. In this

chapter, we propose a new data structure that caries the information of the feasible

placement positions for the pieces on the board and detects the overlap among pieces.

This structure, simpli�es the development of models and methods that use discrete

placement positions for the pieces.

This chapter is strongly based on the paper �An innovative data structure to handle

the geometry of nesting problems� and is organized as follows. The next section presents

the problem de�nition. Section 4.2 details the dot data structure. A reformulation of

the dotted-board model using the proposed data structure is presented in Section 4.3.

Section 4.4 depicts examples of mesh generation rules. The complexity of the data

structure is presented in Section 4.5. In Section 4.6, the in�uence of the mesh on the

solution quality is evaluated for the dotted-board model. Some �nal conclusions are

presented in Section 4.7.

1The text of this chapter is strongly based on the paper �An innovative data structure to handle
the geometry of nesting problems� which is under review.
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4.1 Problem de�nition

The nesting problem consists in cutting a number of pieces from an either regular or

irregular board. These pieces are represented by any shape, convex or concave, and

may be of di�erent types T . Each piece of type t ∈ T can be rotated at a �nite number

of pre�xed angles Rt.

Solving a nesting problem is �nding where each piece should be placed on the board,

so that the pieces do not overlap and are completely contained in the board. Feasible

placement points are represented by their (x,y) coordinates. The objective and some

constraints may vary depending on the speci�c application.

This paper focuses on the irregular strip packing problem, which consists in cutting

a number of pieces from a rectangular board of �xed height (W ) and in�nite length.

The objective is to minimize the board length (L) expended in the cutting while meeting

the requirements of each piece type t ∈ T .
The data structure proposed in this paper utilizes a discrete geometric representa-

tion, where the (x,y) coordinates of the placement points may assume a �nite number

of values (dots). This structure is generated using the no�t polygon to evaluate if two

pieces overlap, and the inner �t polygon to ensure that they lay entirely inside the

board. Each piece is represented by a set of vertices and one of these vertices is chosen

to be the reference point. It is not indi�erent which vertex is chosen as reference point

since, when pieces can only be placed at a �nite number of dots, di�erent reference

points may lead to di�erent solutions to the problem.

In this chapter, each piece t at rotation r is represented by a set of dots ordered on

the clockwise direction and to ensure that this piece is entirely inside the board, the

inner�t polygon (IFPtr) is used (Figure 2.3). To evaluates the overlap among pieces,

the no�t polygon of each piece of type t at rotation r and piece of type u at rotation

s (NFPtr,us) is used (see Figure 2.5). Further details about the pieces representation

and geometric structures can be found in Section 2.1.

4.2 The proposed Dot Data Structure

When solving nesting problems, choosing and developing geometric tools to enforce that

pieces do not overlap and are contained inside the board is an important task, since

the e�ciency and robustness of the solution methods generally depend on those tools.

In this section, we present a data structure that stores all the geometric information

necessary to the development of solution methods based on discretized feasible regions.

The proposed data structure based on the IFPs and NFPs allows an easy and

e�cient retrieval of the unviable dots for each piece type, once another piece of a given
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type is positioned at a viable dot. To achieve this goal, the structure comprises two

levels. In the �rst level, a (dot, piece type) list of admissible piece types at each dot

is computed in accordance with the IFP originated, and stored for later use. In the

second level, for any given combination of every item in the aforementioned list with

each piece type, a list of infeasible dots is computed in conformity with the resulting

NFP, and again stored. As pieces are subject to rotation, by �piece type� a piece type

at a given rotation angle is to be understood.

Dot

�oat x;
�oat y;
list<PieceType> pieceTypes;

a PieceType

int type;
list<Rotations> irot;

b

Rotations

int angle;
list<Intersect> Ilist;

cIntersect

int type;
list<AvoidRot>

avoidList;

dAvoidRot

int angle;
list<int> avoidList;

e

Figure 4.1: Data types used in the data structure.

Any dot (Figure 4.1a) can only be added to the dot list if it lies inside the board

and if at least one piece type can be placed at that dot. A piece type t at rotation r

can only be added to the piece type list of a dot if the latter lies inside the IFPtr, which

ensures that a piece of this type is entirely inside the board (Figures 4.1b and 4.1c).

The piece types at each dot of the structure are therefore always inside the board, i.e.

the IFP s are embedded in the data structure. The set of possible placement positions

for each piece type t ∈ T at rotation r ∈ Rt, Dt[r], can be obtained from this list.

If a piece of type t at rotation r is placed at dot d, its intersection list is a vector in

which each position represents a piece type u. This vector contains the list of all the

possible rotations s ∈ Ru of piece u (Figure 4.1d). Each one of these elements points to

the list of forbidden dots for piece type u at rotation s (Figure 4.1e). The intersection

list carries all the overlap information for each piece type placed at a dot (Φd
t[r],u[s]),

wherefore this list can be used as an alternative to the NFPtr,us. Figure 4.2 shows an

example of this structure.

The structure is built in two phases. In the �rst phase, the dot list and the respec-

tive piece type list are generated as illustrated in Figure 4.2a, together with a list of

admissible rotations at this dot (Figure 4.2b).

In the second phase, the intersection list for each piece type and rotation must be

de�ned. For each piece of type t at rotation r in the piece list, an intersection list with
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Φ2
p1[r11 ],p2[r12 ]

dot list

piece type and
rotations list

intersection list

x1, y1
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1
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l
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Figure 4.2: The dot data structure. (a) the dot list and (b) the piece list of dot 2
together with the admissible rotations for piece type 1. The intersection list presented
in (c) contains Φ2

t21[r11 ],u12[s21]
, the set of dots where a piece of type u1

2 at rotation s
2
1 overlaps

piece of type t21 at rotation r
1
1, when the later is placed at dot 2.

each piece type u ∈ T at rotation s ∈ Ru is built. This list contains the dots inside the

NFPtr,us, i.e., those that lead to an overlap between pieces of these two types: Φd
t[r],u[s]

(Figure 4.2c). This process is repeated for each dot in the dot list.

It should be noticed that a rule to generate the dots needs not be speci�ed, i.e. the

dots may even be randomly distributed on the board. This characteristic is very useful

in the methodology for the development of a solution, since the positioning of the dots

on the board can be based on geometric information speci�c to each instance.

p1[r11 ]
p1[r21 ]

p1[r31 ] p1[r41 ]

p2[r12 ]

Figure 4.3: An application of the dot data structure � piece types and their admissible
rotations.

By way of example, �gures 4.3 � 4.5 illustrate the application of the dot data

structure to an instance consisting of an irregular board and two piece types, a triangle

and a square. The triangle has four possible rotations, 0◦, 90◦, 180◦, 270◦, and the

square has only one rotation 0◦ (Figure 4.3). Figure 4.4 shows an irregular board

with a hole (shaded area). The dotted lines represent the no�t polygon between the
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Figure 4.4: An application of the dot data structure � board and feasible dots.
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Figure 4.5: An application of the dot data structure � intersection list with a piece of
type 2 when a piece of type 1 is placed at dot 5.

triangle, already placed on the board, and the square that we want to add to the same

board. The marks on the irregular board represent the dots where at least one of the

piece types may be placed at one allowable rotation, wherefore these are the only dots

inserted into the data structure. For example, at dot 1 only the triangle at rotation

0◦ may be positioned whereas at dot 11 the triangle can be positioned at rotations 0◦,

90◦, 180◦, as well as the square. As to dot 5, the square cannot be positioned there,

but the triangle may, at rotations, 0◦ and 270◦. If we opt for the triangle at rotation

0◦, dots 4 and 7, which lie inside the no�t polygon between the two pieces, will be on

the intersection list Φ5
t51[r11 ],u12[s21]

(Φ5
triangle[0◦],square[0◦]) (Figure 4.5).

It is important to highlight that this structure can be used in the resolution of

all variations of nesting problems since it contains information about the admissible

positioning points of the pieces on the board, and also on the overlap between the

pieces, characteristics always present in all variations of nesting problems.
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4.3 The dotted-board model

In this section the dotted-board model proposed in Toledo et al. (2013) is adapted to

the new dot data structure. As detailed in section 4.4, the versatility of this new data

structure permits the design of two meshes in alternative to the original regular mesh

for this model. The proposed dot data structure can additionally be applied and used

in any approach that considers a discrete set of feasible placement positions.

In the dotted-board model, piece reference points can only be placed at discrete

points of a regular mesh � the board dots. A regular mesh is de�ned by populating the

board with dots at vertical and horizontal spacing ∆y and ∆x, respectively. Unlike the

new meshes proposed in this paper, in a regular mesh this spacing remains invariable,

irrespectively of piece type and rotation.

Any dot on the board is considered a feasible placement point so long as pieces are

entirely contained inside the board and do not overlap. The containment in the board

is warranted by the inner �t polygon constraints and the non-overlap is ensured by the

no�t polygon constraints. Both sets of constraints have been adopted in the model

of Toledo et al. (2013). However, since the dot data structure de�ned in Section 4.2

contains in itself the inner �t polygon constrains, and non-contained placements are not

even included in the dot list, the inner �t polygon constraints needn't be considered.

Moreover, since piece rotation was not permitted in the original dotted-board model,

this model needs now to be extended to allow for di�erent piece orientations, namely

the decision variables of the dotted-board model must include this information. Hence,

variable δdtr is adopted, assuming value 1 if the reference point of a piece of type t ∈ T
at rotation r ∈ Rt is placed at dot d ∈ Dt[r], and 0 if otherwise.

The improved dotted-board model allowing for piece rotation is presented in (4.1)

- (4.6).

minimize L (4.1)

subject to: (dx + lrighttr )δdtr ≤ L ∀t ∈ T, r ∈ Rt, d ∈ Dt[r] (4.2)

δdtr + δd
′

us ≤ 1 ∀t ∈ T, u ∈ T, r ∈ Rt, s ∈ Ru,

d ∈ Dt[r], d
′ ∈ Φd

t[r],u[s] (4.3)∑
r∈Rt

∑
d∈Dt[r]

δdtr = qt ∀t ∈ T (4.4)

δdtr ∈ {0, 1} ∀t ∈ T, r ∈ Rt, d ∈ Dt[r] (4.5)

L ∈ R+ (4.6)

The objective function (4.1) aims to minimize the used up board length. Consider
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that the reference point of a piece of type t at rotation r is placed at dot d with

coordinates (dx, dy). Consider also that this piece type has the dimensions presented

in Figure 2.3a. To ensure that auxiliary variable L is equal or greater than the used

board length, constraint (4.2) must hold. Constraint (4.3) guarantees, by making use

of the no�t polygon, that the pieces do not overlap. Considering that a piece of type

t at rotation r is placed at dot d, all dots d′ leading to an intersection between this

piece and a piece of type u at rotation s belong to the set Φd
t[r],u[s], i.e., d

′ ∈ Φd
t[r],u[s].

Constraint (4.4) ensures that, for each piece type t, the requested number of pieces (qt)

is placed. Constraints (4.5) and (4.6) de�ne the domains of the variables.

The scope of the new model is broader than that of the model proposed in Toledo

et al. (2013) for it allows for piece rotation. Moreover, due to the new dot data

structure, the model is mesh-type independent.

4.4 Mesh generation rules

In this section, some examples of mesh generation rules are presented, as enabled by

the new data structure. The �rst one is a piece-based mesh, in which the distances

between the dots are based on the distances between the piece type vertices, while the

second one is an NFP -based mesh, based namely on a cloud of points belonging to the

NFP of a given pair of piece types. The description of these meshes and the procedures

to build them follows.

4.4.1 Piece-based mesh

Using the same mesh of dots for all piece types may not o�er the best solution to some

instances. One given mesh may be too re�ned for one piece and too coarse for another.

Two problems arise from this fact:

a. unnecessary dots may be generated, which implies an increased complexity and

computational burden;

b. some pieces may have excessively few positioning dots available, which prompts

a bad �t between pieces, and a consequent increase in waste.

To overcome this problem, an approach in which each piece type has its own mesh

is proposed. It should be noticed that there is no inter-dependence between meshes of

two di�erent piece types.

For each piece of type t ∈ T at rotation r ∈ Rt, a speci�c mesh Dt[r] is de�ned based

on the constants ∆xtr and ∆ytr. The value of ∆xtr is the minimum horizontal distance

between two vertices of piece type t at rotation r. The constant ∆ytr is obtained
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through the same procedure, but using the vertical distances between the piece type

vertices. A minimum mesh resolution (bxtr and bytr) is imposed to avoid excessively

re�ned meshes.

The mesh for each piece type t at rotation r is generated using constants ∆xtr and

∆ytr (refer to Figure 4.6(a), where ∆xtr = 2.0 and ∆ytr = 3.0).

The horizontal direction lines are generated at intervals of ∆ytr units (Figure

4.6(b)). In this case, two starting points are used, the highest and the lowest points on

the board. This construction leads to a non-regular mesh but ensures that the pieces

can always touch the boundaries of the board (Figure 4.6(c)). The vertical direction

lines are generated in intervals of ∆xtr units. The dots at the crossings between the

horizontal and vertical lines compose the Dt[r] set (Figure 4.6(d)). In Figure 4.7 a

piece-based mesh for two piece types is represented, and it is important to highlight

that this type of dot distribution along the board would be very di�cult to implement

without the new dot data structure.

(0, 0)
(4, 0)

(4, 3)

(2, 6)(0, 6)

∆x = 2.0
∆y = 3.0

. . .

. . .

(0, 0)

(0, 3)

(0, 10)

. . .

. . .

(0, 0)
(0, 1)

(0, 4)

. . .

. . .

(2, 0)(4, 0)
(a) (b) (c) (d)

Figure 4.6: Example of a piece-based mesh for one piece type.

Algorithms 2 and 3 present the procedures to generate the dot list using the piece-

based mesh. The procedure to build the intersection list is presented in Algorithm 4.

4.4.2 NFP -based mesh

Another approach to bring the geometric characteristics of the instances into the mesh

is to generate a mesh based on the no�t polygon obtained from each pair of piece

types, thus promoting the �t between the pieces as, by de�nition, the interior of the

no�t polygon represents the set of points where the pieces overlap.

To understand this mesh generation methodology, consider piece types t and u

at rotations r and s, respectively, and the corresponding NFPtr,us, as illustrated in

Figure 4.8(a). Consider a piece of type t at rotation r (ptr), placed at the lower left
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Figure 4.7: An example of a piece-based mesh for two piece types. The squares and
circles represent feasible placement dots for the smaller and larger piece types, respec-
tively.

Algorithm 2: Generation of a piece-based mesh

Input: T , Rt, L and W .
Output: D[ ] set of dots.

1 D[ ]← ∅;
2 for t ∈ T do
3 for r ∈ Rt do
4 calculate ∆xtr and ∆ytr;

5 x = lrighttr ;

6 while x ≤ W − lrighttr do
7 y = wtoptr ;
8 while y ≤ W − wbottomtr do
9 d = (x, y);
10 D[ ] = UPDATE_DOT_LIST(D[ ], d, t, r);
11 y = y + ∆ytr;

12 end
13 y = W − wbottomtr ;

14 while y ≥ wtoptr do
15 d = (x, y);
16 D[ ] = UPDATE_DOT_LIST(D[ ], d, t, r);
17 y = y −∆ytr;

18 end
19 x = x+ ∆xtr;

20 end

21 end

22 end
23 return D[ ];
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Algorithm 3: update_dot_list.

Input: D[ ], d, t and r.
Output: D[ ].

1 if d 6∈ D[ ] then
2 D[ ] = D[ ]

⋃
d;

3 D[d]← ∅;
4 end
5 if t 6∈ D[d] then
6 D[d] = D[d]

⋃
t;

7 D[d][t]← ∅;
8 end
9 D[d][t] = D[d][t]

⋃
r;

10 D[d][t][r]← ∅;
11 return D[ ];

Algorithm 4: Intersection list generation

Input: d, D[ ] and T .
Output: Φd

t[r],u[s].

1 Φd
t[r],u[s] ← ∅;

2 for d′ ∈ D[ ] do
3 for t, u ∈ T do
4 for r ∈ Rt and s ∈ Ru do
5 if d′ ∈ NFPtr,us then
6 Φd

t[r],u[s] = Φd
t[r],u[s]

⋃
d′;

7 end

8 end

9 end

10 end
11 return Φd

t[r],u[s];

feasible corner of the board. The vertices of the NFPtr,us that are inside the board are

inserted into the dot list as feasible placement positions for piece type u at rotation s.

The dot where ptr is placed is added to the dot list of this piece type at the assigned

rotation (Figure 4.8(b)). Piece ptr is then translated vertically by wtoptr + wbottomtr and

the same procedure is applied until ptr reaches the uppermost admissible position on

the board (Figure 4.8(c)). Piece ptr is then translated horizontally by llefttr + lrighttr and

the whole process is repeated as long as ptr can be moved horizontally or vertically

(Figure 4.8(d)). The NFP -based mesh is build by repeating this process for all pairs

of piece types t, u ∈ T at rotations r ∈ Rt and s ∈ Rs, respectively.

Variations in this mesh generation methodology can be obtained by inserting some

dots in the dot list, which are not vertices of the no�t polygons (e.g. the middle points

on the edges of the no�t polygons), thus improving the accuracy of the approximation.
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Figure 4.8: An example of an NFP -based mesh for the piece types presented in Figure
4.7.

As the NFP -based mesh is generated based on the no�t polygon of each pair of pieces,

placements in positions where pieces touch each other are favored. However, as the

translation of the pieces is discrete, gaps between pieces may still occur.

The procedure to generate the dot list using the NFP -based mesh is presented in

Algorithm 5. Algorithm 4 can be used to generate the intersection list of each dot.

Algorithm 5: NFP -based mesh generation

Input: T , Rt, NFPtr,us, IFPtr, L and W .
Output: D[ ].

1 D[ ]← ∅;
2 for t ∈ T and u ∈ T do
3 for r ∈ Rt and s ∈ Ru do

4 ∆xtr = llefttr + lrighttr ;

5 ∆ytr = wtoptr + wbottomtr ;

6 x = lrighttr ;

7 while x ≤ L− lrighttr do
8 y = wtoptr ;
9 while y ≤ W − wbottomtr do
10 d = (x, y);
11 D[ ] = UPDATE_DOT_LIST(D[ ], d, t, r);
12 for d′ ∈ NFPtr,us do
13 if d′ ∈ IFPus then
14 D[ ] = UPDATE_DOT_LIST(D[ ], d′, u, s);
15 end

16 end
17 y = y + ∆ytr;

18 end
19 x = x+ ∆xtr;

20 end

21 end

22 end
23 return D[ ];
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4.5 Complexity analyses of the structure in time and

space

In this section, the time and space complexity of the proposed structure is discussed.

The time required to generate the data structure can be divided into two distinct

phases: (i) the time consumed to create the dot list with the associated pieces list,

and (ii) the time needed to analyze the overlapping of the pieces at multiple rotations.

