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Abstract. The bootsirap moethodology s vsed in Phase [ of control charting to esti-
wate the nominal process parancters, together with the wse of robust estinates. We
evaluate the perlormance of the Mean-chart with estimated parameters for monitor-
ing the process location, where the estimales are obtained on the basis of a simple
reference sample or via bootstrapping from such sample. The run-length distribution
of the correspouding charts is obtained by Monte Carlo simulations.
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1 Introduction

The cont rol charts, introdueed by Shewhart in 1924, are one of the main tools in
Statistical Process Control (SPC), but. their domain has been successively en-
larged, with applicatious to areas as diverse as Health, Medicine, Geunetics, Bi-
ologv. Environmental Sciences, Finance, Metrology, Sports and Justice, among
others. For an overview of standard and non-standard applications of control
charts see. for instance, Montgomery[18], Woodall and Montgomery[27],128].
MacCarthy and Wasusri[17], Dull and Tegarden|11], Vardeman et al.[26], and
references therein,

To develop any control chart the nominal process parameters must he either
assumed known or estimaled. In practice the distribution of the process data as
well as the process parameters are usually unknown, being the process parame-
ters nsually estimated from an in-control Phase [ relorence sample, made up of
i subgroups of size n. befure we proceed to thie building of a (non-)parametric
control chart.

A streng cimphasis has been given to the analysis of the real performance of
control charts implemented on the basis of estimated paramcters, and to the ef-
fert of the non-norinality in the performance of the ushal control charts. Apart
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from the pioncer works of Schilling and Nelson[25], Balakrishnnn and Kocher-
lakota[ll. Chan of al.[3], Rocke|21],[22], Quescenberry[20], Chen[8], Nedmnaran
and Piguatielle]19], Champ and Joues[d], Chakvaborti{i}[6],[7], amd Jensen et
al{16]. we mention, smong others, the recent works of Zhang and Castagli-
ola[29), Schoonhven of af|23).]24], and Castaghiola and Figoeiredo[2]. From
these studies we easily conclude that to obtain control charts implemented with
estimated control linits with the same run-length properties as the correspond-
ing clarts with trne limits, the choice of the nnmber of subygronps, w, and the
sinpe size, 1, ciamot be hearistic. Besides the need of a very large number m
of subgronps, which is  limitation from o practical point of view, md in some
cases even impossible. we must. determine the control linits in o robust way.
Other approach consists of modifying the ehart parameters’ in order to take
into consideration the variability imroduced Ty the estimation ol the nominal
process valnes in Phase [ allowing that way to maintain the expeeted false
alarm rate,

Qur winy in this paper is only to investigate the benefits of using the boot-
strap methodology in Phase T of control charting to obtain a larger reference
sample to estimate the nominal proeess pacnmeters, together with the use of
robust estimates,  More precisely, from an in-control relerence sample of m
subgroups (20 or 30) of size #n = 5, we set out to construet a larger vefer-
ence sample of Af), subgroups (106, H00 or 1000) of size o by bootstrapping
from the pooled smmple of size o= w. The nominal process parameters are
chen estimated through the use of a few location amd seale statisties. As an
illustration we only consider the traclitional Mean-chart with estimated con-
trol limits implemented 1o monitor te mean value of & normal process. The
paper is organized as follows, Section 2 provides some information ahout the
implementation of the Mean-chimt with estimated control limits. the bootstrap
methodolopy and the statisties considered in the estimation of the nominal pro-
coss parameters. Section 3 presents some relevant parameters of the run-length
distribution of the teaditional Mean-chart immplemented on the basis of previons
estimites, obtained by Monte Carlo simuliations, and Section 1 concludes with
some conmments about the performance of the implemented control charts,

2  Mean-chart with cstimated control limits based on
bootstrap estimates

Let Y be o sadom variable associated with o normal process, heing the ine
control mean value, i, and the in-control standard deviation, ay. both un-
kuown. The most popilar control ebart, for the process location nwmitoring
is the Mean-chart with estimated contral lindts, Y, obtained by plotting 1he
saanple means of the Phase 1 sanples (Y, ..., Y000 1= 1,200 of #inde-
pendent nornal random viwiables, N{pg + dop, ag). where § s the subgroup
mnmber sl § s the magnitude of the standardized mean shift. 11 4 = 0 the
process is in-control, otherwise the process is out-ofccontrol due to o shift in
the mean process.
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The {estimated) control limits {CL’s) of the Y-chart are random variables,
which can be written in the form

E:‘L_’S = ﬁ:: :t I\-&u, (1)

where the chart parameter & depends on the sample size #. and is determined
in order to obtain a given in-coutrol performance, say, a fixed in-control Average
Run-Length {ARL). For instance, the ¥ -chart with exact 3-sigia control limits.
Cl's = ;JU:EV"’FUU, leacks to an in-control ARL=370.1. If we consider & = 3//n
in (1}, the corresponding Mcan-chart does not have the same performance of
the chart with exact 3d-sigma control limits, unless the process nominal values
ip and ag are adequately estimated.