While the �rst phase depends on the rule to generate the dots, the second phase does

not depend on this rule.

To establish the piece-based mesh, constants ∆xtr and ∆ytr need to be determined

for each piece, t ∈ T , r ∈ Rt. The number of dots generated on the board is approxi-

mately W×L
∆xtr×∆ytr

, and therefore the maximum number of dots considered on the board

for any given piece is 2W×L
∆

, where ∆ = mint∈T,r∈Rt{∆xtr×∆ytr}. Let Vtr be the set of
vertices of piece t at rotation r and V = maxt∈T,r∈Rt{Vtr}. The analysis of all di�erent
pairs of vertices is required to �nd ∆xtr and ∆ytr, i.e.

∑|Vtr|
i=1 |Vtr − i| = |Vtr−1|×|Vtr|

2
.

In the worst case, this value is V
2

2
, wherefore the number of operations performed in

phase (i) is, in the worst possible case, as presented in Formula (4.7),

O

(
|T | ×R× 2W × L

∆
+ |T | ×R× V

2

2

)
(4.7)

where |.| is the number of elements of the set, and R = max t ∈ T{|Rt|}. Notice

that the width of the board W must be multiplied by two since the piece-based mesh

generation procedure has two starting points in the y-axis.

On the other hand, the no�t polygon vertices are used to build the NFP -based

mesh. Speci�cally, for each pair pieces t at rotation r and u at rotation s, the vertices

of NFPtr,us (VNFPtr,us) need to be placed on the board as mesh dots. This procedure

is systematically repeated in ∆xtr = llefttr + lrighttr and ∆ytr = wtoptr + wbottomtr steps.

The maximum number of vertices of NFPtr,us is VNFP = maxt,u∈T,r∈Rt,s∈Ru{V NFPtr,us}
and, as in the piece-based mesh, the maximum number of steps is obtained when ∆ is

mint∈T,r∈Rt{∆xtr ×∆ytr}. Formula (4.8) shows the worst case complexity to generate

the phase (i) dots.

O

(
|T |2 ×R2 × W × L

∆
× V NFP

)
(4.8)

If a regular mesh is built, all the dots of a regular mesh with ∆xtr = ∆ytr = ∆ need

to be added to the board for each piece type. For this mesh, the worst case complexity
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of the phase (i) is presented by Formula (4.9).

O

(
T ×R× W × L

∆2

)
(4.9)

Once the dot list is created, and the set of dots D is thus obtained, the positioning

overlap needs to be examined for all pairs of pieces placed at di�erent dots. In other

words, for each piece t ∈ T at rotation r ∈ Rt and piece u ∈ T at rotation s ∈ Ru

the overlapping needs to be analyzed for each possible combination of dots where these

pieces may be placed. The number of operations required to verify if overlapping occurs

is proportional to |VNFPtr,us|. In the worst case, the structure generation complexity is

given by Formula (4.10).

O
(
|D|2 × |T |2 ×R2 × V NFP

)
(4.10)

Hence, regarding the worst case, the time complexity to build the structure is given

by the sum of Formula (4.10) with either Formula (4.7), Formula (4.8) or Formula (4.9),

depending on the mesh considered. Since these formulas are based on a worst case

estimation, the actual running time may exhibit better results.

The space complexity issue � that measures the amount of memory used to represent

the data structure � is no less important. The structure consists of a list of |D| dots.
As depicted in Figures 4.1b and 4.1c, a piece-rotation list is associated with each dot in

this dot list, which includes all pieces that can be placed at the said dot at any given ro-

tation. Finally, one intersection list is associated with each item on the aforementioned

piece-rotation list, which includes all those dots where the placement of any given sec-

ond piece at any given rotation leads to overlapping of the pieces. The size of this list

is exactly |Φd
t[r],u[s]| and this list has at the most Φ = maxd∈D,t,u∈T,r∈Rt,s∈Ru{|Φd

t[r],u[s]|}
elements. Formula (4.11) represents thus the amount of memory used by the proposed

structure.

O
(
|D| × |T |2 ×R2 × Φ

)
(4.11)

4.6 Computational experiments

This section presents the computational results obtained with the dotted-board model

using the di�erent meshes proposed in Section 4.4, and compares the results with those

obtained with the regular mesh used in Toledo et al. (2013). The adopted instances aim
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at demonstrating the advantages of the proposed meshes in the resolution of problems

with speci�c characteristics.

4.6.1 Framework and instances

The computational experiments were run on an Intel Xeon E5-2450 @ 2.10GHz pro-

cessor with 32 GB of memory. The algorithms were coded in C/C++ language and

the models were solved using IBM ILOG CPLEX 12.6.1 optimization library.

For each mesh type proposed in Section 4.4, a di�erent instance is used to evaluate

the quality of the proposed mesh in the solving of problems with speci�c character-

istics. The piece-based mesh should be�t the geometry of problems with pieces of

di�erent sizes. These characteristics are common in several applications, such as fur-

niture manufacturing and sheet-metal cutting industries. To represent these problems

the MF (Metalworking/Furniture) instance set is proposed. The instances in this set

are composed of �ve piece types as presented in Figure 4.9.

1 2 3 4 5

Figure 4.9: The MF instance set of pieces.

Each instance of the MF set is created by using these piece types with four allowed

rotations. Instance MF1 is composed of one unit of piece types 1, 2 and 3, three units

of piece type 4 and twenty-six units of piece type 5. MFi instances are obtained by

multiplying the piece requirements by i. For all these instances, the board width is 30.

Since an assessment of the board length is necessary, we adopt the initial value of 32

for MF1, which is multiplied by i for the MFi instances.

On the other hand, the NFP -based mesh should handle properly problems where

the pairs of pieces �t well. Several problems in di�erent applications can have these

characteristics. To represent these problems the CS (Clothes/Shoes) instance set is

adopted. Three piece types, represented in Figure 4.10, compose the instances of this

set, and each piece type is allowed four rotations.

1 2 3

Figure 4.10: The CS instance set of pieces.

The board for instance CS1 has a height of 11 units and an initial length of 13

74



units to accommodate two copies of each piece type presented in Figure 4.10. The

other instances CSi that compose the set have the same board height and an initial

board length of 13× i units. For each instance CSi the number of pieces of each type

represented in Figure 4.10 is 2× i.
Instances from the literature are also used in the computational experiments, and a

25% increase on the length of the known best solution is used as an initial estimate of

the required board length. For some meshes, this board size can be clearly insu�cient

to �nd a feasible solution, but as the purpose of the problem is the minimization

of the board length, any solution larger than this upper boundary is not minimally

competitive.

These instances and their characteristics are shown in Table 4.1. The �rst column

presents the instance name, and the second and third display the total number of pieces

and piece types, respectively. The rotation step of the pieces is given in the fourth

column. Although each orientation of a speci�c piece type is considered a di�erent

piece type, a set of rotations of a polygon can lead to the same polygon and these

symmetrical rotations can be eliminated from the model. The �fth column shows thus

the number of pieces and their non symmetric rotations. The board dimensions are

introduced in the sixth and seventh columns, respectively. Finally, we �nd a reference

to the instance source in the last column. It should be noted that these instances were

chosen because the model built with a regular mesh (with ∆ = 1) does not exceed the

available memory when loaded.

Table 4.1: Test instances from the literature and their characteristics.

Pieces Piece Rotation Rotated Board UB
Instance demand types step types height length Origin
poly1a0 15 15 0 15 40 20 Hopper (2000)
shapes0 43 4 0 4 40 73 Oliveira and Ferreira (1993)
shapes1 43 4 180 6 40 70 Oliveira and Ferreira (1993)
shirts 99 8 180 14 40 78 Dowsland et al. (1998)
blaz1 28 7 180 10 15 34 Oliveira et al. (2000)
blaz2 16 4 180 5 15 26 Oliveira et al. (2000)

jakobs1 25 22 90 62 35 15 Jakobs (1996)
jakobs2 25 21 90 63 70 29 Jakobs (1996)

fu 12 11 90 34 38 39 Fujita et al. (1993)

4.6.2 Piece-based mesh computational results

The piece-based mesh presented in Section 4.4.1 is de�ned in accordance with the dis-

tances between the vertices of each piece type and is specially appropriate for instances

with piece types of distinct shapes and sizes. Consequently, the piece-based mesh can

contain dots where only a few pieces can be placed, which results in a model with less

variables than a model build using the same number of dots in a regular mesh.
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In this section, we present the computational results obtained using the piece-based

mesh to solve the MF instance set. The meshes were generated adopting di�erent

minimum mesh re�nements in the x and y axes for each piece type and rotation,

namely bxtr and bytr de�ned as 1
8
× (llefttr + lrighttr ) and 1

8
× (wtoptr +wbottomtr ) respectively.

The computational results for the dotted-board model using the piece-based mesh

are presented in Table 4.2. In this table, the �rst column shows the instance's designa-

tion. The second, third, fourth, �fth and six columns display the number of variables

and constraints of the resulting model (variables, constraints), the best solution found

so far (UB), the optimality gap as a percentage (GAP = UB−LB
UB

, where LB is the

solution's lower boundary provided by CPLEX at the end of execution), and the com-

putational time (in seconds) achieved with the piece-based mesh. The sixth to the

ninth columns exhibit the same contents obtained with a regular mesh of granularity

∆ = 2.

Table 4.2: Computational experiments using the piece-based mesh generation rule.

Piece-based mesh Regular mesh (∆ = 2)
Number of Time Number of Time

Inst. var. constr. UB GAP (sec) var. constr. UB GAP (sec)
MF1 1218 55897 28.0 0.00% 2.3 1213 289628 30.0 0.00% 32.7
MF2 2554 136035 56.0 0.00% 19.2 2989 1044705 58.0 3.91% 3600.0
MF3 3902 219455 84.0 0.00% 32.9 4765 1802881 86.0 2.79% 3600.0
MF4 5238 299400 112.0 0.00% 149.3 6541 2561057 118.0 5.53% 3600.0
MF5 6594 386691 140.0 0.00% 289.4 8317 3319233 146.0 4.57% 3600.0
MF6 7930 466969 168.0 0.00% 790.0 10093 4077409 - - -
MF8 10614 630527 224.0 0.00% 893.0 13645 5593761 - - -
MF10 13306 797763 280.0 0.47% 3600.3 17197 7110113 - - -
MF15 20018 1208835 480.0 12.92% 3600.5 26077 10900993 - - -

-: No feasible solution was found within the 3600 seconds time limit.

Using the piece-based mesh, optimality was proven for all instances except MF10

and MF15, whereas with the regular mesh with ∆ = 2, optimality could only be proven

for the MF1 instance. Moreover, in the case of the regular mesh, only for the smallest

instances, MF1 to MF5, was there a solution to be found. Conversely, with the piece-

based mesh, it was possible to �nd feasible solutions for instances with as many as up

to three times more pieces than with the regular mesh.

Using a regular mesh of granularity ∆ = 1, the only instance for which a solution

was found was MF1, a solution with 32 units of length and with a GAP of 12.91%. For

the other instances the model built using this mesh generation rule could not produce a

feasible solution within the 3600 seconds time limit. It should be noticed that the piece-

based mesh and regular mesh generation rules create models with di�erent solution
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spaces, wherefore distinct solutions - even optimal solutions - may be reached. This

occurs with for instance MF1, where the optimal solution obtained with the piece-based

mesh model di�ers from the one obtained with the regular mesh.

For the instances used, the model built using the piece-based mesh found solutions

for all instances, and for problems with almost the same number of variables, optimal-

ity was proven quicker. For example, for instance MF5, the mesh by pieces generates

a model with 6594 variables, equivalent to the 6541 variables model obtained for in-

stance MF4 with the regular mesh. Nevertheless, the piece-based mesh model proved

the solution optimality whereas the regular mesh based model did not. This behavior

was expected, since, when using the piece-based mesh, larger pieces have smaller sets

of feasible dots, which reduces the number of constraints needed to avoid pieces over-

lap. The number of constraints of the model built on the piece-based mesh is, for all

instances, one order of magnitude smaller than the equivalent model built on a regular

mesh. This fact highlights the importance of an intelligent choice of a mesh that can

directly improve the convergence of the models, and meets the need for a data structure

that enables a simple representation of these special meshes.

The optimal solutions for the MF1 and MF2 instances obtained using the piece-

based mesh are represented in Figures 4.11(a) and 4.11(b), respectively. Figures 4.12(a)

and 4.12(b) show the optimal solutions obtained for the MF1 and MF2 instances with

the regular mesh (∆ = 2). Comparing the solutions obtained with the two meshes,

it can be veri�ed that better solutions have been achieved with the piece-based mesh,

which better exploits the large piece's hole and the t-shape's concavities to place the

small squares, whereas, given the concrete dimensions de�ned for the pieces, such

placements are not possible with the regular mesh. Figure 4.13 represents the optimal

solution for the MF8 instance obtained with the piece-based mesh.

(a) MF1. (b) MF2.

Figure 4.11: Optimal solutions for the MF1 and MF2 instances, obtained with the
piece-based mesh.
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(a) MF1. (b) MF2.

Figure 4.12: Optimal solutions for the MF1 and MF2 instances, obtained with the
regular mesh.

78



F
ig
u
re

4.
13
:
S
ol
u
ti
on

fo
r
th
e
M
F
8
in
st
an
ce

ob
ta
in
ed

w
it
h
th
e
p
ie
ce
-b
as
ed

m
es
h
.

79



4.6.3 NFP -based mesh computational results

In this section, the results of the computational experiments obtained for the CS in-

stances using the NFP -based mesh (Section 4.4.2) are presented. The NFP -based mesh

is created in an attempt to remove the regularity present in regular and piece-based

meshes. The mesh is generated using all vertices and midpoints of the edges of the

no�t polygons. The results obtained with the model built with the NFP -based mesh

are compared with the results obtained with the most appropriate regular mesh, with

∆ = 0.5.

Table 4.3 presents the results obtained with the models based on the NFP -based

mesh, and on a regular mesh of granularity ∆ = 0.5. The columns have the same type

of content as described in Table 4.2.

Table 4.3: Results of the computational experiments, obtained using NFP -based mesh
and regular mesh generation rules.

NFP -based mesh Regular mesh (∆ = 0.5)

Number of Time Number of Time

Inst. var. constr. UB GAP (sec) var. constr. UB GAP (sec)

CS1 457 30345 12.0 0.00% 2.4 2052 1095995 12.0 0.00% 1281.3

CS2 1562 156407 22.0 0.00% 105.8 5588 3962371 26.0 34.27% 3600.0

CS3 2521 265574 32.0 0.00% 1072.1 9124 6829131 39.0 34.26% 3600.0

CS4 3620 394039 43.5 21.29% 3600.0 12660 9695891 52.0 34.27% 3600.0

CS5 4683 514724 52.5 18.57% 3600.0 16196 12562651 65.0 34.26% 3600.0

CS6 5634 621599 63.0 18.57% 3600.0 - 15429411 - - -

CS7 6714 748089 81.5 26.56% 3600.0 - 18296171 - - -

-: No feasible solution was found within the 3600 seconds time limit.

Both mesh generation rules, the piece-based mesh one and the NFP -based mesh

rule, use information about the pieces to build the mesh. However, the NFP -based

mesh uses information that relates to the interaction between pairs of pieces rather

than to individual pieces, as happens with the piece-based mesh, and holds thus more

information regarding the instances. When using this NFP -based mesh, the number of

variables of the model depends strongly on the pieces, as well as on the NFP shapes.

For larger problems, more optimal and more feasible solutions are found with the

model built using the NFP -based mesh than with the one based on the regular mesh.

For all instances except the �rst one, the NFP -based mesh produced also strictly better

solutions when compared with those obtained with the regular mesh with ∆ = 0.5.

What is more, when optimality is not proven, the optimality gap is smaller for the

NFP -based mesh. In addition, the number of variables of the model built using the

NFP -based mesh is approximately 1
4
of that of the model built with the regular mesh.

Above all, the number of constraints of the NFP -based mesh model is in average 26.5

times smaller then that of the regular mesh based one. This remarkable di�erence was
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expected, since, when the vertices of the NFP of a pair of pieces are used to generate

the dots in the mesh, the intersection between these two pieces is naturally avoided.

This reinforces the statement that the right choice of placement dots for each piece can

speed up the convergence time of the model.

By using the regular mesh with ∆ = 0.5, an optimal solution for the CS1 instance

with the same quality as the one found with the NFP -based mesh model is reached.

Still, the computational time to �nd and prove the optimality of this solution is more

than �ve hundred times faster in the case of the model built using the NFP -based mesh.

As to the other instances, the model built with a regular mesh with ∆ = 0.5 produced

bad quality solutions due to the massive number of variables, time constraints and

framework resources.

Figures 4.14(a) and 4.14(b) show the optimal solutions obtained with the NFP -

based mesh for the CS1 and CS2 instances, respectively. Using the regular mesh,

the optimal solution was reached for the CS1 instance (Figure 4.15(a)) and a feasible

solution was found for the CS2 instance (Figure 4.15(b)). Figure 4.16 displays the

solution found for the CS6 instance, which could only be obtained with the model

built using the NFP -based mesh.

(a) CS1. (b) CS2.

Figure 4.14: Optimal solutions for the CS1 and CS2 instances obtained with the NFP -
based mesh.

(a) CS1. (b) CS2.

Figure 4.15: Optimal solution for the CS1 instance and a feasible solution for CS2
instance obtained with the regular mesh.
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4.6.4 Comparing the mesh generation rules

In the previous sections the emphasis is set on the proposed data structure, mainly

on its versatility to represent di�erent types of meshes that take advantage of special

characteristics of the pieces. Using these meshes to solve instances that have the desired

characteristics showed to be more promising than using a regular mesh.

Table 4.4 presents the computational results obtained for the MF and CS instance

sets with the piece-based and the NFP -based meshes. The table columns display the

same type of content presented in Table 4.2. As expected, better solutions have been

obtained for the MF set of instances with the piece-based mesh model and for the CS

instances set with the model built using the NFP -based mesh.

Table 4.4: Comparing results achieved with the piece-based and NFP -based mesh built
models.

Piece-based mesh NFP -based mesh
Number of Time Number of Time

Inst. var. constr. UB GAP (sec) var. constr. UB GAP (sec)
MF1 1218 55897 28.0 0.00% 2.3 857 159540 30.0 0.00% 4.9
MF2 2554 136035 56.0 0.00% 19.2 2222 691006 58.0 0.00% 64.7
MF3 3902 219455 84.0 0.00% 32.9 3565 1220808 86.0 0.00% 2818.5
MF4 5238 299400 112.0 0.00% 149.3 4880 1737708 114.0 2.22% 3600.0
MF5 6594 386691 140.0 0.00% 289.4 6255 2278899 146.0 4.57% 3600.0
MF6 7930 466969 168.0 0.00% 790.0 7608 2811879 192.0 12.92% 3600.0
MF8 10614 630527 224.0 0.00% 893.0 10280 3862889 256.0 12.92% 3600.0
MF10 13306 797763 280.0 0.47% 3600.0 12969 4920342 - - -
MF15 20018 1208835 480.0 12.92% 3600.0 19716 7576733 - - -
CS1 275 26151 13.0 0.00% 0.7 457 30345 12.0 0.00% 2.4
CS2 701 84685 24.5 0.00% 13.1 1562 156407 22.0 0.00% 105.8
CS3 1102 138812 36.5 0.00% 209.4 2521 265574 32.0 0.00% 1072.1
CS4 1528 197522 47.0 0.00% 2896.3 3620 394039 43.5 21.29% 3600.0
CS5 1957 255648 59.0 3.39% 3600.0 4683 514724 52.5 18.57% 3600.0
CS6 2355 310356 71.0 27.51% 3600.0 5634 621599 63.0 18.57% 3600.0
CS7 2784 368350 83.0 27.66% 3600.0 6714 748089 81.5 26.56% 3600.0

-: No feasible solution was found within the 3600 seconds time limit.

These results sustain our hypothesis that the right choice of mesh is very important.

For the MF instances, the solutions obtained with the piece-based mesh are always

better than the ones obtained with the NFP -based mesh. Conversely, for the CS

instances the best results are always obtained with the NFP -based mesh although in

some cases the GAP is higher.
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4.6.5 Computational experiments with instances from the lit-

erature

This section presents the computational results obtained for the dotted board model

using the meshes proposed in Section 4.4 and those achieved with a regular mesh as

used in Toledo et al. (2013). The experiments were performed with di�erent instances,

showing the performance of each mesh generation rule with di�erent instances.

Table 4.5 presents the results attained with the various meshes for instances avail-

able in the literature. In the �rst column the instance name is presented. The second,

third and fourth columns display - for the model built on a regular mesh - the best

solution found, the optimality GAP and the computational time in seconds necessary

to reach the said solution, respectively . The �fth, sixth and seventh columns (eighth,

ninth and tenth) present the same information for the NFP -based mesh (piece-based

mesh).

Table 4.5: Computational experiments using various mesh generation rules.

Regular mesh NFP -based mesh Piece-based mesh
Instance UB GAP Time UB GAP Time UB GAP Time

(sec) (sec) (sec)
poly 19 31.60% 3600.0 19.0 31.60% 3600.0 18.0 0.00% 18.9

shapes0 - - - 66.0 35.80% 3600.0 - - -
shapes1 70.0 43.00% 3600.0 60.0 32.55% 3600.0 65.0 0.00% 1919.0
shirts 78.0 31.50% 3600.0 - - - 69.0 22.20% 3600.0
blaz1 29.0 26.40% 3600.0 28.0 23.80% 3600.0 28.0 0.00% 15.8
blaz2 21.0 0.00% 26.4 21.0 0.00% 911.56 24.0 0.00% 0.1

jakobs1 15.0 34.80% 3600.0 - - - 12.0 18.30% 3600.0
jakobs2 - - - - - - 26.0 25.70% 3600.0

fu - - - - - - 34.0 0.00% 598.7

-: No feasible solution was found within the 3600 seconds time limit.

As di�erent meshes lead to di�erent solution spaces, it is natural that models based

on regular, NFP -based and piece-based meshes produce di�erent solutions, even if op-

timality may sometimes be proven in all cases. Di�erent meshes can be more adequate

for the geometric characteristics of di�erent instances. One better solution is found

with the model based on the regular mesh for one instance, while three best solu-

tions are obtained with the model built on the NFP -based mesh, and �ve using the

piece-based mesh.

Based on these results, it is possible to conclude that no single mesh of dots better

be�ts the geometric characteristics of all instances. On the contrary, it is possible to

explore the geometric characteristics of the various instances to derive new meshes from

di�erent applications (e.g. garment, metalomechanics, footware), which can represent
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these instances with more precision.

4.7 Conclusions

The dot data structure proposed in this paper has proven to be an e�cient tool to rep-

resent special meshes for the dotted-board model that can be adapted to the character-

istics of the instances to be solved. For the MF set of instances, using the piece-based

mesh, optimality was proven for instances with up to 40 pieces, whilst for the same

set of instances the regular mesh reached optimality only for the MF instance with

5 pieces. Similar, although not so sound results, were obtained with the NFP -based

mesh and the CS instances.

In matheuristic approaches based on the dotted-board model, the proposed data

structure may easily represent the meshes presented in this paper, i.e. the piece-based

mesh or the NFP -based mesh or other special meshes. The dot data structure may

also be used within heuristic approaches, such as the bottom-left heuristic, in which

the dots can represent the feasible placement positions of the pieces. Note that in this

case, for each solution built by the heuristic, the mesh can change, thus allowing for

di�erent solutions for the same sequence of pieces.

Furthermore, problems with irregular boards can be easily considered using the dot

structure by inserting in the dot list only the dots that keep the pieces inside the board.

Boards with defects or regions where some pieces could not be cut can also be easily

handled by controlling the pieces that can be placed at each dot.
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Chapter 5

A model based heuristic for the

irregular strip packing problem1

In the last decade, sophisticated heuristics have been proposed to solve the irregular

strip packing problem. Examples of these heuristics are found in Elkeran (2013), Sato

et al. (2012), Umetani et al. (2009), Imamichi et al. (2009). Notwithstanding the

number of heuristics proposed to solve this problem, none of them combine mixed-

integer programming models (Toledo et al., 2013; Alvarez-Valdes et al., 2013) with

heuristic procedures.

Heuristics and exact methods have been successfully combined to solve combina-

torial optimization problems (Maniezzo et al., 2009). To solve the generalized assign-

ment problem, the method by Woodcock and Wilson (2010) combines tabu search,

linear programming and branch and cut. Flisberg et al. (2009) used tabu search, linear

programming and branch and cut to solve the vehicle routing problem. Bennell and

Dowsland (2001) solved the irregular strip packing problem combining tabu search and

linear programming. An approach that uses a branch and cut method to explore several

large neighbourhood structures in order to solve the lot-sizing problem was presented

by Muller et al. (2012).

In this chapter, a model based heuristic is presented to solve the irregular strip

packing problem. The heuristic combines the dotted-board model (Toledo et al., 2013)

with a new compaction model inspired on the model by Alvarez-Valdes et al. (2013).

The data structure presented in Chapter 4 is used to handle the geometry of the

problem when the dotted board model is used.

In Section 5.1, the model based heuristic is detailed. Computational experiments

were performed in order to evaluate the performance of the method and are presented

in Section 5.2. Section 5.3 presents some conclusions of the chapter.

1The text of this chapter is strongly based on the paper �A model based heuristic for the irregular
strip packing problem� which is under review.
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5.1 3�Phase Matheuristic (3PM)

The proposed matheuristic is based on two mathematical models, the dotted board

model (Toledo et al., 2013) and a linear model developed from the compaction ideas

used by Gomes and Oliveira (2006). Our objective is to obtain good-quality solutions

to the problem in a short computational time. The solution method can be summarized

into three phases:

• Constructive phase: �nding an initial feasible solution to the problem using the

dotted board model;

• Improvement phase: using uses the dotted board model to improve the initial

solution;

• Compaction phase: improving the best solution found so far using the linear

model.

In the subsections (5.1.1)-(5.1.3), these three phases are described in detail.

5.1.1 3PM � Constructive phase

The objective of the constructive phase is to iteratively build an initial feasible solution

for the problem. The grid used has a minimum resolution, large enough to ensure a

good trade-o� between the computational time and the solution quality. Instead of

using the regular grid as used in Toledo et al. (2013), the piece-based mesh is used

(section 4.4.1). In this chapter we assume that bxtr = bytr = gmin. The gmin value was

de�ned through preliminary computational experiments.

This phase is based on the relax-and-�x strategy. Consider the decision variables

δdtr which are 1 (one) if a piece of type t is assigned to dot d and 0 (zero) otherwise.

These variables are split into four sets:

Γ) set of variables associated with �xed pieces, i.e., pieces that are already �xed on

the board;

∆) set of variables associated with positioned pieces, i.e., pieces that are previously

positioned on the board, but can perform some movements;

Θ) set of variables associated with free pieces, i.e., pieces that can be freely positioned

on the board;

Ω) set of variables associated with waiting pieces, i.e., pieces that are not considered

in the current step.
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Figure 5.1 illustrates the constructive phase steps. Initially, sets Γ, ∆ and Θ are

empty, and therefore, a small number of pieces associated with the set Ω are assigned

to set Θ. In each step, a sub-problem de�ned according to the Γ, ∆ and Θ sets is

solved. In order to build each sub-problem, consider µ′ and µ, the upper bounds of

the last two sub-problems. Initially, these parameters are de�ned as zero. At the

end of each step, sets Γ and ∆ are rede�ned based on the parameters µ′ and µ. The

pieces with the reference point positioned in the interval [0, µ′) de�ne set Γ. The pieces

with the reference point positioned in the interval [µ′, µ] de�ne set ∆. Finally, a small

number of pieces from set Ω are moved to set Θ. In the �nal step, set Θ is empty. By

solving the associated sub-problem, a feasible solution to the problem is obtained. In

Figure 5.1, the pieces associated with sets Γ and ∆ are represented in black and dark

gray, respectively. Pieces above the board comprise set Ω, and the number of times

that pieces must be inserted in the board is indicated below each piece. The pieces at

the right-hand side of the board represent set Θ. Figure 5.1a shows an example that

consists of seven piece types. In Figure 5.1b, some pieces from the set Ω are selected

to form set Θ. The solution of the Figure 5.1b sub-problem and the new set Θ is

presented in Figure 5.1c. The pieces positioned on the board in Figure 5.1c comprise

set ∆. Figure 5.1d shows the solution of the previous sub-problem where the pieces

with the reference point in the interval [0, µ) are �xed and new pieces are positioned

on the board. The complete problem solution is presented in Figure 5.1e.

Figure 5.1: Steps of the constructive phase.

In each step, a subset of elements from set Ω is selected for set Θ. The size of these

subsets is σ, a number small enough to provide a fast solution and big enough for the

pieces to �t well. Furthermore, the size is calculated so as to reduce the di�erence

between the sizes of the subsets, and details are provided in Section 5.2.1. To form

each set Θ, the pieces are included one by one in the subset. The piece type selected

is the one with the largest rate:
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number of pieces of type t in the set Θ

number of pieces of type t in the problem (qt)
, ∀t ∈ T.

This criterion was used in order to homogeneously distribute the di�erent piece types

in the solution.

To de�ne each sub-problem model, consider subsetsM⊂ D andW ⊂ D containing

the board dots in the intervals [0, µ′) and [µ′, µ], respectively. The previous step solution

is de�ned by δdtr, d ∈ D, t ∈ T, r ∈ Rt. Note that Γ = {(d, t), δdtr = 1, d ∈ M, t ∈
T, r ∈ Rt} and ∆ = {(d, t, r), δdtr = 1, d ∈ W , t ∈ T, r ∈ Rt}. The partial demand is

represented by qt, t ∈ T , that is, the number of pieces of type t in the sets Γ, ∆ and

Θ. Finally, αt is the number of pieces of type t with the reference point in subset W .

The sub-problem model is given by (5.1)-(5.5):

min: L (5.1)

s. t.: (4.2), (4.3), (4.5), (4.6), (5.2)∑
d∈Dt[r]

δdtr = qt, t ∈ T, (5.3)

∑
r∈Rt

 ∑
δ̄dtr=1,d∈W

(1− δdtr) +
∑

δ̄dtr=0,d∈W

δdtr ≤ αt

 , t ∈ T, (5.4)

δdtr = 1, t ∈ T, r ∈ Rt, δ̄dtr = 1,

d ∈ Dt[r] ∩M. (5.5)

In the model (5.1)-(5.5), constraints (5.3) ensure that the partial demand will be

met. Constraints (5.4) restrict the movements over the variables of setW . Speci�cally,

one move is counted when a piece previously allocated in set W is moved outside set

W or when a piece from set Θ is allocated into set W . Two moves are counted when

a piece previously allocated in set W is moved into set W . The upper bound for the

moves is αt. Constraints (5.5) �x to the board the pieces with the reference point

positioned on a dot from the setM. Algorithm 6 summarizes the constructive phase.

5.1.2 3PM � Improvement phase

The Improvement Phase starts with the solution of the Constructive Phase and it is

also performed in steps. In the �rst step, gmin is equal to that used in the constructive

phase, and after each step, gmin is divided by two. Note that gmin is only a lower bound

of the grid resolution value. At the end of each step, the dots that contain reference

points of pieces allocated are included into the grid of the next step. This ensures that
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Algorithm 6: Constructive phase

Input: Sets D, T and Ω;
Output: A feasible solution δ = {δdtr|d ∈ Dt[r], t ∈ T, r ∈ Rt};
Initialize:

Calculate σ (number of pieces to compose Θ);
Do δ = 0, µ′ = µ = 0;

Constructive phase:
While (Ω 6= ∅)

De�ne the subsetsM and W ;
Do Θ = ∅;
Remove min{σ, |Ω|} pieces from the set Ω and insert them into the set Θ;
Solve the sub-problem (5.1)-(5.5) obtaining the solution δ with value L;
Do µ′ = µ and µ = L;

Return δ as solution.

the best solution found so far is feasible for the next step and leads to a good initial

solution for the search. The search ends when gmin is smaller than a threshold mr. In

each step, a variable neighborhood descent heuristic (VND) is applied to improve the

quality of the best solution found so far.

The VND heuristic is de�ned by applying successive local search procedures over K

di�erent neighborhoods. The choice of a neighborhood is performed in a deterministic

way. A �nal solution is a local optimum with respect to all K neighborhoods. The

neighborhoods are de�ned allowing the pieces to move in the dots that are inside a

small board region around their position in the previous step solution δ. The shape of

these regions de�nes the neighborhood that will be explored during the search. The

�rst neighborhood is a small square with its center in the dot where the piece was

positioned. The second neighborhood is a rectangle with the same width as that of

the board and length chosen so that the number of dots in each region is limited by

md. Finally, the third neighborhood is a rectangle with the board length and the

width calculated to be similar to the length of the second region. Figure 5.2 illustrates

these three neighborhoods, where the dot represents the piece reference point and the

highlighted rectangle, the region where this reference point can move to another dot.

4u

4u H

W

(a) (b) (c)

Figure 5.2: The �rst (a), second (b) and third (c) neighborhood for a piece reference
point.

These three neighborhoods were chosen in order to explore a diversi�ed set of dots

and then �nd better solutions. The �rst region is a small region and hence results in
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a fast search. To make the pieces �t better, the second region is created by reaching

all the vertical contact areas between two pieces that are near each other. Finally, the

third neighborhood aims to change the piece's position over the layout length.

The order of neighborhoods is obtained using a deterministic procedure. We start by

choosing the �rst neighborhood to restrict the feasible piece placement and then solve

the problem. If the solution is not better than the best solution found so far, then the

second neighborhood structure is applied. If the search over the second neighborhood

structure does not improve the solution quality, then the third neighborhood structure

is applied. If the third neighborhood does not improve the solution quality, then the

step is terminated. During the process, if any of the three neighborhoods yields a

solution better than the best solution found so far, then the search process returns to

the �rst neighborhood and the process is restarted.

Each neighborhood can be represented by a model. Consider Λd
tr as the set of dots

inside a given board region around the dot d where the reference point of piece t at

rotation r is allocated. The size of these regions is de�ned as described above. The

neighborhood model is given as follows.

min: L (5.6)

s. t.: (4.2), (4.3), (4.4), (4.5), (4.6), (5.7)

δdtr = 0, d ∈ {Dt[r] −
⋃

t∈T,r∈Rt

Λd
tr | δdtr = 1},t ∈ T, r ∈ Rt.

(5.8)

Constraints (5.8) limit the search domain to move each piece within a rectangular

region over the board. Given a feasible solution δ, the best solution of the model

(5.6)-(5.8) is its best neighbor.

When there are no more neighborhoods to explore in VND, the grid is re�ned. With

more dots to represent the board, there is a new range of feasible placement positions

for each piece. The VND heuristic is performed again to improve the solution further.

Algorithm 7 summarizes the improvement phase.

5.1.3 3PM � Compaction Phase

As the solution obtained in the improvement phase has the piece reference points

positioned on speci�c dots, gaps may appear between pieces. Taking this into account,

a compaction of this solution is essential to move the pieces as close as possible to each

other. To compact a solution, we use the mixed-integer linear model based on Gomes
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Algorithm 7: Improvement phase

Input: Set T ; initial resolution gmin; threshold mr; a solution δ and its value L;
Output: Improved solution δ;
Initialize:

Choose the �rst neighborhood, Neigh = 1;
Improvement phase:

While (gmin > mr)
De�ne D using gmin;
Add the dots of δ to D;
While (Neigh ≤ 3)

Find δ′ the best neighbor solution of δ using the neighbourhood Neigh;
If (L′ ≥ L), Do Neigh = Neigh+ 1;
else, Do Neigh = 1; δ = δ′; L = L′;

Do gmin = gmin/2;
Return solution δ;

and Oliveira (2006) with some additional constraints. In this model the positioning of

each piece reference point is linear and is represented by a pair of real variables (xi, yi).

To avoid overlaps between pieces i and j, the authors consider the set Eij set with all

the lines that contain an edge of NFPij; then, an integer variable vije is used to ensure

that the pieces are on di�erent sides of at least one of the lines e ∈ Eij. More details on

this model can be found in Gomes and Oliveira (2006) and Alvarez-Valdes et al. (2013).

In order to de�ne the additional constraints to be added to the Gomes and Oliveira

(2006) model, consider the pieces individually, i.e., each piece is mapped according

to its type by the integers of the interval ((t − 1) × dt, t × dt]. The total number of

pieces is given by N =
∑

t∈T dt. All the pieces can be found on the interval [1,N ]. In

addition, consider xi (yi), i = 1, ...,N , the position on the x-axis (y-axis) for the piece

t at rotation r placed in δ
d

tr = 1, d ∈ Dt[r]. The new constraints imposed in Gomes

and Oliveira (2006) model ensure that the pieces can move only over a small region of

the board. These regions are de�ned as squares around the points where each piece is

positioned. The side λi of each square is given based on the size of the bounding box

of each piece i and the number of pieces allocated and is de�ned in Section 5.2.1.

The Compaction Phase Model (3PM-CPM) is given as (5.9)-(5.15):
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min: L (5.9)

s. t.: llefti ≤ xi ≤ L− lrighti , i = 1, ...,N , (5.10)

wtopi ≤ yi ≤ W − wbottomi , i = 1, ...,N , (5.11)

αije(xj − xi) + βije(yj − yi)

≤ γije +M(1− vije), 1 ≤ i < j ≤ N , ∀e ∈ Eij, (5.12)∑
e∈Eij

vije ≥ 1, 1 ≤ i < j ≤ N , (5.13)

xi − λi ≤ xi ≤ xi + λi, i = 1, ...,N , (5.14)

yi − λi ≤ yi ≤ yi + λi, i = 1, ...,N , (5.15)

vije ∈ {0, 1}, ∀i, j = 1, ...,N , ∀e ∈ Eij, (5.16)

xi, yi ≥ 0, i = 1, ...,N , (5.17)

L ≥ 0. (5.18)

where αije, βije and γije are the coe�cients of the line e associated with an edge of

NFPij and M is large enough to make the constraint (5.12) a dummy constraint if

vije = 0.