The standard procedure 1s to estimate gy and oy from ne = 20, 30 subgroups
(Xegvee o Xenhyi=1o... m of size n, usnally 4 or §, assmning independence
between and within subgroups, and that X ; ~ N (jg, g0). However, the litera-
ture refer that for an adequate estimation of pg and ag. the mnnber s of initial
subgroups must he very large, at least 400/n (see, for instance, Quesenberry|20]
and Castagliola and Figueiredo(2]).

In this study we apply the hootstrap methodology to the pooled sample of
size nr 2 in order to obtain a larger munber Af, = 100, 500, 1000 of subgroups
ol size n that will be used for the cstimation of uy and ag. How does the
hootstrap methodology work?

Let (IVy,..., W) be a random sample of size » from a d.f. F(.). The
hootstrap sample, (W7, .00 W), iy obtained by randomly sampling 1 times,
with replacement, from the observed sample (wy, ..., w, ). These variables 117°
are independent and identically distributed {i.e.d.) replicates from a random
variable 17, with d.f. equal (o the empirical d.f. of our observed sample,

given by
1 L
lw) =~ - 2
Fi(w) = = ;I{.... cw) (2)

where I 4 denotes the indicator funetion of the set A, For other details about the
bootstrap methodology see, for instance, Davison and Hinkley[10], Efron[i2]
and Efron ane Tibshirani[13].

In our case, hy bootstrapping from the empirical d f. associnted to the
poeoled referenee sample of size m x n, {2y ..., Ly 8 Frn Ly - -y En )y WE

1

generate My, random samples of size n, say (X)) .. .. Xoohr=1,..., 0.

LR
estimation of the nominal values and let X ;) be the j-Lh ascending order
statistics (0.5.) associated to the subgroup (X, ,..., X,.).

To estimate the nominal process parameters under consideration, i.c., the
in-control mean value prg and the in-control standard deviation o, we have
carried out the following procedure:

1. From & subgroups of size n = 5. with k& denoting cither e {20, 30) or A,
(100, 500, 1000}, we compute k partial estimates, jg, and ag;, i = 1,--- | &;
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2. Then, we consider the overall estimates fiy = thl Jio b and iy - Zi‘ Lok
1o be used in the 3-sigma control limits of the Y-chart.

To obtain the partial estimates fiy;, we consider, for # = 5, the sample mean,

T
'\I - ‘F';ZI-\I-_H

and the fotal modian, defined by
TMd; = 0.058 (X, 11y + X, 5)) + 0366, ¢y +0.259 (X, 12y + X, 1)) -
To obtain the partial estimates g, , unbiased whenever the underlving model

is normal, we consider. for 7 = 5, the following statistics divided by the seale
constant ¢ {indo hrackets): the sample standurd desiaton,

5 lz (X, =X (e= e = 0900),

=i

the sample mnge.
Ry Xmy —Niqy (e = dy = 2.32G).
and the tetal range. defined by
TH = 0737 (X, 5y~ X ) 40263 (N, 0y — X)) (e= LSOL).

The statistics TMd and TR are resistant to changes in the underlying
model, and are similar 1o a special irimined-mean, in which the ideal pereemt-
age of trinmming does uot depend on the data distribution. ‘The distributional
behaviour of the TAld and the TR estimators has alrendy been investigated,
and these statistics have revealed o be efficient and robust estimators of the
mean value and the standard deviation, respectively. Details about these es-
titnators can he found in Cox and Tguzeuiza[9), Figneiredo| L] amd Figueiredo
and Gomes[15). In the sequel the two overall estimates of pg will be denoted
by X and TAId, ind the three overall estimates of oy will be denoted by S/ey,
Rfdy and TH/e.

3 Run-length distribution of the proposed Y-charts

The ability of a control chart to detect process changes is usually measured by
the expected ninnber of smnples taken hefore the chiart signals, e, by its ARL
(Average Run Length), together with the standard deviation of the Run Length
distribution, SDRL. Wheu we have to estimate some process parameters to de-
termine the control limits of the chart, the RL variable (i.e.. the munber of
samples taken belore the chart signals) has not a geometric distribution as it
happens in the known parameters case, but a wove right-skewed distribution.
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Some anthors, Chakraborti[5],[61.[7] and Jensen et al[16], [or instance, refer
that for a more complete understanding of the chart performance. they suggest
the analysis of the couditional RL distribution, i.e., the RL distribution con-
ditional on the observed estimates, together with the analysis of the marginal
RL distribution. Such a marginal distribution is computed by integrating the
conditional RL distribution over the range of the parameter estimators and
takes thus into acconnt the random variability introduced into the charting
procedure through parameter estimation withont requiring the knowledge of
the observed estimates.