Constraints (5.10) associated with (5.9) de�ne the objective function. Constraints

(5.10) and (5.11) ensure that the piece is entirely inside the board, and constraints

(5.12) and (5.13) guarantee that the pieces do not overlap. Constraints (5.14) and

(5.15) allow the piece to move only within a given square. Finally, the variable domains

are given by (5.16), (5.17) and (5.18).

The compaction phase is an iterative process, i.e., if an improved solution is found

at the end of the compaction, the compaction is executed again, starting from this

improved solution. Algorithm 8 presents an outline of the compaction phase.

Algorithm 8: Compaction phase

Input: Sets D and T ; a feasible solution δ;
Output: Compacted solution (x,y);
Initialize:

Obtain x, y and L from δ;
Compaction phase:

L′ = 0;
While (L′ < L)

Solve the model (5.9) - (5.15) obtaining the solution x′, y′ and length L′;
Do x = x′ and y = y′;

Return (x,y) as solution.
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5.2 Computational results

The computational experiments were performed on an Intel(R) Xeon(R) E5-2620 2.00

GHz processor with 64 GB of memory running an Ubuntu 12.04 operating system. The

methods were implemented in the C/C++ programming language, and the mathemat-

ical models were solved using IBM ILOG CPLEX 12.5. To perform the tests, instances

from the literature, presented in Table 5.1, were used. The �rst column presents the

instance name. Columns two and three present the number of piece types and the

absolute number of pieces, respectively. The available rotations for the pieces and

the width of the board are, respectively, presented in columns four and �ve. Finally,

column six presents the origin of the instance.

Table 5.1: Instances used in the benchmark.

Name
Piece Pieces

Rotations
Board

Reference
types quantity width

Albano 25 25 0,90,180,270 4900 Albano and Sapuppo (1980)
Mao 9 20 0,90,180,270 2550 Bounsaythip and Maouche (1997)

Marques 8 24 0,90,180,270 104 Marques et al. (1991)
Trousers 17 64 0,180 79 Oliveira and Ferreira (1993)
Jakobs1 25 25 0,90,180,270 40 Jakobs (1996)
Jakobs2 25 25 0,90,180,270 70 Jakobs (1996)

Fu 12 12 0,90,180,270 38 Fujita et al. (1993)
Poly1a0 15 15 0 40 Hopper (2000)
Shapes0 4 43 0 40 Oliveira et al. (2000)
Shapes1 4 43 0,180 40 Oliveira et al. (2000)
Shapes2 7 28 0,180 15 Oliveira et al. (2000)

Blaze<i> 7 7× < i > 0 15 Toledo et al. (2013)
Shapes_T< i > 4 8 0 40 Toledo et al. (2013)

RCO< i > 7 < i > 0 15 Toledo et al. (2013)
Shapes_AV4 4 4 0 20 Alvarez-Valdes et al. (2013)
Shapes_AV8 4 8 0 13 Alvarez-Valdes et al. (2013)

Fu< i > < i > < i > 0 38 Alvarez-Valdes et al. (2013)
threep< i >w< j > 3 3× < i > 0 < j > Alvarez-Valdes et al. (2013)

The following subsection presents the parameters used to run the matheuristic. An

analysis of the proposed matheuristic showing the in�uence of each phase in the solution

method is presented in Subsection 5.2.2. The proposed matheuristic performance is

compared with exact models and heuristic methods in Subsections 5.2.3 and 5.2.4,

respectively.

5.2.1 De�ning parameters and sets

In this section, the parameters used in the matheuristic are de�ned. These parameters

were chosen based on preliminary computational experiments and on the features of

each instance.
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The initial value of gmin is two in order to generate a grid with a limited number

of dots. The idea is to lead the constructive phase to quickly obtain a solution. This

parameter can generate some gaps among the pieces, but these gaps should be reduced

in the improvement phase.

In each step of the constructive phase, σ elements of Ω must be selected to form

Θ. The idea is to de�ne σ such that the subsets Θ of each iteration have a similar

number of elements. After preliminary tests, we veri�ed that problems with �ve pieces

or less are solved very fast using the model. These tests also show that problems with

more than 12 pieces are di�cult to solve within a time span adequate for a constructive

phase. The value of sigma is de�ned as stated in Algorithm 9, where a mod b is the

remainder of the division of a by b.

Algorithm 9: De�ning sigma

Input: Set Ω, demands qt;
Output: σ;

If (|Ω| ≤ 5)
Return (|Ω|);

Else
Do σ = 5
For (s = min{12,

∑
t∈T qt} to 6) do

If (
∑

t∈T qt mod s = 0)
Return (s);

Else if (
∑

t∈T qt mod s ≥
∑

t∈T qt mod σ)
Do σ = s;

Return (σ);

After the constructive phase, the improvement phase runs while gmin ≥ mr, where

mr = 0.5 to make the pieces closer to each other. The number of dots in each neigh-

borhood of the improvement phase must not be larger than the parameter md. In the

initial tests, md = 3000, which results in the improvement model performing a fast

local search.

Several preliminary tests were run to determine the value of λi for each piece of

type i, where λi is a parameter of the compaction phase model (CPM). Depending on

the position of the pieces and on the size of the region where these pieces can move, a

pair of pieces could even change their relative positions. These values are based on i)

the number of pieces in the instance and ii) the size of the piece bounding box.

• For instances with less than 13 pieces the square around the reference point of

piece i has a side equal to λi = max(llefti + lrighti , wbottomi + wtomi );
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• For instances with 13 to 20 pieces the square around the reference point of piece

i has a side equal to λi = max(llefti + lrighti , wbottomi + wtopi )/2;

• For instances with more than 20 pieces the square around the reference point of

piece i has a side equal to λi = min(llefti + lrighti , wbottomi + wtopi )/2.

Initial tests show that these square side sizes presented a good trade-o� between

the solution quality and computational time. Depending on the position of the pieces

and on the size of the region where these pieces can move, a pair of pieces could even

change their relative positions.

5.2.2 Matheuristic phases analysis

To demonstrate the importance of each phase of the proposed method, in Table 5.2,

we summarize the results obtained at each phase. The �rst column presents the in-

stance name. In columns two and three, the constructive phase solution and time are

shown. Columns four and �ve show the improvement phase solution and its time, re-

spectively. The improvement rate, the time increase and the percentage by which the

computational time increases from the constructive phase to the improvement phase

are depicted in columns six, seven and eight. In columns nine and ten, the solution

value and its computational time are presented. Columns eleven, twelve and thirteen

describe the improvement rate, the additional time and the percentage that the com-

putational time increases compared with the constructive plus improvement phases.

As expected, the constructive phase obtained a solution with poor quality in a

shorter computational time. Applying the improvement phase to the constructive

phase solution on average leads to 19% improvement in the solution quality. The

computational time increases by 171.8 seconds on average, varying from 0.1 to 2301

seconds depending on the instance.

Using the complete proposed method, the best results obtained by the search were

found. On average, the solutions found by the complete matheuristic are 9.7% better

when compared to the solutions found by the improved constructive phase. Further-

more, the computational time increases by 200 seconds on average, varying from 0.1

to 1294 seconds depending on the instance. Speci�cally, the compaction phase leads

on average to 9.7% improvement in the solution quality; however, the computational

time doubles.

Based on the results, it can be concluded that the compaction phase is essential

to eliminate the grid dependence of the other phases of the method. Moreover, if a

fast solution that has good quality is needed and less computational time is available,

the construction phase followed by the improvement phase should be used. If a more
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Table 5.2: Di�erent phases of the proposed solution method.

Construct. Construct.+
phase improvement Add. Time 3PM Add. Time

Instance Sol. Time Sol. Time Impr. time inc.(%) Sol. Time Impr. time inc.(%)
Blaze1 18.0 0.1 12.0 1.9 33.3% 1.8 94.7% 7.4 23.3 38.3% 21.5 92.3%
Blaze2 16.0 1.0 14.0 8.7 12.5% 7.7 88.5% 14.0 68.9 0.0% 60.2 87.4%
Blaze3 24.0 1.6 21.0 38.8 12.5% 37.2 95.9% 20.5 340.2 2.6% 301.4 88.6%
Blaze4 32.0 2.2 29.0 35.0 9.4% 32.7 93.4% 27.9 517.6 3.9% 482.6 93.2%
Blaze5 40.0 2.7 34.0 153.5 15.0% 150.8 98.2% 34.0 395.2 0.1% 241.7 61.2%

Shapes_T2 30.0 1.2 16.0 7.0 46.7% 5.8 82.9% 14.0 8.1 12.5% 1.1 13.6%
Shapes_T4 30.0 4.1 30.0 10.4 0.0% 6.3 60.6% 26.0 201.5 13.3% 191.1 94.8%
Shapes_T5 36.0 7.5 31.0 45.6 13.9% 38.1 83.6% 31.0 106.0 0.0% 60.4 57.0%
Shapes_T7 60.0 9.9 42.0 116.1 30.0% 106.2 91.5% 42.0 176.3 0.0% 60.3 34.2%
Shapes_T9 71.0 10.2 48.0 170.6 32.4% 160.3 94.0% 48.0 292.3 0.0% 121.7 41.6%

RCO1 14.0 0.1 8.0 4.2 42.9% 4.1 97.6% 8.0 44.4 0.0% 40.3 90.8%
RCO2 16.0 0.5 16.0 2.1 0.0% 1.6 76.2% 15.0 254.5 6.3% 252.5 99.2%
RCO3 24.0 1.2 24.0 4.6 0.0% 3.4 73.9% 22.0 264.7 8.3% 260.1 98.3%
RCO4 32.0 2.1 30.0 33.0 6.3% 30.9 93.6% 29.0 83.1 3.3% 50.1 60.3%
RCO5 40.0 4.7 37.0 29.8 7.5% 25.0 83.9% 36.7 210.2 0.9% 180.5 85.9%

Shapes_AV4 24.0 0.6 24.0 2.1 0.0% 1.6 76.2% 24.0 2.2 0.0% 0.1 4.5%
Shapes_AV8 41.0 0.8 30.0 5.5 26.8% 4.7 85.5% 26.0 186.9 13.3% 181.4 97.1%

Fu5 20.0 0.1 20.0 0.3 0.0% 0.2 66.7% 17.9 1.0 10.6% 0.7 70.0%
Fu6 56.0 0.1 28.0 30.5 50.0% 30.4 99.7% 23.0 31.7 17.9% 1.2 3.8%
Fu7 70.0 0.1 28.0 3.9 60.0% 3.9 100.0% 24.0 5.0 14.3% 1.1 22.0%
Fu8 49.0 0.1 28.0 19.5 42.9% 19.4 99.5% 24.0 20.9 14.3% 1.4 6.7%
Fu9 56.0 0.1 30.0 26.7 46.4% 26.5 99.3% 25.0 52.3 16.7% 25.7 49.1%
Fu10 42.0 0.2 30.0 25.7 28.6% 25.5 99.2% 28.7 265.9 4.4% 240.3 90.4%
Fu12 45.0 0.4 42.0 2.1 6.7% 1.7 81.0% 33.5 186.7 20.4% 184.6 98.9%

threep1w7 6.5 0.6 6.5 1.4 0.0% 0.8 57.1% 6.0 2.5 7.7% 1.0 40.0%
threep2w7 13.5 0.3 11.5 2.4 14.8% 2.1 87.5% 9.3 12.4 18.9% 10.1 81.5%
threep3w7 20.0 0.3 17.0 1.1 15.0% 0.8 72.7% 13.5 183.1 20.4% 182.0 99.4%
threep2w9 12.0 0.1 10.0 0.6 16.7% 0.6 100.0% 8.0 36.2 20.0% 35.5 98.1%
threep3w9 18.0 0.3 13.0 1.9 27.8% 1.6 84.2% 11.0 191.2 15.4% 189.4 99.1%
Shapes0 68.0 33.9 60.0 178.6 11.8% 144.7 81.0% 60.0 239.1 0.0% 60.5 25.3%
Shapes1 62.0 424.4 58.0 1011.6 6.5% 587.2 58.0% 58.0 1132.7 0.0% 121.1 10.7%
Shapes2 31.0 7.2 28.0 130.1 9.7% 122.8 94.4% 27.6 310.7 1.5% 180.6 58.1%

Fu 40.0 5.6 40.0 9.6 0.0% 4.0 41.7% 32.0 252.3 20.0% 242.7 96.2%
Poly1a0 33.0 17.4 18.0 732.9 45.5% 715.5 97.6% 15.8 1048.8 12.2% 315.9 30.1%
Jakobs1 25.0 21.7 15.0 184.0 40.0% 162.4 88.3% 12.0 612.9 20.0% 428.8 70.0%
Jakobs2 36.0 34.1 30.0 645.2 16.7% 611.2 94.7% 26.0 1939.0 13.3% 1293.8 66.7%
Albano 12168.0 14.2 12168.0 342.1 0.0% 328.0 95.9% 10608.0 1614.1 12.8% 1272.0 78.8%

Mao 2315.0 21.0 2294.0 2321.8 0.9% 2300.9 99.1% 1927.2 2621.8 16.0% 300.0 11.4%
Marques 85.0 100.1 85.0 273.2 0.0% 173.1 63.4% 80.0 527.9 5.9% 254.7 48.2%
Trousers 439.0 229.9 296.0 1222.1 32.6% 992.2 81.2% 286.0 1403.7 3.4% 181.7 12.9%
Average 19.0% 171.8 85.3% 9.7% 200.8 61.7%
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accurate solution is desired and using more computational time is not a problem, the

complete solution method should be applied to the problem.

A variation of this matheuristic composed of only the construction and compaction

phases was studied. The quality of the solutions obtained by this variation was always

worse than that of the complete matheuristic.

5.2.3 Performance of the matheuristic performance compared

with mixed-integer models

In this section, we analyzed the quality of the matheuristic solutions compared with

the exact branch and cut method applied to two models from the literature. Table

5.3 presents the results for solving instances using the HS2 model from Alvarez-Valdes

et al. (2013) by the dotted board model (DBM) from Toledo et al. (2013) with the

piece-based mesh and by the proposed matheuristic. The results of HS2 were taken

from Alvarez-Valdes et al. (2013). The speci�cations of their processor are better

than the one used to solve the DBM and the proposed matheuristic2. Consequently, a

comparison of the results is not unfair from the computational perspective. Moreover,

each exact method was run for one hour.

In Table 5.3, the �rst column presents the instance names. The second and third

columns present, respectively, the solution and time to prove the solution optimality

of the Alvarez-Valdes et al. (2013) model. Similarly, columns four and six show the

solution and time to prove the optimality of the dotted board model. Column �ve

depicts the time that this model took to �nd the best solution of the search. Finally, in

columns seven and eight, the solution obtained by the proposed matheuristic method

and its computational time are shown.

The proposed matheuristic obtained better or equal solutions in 35 out of 40 in-

stances when compared with the best solutions of the other two methods. In the table,

the best solution values are highlighted. Compared only with the dotted board model,

the proposed matheuristic yielded better results for 27 out of 40 instances. For the

majority of the instances, the compaction phase makes a di�erence by removing some

gaps from the grid dependence of the dotted board model, resulting in better-quality

solutions.

The computational time of the matheuristic is less than that of the HS2 model

only in the larger instances. In fact, this occurs because for small instances, the exact

method can quickly �nd and prove the optimality of a solution while the matheuristic

method needs to accomplish all three phases. Comparing the computational time of

the dotted board model and the matheuristic, it can be observed that the exact method

2veri�ed in www.cpubenchmark.net/
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Table 5.3: Results from exact methods and the proposed matheuristic.

HS21 DBM 3PM
Instance Solution Time Solution Time (�nd) Time Solution Time

Blaze1 - - 7.5 12.0 23.3 7.4 23.3
Blaze2 - - 14.0 15.1 15.2 14.0 68.9
Blaze3 - - 21.0 80.3 674.0 20.5 340.2
Blaze4 - - 27.0 1068.0 1239.2 27.9 517.6
Blaze5 - - 34.0 540.5 TL 34.0 395.2

Shapes_T2 - - 16.0 0.5 1.7 14.0 8.1
Shapes_T4 - - 26.0 58.4 89.1 26.0 201.5
Shapes_T5 - - 30.0 340.6 365.0 31.0 106.0
Shapes_T7 - - 42.0 2901.0 TL 42.0 176.3
Shapes_T9 - - 49.0 3482.6 TL 48.0 292.3

RCO1 - - 8.0 0.6 0.7 8.0 44.4
RCO2 - - 15.0 1.2 1.3 15.0 254.5
RCO3 - - 22.0 10.7 13.2 22.0 264.7
RCO4 - - 29.0 16.7 394.0 29.0 83.1
RCO5 - - 36.0 164.6 936.2 36.7 210.2
Albano - - 11088.0 592.4 592.4 10608.0 1614.1

Fu - - 35.0 53.1 53.1 32.0 252.3
Jakobs1 - - 18.0 3285.3 TL 12.0 612.9
Jakobs2 - - 30.0 596.2 TL 26.0 1939.0

Mao - - 2452.0 99.7 TL 1927.2 2621.8
Marques - - 88.0 1827.9 TL 85.0 527.9
Shapes0 - - 64.0 3590.5 TL 60.0 239.1
Shapes1 - - 80.0 98.9 TL 58.0 1132.7
Shapes2 - - 27.0 900.4 TL 27.6 310.7
Trousers - - 495.0 218.4 TL 286.0 1403.7
Poly1a0 16.6 TL 17.0 3586.2 TL 15.8 1048.8

Shapes_AV4 24.0 0.0 24.0 1.7 1.7 24.0 2.2
Shapes_AV8 26.0 272.0 28.0 18.5 21.5 26.0 186.9

Fu5 17.9 0.1 20.5 2.8 3.4 17.9 1.0
Fu6 23.0 0.5 24.0 6.0 10.4 23.0 31.7
Fu7 24.0 1.0 28.0 0.1 0.2 24.0 5.0
Fu8 24.0 1.3 28.0 0.2 1.0 24.0 20.9
Fu9 25.0 70.0 28.0 0.4 0.4 25.0 52.3
Fu10 28.7 3064.0 30.0 0.8 0.9 28.7 265.9
Fu12 31.2 TL 40.0 1.0 1.0 32.0 186.7

threep1w7 6.0 0.8 6.5 0.3 0.3 6.0 2.5
threep2w7 9.3 3.9 11.0 0.7 0.8 9.3 12.4
threep3w7 13.5 3394.0 14.5 1.3 1.3 13.5 183.1
threep2w9 8.0 8.5 8.5 1.4 1.6 8.0 36.2
threep3w9 11.0 TL 13.0 0.2 0.2 11.0 191.2

TL: Time limit.
-: instances not addressed by Alvarez-Valdes et al. (2013).
1 Results taken from Alvarez-Valdes et al. (2013).
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spends less time on small instances. The reason for this is the same as that for the HS2

model. It is important to highlight that in several cases, the matheuristic obtained

better solutions than the dotted board model as the model depends on the grid used.