In order to get. information abont. the in-control and the ont-of-control per-
formance of the previous Y charts with estimated 3-sigma control limits to
monitor uonual data;, we compute the {conditional) RL distribution of the
Y-charts by Monte Carlo simulation, using 250000 runs in the simulation ex-
periment.

Table 1 presents the estimates of the most comuonly used measures of
performance of & control chart: the mean (ARL) and the standard deviation
(SDRL) of the in-control RL distribution, for the case of known nominal process
values (exact limits obtained by replacing g = 0 and g = 1), and when the
estimated control limits are hased on the overall estimates (X.5 /ey), (f,-ﬁ_.l"dg)
and (TMd,TR/c), obtained from a reference sample of 72 (20 and 30) subgroups
of size n = 5 and from Afy (100, 500 and 1000) subgroups of size n = 5 obtained
Iy boatstrapping [rom the pooled relerence sample of size m X 1.

Table 2 presents the ARL and the SDRL of the P-charts with estimated and
exact control limits for smuples of size n = 5, wheu the process is out-of-control
due to a shift in the mean value lrom pp = 1y = 0to = 4 = 0.3, 0L5.0.7, 1.0, 1.5,
and for m = 30 and A, = 500 subgroups of size n = 5.

Mean-chart with ARL SDRL

Estimated CL's

# subgroups Estimates Estimates

e | A (NSl RN TAE. TRIOUX ., S/ en) (X R d) (TR, TR/ )

20 Ah8 Aabd LE) 8% 817 86
LO0 404 386 375 728 714 676
500 188 360 370 671 H76 627
1000 378 365 368 608 G602 G15

H0 A5 118 409 210 695 428
100 394 37 375 633 620 588
500 373 303 361 311 191 508
1000 378 Bl 367 53 490 518

Exaclt CL's 371 BY)!

Table 1. ln-comtrol ARL and SDRL of the 3-sigma Y-chart. for samples of size n = 5,
For the citimation wo consider m = 20,30 or M, = 100, 500, 1000 subgroups of sizc

=10
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Mean-chart with ARL SDRL
LEstimated CLs
# subpgroups Estimates Estimates
me | My d NS/ OV T g ) UTATL TR/ NS/} (X H /da) ((TATL T )
30 0.3 132.4 RIERN R 2.5 216.1 2200
0.5 42.3 42.5 42.9 2.4 G4.1 (5.
0.7 15.7 15.4 15.8 20.3 20.5 204
1.0 5.0 5.0 4.9 5.4 5.5 5.2
1.5 1.6 e | 1.6 1.1 1.§ I.1
o 0.3 124.8 121.5 1234 L96.0 181.5 1RR.2
(15 39.7 301 J.3 HYl| 560 il
0.7 14.9 LT 14.8 18.8 18.9 18.6
1.0 1.8 7 1.8 5.2 2.0 5.0
1.5 L6 1.6 | 1.G 1.1 Lo 1.0
sxact CL's|0.3 0g.2 08.4
0.5 KN 42,5
0.7 13.2 12.8
1.0 1.5 1.0
1.5 1.6 09

Table 2. Ont-ol-controf AL anl SIRL of the 3-sigma Y-chant for samples of sioe
1= H. Fur the estimmtion we consider = 30 or Ay = 510 subgroups of size = &
The process mean changed lrom g1 = g = 0 to 1 = 8

4 Analysis of the perforinance of the proposed Y-charts

As expected. for all the different combinations o the number of subproups
uwsed in the estimation moor M, and the estimates (fro, 6g), the estimation
of the nominal values have effect on the ARL aud on the SDRL of the Y-
charts. However, the effect on the in-control and ont-of-control R hehaviour
hecomes small when i inereases. and specially i we consider a large namber
My, of subgroups obtained by bootstrapping from the initial m subgroups of
the reference smple. As i and Afy, inerenses the ARL vadne of the chart with
estimated control limits tends Gister than the SDRL to the corresponding val-
sies obtained when the Y-chart is implemented with exact CL's. For instanee,
if we consider Af;, = 500 or 1000 subgroups obained by hootstrapping frotn the
initial = 20,30 subgroups of the reference sample, we oblain an in-control
ARL approximately equal to 37001, although the SDRIL value maintains vet
larger than 370.4. For detecting sinall shifts in the process mean vihie, we also
gob some improvements in lerms of performance il we consider, for instanes,
My, = 500 subgroups for the estimation of (g, #u), by bootstrapping from the
initinl ar = 30 subgronps of the reference sample. Concerning the different es-
timates of the nominal values here considered, the results ave gualitatively the
sane, at least when monitoring normal data. As iand My inereases, the upper
percentiles become closer to the correspouding percentiles of the RL distribn-
tion of the Y-chart with exact CLs. Finally. when it is not possible to consider
a large reference sample or there is not available a modified chart parameter,
K, that take into consideration the variability introdueed by the estimation ol
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the nominal process values, the use of the bootstrap methodology should he
explored because it can lead to some improvemans in the performance of the
chart.
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