Its improvement in terms of the solution quality is more distinguishable with the large

instances.

The advantage of the proposed matheuristic is that in comparison with the exact

approaches, the time to achieve the objective is less biased by the instance size. Specif-

ically, from the perspective of the computational time, the dimension of an instance

does not exert much in�uence in terms of using the proposed solution method.

As the constructive and improvement phases are based on the dotted board model,

instances with many di�erent piece types and/or huge boards such as Albano, Mao

and Jakobs2 can lead to longer solution times in these phases of the solution method.

Moreover, in the compaction phase, the model used does not take advantage of pieces

of the same type, making instances as Trousers, Shapes1 and Shapes0 more di�cult

to solve in this phase. On the other hand, the additional constraints imposed by the

method in the models in each phase attempt to overcome these problems by attenu-

ating the problems related to the matheuristic computational time. Additionally, the

interactions between the approaches bene�t the solution quality.

On the other hand, the additional constraints included in the models of each phase

attempt to overcome the problem, reducing the computational times. Additionally, the

interactions between the approaches aim to bene�t the solution quality.

5.2.4 Performance of the matheuristic compared with those of

other heuristics

In this section, the computational experiments comparing the proposed matheuristic

and the heuristics of Leung et al. (2012) and Elkeran (2013) are presented.

The heuristics from the literature were run within di�erent frameworks. The au-

thors presented the best solution and the average solution found by their methods in

several runs for each instance.

Table 5.4 presents the results obtained by 3PM and the results obtained by the

two most recent heuristics from the literature. In the table, the �rst column displays

the instance name. Columns two and three respectively present the solution found by

3PM and the computational time to obtain this solution. Columns four and �ve (six

and seven) present analogous information for Leung et al. (2012) (Sato et al. (2012))

heuristic.

As 3PM is a deterministic procedure, it is run just once for each instance. In

contrast, the heuristics proposed in Leung et al. (2012) and Elkeran (2013) are non-
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Table 5.4: Comparison of the results of the exact methods with the 3-Phase Matheuris-
tic (3PM).

3PM Leung et al. (2012) Elkeran (2013)
Instance Solution Time Solution Time Solution Time
Shapes0 60.0 239.1 59.7 10 x 1207.0 59.32 10 x 600.0
Shapes1 58.0 1132.7 53.7 10 x 1212.0 54.07 10 x 600.0
Shapes2 27.6 310.7 26.2 10 x 1205.0 26.21 10 x 600.0

Fu 32.0 252.3 31.7 10 x 600.0 31.46 10 x 600.0
Jakobs1 12.0 612.9 11.1 10 x 603.0 11.02 10 x 600.0
Jakobs2 26.0 1939.0 23.8 10 x 602.0 23.79 10 x 600.0
Albano 10608.0 1614.1 9969.5 10 x 1203.0 9959.24 10 x 600.0

Mao 1927.2 2621.8 1785.1 10 x 1204.0 1796.86 10 x 600.0
Marques 80.0 527.9 78.3 10 x 1204.0 77.37 10 x 600.0
Trousers 286.0 1403.7 246.7 10 x 1237.0 244.67 10 x 600.0

deterministic procedures that usually are run many times to ensure the quality of

solution. The authors ran their heuristics 10 times that in the best case used 600

seconds for each time. Therefore, the proposed matheuristic is substantially faster and

yields solutions in average six times faster than these heuristics.

On average, the solutions found by the matheuristic are 6.3% worse than the results

obtained by Elkeran (2013) and Leung et al. (2012), which are the most recent heuristics

in the literature.

5.3 Conclusions

A new matheuristic to solve the irregular strip packing problem combining mixed

integer programming models from the literature is presented. The matheuristic is

composed of three phases that use a model to solve each sub-problem. Combining

di�erent models, the proposed method takes advantage of the speed of the integer

placement model and the solution quality of the linear placement model.

The outcomes of the proposed method show that it can produce solutions with

better quality in shorter computational time in most cases when compared with the

models. In addition, the performance of the matheuristic is not highly dependent on the

instance dimensions, indicating that it is a good approach for tackling large instances.

Comparing 3PM with heuristics form the literature, 3PM found solutions in smaller

computational times. Also, the quality of these solutions generally are near to the

quality of the best solutions found in the literature.
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Chapter 6

A new constraint programming

approach to solve nesting problems1

The aim of the two-dimensional irregular cutting problem is to place convex or non-

convex pieces on a board in order to optimize a given objective while ensuring that the

pieces are inside of the board and do not overlap each other.

As presented in Chapter 2, Wäscher et al. (2007) classi�ed these problems into:

Placement Problem (PP ), Identical Item Packing Problem (IIPP ), Knapsack Problem

(KP ), Cutting Stock Problem (CSP ), Bin Packing Problem (BPP ) and Open Dimen-

sion Problem (ODP ). Figure 6.1 illustrates the irregular two dimensional cutting and

packing problem variants.

W

L

Identical item problem

W

L

Placement problem

W

L

Knapsack problem

W

L

Bin packing problem

W

L→∞

Open dimension problem

W

L

Cutting stock problem

Figure 6.1: Variants of the irregular cutting and packing problems.

These problem variants are used to solve many real-world applications, and the

variant that better �ts each application depends on the industry characteristics.

1This chapter is strongly based on the paper �Optimality in irregular cutting and packing problems:
new constraint programming models� which was submitted to a scienti�c journal
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Constraint programming is a computational paradigm where constraints are at the

core and the methods for manipulating and propagating constraints are tightly inte-

grated with optimization strategies. Because the representation of the problem is done

through logical constraints, there is no restriction or special characteristic required to

build the set of constraints. Indeed, di�erent from the mathematical programming

approaches, a constraint does not need to be expressed by equations and inequalities.

The constraints can be expressed by any logical or conditional relation over the vari-

ables. Current constraint programming systems o�er a broad selection of constraints

that can handle problems such as scheduling or shortest routes, and they have proven

very e�ective in real-life problems where feasibility is an issue, due to its ability to deal

with large number of heterogeneous constraints.

Constraint programming has been successfully applied to several combinatorial op-

timization problems. The �rst paper that solves the irregular strip packing prob-

lem by an exact method was proposed by Carravilla et al. (2003), where the authors

use constraint logic programming to solve the problem. To solve the resource port-

folio planning of make-to-stock products, Wang et al. (2007) proposed a constraint

programming-based genetic algorithm. Clautiaux et al. (2008) proposed a constraint

programming approach to solve the two-dimensional orthogonal packing problem out-

performing the previous approaches. To solve the project scheduling problem under

resource constraints, Trojet et al. (2011) proposed a constraint programming approach

using the cumulative global constraint. The approach aims to give support to the deci-

sion maker by proposing a set of optimal solutions to the problem. Salas et al. (2014)

proposed non-overlap constraints based on Minkowski sums for polygons described by

non-linear constraints. The approach is, however, sensitive to the polygon shape, i. e.,

the more complex the shapes are, the more di�cult it is to solve the problem.

The solution methods for general constraint programming models aim to reduce

the domains of the variables trying to infer their values. When the values cannot be

inferred, an enumeration scheme over a search tree is performed. The enumeration is

composed of the branching process and the backtracking process. In the branching

process, decisions about which value will be assigned to one variable domain are made,

then the inference process (propagation) is performed again. A feasible solution is

found when the value of all variables is de�ned. In order to prove the optimality, a

backtracking process is performed, investigating all the possibilities of the search tree.

Each node of a partial solution has the solution value up to that point, thus, if its

quality is worse than the best solution found so far, this node can be pruned. Note

that the value of a partial node in the search is given by the assignments already made

to the variables and not by a relaxation. By not solving a relaxation in each node,

the branching process can be performed faster than in a branch-and-bound method.
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However, a strong lower bound could help pruning more nodes of the search tree and

exploring less branches.

The strength of constraint programming comes from the possibility of modeling

problems at a higher level, using the so-called global constraints. A global constraint

is a specialized constraint for some problems, and allows the solver to use features of

the problem which are not manageable if the model is expressed at the atomic level of

basic constraints. Global constraints are at the core of the solution method for many

classes of problems. The Global Constraint Catalog2 has an extensive list of global

constraints, which have been incorporated in various constraint programming solvers.

Global constraints have been proposed to solve several combinatorial optimization

problems. Kovács and Beck (2008) proposed a global constraint for the total weighted

completion time of activities for a single capacity resource. Saldanha and Morgado

(2003) proposed a global constraint to solve a set the partitioning problem. The con-

straint has an e�cient propagator and it is easy to be modi�ed.

For cutting and packing problems, a global constraint to avoid the overlap between

pieces was proposed by Ribeiro and Carravilla (2004). The proposed constraint, named

�outside�, is based on a model where the decision variables are the (X,Y)-coordinates of

the positioning points of the pieces. The main limitation of the approach stems from

the two-dimensionality of the problem: having X and Y coordinates represented as

di�erent variables limits the e�ectiveness of constraint propagation. Besides that, the

model does not take advantage of pieces with the same shape. Therefore, this approach

cannot be easily adapted to solve the variants of the irregular cutting problems where

the number of pieces to be cut is not limited.

Here, constraint programming methods to solve irregular cutting and packing prob-

lems are investigated. Two approaches to represent the problem variables are devel-

oped. In the �rst one, the domain of the variables is binary and, in the second one,

the domain is integer. As the core of the irregular cutting and packing problems is

the no overlap constraint, a specialized global constraint to avoid the pieces overlap is

proposed. This global constraint can e�ciently propagate and can be used in many

variants of irregular cutting and packing problems. Furthermore, additional constraints

combined with no overlap constraints, that represent several variants of irregular cut-

ting and packing problems, are proposed. Several of these variants were never solved in

the literature by an exact method. Computational experiments show that the proposed

models can solve the addressed problems. Using the global constraint, the computa-

tional time to prove optimality (when it is reached in the given time limit) and the

memory used are reduced at least by an order of magnitude. Although the computa-

tional time to prove solution optimality is usually high in all the proposed approaches,

2Global Constraint Catalog: http://sofdem.github.io/gccat/
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all the formulations can quickly �nd good quality solutions.

As in constraint logic programming the domain of the variables needs to be �nite,

the dot structure presented in Chapter 4 is used to assist the program (model) gen-

eration. The dot structure enables the program to easily retrieve the information on

the inner�t and no�t polygon, helping to create the constraints and infer the initial

domain of the variables.

The remainder of the chapter is organized as follows: Section 6.1 presents some

de�nitions that are used along the chapter. Section 6.2 shows binary domain variables

to represent the board dots and the no-overlap constraint using this variable de�nition.

A representation of the board dots through integer domain variables and the non-

overlap constraints made for these variables are proposed in Section 6.3. In Section

6.4, a specialized global constraint to avoid the overlap between pieces is proposed. This

global constraint uses integer domain variables and is tailored for Irregular Cutting and

Packing Problems. A set of constraints that can represent any variant of cutting and

packing problems de�ned in Wäscher et al. (2007) typology is described in Section 6.5.

In Section 6.6, the computational results are analyzed, showing the advantage of each

model and also the versatility of the proposed constraint programming approach to

solve all the cutting and packing problem variants. Section 6.7 presents the results

obtained for larger instances and a comparison with the dotted-board model (Toledo

et al., 2013). Finally, in Section 6.8 the conclusions and highlights of the approach are

presented.

6.1 General concepts

In all the variants of the irregular cutting problems, a �nite number of pieces types

T with a �xed number of allowed rotations R must to be placed in a board. The

pieces must be positioned inside the board and cannot overlap. The objective to be

considered may be to maximize the value extracted from the board or to minimize the

used board(s). The pieces are represented by an ordered set of vertices and by a point,

chosen to be the piece reference point. In the approach described in this paper, the

board is discretized by a regular mesh of dots D, the allowed placement positions of

the pieces on the board. The mesh is regular, i.e. the vertical and horizontal distance

between the dots are a multiple of a parameter ∆ which determines the re�nement of

the mesh.

To ensure that the pieces are entirely inside the board, the inner�t polygon (IFP )

is used. The IFP of piece t at rotation r (IFPtr) de�nes the region of the board where

the positioning point of a piece can be placed, such that the piece is entirely inside

the board. As in this chapter the board used to perform the cuts is considered to
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be rectangular, the inner�t polygon can be easily de�ned based on the vertical and

horizontal distances between the reference point and the sides of the piece bounding

box. More details about the pieces dimensions and how to de�ne the inner�t polygon

are presented in Section 2.1.

In our approach, the no�t polygon (NFP ) is used to enforce the condition that

pieces do not overlap. The NFP of piece t at rotation r and piece t′ at rotation r′

(NFP t′r′
tr ) summarizes the geometric relation between these pieces reducing the overlap

evaluation to the veri�cation if a point is inside, over or outside a polygon. Details of

the no�t polygon can be found in Section 2.1.

As in the models presented in this chapter the board is represented by a grid of dots,

it su�ces to know the dots of the grid inside the no�t polygon to avoid the overlaps.

Therefore, the dots structure proposed in Chapter 4 is used to represent the problem

geometry.

6.2 CP formulation based on the Dotted Board Model

In this section, the formulation is based on the dotted board model (Toledo et al.,

2013), i.e. the there is a binary variable de�ned for each dot of the board for each piece

type and respective rotation.

Based on this de�nition of the variables, a set of constraints that avoid the overlap

among pieces is proposed. The constraints that prevent the pieces to overlap are the

most challenging constraints to be satis�ed in irregular cutting and packing problems.

6.2.1 Binary representation

In the binary representation, for each dot d ∈ D, piece type t = 1, ..., T and rotation

r = 1, ..., Rt, a variable which tells if the piece type t at rotation r is placed or not on

the dot d is de�ned. Speci�cally, the variable δdtr is de�ned as 1 if piece t at rotation r

is placed on the dot d; and 0 otherwise. If the dot d ∈ D does not belong to the IFPtr,

δdtr is equal to zero.

For the OR community this representation can be more intuitive to represent the

problem constraints since each variable carries only the information of a speci�c piece,

rotation and dot. However, this representation needs a huge number of variables with

small (binary) domains. For example, a small problem where ten piece types, with

four possible rotations each, are candidates to be placed in a board with one hundred

dots needs about four thousand binary variables (10 × 4 × 100 = 4000) to represent

the placement positions for the pieces.
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6.2.2 Non-overlap constraints based on the binary representa-

tion

Consider that piece type t at rotation r is placed on dot d ∈ D. In order to enforce

non-overlap between this piece and piece type t′ at rotation r′, all variables δt′r′d′ , for

dots d′ ∈ NFP t′r′

trd , are set to 0 as follows:

If (δdtr = 1) Then (δd
′

t′r′ = 0),

t = 1, ..., T, t′ = t, ..., T, r = 1, ..., Rt, r
′ = 1, ..., Rt′ , d ∈ D, d′ ∈ Φt′r′

trd . (6.1)

These constraints propagate when some δtrd is set to 1 in the search, which happens

when some piece is positioned. As one of these constraints propagates, one binary

variable becomes ground, i.e., its domain has only the 0 value. To enforce all possible

non-overlap constraints, for each dot D it is necessary to create a constraint associating

all T piece types with their Rt possible rotations that can be placed on this dot with

the other T piece types at Rt possible rotations that can be placed on the NFP t′r′

trd

set. To avoid the overlap among the pieces
∑

d∈D
∑T

t=1

∑T
t′=t

∑Rt

r=1

∑Rt′
r′=1 |NFP t′r′

trd |
constraints are needed, where |.| denotes the cardinality of the set.

6.3 CP formulation based on integer domains

Using binary variables to represent the combination of dots, piece types and rotations

leads to a large number of variables. As an alternative, we consider integer domain

variables to represent the status of the board dots. With this representation the number

of variables needed to formulate the constraints is reduced while their domains have

more possible values.

6.3.1 Integer representation

irregular cutting and packing problems aim to place pieces, which may be rotated,

on one or more boards. In the integer representation, each piece type at a particular

rotation is mapped into a single number. We use the piece types introduced before,

t = 1, ..., T , and their corresponding rotations r = 1, ..., Rt. The integer number

associated with piece type t at rotation r, ntr, is given by:

ntr = (t− 1)×Rmax + r,

where Rmax = maxt{Rt|t = 1, ..., T}. Note that this mapping has a simple inverse
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transformation. Given ntr, we obtain the piece type t and its rotation r as

t = b ntr
Rmax

c

and

r = ntr − b
ntr
Rmax

cRmax.

Let γd, d ∈ D, be the variable representing dot d of the board. The domain of

γd is composed by the possible values for (ntr) of piece types t and rotations r, such

that t with rotations r can be placed on dot d. Zero is also a possible domain value,

corresponding to the situation where no piece reference point is placed on the dot:

γd = {ntr|t = 1, ..., T, r = 1, ..., Rt, d ∈ IFPtr} ∪ {0}

Consider an example with three piece types, the �rst with two allowed rotations

and the second and third types with one allowed rotation each. The resulting mappings

are:

n11 = (t− 1)×Rmax + r = 0× 2 + 1 = 1

n12 = (t− 1)×Rmax + r = 0× 2 + 2 = 2

n21 = (t− 1)×Rmax + r = 1× 2 + 1 = 3

n31 = (t− 1)×Rmax + r = 2× 2 + 1 = 5

The mapping results in a unique identi�cation for each piece at each rotation.

Note that the mapping is not continuous, which is not an obstacle in the constraint

programming formulation.

Clearly, using this approach the number of variables used to model the problem is

smaller. There is still a problem with this representation: in a solution, each variable

must be assigned a single value, and therefore this representation prevents more than

one piece to be placed on the same dot. This may however be required by some feasible

solutions. This problem is overcome with a careful selection of the piece reference

point. Figure 6.2a illustrates two pieces whose chosen reference points lead to a feasible

positioning pattern which would not be obtained by our CP engine. To avoid this

situation, the reference points for the pieces must be chosen in a way that if two pieces

are placed on the same dot, then they overlap. This is the case with the new piece

reference points illustrated in Figure 6.2b.

109



tr

us

tr us

(a)

tr

us

tr us

(b)

Figure 6.2: (a) represents a placement position that is feasible for the binary represen-
tation and is infeasible for the integer representation. This can be avoided by changing,
for example, the reference point of piece tr as illustrated in (b).

Non-overlap constraints for the integer representation

Consider that piece t at rotation r, mapped as ntr, is placed on dot d ∈ D. In order

to avoid the overlap, the value nt′r′ must be removed from the domain of the dots

d′ ∈ NFP t′r′

trd , i.e., pieces of type t
′ at rotation r′ must not be positioned on dot d′:

If (γd = ntr) Then (nt′r′ 6∈ γd′),

t = 1, ..., T, t′ = t, ..., T, r = 1, ..., Rt, r
′ = 1, ..., Rt′ , d ∈ D, d′ ∈ Φd

t[r],t′[r′] (6.2)

Constraints (6.2) propagates when a variable γd becomes ground positive integer

value. When the domain of a variable is reduced, only some values are eliminated.

Although the number of constraints to enforce the non-overlap is exactly the same in

the integer and binary representation, this approach uses less variables.

6.4 NoOverlap: a new global constraint

In this section, a new global constraint NoOverlap is proposed. Despite the amount

of information that the integer representation has, the non overlap constraints derived

from built-in generic constraints such as if-then can not take advantage of it. The

development of a new global constraint tailored to the problem can reduce the number

of non-overlap constraints and make a more e�cient propagation.

In order to de�ne these new constraints, consider the set:

Ψtrd = {d′|d′ ∈
⋂

t′∈T,r′∈Rt′

Φd
t[r],t′[r′]}, (6.3)

which represents the set of dots where no other piece can be positioned if piece type

t at rotation r is placed over dot d. Figure 6.3 illustrates Ψtrd for an example where
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three pieces (Figure 6.3a) must be cut. Figure 6.3b presents the no�t polygons of piece

type t at rotation r with the other two pieces. When piece t at rotation r is placed

on the dot d, Φd
t[r],u[s] and Φd

t[r],u′[s′] intersect as shown in Figure 6.3c. The dots strictly

inside the intersection of the shaded regions de�ne the set Ψtrd.

tr

us

u′s′
NFP tr

u′s′

NFP tr
us

d

(a) (b) (c)

Ψtrd

Figure 6.3: Example of set Ψtrd.

Using this set, the NoOverlap constraint can be de�ned reducing the number of

operations needed to infer the domains of the variables domain through non-overlap

constraints. The specialized constraint is presented in (6.4).

NoOverlap(γd | Ψtrd,Φ
d
t[r],t′[r′]/Ψtrd). (6.4)

Given sets Ψtrd and Φd
t[r],t′[r′]/Ψtrd, the implementation of the constraint propagator

is simple. This constraint must be executed each time the variable γd assumes a speci�c

value. When this happens, the domain of all variables in the set Ψtrd set can be reduced

to zero. The domain of each γd′ , d
′ ∈ {Φd

t[r],t′[r′]/Ψtrd} must be reduced by the value

nt′r′ , for all t
′ = 1, ..., T and r′ = 1, ..., Rt′ . The constraint propagator is represented in

Algorithm 10.

This constraint is propagated only when γd is bounded by a value greater than zero.

Only one constraint is assigned to each dot and an e�cient propagation method is used

to reduce the domains of the variables.

6.5 CP models for all the variants of irregular cutting

and packing problems

The non-overlap constraints are independent of the irregular cutting and packing prob-

lem variant, however each variant needs a set of additional constraints to be represented.
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Algorithm 10: NoOverlap propagator.

• Input: The variables γd and sets Ψtrd and Φd
t[r],t′[r′]/Ψtrd, for all d ∈ D,

t = 1, ..., T , r = 1, ..., Rt;

• begin
Calculate t = b ntr

Rmax c and r = ntr − b ntr

Rmax cRmax;

For all d′ ∈ Ψtrd do

Do γ′d = 0;

For all
(
t′ = 1, ..., T, r′ = 1, ..., Rt′ , d

′ ∈ Φd
t[r],t′[r′]/Ψtrd

)
do

Remove nt′r′ from γd′ domain;

Return;

• end.

In the following, the constraint programming models for the problems shown in chapter

2 are presented. These models are composed by a set of built-in constraints based on

the binary or integer variables representation and the non overlap constraints presented

in sections 6.2, 6.3 and 6.4.

6.5.1 Irregular Placement Problem (IPP) and Irregular Identi-

cal Item Placement Problem (IIIPP)

The models for the IPP and the IIIPP are similar because the di�erence between

these two problem variants is on the number of piece types to be cut and this is a

characteristic of the problem instance.

In these problems, the board dimensions are de�ned by the instance and therefore

the initial domains can be determined in the preprocessing phase using the IFP (Section

6.1). The models for the IPP (or IIIPP) are completed by adding the non-overlap

constraints and an adequate objective function.

In the binary representation the non-overlap constraints are represented in (6.1).

The IPP and the IIIPP are both output maximization problems, therefore the

number of boards available to be cut is �xed and the objective function must maximize

the value of the pieces cut (extracted) from these boards. Speci�cally, considering that

each piece of type t = 1, ..., T has a value vt, the objective function that maximizes the

pro�t can be expressed by (6.5).
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maximize
∑
d∈D

T∑
t=1

Rt∑
r=1

vtδ
d
tr. (6.5)

If vt is de�ned as the area of the pieces, this objective minimizes the waste. The

objective function (6.5) and Constraints (6.1) compose the binary formulation of the

IPP and IIIPP.

In the integer representation the non-overlap constraints may be the one in (6.2)

or the proposed NoOverlap constraint (6.4).

As the piece types are mapped, the objective function is slightly di�erent. For

each piece of type t = 1, ..., T at rotation r = 1, ..., Rt the number of variables that

were bounded in ntr must be counted and then this number must be multiplied by

the piece value. The sum of these values is the objective function value. This expres-

sion can be formulated using the built-in constraint count that is usually available in

constraint programming solvers. Expression (6.6) is the objective function for output

maximization problems for variables with integer domains.

maximize
T∑
t=1

count
d∈D,r=1,...,Rt

(γd = ntr)vt. (6.6)

The objective function (6.6) together with Constraints (6.2) de�ne the integer for-

mulation of IPP and IIIPP.

The integer formulation with a specialized non-overlap constraint is obtained if the

objective function (6.6) is combined with the new global constraint NoOverlap (6.4).

6.5.2 Constrained Irregular Placement Problem (IPPc) and Ir-

regular Knapsack Problem (IKP)

The models for the IPPc and the IKP can be built on the model for the IPP simply

by adding a constraint that limits the number of pieces of each type to cut. In these

two variants, as in the IPP, the board dimensions are de�ned by the instance and

therefore the initial domains can be determined in the preprocessing phase using the

IFP (Section 6.1).

The IPPc and the IKP have similar models, because the di�erence between these

two problem variants is on the demand for each piece type, again a characteristic of
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the problem instance.

In the binary representation Constraints (6.7) limit the number of pieces to cut.

These constraints count the number of times that a piece type is present in the solution

and guarantee that this number is less than or equal to the limit qt for piece type t.

count
d∈D,r=1,...,Rt

(
δdtr = 1

)
≤ qt, t = 1, ..., T, (6.7)

The model for IPPc and IKP for decision variables with binary domains is obtained

by adding the objective function (6.5), the Constraints (6.1) and the Constraints (6.7).

In the integer representation Constraints (6.8) ensure that the demand for the

pieces is not exceeded. For all the pieces types t, the constraints count the number of

times that the variables assume the value ntr, for all r = 1, ..., Rt, and require that this

number is less than or equal to the limit qt for piece type t.

count
d∈D,r=1,...,Rt

(γd = ntr) ≤ qt, t = 1, ..., T. (6.8)

The model for IPPc and IKP for decision variables with integer domains is obtained

by adding the objective function (6.6), the Constraints (6.2) and the Constraints (6.8).

The integer formulation with the new global constraint NoOverlap is obtained by

combining the objective function (6.6), the Constraints (6.8) and the global constraint

NoOverlap (6.4).

6.5.3 Irregular One Open Dimension Problem (I1ODP)

The I1ODP is an input minimization problem and therefore the length of the board is

not known a-priory. However, de�ning an upper bound to the solution length (L) is

enough for the board to be considered �nite and rectangular. Knowing L the initial

domains of the decision variables can be determined in the preprocessing phase using

the IFP (Section 6.1).

In all input minimization problems the demand qt for each piece of type t = 1, ..., T

is known and needs to be met. The objective is to minimize the board length used to

cut all the demanded pieces.

In the binary representation Constraints (6.9) ensure that the demand for the

pieces is met. These constraints count the number of times that piece type t is in the
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solution and guarantee that this number is equal to the demand qt.

count
d∈D,r=1,...,Rt

(
δdtr = 1

)
= qt, t = 1, ..., T, (6.9)

To express the objective function, the position of each piece must be analyzed in

order to determine the objective function value. As the objective is to minimize the used

board length, the piece that occupies the rightmost position on the board determines

the value for the objective function. In the binary formulation this objective can be

represented by (6.10).

minimize max
d ∈ D

t = 1, ..., T

r = 1, ..., Rt

(dx + lrighttr )δdtr. (6.10)

Together, the objective function (6.10) and Constraints (6.9) and (6.1) compose the

model of I1ODP using binary variables.

In the integer representation the demand is accounted by Constraints (6.11)

which for each t=1,...,T count the number of times that variable γd assumes the value

ntr, for all r = 1, ..., Rt, and require this number to be equal to demand qt of piece type

t.

count
d∈D,r=1,...,Rt

(γd = ntr) = qt, t = 1, ..., T. (6.11)

In order to measure the objective of I1ODP additional constraints must be used.

Consider the variable L that measures the solution length. Constraints (6.12) ensure

that L will be at least as long as the solution length.

If (γd = ntr) Then

(
L ≥ dx + lrighttr

)
, d ∈ D, t = 1, ..., T, r = 1, ..., Rt. (6.12)

Using Constraints (6.12), the objective function for the irregular 1ODP can be

expressed by (6.13).

minimize L. (6.13)
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The model for the I1ODP with integer-domain variables can be represented by ob-

jective function (6.13) supported by Constraints (6.2), (6.11) and (6.12).

The integer formulation with the new global constraint NoOverlap (6.4) comprises

the objective function (6.13), the global constraint (6.4) and the Constraints (6.11)

and (6.12).

6.5.4 Irregular Cutting Stock Problem (ICSP) and Irregular Bin

Packing Problem (IBPP)

The di�erence of ICSP and IBPP is on the demand for each piece type, i.e. the formu-

lations may be the same and only the instances di�er.

This problem aims to cut all the demanded pieces from N boards, minimizing the

number of used boards. All the pieces must be completely inside one of the boards and

it is considered that all the boards have the same width W and length Lboard.

To handle this problem, the number of boards required to cut all the pieces must be

estimated. In order to represent the problem using the same de�nition for the variables,

consider an extended board of width W and length L = N × Lboard. N − 1 vertical

cuts are made in the extended board dividing it in the N original boards. In order

to avoid to place the pieces over the cuts, some additional constraints on the IFP 's

must be considered and will be presented for each di�erent variable domain. Figure 6.4

illustrates an example of a board and the new IFP 's for a piece of type t at rotation

r (IFPtr).

lrighttr llefttr lrighttr llefttr

wbottomtr

wtoptr

Figure 6.4: Board used on irregular cutting stock problems and irregular bin packing
problems.

According to this board de�nition, the objective for ICSP and IBPP is the same as

the one used to represent I1ODP. This objective ensures that the number of boards

used will be minimized and that the used length of the last board will be reduced and

therefore the material waste of this last board is also minimized.

In the binary representation consider, to de�ne the IFP 's, that each dot d ∈ D
has coordinates (dx, dy). The region of IFPtr can be inferred by �xing the domain of
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δdtr to zero to avoid piece type t in rotation r to be over the cuts, i.e. dx− llefttr < k× L
N

or dx + lrighttr > (k + 1)× L
N
, for k = 1, ..., N − 1

Note that as the dots, the dimensions of the pieces and the dimensions of the board

are known, the domains of the variables can be reduced in a pre-processing phase.

Considering the board de�nition presented in this section and the corresponding

domain reductions, the objective function (6.10) together with Constraints (6.9) and

(6.1) models the ICSP and the IBPP with binary variables.

In the integer representation similarly to the binary case, the IFPtr can be used

to reduce the domains of γd by ntr if dx − llefttr < k× L
N
or dx + lrighttr > (k + 1)× L

N
for

k = 1, ..., N − 1. These domain reductions can be done in the pre-processing phase.

Considering the board de�nition presented in this section and the corresponding

domain reductions, the objective function (6.13) together with Constraints (6.11) and

(6.2) models the ICSP and the IBPP with integer variables.

By replacing Constraints (6.2) by the global constraint NoOverlap (6.4) the integer

formulation with a custom constraint is obtained.

6.5.5 Irregular Two Open Dimension Problem (I2ODP)

Developing exact methods for the I2ODP demands some more e�ort compared with the

other cutting and packing problem variants. In this problem variant two board dimen-

sions must be estimated, leading to a large board and, consequently, to a formulation

with a large number of variables. Nevertheless, depending on the objective function,

the domains of some variables may be reduced in the pre-processing phase.

If the objective is to minimize the area of a rectangle that contains all the pieces

and if it is known that all the pieces �t in a rectangle of area A, then, for each piece

type t and rotation r, the domains of the variables assigned to the dots that do not

respect inequality (6.14) must be reduced.

(x+ lrighttr )× (y + wtoptr ) ≤ A. (6.14)

Note that the use of a dot that does not respect this inequality leads to a board

with an area larger than A. It is also clear that the length (width) of the board will

be at least as long (high) as the longest (highest) piece type t at rotation r. Figure 6.5

shows a rectangular board and the region de�ned by inequality (6.14) is represented

in light gray. The rectangle within the curve is an example of a region that a solution

can use. It is important to highlight that these irregular boards can be de�ned at a

pre-processing phase reducing the number of constraints in the model.
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A

Figure 6.5: Board used on open dimension problem with two open dimensions.

When two dimensions are open and the objective is to minimize the used area,

the objective is non-linear, but it is important to highlight that it is possible to solve

this nonlinear problem because constraint programming does not require neither the

constraints nor the objective function to be linear.

In the binary representation the objective function (6.15) minimizes this rectan-

gular area.

minimize max
d ∈ D

t = 1, ..., T

r = 1, ..., Rt

(dx + lrighttr )δdtr × max
d ∈ D

t = 1, ..., T

r = 1, ..., Rt

(dy + wbottomtr )δdtr. (6.15)

To represent the I2ODP, Constraints (6.1) and (6.9) are combined with objective

function (6.15).

In the integer representation additional constraints must be used to de�ne the

objective function. Consider the variable L that measures the length of the solution

and W that measures the width of the solution. Constraints (6.12) and (6.16) ensure

that L and W will properly represent the board length and the board width.

If (γd = ntr) Then
(
W ≥ dy + wbottomtr

)
, d ∈ D, t = 1, ..., T, r = 1, ..., Rt. (6.16)

To minimize the area of the rectangle that contains all the pieces, objective function

(6.17) is used.

minimize L ×W . (6.17)

The formulation of the I2ODP with integer variables is obtained using objective
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function 6.17 subject to Constraints (6.2), (6.11), (6.12) and (6.16).

By changing Constraints (6.2) by Constraints (6.4) the overlap between pieces is

solved using the new global constraint NoOverlap.

It is important to highlight that open dimension problems can have many di�er-

ent objectives. The minimization of the board length and the minimization of the

area of the rectangle were chosen because these objectives were already studied in the

literature.

6.6 Computational experiments with the di�erent CP

models

In this section, the computational experiments with all the proposed constraint pro-

gramming models are presented. The experiments were run on a computer with an Intel

Xeon Processor E5-2450 with 64GB of memory using Scienti�c Linux 6 operational sys-

tem. The maximum solution time allowed for each problem with any method was one

hour. To implement and solve the problem formulations, the constraint programming

solver provided in IBM ILOG CPLEX 12.6 was used.

To identify the problem variant and the constraint programming model used to

solve it, the codes are named by the abbreviation of problem variant name and a

speci�cation of the model. The constraint programming models are represented by

Bin, Int or IGC. For example, the irregular placement problem (IPP) solved by the

constraint programming model with binary variables (Bin) is named IPP -Bin.

6.6.1 De�ning instances

The instances used to run the computational experiments are based on the ones used

in the literature to solve the irregular ODP with one open dimension. As this is

the most studied variant of the problem, many instances were proposed to evaluate

solution methods. To evaluate and compare the performance of the proposed models,

a subset of instances was taken from ESICUP3. The chosen instances are Blaz1, Blaz2,

Shapes0, Shapes1, Fu and Dagli. The mesh used for instances Blaz1, Blaz2, Shapes0

and Shapes1 has a re�nement ∆ = 1 and the mesh used to solve Fu and Dagli has

a re�nement ∆ = 2. The choice of di�erent values of ∆ for the instances guarantees

that they can be solved by the three proposed models. In a second phase, the best

approach is used to solve larger instances (e.g., Jakobs1, Jakobs2, Shirts) besides Blaz1,

Blaz2, Shapes0, Shapes1, Fu and Dagli with a more re�ned value for ∆, adapted to

3EURO Special Interest Group on Cutting and Packing: http://paginas.fe.up.pt/ esicup/
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each problem variant studied. In this phase, the mesh re�nement ∆ of each instance

is speci�ed in the tables.

The instances used for each problem variant were derived from these base-instances.

For the irregular ODP with one open dimension, an upper bound on the length of the

board L must be de�ned. The value of L must be carefully set, because on the one

hand it needs to be large enough to contain feasible solutions, but on the other hand

the number of problem variables increases with this dimension. L is de�ned as the

�rst solution found by the model with the global constraint run with a board size big

enough to �nd a feasible solution in less than one minute. This model was chosen to

be executed because, as showed in Section 6.6.4, it uses less memory than the other

two approaches. Therefore, for the instances Blaz1, Blaz2, Shapes0, Shapes1, Fu and

Dagli the board length L was de�ned respectively as 32, 24, 80, 77, 38 and 85.

For the problem variants where the board has �xed dimensions (KP , PP , IIPP ,

BPP and CSP ), following Song and Bennell (2014) the length of the board is de�ned

as equal to its width. The width of the board is always known as the original instances

come from the strip packing problem. In the input minimization problems, where

the demand is constrained, the demand of the original instance is maintained. In the

problem variants where the pieces must have a value, the value of each piece is set as

its area.

In IIPP only one piece type must to be placed on the board. To generate instances

for this problem, the pieces from instances Blaz2 and Shapes1 were used to create eight

new instances. Each instance contains only one of the pieces from the original instance

as depicted in Figures 6.6 and 6.7.

1 2 3 4

Figure 6.6: Enumerating pieces in the Blaz2 instance.

1 2 3 4

Figure 6.7: Enumerating pieces in the Shapes1 instance.

When, in the original instance, a piece has an allowed rotation, this characteristic

is maintained in the new instance.
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6.6.2 Output maximization problems

In the output maximization problems the board is well de�ned and the problem is

to decide which pieces will be cut and the placement positions of these pieces on the

board. The results comparing the three proposed models for the variants of this class

of problems are presented in Sections 6.6.2, 6.6.2, 6.6.2 and 6.6.2.

Irregular IIPP (IIIPP)

The irregular identical item placement problem (IIIPP) consists of cutting a single

irregular piece type from a board with �xed dimensions. Table 6.1 presents the results

for the IIIPP obtained by the three proposed models. In the table, the instance name

is in the �rst column. Columns three and four present the value of the solution and the

time for the model with variables with binary domains. Columns four and �ve (six and

seven) have the same content of columns two and three for the model with variables

with integer domains (for the model with the proposed global constraint NoOverlap).

Table 6.1: Results reached for irregular IIIPP

IIIPP -Bin IIIPP -Int IIIPP -IGC

Instance Solution Time to �nd Solution Time to �nd Solution Time to �nd
Blaz2-1 144.0 1040.2* 144.0 779.8* 144.0 0.0*
Blaz2-2 155.0 1.4 155.0 1.3 155.0 0.4
Blaz2-3 168.0 0.2 168.0 0.3 168.0 0.3
Blaz2-4 121.0 878.5* 121.0 580.3* 121.0 215.5*

Shapes1-1 880.0 119.4 880.0 473.3 880.0 1.8
Shapes1-2 1080.0 174.5 1080.0 30.9 1080.0 0.8
Shapes1-3 952.0 2982.4 924.0 1128.9 924.0 3067.4
Shapes1-4 1160.0 115.0 1180.0 301.1 1220.0 4.4

*: optimal solution.

As in this problem variant only one piece type is placed the binary and integer

representations are very similar. Considering the solution values, all the approaches

reach the same values except for the instances Shapes1-3 where the best solution was

found by by the model with binary decision variables and Shapes1-4 where the best

solution was found by the integer program with the proposed global constraint.

The integer program with the proposed global constraint could �nd better or equal

solutions faster than the other proposed formulations except for the instances Shapes1-

3 and Blaz2-3. This fact happens because even for one piece type, the global constraint

can signi�cantly reduce the number of constraints necessary to avoid pieces overlap.
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Irregular PP (IPP)

The irregular placement problem (IPP) aims to place a number of pieces on a board

in order to maximize the value extracted by cutting the pieces. Table 6.2 presents the

results obtained using the proposed models to solve the irregular placement problem

and the columns have the same type of information as in Table 6.1.

Table 6.2: Results reached for IPP without demand constraints.

IPP -Bin IPP -Int IPP -IGC

Instance Solution Time to �nd Solution Time to �nd Solution Time to �nd
Blaz1 214.0 1449.6 209.0 773.2 210.0 1596.5
Blaz2 178.0 333.6 178.0 293.3 178.0 102.9

Shapes0 1104.0 1934.0 1108.0 2946.1 1128.0 3156.4
Shapes1 1096.0 400.9 1104.0 1888.6 1104.0 467.9

Fu om om om om 1402.0 3053.0
Dagli om om om om 2493.5 1459.0

om: out of memory.

Among the three models, none was able to prove the solution optimality in the

given time limit for any instance. It is possible to verify that, except for the instance

Blaz1, IPP -IGC found solutions with the same or better quality than the other two

formulations.

As to the computational times, these are di�cult to compare because the solutions

obtained with the various models are very di�erent. However, for the instance Blaz2

where all the methods reached the same solution quality, IPP -IGC was the fastest

model. Also, for Shapes1, IPP -Int and IPP -IGC found solutions with the same quality

and IPP -IGC was more than three times faster than IPP -Int.

Irregular PP with demand constraints (IPPc)

The irregular placement problem with demand constraints (IPPc) has a smaller solution

space compared with the irregular PP without demand constraints. It happens because

with a reduced number of pieces to allocate, in some cases the variable domains can be

quickly reduced. In Table 6.3, the computational experiments for IPPc and for each

model are presented. The columns of the table have the same type of content as in

Table 6.1.

IPPc -IGC was the only approach able to �nd a feasible solution for the instances Fu

and Dagli. It was also possible to prove optimality for the Fu instance in eight seconds.

This happens because, as the demand for the items is constrained, all the pieces can

be placed inside the board and therefore there is no better solution. For the Blaz2

instance, IPPc -Bin, IPPc -Int and IPPc -IGC found solutions with the same value
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Table 6.3: Results reached for IPP with demand constraints.

IPPc -Bin IPPc -Int IPPc -IGC

Instance Solution Time to �nd Solution Time to �nd Solution Time to �nd
Blaz1 191.5 601.4 192.0 2820.8 192.5 963.0
Blaz2 168.0 28.5 168.0 47.6 168.0 6.5

Shapes0 1024.0 2501.7 1064.0 1458.5 1072.0 1782.7
Shapes1 1044.0 2265.7 1048.0 2478.0 1052.0 601.2

Fu om om om om 1083.0* 1.4
Dagli om om om om 2688.1 2102.4

*: optimal solution.
om: out of memory.

although IPPc -IGC reached this solution more than four times faster than IPPc -Bin

and more than seven times faster than IPPc -Int.

At a �rst sight it would be expected that, for the same instance, the solutions

for IPPc to be worse than the solutions for IPP. However, for the Dagli instance, the

solution obtained by IPPc -IGC has a better value than the one obtained by IPP -IGC. It

happens because with the demand constraints the IPPc solution space can be drastically

reduced allowing the solution method make a more thorough search.

Irregular KP (IKP)

The irregular knapsack problem (IKP) can be viewed as a special case of IPPc where

the demand of each piece is limited to one unit. An instance of IPPc can therefore be

easily converted into an IKP instance considering that each demanded item is a piece of

a di�erent type. Clearly it is better to consider the pieces of same type together since

it reduces the number of constraints used to represent the problem in all formulations.

In order to evaluate the performance of the solution method over this problem variant

the same instances solved by IPPc were solved by IKP considering di�erent piece copies

as di�erent piece types. Table 6.4 presents the computational experiments for IKP and

each proposed problem model. The columns of this table have the same type of content

as the one of Table 6.1.

For this problem, the binary and integer programs can only solve the instances

Blaz1 and Blaz2. For the other instances the memory used exceeds the limit imposed.

The solution values obtained for the instance Blaz1 with IKP -Bin and with IKP -Int

are worse than the value obtained with IKP -IGC. For the instance Blaz2 the three

models reached the same solution value, however IKP -IGC was able to �nd this solution

faster than the other formulations.

The IKP -IGC model found feasible solutions for all the instances. This happened

because using the proposed global constraint to avoid the pieces overlap, the number
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Table 6.4: Results reached for IKP.

IKP -Bin IKP -Int IKP -IGC

Instance Solution Time to �nd Solution Time to �nd Solution Time to �nd
Blaz1 180.5 996.88 185.5 2889.40 190.5 3166.03
Blaz2 168 171.95 168 202.16 168 26.12

Shapes0 om om om om 948 1291.53
Shapes1 om om om om 1036 1388.04

Fu om om om om 1083 1.40
Dagli om om om om 2572.9 1278.64

om: out of memory.

of constraints needed to represent the feasible solution space is reduced, consuming

less memory. Furthermore, as this constraint propagates faster, good quality solutions

could be found, even considering that each demanded piece is of a di�erent type.

As presented in Section 6.5.2, the models for IPPc and IKP are the same. It is

possible to observe that no solution found by the IKP program is better than the

solution found by IPPc program. This behavior was expected since considering the

pieces of same type in the same constraints reduces the number of constraints in the

model and avoids symmetric solutions.

6.6.3 Input minimization problems

Di�erent from output maximization problem, in input minimization problems either

the size of the board or the number of the boards to be used are unknown. In this

case, it is necessary to estimate bounds for the board size or for the number of boards

in order to de�ne the grid of dots used to represent the board.

Irregular 1ODP (I1ODP)

The irregular one open dimension problem (I1ODP) is the variant of irregular cutting

and packing problems most exploited on the literature. Table 6.5 presents the results

obtained by the I1ODP formulations proposed. The table columns display the same

content type of Table 6.1.

The initial length of the board L had to be estimated for all the instances, following

the procedure presented in Section 6.6.1. The estimated values of L are larger then

the board width, meaning that, for these instances, more dots are needed to represent

the board compared to output maximization problems and therefore the formulations

demand more resources to be run. Consequently, the instances Shapes0, Shapes1, Fu

and Dagli could only be solved by the model with the NoOverlap constraint. For the

Blaz1 instance, the I1ODP -IGC model was able to �nd a better solution compared
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Table 6.5: Results reached for I1ODP.

I1ODP -Bin I1ODP -Int I1ODP -IGC

Instance Solution Time to �nd Solution Time to �nd Solution Time to �nd
Blaz1 30.0 2571.9 30.0 893.3 28.0 2791.2
Blaz2 23.0 73.9 22.0 50.1 22.0 5.3

Shapes0 om om om om 65.0 673.81
Shapes1 om om om om 71.0 1313.3

Fu om om om om 34.0 221.1
Dagli om om om om 76.0 1577.6

om: out of memory.

with the other proposed approaches. Moreover, I1ODP -IGC and I1ODP -Int found a

better solution for Blaz2 compared with the one obtained with I1ODP -Bin. To �nd

this solution I1ODP -IGC was about ten times faster than I1ODP -Int.

Irregular CSP (ICSP)

The irregular cutting stock problem (ICSP) aims to cut all the pieces from boards using

the minimum number of boards. In this paper, the irregular cutting stock problems

is formulated similarly to I1ODP minimizing the number of boards used to perform

the cuts and minimizing also the used length of the �last� board. The computational

results for ICSP are presented in Table 6.6 where the columns present the same type

of information as in Table 6.1.

Table 6.6: Results reached for ICSP.

ICSP -Bin ICSP -Int ICSP -IGC

Instance Solution Time to �nd Solution Time to �nd Solution Time to �nd
Blaz1 30.0 2746.3 34.0 72.7 30.0 1385.1
Blaz2 23.0 18.4 23.0 8.3 23.0 5.2

Shapes0 om om om om 69.0 740.3
Shapes1 om om om om 70.0 1250.7

Fu om om om om 34.0 63.8
Dagli om om om om 76.0 3081.0

om: out of memory.

As the formulation of ICSP is similar to the I1ODP formulation it is natural to expect

that the methods would be able to solve the same instances. In fact, a feasible solution

for all the proposed formulations of ICSP could only be found for instances Blaz1 and

Blaz2. For the instance Blaz1, ICSP -Bin and ICSP -IGC found a solution with better

quality than ICSP -Int. In this case ICSP -IGC was twice faster than ICSP -Bin to �nd

this solution. All the methods reach the same solution value for Blaz2 but ICSP -IGC
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was slightly faster then the other methods. For the other instances, ICSP -IGC was

able to �nd feasible solutions within the time limit.

The ICSP formulations are obtained reducing the domains of some of the variables

of the I1ODP formulation. For the instance Shapes1, ICSP -IGC found a better solution

compared with the one found with the I1ODP formulation. That is because with reduced

variable domains ICSP can explore more intensively the search space and eventually

�nd a better solution within the time limit. There are however some solution values

reached with I1ODP that could not be reached with ICSP.

Irregular BPP (IBPP)

Just like in the ICSP, the irregular bin packing problem (IBPP) aims to cut all the

demanded pieces using the minimum number of boards, but the demand of each piece

is limited to one unit. The formulation of this problem is equal to the ICSP formulation,

but the instances were adapted to represent the problem as described in Section 6.6.2,

i.e. considering that each demanded item is a piece of a di�erent type. The results of

IBPP are presented in Table 6.7 with the same organization as in Table 6.1.

Table 6.7: Results reached for IBPP.

IBPP -Bin IBPP -Int IBPP -IGC

Instance Solution Time to �nd Solution Time to �nd Solution Time to �nd
Blaz1 om om om om 34.0 14.2
Blaz2 23.0 312.1 23.0 146.8 23.0 5.3

Shapes0 om om om om 73.0 3424.9
Shapes1 om om om om 75.0 1649.2

Fu om om om om 34.0 63.8
Dagli om om om om 78.0 2453.5

om: out of memory.

IBPP -Bin and IBPP -Int found a solution only for the instance Blaz2. On the other

hand IBPP -IGC solved all the instances. All the models reached the same solution value

for the instance Blaz2 but IBPP -IGC was more than 20 times faster then IBPP -Int

to �nd the solution and IBPP -Int found the solution 2 times faster than IBPP -Bin.

Comparing the solutions of IBPP -IGC with the solutions obtained for equivalent formu-

lation ICSP -IGC for the same set of instances, with ICSP -IGC strictly better solutions

were found, except for the instance Fu, because this instance has already a demand of

one for all the pieces.
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Irregular 2ODP (I2ODP)

In the irregular two open dimension problem (I2ODP) the two dimensions of the board

have to be estimated. Therefore, even if some dots are not considered, as proposed

in Section 6.5.5, the number of dots in the I2ODP models is higher than the number

of dots in the other input minimization problems presented. Table 6.8 presents the

computational results for the I2ODP formulations. The information in the table is

organized in a similar way as in Table 6.1.

Table 6.8: Results reached for I2ODP.

I2ODP -Bin I2ODP -Int I2ODP -IGC

Instance Solution Time to �nd Solution Time to �nd Solution Time to �nd
Blaz1 520.0 2800.8 494 3184.9 423.0 866.2
Blaz2 284.0 2482.6 280.0 4.9 288.0 37.9

Shapes0 om om om om 3024.0 1080.9
Shapes1 om om om om 2704.0 1558.4

Fu om om om om 1225.0 2349.1
Dagli om om om om 4290.0 3557.6

om: out of memory.

The only model that could solve all the instances was I2ODP -IGC. The other two

methods were only able to solve the Blaz1 and Blaz2 instances. For Blaz1 instance,

the best solution was found by I2ODP -IGC formulation and the worst solution was

found by I2ODP -Bin formulation. On the other hand Solving I2ODP -IGC found the

worst solution compared to the other formulations for the instance Blaz2. This can

happen since the problem is small enough to be well explored by all formulations and

some solutions can be explored �rst in some formulations. I2ODP -IGC was the only

formulation able to solve the remaining instances.

6.6.4 Memory usage

An important information when an approach is chosen is the amount of memory that

it uses to solve the problems. It is clear that each problem variant uses a di�erent

amount of memory since the number of variables and constraints are di�erent. Dif-

ferent problem variants imply on how the domains are exploited and consequently on

the memory used by the solution method to perform the search. Notwithstanding the

contrast in memory consumption of the problem variants, the main aspects of the pro-

posed constraint programming models can be observed in all the problem variants in

di�erent scales. In this section the memory consumption of the proposed constraint

programming models is presented for two irregular cutting and packing problem vari-

ants, an example of an output maximization problem, the IPP and an example of an

127



input minimization problem, the I1ODP.

Table 6.9 shows the memory used to solve the instances presented in Section 6.6.1

for the IPP using the three proposed constraint programming models. In the table,

the �rst column shows the instance names. Columns two, three and four respectively

shows the memory used (in gigabytes) by the binary formulation, integer formulation

and the integer formulation with NoOverlap constraint.

Table 6.9: For the IPP, the Constraint Programming Model with the Global Constraint
(IGC) uses signi�cantly less memory than in the other models.

IPP -Bin IPP -Int IPP -IGC

Blaz1 3.50 3.00 0.10
Blaz2 1.40 0.96 0.10

Shapes0 16.60 15.40 0.80
Shapes1 35.80 33.40 1.00

Fu om om 0.30
Dagli om om 1.60

om: out of memory.

Comparing the amount of memory used by all the methods, it is possible to see

that IPP -IGC uses signi�cantly less memory than IPP -Bin and IPP -Int. The low

amount of memory required by IPP -IGC is a result of the reduced number of constraints

used to avoid pieces overlap. The number of variables of IPP -Int is smaller than in

IPP -Bin, however the memory usage is similar in both approaches. This happens

because the number of constraints needed to represent the problem in both approaches

is similar and the number of constraints is considerably higher than the number of

variables. Speci�cally, as stated in Sections 6.2 and 6.3, the number of constraints

needed to ensure the non overlap among pieces in binary and integer formulation

is
∑

d∈D
∑T

t=1

∑T
t′=t

∑Rt

r=1

∑Rt′
r′=1 |Φd

t[r],t′[r′]| while the number of constraints needed to

avoid this overlap using the NoOverlap constraint is |D|. Also, the number of variables
needed to create the non overlap constraints in binary formulation is |D|×

∑
T Rt while

in the integer formulations only |D| variables are needed.
Naturally, the pattern of memory usage for the IPPc is very similar to the one for the

IPP since the formulations are very similar. The problem variant IKP follows also the

same pattern but globally the number of constraints and variables is higher, preventing

some instances to be solved. The problem variant IIIPP uses other instances, however

the pattern is similar to the one presented at Table 6.9.

Input minimization problems usually use more memory than output maximization

problems because the number of decision variables and constraints depends the initial

number of dots and consequently on the initial estimation (upper bound) determined

for the board length.
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Table 6.10 represents the memory used for the problem variant I1ODP to solve

the instances presented of Table 6.5. The columns of the table has the same type of

information described in Table 6.9.

Table 6.10: For the I1ODP, the Constraint Programming Model with the Global Con-
straint (IGC) uses signi�cantly less memory than in the other models.

I1ODP -Bin I1ODP -Int I1ODP -IGC

Blaz1 9.80 8.60 0.15
Blaz2 2.10 3.00 0.33

Shapes0 om om 2.00
Shapes1 om om 1.40

Fu om om 0.17
Dagli om om 0.84

om: out of memory.

Once again, I1ODP -Bin and I1ODP -Int used considerably more memory to solve

the instances compared with I1ODP -IGC. As for this case the need for memory is high,

only instances Blaz1 and Blaz2 could be solved by all the methods. As expected, the

binary and integer approaches have a similar memory usage while the approach with

the NoOverlap constraint needs a small amount of memory compared to them.

The ICSP problem variant is very similar to the I1ODP di�ering only on the de�nition

of the boards and consequently their memory usage is similar. The di�erence between

IBPP and ICSP is that in IBPP each piece copy is considered as an unique piece type

and in ICSP they are considered by types. Therefore, the memory usage has the same

pattern of IBPP and ICSP has the same behavior and is higher for IBPP when there are

more than one copy of a piece. Finally the I2ODP problem variant has a larger memory

consumption compared with I1ODP or ICSP since the board used in this formulation

has two dimensions to be estimated. Despite the di�erences between the formulations,

the pattern of memory usage is however the same as the one presented by the other

formulations of input minimization problems.

6.7 Solving larger problems and comparing with the

literature

Sections 6.6.2 and 6.6.3 showed the �exibility of constraint programming models to

solve di�erent irregular cutting and packing problem variants. It was possible to ver-

ify that, for the same problem variants, the constraint programming model with the

NoOverlap global constraint, IGC, performs better than the other two proposed con-

straint programming models. Furthermore, as was veri�ed in Section 6.6.4, the memory
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usage of IGC is much smaller than the one of the other models. For these two reasons,

the IGC was the constraint programming model chosen to solve the larger instances in

Section 6.7.1 and to make the comparisons with the literature in Section 6.7.2.

In Section 6.7.1 three problem variants were analyzed, speci�cally IPP, ICSP and

I1ODP. These problem variants were chosen because of their practical relevance and

innovativeness of the solution method.

In Section 6.7.2 the results obtained with the IGC for the problem variant I1ODP are

compared with results of the Dotted Board Model proposed by Toledo et al. (2013).

All the experiments in both sections were run on the framework described in section

6.6.

6.7.1 Solving larger instances

The size of an irregular cutting and packing instance depends on several factors as the

number of piece types, the total number of pieces to be placed, the number of allowed

piece rotations, the board size and others. In our approach, the number of variables

and constraints of the problem is directly related to the discretization of the board, i.e.

the number of dots (or admissible positioning points) on the board. In this sense, an

instance can be considered small or large depending on the discretization used and, in

this section, all the instances are represented using a mesh with re�nement ∆ = 0.5.

IPP, ICSP and I1ODP, the variants of the irregular cutting and packing problem

selected for this phase were chosen because of their relevance in the literature. IPP is

a classical problem highly studied on the one-dimensional and regular two dimensional

cutting and packing problems. This problem emerges as a cutting pattern generator

in column generation techniques to solve the cutting stock problem, which clearly can

be extended to the irregular case. Column generation techniques lead to the optimal

relaxed solution of the cutting stock problem and a feasible integer solution should

be obtained by heuristics or branch-and-price techniques. On the other hand, the

ICSP formulation proposed solves the cutting stock problem exactly and each feasible

solution found during the search is an integer feasible solution to the problem. Lastly,

the I1ODP is the most studied variant among the irregular cutting and packing problems

and therefore should always be chosen to be evaluated with large instances.

The instances used are again the ones proposed for the I1ODP problem: Blaz1,

Blaz2, Shapes0, Shapes1, Fu, Dagli, Shirts, Jakobs1, Jakobs2. The instances were

taken from the ESICUP4 website. As in the previous section, the lengths of boards for

the IPP and the ICSP are de�ned as equal to the board width. Since the lengths of the

solutions for the instances Jakobs1 and Jakobs2 are shorter than the board width, the

4EURO Special Interest Group on Cutting and Packing: http://paginas.fe.up.pt/ esicup/
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board width considered for these instances was half the one of the original instances

to turn them more interesting to be solved by ICSP.

All the instances and problem variants were solved with the constraint programming

model using the global constraint (IGC) and the computational results obtained are

presented in Table 6.11. The �rst column has the instance name, the value of the

solution and the computational time needed to �nd this solution with IPP (ICSP and

I1ODP) are presented in columns two and three (four and �ve and six and seven)

respectively.

Table 6.11: A feasible solution was found for all the problem variants and instances
with ∆ = 0.5

IPP -IGC ICSP -IGC I1ODP -IGC

Instance Solution Time to �nd Solution Time to �nd Solution Time to �nd
Blaz1 203.5 687.4 30.0 1905.3 30.0 193.2
Blaz2 187.5 1717.9 22.0 2400.8 21.5 50.8

Shapes0 1176.0 2995.9 68.0 986.7 65.0 2938.9
Shapes1 1172.0 1124.5 68.0 2605.0 68.0 1867.4

Fu 1430.0 1243.6 34.0 3462.9 34.0 336.3
Dagli 2967.8 2932.6 75.0 524.3 70.0 367.5
Shirts 1815.0 2517.2 65.0 1427.6 65.5 1353.7

Jakobs1 378.5 1506.7 27.0 1729.6 26.5 620.0
Jakobs2 1058.0 2365.3 56.0 144.1 57.0 2983.5

Even using a smaller discretization, a feasible solution has been found for all the

problem variants and instances evaluated. Solving the IPP with a smaller discretization

produces strictly better solutions compared with the results presented in Table 6.2

(Section 6.6.2) for the Blaz2, Shapes0, Shapes1, Fu and Dagli instances. The solution

for the Blaz1 instance is however worse then the one presented in Table 6.2. This

may be explained by the dimension of the solution space which is about four times

bigger and may therefore, for this speci�c instance, disturb the search for solutions.

For the three remaining instances that were not considered in the previous tests, Shirts,

Jakobs1 and Jakobs2, feasible solutions were found.

For the ICSP, a solution with equal or better quality was found for instances Blaz1,

Blaz2, Shapes0, Shapes1, Fu and Dagli with a discretization ∆ = 0.5 comparing with

the solutions presented in Table 6.1 (Section 6.6.3). Also, feasible solutions were found

for the Shirts, Jakobs1 and Jakobs2 instances. Problems with thousands of pieces,

as solved by Bennell et al. (2015) heuristic, could not be solved with this constraint

programming model, but this approach can be an alternative when the cutting stock

problem instances are small. Moreover, using this formulation, the used length of each

board is minimized, leading to an waste reduction which can be specially advantageous

in problems with a relatively small number of pieces.
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Using a discretization of ∆ = 0.5 for the I1ODP better solutions were obtained for

the instances Blaz2, Shapes0, Shapes1, Fu and Dagli, compared with the ones presented

in Table 6.5 (Section 6.6.3). In the case of the Blaz1 instance, a solution with worse

quality was found. This is possible since the solution space is larger (∆ = 0.5) and

better solutions may not be reached within a given time. For the instances Shirts,

Jakobs1 and Jakobs2 the proposed formulation for I1ODP was able to �nd feasible

solutions.

Comparing the solutions in columns ICSP -IGC and I1ODP -IGC of Table 6.11 we

can observe that for the instances Shirts and Jakobs2 ICSP could �nd better solutions

then the ones found in I1ODP. This behavior is natural since ICSP is more restrict and

thus the solution space is smaller. If, in this smaller search space, there exist better

solutions for the ICSP and consequently for the I1ODP, they may be reached during a

time-limited search.

6.7.2 Comparing with the literature

The results presented in Section 6.6 demonstrate that an exact approach based on

constraint programming models is �exible and can be used to solve many variants of

cutting and packing problems. A question that arises is how the constraint program-

ming approach for irregular cutting and packing problems compares to other exact

methods in the literature. In fact, to the best of our knowledge, the only irregular cut-

ting and packing problem variant that is addressed with exact methods in the literature

is the I1ODP and therefore the comparison can only be done with this problem variant.

Among the exact approaches proposed in the literature for the I1ODP, we had to choose

the one with the same solution space, i.e. one where the reference point of the pieces

can only be placed over dots of a discretized board. The Dotted Board Model (DBM)

proposed in Toledo et al. (2013) has these characteristics and therefore the solutions

obtained by both methods are comparable. However, as the test setting used by Toledo

et al. (2013) was di�erent from the one used for I1ODP -IGC, the computational times

were not compared.

The test instances used were BLAZEWICZi, i = 1, ..., 5, and SHAPESj, j =

2, 4, 5, 7, 9, 15 from Toledo et al. (2013).

Table 6.12 compares the computational results obtained by solving the I1ODP with

the constraint programming model with the global constraint (I1ODP -IGC) with the

ones presented in Toledo et al. (2013) (I1ODP -DBM). The instance name is in the �rst

column of the table. Columns two and three display the solution lengths obtained by

the proposed constraint programming method with the global constraint and by the

Dotted Board Model.

The solutions obtained by the constraint programming model are always better or
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Table 6.12: Comparing the IGC and DBM to solve the I1ODP.

Instances I1ODP -IGC I1ODP -DBM

BLAZEWICZ1 8* 8*
BLAZEWICZ2 14* 14*
BLAZEWICZ3 20* 20*
BLAZEWICZ4 27* 28*
BLAZEWICZ5 34* 35*

SHAPES2 14* 14*
SHAPES4 25* 25*
SHAPES5 30* 30*
SHAPES7 45* 45*
SHAPES9 54* 54*
SHAPES15 65* 67*

*: solution was proven optimal within 5 hours.

equal to the ones obtained by the MIP model, however the Dotted Board Model was

able to prove optimality for �ve instances out of 11 while the constraint programming

approach was able to prove optimality for only 2 instances.

6.8 Conclusions

This paper presented for the �rst time in the literature constraint programming models

to solve several variants of irregular cutting and packing problems and proposed a new

global constraint NoOverlap to guarantee that the pieces do not overlap.

For each problem variant three constraint programming models were presented.

The proposed models were the �rst in the literature that could solve some instances to

optimality.

The constraint programming models use two types of variables, variables with bi-

nary and integer domains. The models with binary variables are based on the dotted

board model Toledo et al. (2013) where a binary variable is de�ned for each dot, piece

type and piece rotation. In the models with integer domain variables there is only one

variable de�ned for each dot and the domain of the variable represents the piece types

and the rotations. To smartly use all the information contained on the integer variable

domains a new global constraint NoOverlap was proposed. This global constraint en-

sures that the pieces do not overlap and is tailored to the problem, implying in a faster

propagation. The computational results showed the e�ectiveness of this new global

constraint solving all the problem variants.

Constraint programming is very �exible to model combinatorial optimization prob-

lems allowing the use of linear, non-linear or logical constraints to represent the solution

space of the problems. Therefore, all the proposed models may be adaptable to real
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problems where frequently some additional requirements are needed in a solution.

The proposed models have constraints general enough to be used in other problem

variations. As there are some di�erences in these problem variants, an interesting

direction for future work is to investigate each problem variation and develop new

global constraints tailored for each problem variant.
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Chapter 7

Conclusions and research directions

This thesis addressed the two-dimensional irregular cutting and packing problems

which consist of cutting convex and non-convex pieces from a board. Mathemati-

cal models and heuristics were proposed to solve the problem and also new geometric

structures were developed to support the creation of the methods.

To solve the two-dimensional irregular strip packing problem, two mixed integer

programming models were proposed in Chapter 3. These models consider that the

placement of the pieces on the board is continuous, i.e., the reference point of the

pieces can be placed in any position on the board. To attend the problem constraints,

the pieces are decomposed in convex polygons resulting in robust models that can

consider piece holes and narrow entries in their default formulation. The �rst model,

direct trigonometry model (DTM), avoids the overlap among pieces using only the

information about the piece vertices. In the literature, all the exact methods use

the no�t polygon to avoid the overlap among pieces, therefore, the DTM is simpler

to be modeled when geometric tools to generate the no�t polygons are not available.

Nevertheless, this model achieved competitive results compared to models that use no�t

polygons. The no�t polygon covering model (NFP −CM) avoids the overlap among

pieces using a covering of the no�t polygon. This covering is obtained by generating

the no�t polygon among the convex parts of each pair of pieces and composing the

no�t polygon of the entirely pieces with them. The NFP−CM outperforms the best

results obtained using mixed integer programming models in literature. Both models

allow piece rotations in a �nite number of angles. There are no other mixed integer

programming models in the literature that allow the pieces to be rotated. This chapter

originated the following research paper:

• Cherri, L. H., Mundim, L. R., Andretta, M., Toledo, F. M. B., Oliveira, J. F.,

Carravilla, M. A., Robust mixed-integer linear programming models for the irreg-

ular strip packing problem, European Journal of Operational Research, Available

online 11 March 2016.

135



In Chapter 4, a new dot data structure was proposed to handle the geometry of

irregular cutting and packing problems where pieces should be placed over a �nite set

of dots. This structure is composed by a list of dots which speci�es the pieces that

can be placed in each dot attending the inner�t polygon constraints. Furthermore, for

each possible placement of the pieces, the information of the overlap among pieces for

this dot is kept. Therefore, the dot structure embeds the most challenging geometric

issues of the irregular cutting and packing problems making easier the task of devel-

oping mathematical programming models and heuristics that are based on this type of

geometry. Using this structure, it is possible to introduce a distinct set of dots for the

pieces, i.e., each piece may have its own set of dots to be placed. Since each piece can

be placed in a speci�c set of dots, using the features of each instance a mesh generation

rule can be developed leading the solution methods to obtain better quality solutions in

less computational time. The worst case complexity analysis, in time and in space, was

calculated for each algorithm needed to build the structure. The dot data structure is

general enough to be used in any problem variant classi�ed by Wäscher et al. (2007)

and can provide more �exibility for some existing exact and heuristic methods.

Chapter 4 resulted in the following research paper:

• Cherri, L. H., Cherri, A. C., Carravilla, M. A., Oliveira, J. F., Toledo, F. M. B.,

Vianna, A. C. G., An innovative data structure to handle the geometry of nesting

problems, Submitted for publication, 2016.

Using the dot data structure, a model based heuristic to solve the irregular strip

packing problem was proposed in Chapter 5. The heuristic is deterministic and has

three phases. In the �rst phase, the dotted-board model is used to construct an initial

feasible solution and, in the second phase, the quality of this solution is improved. As

the dotted-board model can generate layouts with gaps among pieces, in the last phase

a compaction model is used to reduce these gaps. Computational experiments showed

that the procedure reached more compact layouts for the problem compared with the

solutions obtained by the dotted-board model and the model proposed by Alvarez-

Valdes et al. (2013) in a �xed amount of time, indicating that combining continuous

and discrete models is promising. In addition, compared to the state-of-art heuristics,

the proposed method found solutions with quality 6% worse in average. However,

considering that the proposed matheuristic is a deterministic procedure, its running

time is at least six times smaller than the other heuristics. The outcome of this chapter

resulted in the following research paper:

• Cherri, L. H., Carravilla, M. A., Toledo F. M. B., A model based heuristic for

the irregular strip packing problem. Under review, 2016.
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Concerning the other variants of the two-dimensional irregular cutting and packing

problems, in Chapter 6 new constraint programming models were proposed. Speci�-

cally, for each problem variant classi�ed by Wäscher et al. (2007), three models were

developed. Considering these models, one has binary domain variables, similarly to the

ones used in the dotted-board model. The other two models consider variables with

integer domains and they di�er in how the overlap among pieces is avoided. For �ve

out of six classi�ed variants, there was no exact solution method nor a mathematical

model in the literature, therefore, the proposed models were the �rst exact represen-

tation for these variants. Moreover, a new global constraint to eliminate the overlap

among pieces was proposed. Using this constraint, the amount of memory used to

represent the models and the time that the solver took to solve this model is signi�-

cantly reduced. Comparing the results obtained by the proposed models and by the

dotted-board model for the irregular strip packing problem, the constraint program-

ming formulation founds solutions with equal or better quality within the given time

limit. However, the dotted-board proved the optimality of more instances. Chapter 6

resulted in the following research paper:

• Cherri, L. H., Carravilla, M. A., Ribeiro, C., Toledo F. M. B., Optimality in

irregular cutting and packing problems: new constraint programming models.

Submitted for publication, 2016.

7.1 Research directions

Considering the outcomes of this thesis, some research directions emerge. We identi�ed

some promising research topics connected to each chapter of this thesis that will be

described now.

In Chapter 3, two mixed integer programming models for the irregular strip packing

problem were proposed. Both models can have their performance improved if new valid

inequalities and cuts are introduced or a specialized branch-and-cut algorithm for the

model is developed. In addition, as the DTM does not use no�t polygons to avoid the

overlap among pieces, it can be rewritten to consider the continuous rotations for the

pieces resulting in a mixed integer non-linear programming model. As well as DTM ,

this new model will need only the information of the piece vertices to be constructed.

In the literature, all the models that consider continuous rotations for the pieces use

phi-functions or a set of circles to represent the pieces. In this sense a non-linear model

based on DTM is promising, demanding simpler structures to be built.

In Chapter 4, a new data structure to represent the geometry of the irregular cutting

and packing problems was proposed. Using this structure new meshes of dots can be

de�ned leading the solution methods to obtain solutions with better quality in smaller
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computational time. Furthermore, speci�c meshes could make possible to prove that

the optimal solution of the problem with a �nite set of placement positions for the

pieces has the same quality of a solution obtained by the problem where the pieces

can be continuously placed on the board. Such characterization of placement dots has

been already explored for rectangle packing problems (Herz, 1972; Scheithauer, 1997;

Birgin et al., 2008).

In Chapter 5, a model based heuristic to solve the irregular strip packing prob-

lem was proposed. This heuristic can be adapted to solve other irregular cutting and

packing problem variants. In addition, the proposed matheuristic can inspire the devel-

opment of new ones which can be based on the exact methods proposed in this thesis

(Chapter 3 and Chapter 6).

In Chapter 6, constraint programming models were proposed to solve several vari-

ants of the irregular cutting and packing problems. These models are constructed

using general constraints that allow more intuitive representations for all problems.

To improve these models, each formulation could be individually investigated aiming

to propose constraints based on the problem structure. Moreover, the integration of

constraint programming with other optimization techniques should be evaluated.
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Appendix A: The pieces in metal

instance

The pieces vertices are presented below.

Piece 1

Number of vertices: 4

Vertices:

0.00 0.00

256.00 0.00

256.00 144.00

0.00 144.00

Number of holes: 0

Piece 2

Number of vertices: 4

Vertices:

0.00 0.00

100.00 0.00

100.00 120.00

0.00 120.00

Number of holes: 0

Piece 3

Number of vertices: 4

Vertices:

30.00 30.00

30.00 -198.00

-215.00 -198.00

-215.00 30.00

Number of holes: 1

Number of hole vertices: 4

Vertices:

0.00 0.00

-185.00 0.00

-185.00 -168.00

0.00 -168.00

Piece 4

Number of vertices: 4

Vertices:

0.00 0.00

0.00 -70.00

184.00 -70.00

184.00 0.00

Number of holes: 0

Piece 5

Number of vertices: 8

Vertices:

0.00 0.00

28.00 0.00

45.00 17.00

45.00 45.00

28.00 62.00

0.00 62.00

-17.00 45.00

-17.00 17.00

Number of holes: 0

Piece 6

Number of vertices: 6

Vertices:

24.00 38.00

24.00 -92.00

-84.00 -202.00

-236.00 -202.00

-260.00 -184.00

-260.00 38.00

Number of holes: 1
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Number of hole vertices: 5

0.00 0.00

-228.00 0.00

-228.00 -180.00

-94.00 -180.00

0.00 -84.00

Piece 7

Number of vertices: 4

Vertices:

0.00 0.00

100.00 0.00

100.00 150.00

0.00 150.00

Number of holes: 0

Piece 8

Number of vertices: 8

Vertices:

0.00 0.00

0.00 -136.00

12.00 -156.00

262.00 -156.00

286.00 -130.00

286.00 -106.00

268.00 -82.00

32.00 10.00

Number of holes: 0

Piece 9

Number of vertices: 4

Vertices:

0.00 0.00

160.00 0.00

160.00 110.00

0.00 110.00

Number of holes: 0

Piece 10

Number of vertices: 4

Vertices:

0.00 0.00

0.00 96.00

154.00 96.00

154.00 0.00

Number of holes: 0
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